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Abstract 

At self-similarity the strain history is implicit in and deducible from the strain field at each instance of the 
loading process. This fact is taken advantage of in a FEM-technique which allows the load to be applied in one 
single step, only, even when the incremental theory of plastic flow has to be used. 

Two self-similar problems are solved. Firstly an analytically solvable anti-plane strain crack problem is 
treated and the numerical one step solution is found to agree very well with the analytical one and significantly 
better than a step-by-step solution. Secondly a mode I crack problem for asymptotic small scale yielding in plane 
stress is examined. The result suggests that the plasticity correction for the crack length is significantly less than 
estimated by Tada et al. [I]. 

1. Introduction 

When non-proportional loading is regarded, numerical solutions to elastic-plastic crack 
problems are usually obtained by applying the load in several increments. Therefore the 
accuracy of the result depends on the choices of these increments (i.e. the step size at 
different load levels) as well as on the accuracy of each incremental solution. However, in 
certain important cases this step-by-step solution can be avoided. These cases are 
characterized by self-similarity, at least approximately. This implies that the plastic 
stress-strain field remains essentially unchanged apart from a length scaling factor. When 
the plastic zone develops at the tip of a crack in a plate of ductile material, there is often a 
phase of approximate self-similarity at which the length scaling factor can be set to 
(K/a y )2 where K is the stress intensity factor and ay is the yield stress. 

2. Self-similarity 

A stationary crack in a body subjected to mono tonically increasing load is studied. It is 
assumed that the characteristic dimensions of the fracture process region are so small that 
this region can be regarded as a singular point. Further it is assumed that all characteristic 
in-plane dimensions of the plate, including the crack length, are much larger than the 
linear extension of the plastic zone and that the plate thickness is such that plane 
conditions can be assumed. Then, as the load is increased, the subsequent near-tip stress 
and strain states are self-similar, i.e. the only significant length parameter is (K/a y )2. In 
this case the total strain history can be traced along rays diverging radially out from the 
crack tip, i.e. on () = const. in a polar coordinate system, see Fig. 1. 

This has been taken advantage of in a finite element code operating according to the 
initial stress approach for non-linear problems as described by Nayak and Zienkiewicz [2]. 
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Crack 

Figure 1. The strain history can be traced along rays diverging from r = O. 

8-node isoparametric elements are used throughout and element stiffnesses are integrated 
from 2 by 2 element integration points. Usually the stress Oi/r, 0) is determined by 
integration over the total strain history, from (k/(r, 0) = 0 before the load is applied, to 
the current strain (k/(r, 0) = (2/(r, 0): 

( 0) - {<2,(r.fJ)D ep d 
°ij r, - lo ijkl (kl (1) 

where D{fl, is the stress dependent elastic-plastic stress-strain matrix. Assuming, for a 
moment, self-similarity to be satisfied in the whole plane, then the integral in (1) can be 
converted to an integral over the distance r from the crack tip at a constant value of O. 
Assuming further that the strain (k/(oo, 0) --+ 0 as r --+ 00, one obtains: 

(2) 

Now integration according to (1) can be performed analytically for strains within the 
elastic region. This implies that numerical calculation of the integral in the right member 
of (2) need not be extended to infinity, but rather to a radius R large enough to reach the 
elastic region. Thus 

0ij(r, O)=oi/R, 0)+ {Dtfl/ca(ktlar) dr (3) 
R 

where 0ij(R, 0) is the analytically determined part. Obviously, relation (3) is correct even 
if self-similarity does not hold for the whole plane, but it must hold within the radius R. 

