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ABSTRACT 

THE DISPLACEMENT rate is given for a mode III crack growing in a steady state under dynamic conditions. 
The material is assumed to be visco-plastic and high strain rates are considered. A regular perturbation 
expansion is performed. First-order perturbing strains are, with one exception. square root singular near 
the crack-tip. For overstress exponents less. or equal to 2, a reasonably large region around the crack tip. 
i.e. > IO-’ of the linear extent of the plastic zone, is dominated by the square root singular strain field. 
For an overstress exponent of 5/2 the region extends to about IO-’ of the plastic zone size. which 
significantly reduces the possibilities of using the strength or the square root singular field as a fracture 
parameter. For the overstress exponent 3 the region vanishes. 

1. INTRODUCTION 

IN MANY situations of fast crack growth in structural steels, the viscosity during plastic 
straining cannot be ignored [cf. Lo (1983) and BRICKSTAD (1983)]. In fact, the viscous 
behaviour is in some cases so strong that the plastic straining has a limited effect on 
the stress distribution around the running crack tip. Mode I cases of this kind have 
been treated by FREUND and HUTCHINSON (1985). They considered the energy rate 
balance that is necessary for continuous steady-state crack growth. The elastic energy 
release rate G was balanced essentially by the rate of plastic deformation work and 
the crack-tip driving force G,i,. The method determines G,i, and the asymptotic stress 
and strain field. However, the extent of the region where the asymptotic field dominates 
remains undetermined. 

In this paper, cases of mode III fracture are studied. The following relation [cf. 
FERZYNA (1963)] between deformation rate hi* and stress is used : 

and 

(1) 

(2) 

tThis paper was prepared during a sabbatical year at the Division of Engineering. Brown University, 
Providence, RI 029 12. U.S.A. 
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for r > T,, where T = (Tr+T;:) ’ ’ is the effective stress, r, is the transition stress and 
~1 is the shear modulus. For r < 5, the material behaves linearly elastically. The 
material parameters i0 and n are referred to as the strain rate sensitivity and the 
overstress exponent, respectively. 

During steady-state crack growth, elastic strains dominate asymptotically close to 
the crack-tip if jr < 3. For these cases, it was shown by Lo (1983) that the asymptotic 
solution is the square root singular stress field, which is well known from the theory 
of linear elasticity. This has far-reaching implications. The most important of these 
is that a stress intensity factor K,i, can, under certain conditions, be defined to describe 
completely the near-tip state in the way that the conventional dynamic stress intensity 
factor K,,, does at small-scale yielding. 

FREUND and HUTCHINSON (1985) calculated the plastic strain rates for mode I, 
using the near-tip field stress distribution. They further showed that this leads to a 
solution that is valid when the plastic dissipation is an infinitesimal fraction of the 
total energy release rate. Because of the mathematical simplicity characterizing mode 
III, treated here, the displacement rate in the entire body