The strain is found by linear interpolation between the element integration points rn 
and rn+l which must be situated at the same O-coordinate (see Fig. 2), i.e. 

a(kl (kl(rn+1, 0) -(kl(rn, 0) ( ) 
-- = = const. for rn+l ~ r ~ rn' 4 ar rn+l - rn 

Figure 2. The strain-state is linearized between the integration points at r = rn and r = rn + 1 on a ray 8 = const. 
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By choosing, for simplicity, to calculate the stress first at rll and then at ',,+1 we arrive at 
the recursive relation 

(5) 

where the integral is calculated analytically as long as rn and rn + 1 are situated within the 
elastic region. Iterations are performed as described by [2], after replacing (1) with (5). 
After starting with a suitable assumption about the displacement field (for instance the 
elastic field), the deviations from the correct solution manifest themselves by non-zero 
resultant nodal forces. From these forces a corrective set of displacements is calculated, 
making use of the matrix of compliance. The procedure is greatly simplified by the fact 
that this matrix need not be updated in each loop, but the one for the linearly elastic 
material can be used instead. Actually there does not seem to be any advantage of 
updating the matrix at all in the two present cases. The iterations are repeated until the 
residual nodal forces are sufficiently small (cf. [2] for a detailed description). 

3. A mode III elastic-plastic crack problem 

The mode III elastic-perfectly-plastic small scale yielding problem solved analytically by 
HuIt and McClintock [3] is chosen for demonstration. In the present numerical treatment 
the upper part, 0 ~ 0 ~ TT, of an infinitely long cylinder, r ~ a, with a crack in the plane 
0=0, and the crack edge at r = 0 is studied (see Fig. 3). The cylinder cross-section is 
covered by 64 8-node isoparametric elements. The analytical solution [3] is used to specify 
the boundary conditions on the mantle surface. One obtains 

on 0 = TT (6) 

and 

(7) 

on 

r=a, O~O~TT 

where ro = [(x - XO)2 + y2]1/2, 00 = tan-I[y/(x - xo)] and Xo = (3/2TT)(KIII/OY )2. The 
choice Kill = oy(O.8a)I/2 is made. The remaining boundary condition is 

w=O on 0 = O. (8) 

y 

x 

Figure 3. Cross-section of the cylinder considered in the FEM-calculations showing the mesh used. 
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Figure 4. The non-dimensional displacement wG/(Kl/la I / 2 ) versus the non-dimensional distance x / a along 
y = O. At x = 0, the crack tip, the displacement is multi-valued, but can be specified by the angle from which 
x = 0 is approached (see Fig. 5). 

The crack tip elements are degenerated to triangles, thus allowing an r- 1 type of strain 
singularity at the crack tip, c.f. [3] and [4]. The elastic displacement field is first calculated 
and used as starter field. In the first iterations perfect plasticity cannot be introduced 
because of stability problems. Therefore a linearly hardening material with tangent 
modulus E( = E/10 was assumed for the first iterations, whereupon perfect plasticity 
(E( = 0) was introduced. The total number of iterations was 17. More iterations did not 

wG 
Km a1l2 

0.5 

0.4 

0.3 

0.2 

0.1 

'-r/a-O(FEM , ONE STEP) 

x,,- r/a-O(FEM, STEP- BY _ STEP) 
x 

~ r/a = O.04(FEM, ONE STEP) 

r/a = 0.04 (FEM, STEP - BY - STEP) 

O~----------+-----------r-----------~--------~~ ___ 
Tt/4 Tt 12 3Tt/4 Tt e 

Figure 5. The non-dimensional displacement wG/(Kl/laI/2 ) versus the angle () at the non-dimensional 
distances from the crack tip r / a = 0.04 and r / a -> O. 
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improve the result. Figures 4 and 5 show displacements obtained at different points and 
the same displacements obtained both analytically (the exact result) and with an incre­
mental (step-by-step) technique. For the step-by-step method (1) is used instead of (5) in 
the iteration loop described previously. Both numerical solutions are observed to agree 
well with the analytical solution but the one step solution gives the most accurate results, 
especially at the crack tip. 

In the example chosen proportional loading prevails. However, this fact is neither 
required nor taken advantage of in the one step solution. 

4. Plasticity correction of mode I crack lengths 

At small scale yielding there is an annular region A around the crack tip in which the 
stress field closely coincides with the field given by the square root singular stress terms in 
the Williams expansion [5] around x = 0, y = 0 (the crack tip). The square root singular 
terms of the stress components (ax ' ay, etc.) determine together a unique associated 
displacement field. 

The elastic-plastic near-tip field can be found by studying a circular region (with radius 
R) around the crack tip, using the singular stress field for boundary conditions. If this 
region extends beyond the annular region A, second order regular terms in the Williams 
expansion cannot be neglected. On the other hand, if it does not reach this annular region, 
second-order singular terms (r-I, r- 3/ 2 , etc.) must be considered. 

At (infinitesimally) small scale yielding the inner radius of the annular region A in 
which second-order terms can be neglected is much larger than the linear extension of the 
plastic region. Ideally then, the radius R should be larger than this inner radius. However, 
this condition might be difficult to satisfy when finite element methods are used. 
Therefore, in the following, R is assumed to be smaller than the inner radius of the 
annular region A and thus second (and higher) order singular terms become significant. 

How would one know anything about the influence of second order stress terms? One 
way would be to study the boundary displacements at r = R found after using the square 
root singular stress field for boundary conditions. If R actually was situated inside the 
annular region A these displacements would agree with those associated with the square 
root singular stress field. By checking this agreement a judgement can be made about the 
influence of neglecting second order boundary stress terms. 

A possibility to improve the accuracy is to add singular stress terms to the boundary 
conditions. This can be done simply by assuming the centre of a square root singular 
stress field to be situated, say, at x = x*, y = 0 rather than at x = y = O. Each component 
in this field should possess the same angular distribution as obtained from the Williams 
expansion. Assuming mode I and using a polar coordinate system r, 0 with r = 0 at the 
crack tip and 0 = ± 7T along the crack surfaces one can calculate the stress components ar 

and TrO of this field at r = R. These components can be used as boundary conditions for 
the region r:;;;; R together with the condition of traction free crack surfaces. 

The elastic plastic problem can be solved numerically and the displacements u~ and uti 
at r = R can be determined (n = numerical). These displacements will in general be 
different from u~ and u~ obtained from the displacement field associated to the square 
root singular stress field (a = analytical). The differences, BUr = u~ - au~ and Buo = u~­
auti, where a is some numerical factor, vary with O. By a sutable choice of a and x* these 
differences can be made small, preferably by seeking the values of a and x* = Xo that 
minimize the integral 

(9) 
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The reason why a is introduced instead of unity is that numerically and analytically 
calculated displacements are not quite comparable - in the present case the magnitude of 
the numerically calculated displacements suffer from a systematic error that makes them 
somewhat underestimated. Thus a turns out to be slightly larger than unity (about 1.01). 

The minimization is first done analytically with respect to a and then, simply by trial 
and error, with respect to x •. After Xo has been found the result can be interpreted in the 
following way: 

Assume that the crack tip is situated at x = Xo, Y = 0 and that the material is linearly 
elastic. The stress field at some distance from the crack tip is then square root singular 
with respect to this point. This field equals approximately the real stress field not only in 
the annular region, where a square root singular stress field centered at the crack tip 
(x = 0, y = 0) is a good approximation, but also at the radius r = R (and of course, in the 
whole intermediate region). Knowledge of Xo therefore gives a possibility to compute the 
near-tip field at small scale yielding by regarding a fairly small region around the crack 
tip, only. 

Another advantage is that the stress intensity factor K can be calculated more 
accurately by using formulas from the linear elastic fracture mechanics after adding Xo to 
the crack length. Hence, the length Xo can be identified with the so called plasticity 
correction introduced by Irwin and Paris [6]. 

A thin infinite plate of an el"..;tic-perfectly-plastic material is now studied. For 
symmetry reasons only the upper half of the circular region r ~ R, 0 ~ fJ ~ 'TT is studied. 
The boundary load is given by the components (Jr and 7'r/J found from the singular stress 
terms in a Williams expansion around x = x., y = O. After some calculations one obtains: 

on fJ = 'TT (10) 

and 

(Jr = K(2'TTr.) -1/2 {I - sine fJ./2) 

X [sin(3fJ./2) cos(2fJ) - cos(3fJ./2) sin(2fJ)]} cos( fJ./2) (11) 

7'r/J = K(2'TTr.) - 1/2[sin(3fJ./2) sin(2fJ) + cos(3fJ./2) cos(2fJ)] sin fJ./2 (12) 

y 

I .. 
Crack 

R 
..I 

x 

Figure 6. The element mesh used in the mode I case. 
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Figure 7. Non-dimensional plasticity correction xo(Uy/K)2 versus squared non-dimensional stress intensity 
factor K2/(Ru~). The corrections suggested by Tada et al. [1] and by Edmunds and Willis [8] are also indicated. 

Furthermore the displacement in the y-direction 
v = 0 on 0 = O. (13) 

The half-circular region is covered by 64 8-node isoparametric elements (see Fig. 6) and 
self-similarity is taken advantage of to obtain a solution in one step as previously 
explained. 

The investigation was carried out for values of K giving plastic zone sizes ranging from 
R/8 to R/2. The estimated value of Xo is shown in Fig. 7. The result suggests a 
significantly smaller correction than what is recommended by Tada et al. [1]. A somewhat 
better agreement is found if the result is compared with the Dugdale model [7], for which 
Xo = ('1T/24)(K/<7 y )2:::: O.131(K/<7 y )2 provides an asymptotic correction, according to 
analytical results by Edmunds and Willis [8]. 

The size of the plastic zone is observed to be slightly less than what is estimated by [1] 
and [8] (see Fig. 8). The scatter is due to the fact that the plastic zone size can be 
determined only within an error equal to the radial distance between integration points, as 
an inspection of Fig. 9 reveals. 
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0 .1 

Crack Elastic 

rp lOy/K)2 

-------------------------Dugdole mod. 

-----------iU----- ----Tada et 01. 
@l 

0.5 1.0 1.5 2.0 

Figure 8. Non-dimensional plastic zone length rp(uy / K) 2 versus K2/(Ru~). The result obtained by Tada et al. 
[1] and the result for the Dugdale model [7] are also indicated. 
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Figure 9. A typical plastic zone shape found by the FEM technique used, here for K = oyRI/2. 

5. Conclusions 

Apart from being more accurate and more economical, the one step solution technique for 
self-similarity problems present several advantages compared to a step-by-step technique. 
Since the history dependence is eliminated, a solution can be obtained by iterations from 
any fairly reasonable solution. This opens a possibility to study the effect of slightly 
changed material parameters (E, P, ay, etc.) simply by continuing iterations after change 
of parameters, while it is necessary to start calculations anew from zero load at the 
step-by-step method. 
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Resume 

Dans les problemes d'auto-similitude, I'histoire des deformations est contenue dans et deductible depuis le 
champ de deformation a chaque etape du processus de mise en charge. On utilise cette particularite dans la 
technique d'analyse par elements finis, qui permet d'appliquer une charge en une seule etape seulement, meme 
s'il faut appliquer la theorie de I'ecoulement plastique sous condition incrementielle. On resoud deux problemes 
d'auto-similitude. En I'occurence, on traite d'abord d'un probU:me de fissuration sous deformation anti-planaire, 
solutionable par voie analytique; la solution numerique en une etape que I'on trouve est en tres bon accord avec 
la solution analytique, et est significativement meilleure que la solution par etapes successives. En second lieu, on 
examine un probleme de fissure sous un mode I correspondant a un ecoulement plastique a petite echeIle en etat 
plan de tension. Le resultat obtenu suggere que la correction de plasticite a appliquer pour tenir compte de la 
longueur de la fissure est sensiblement moindre que ceIle estimee par Tada et al. (Ref. 1). 


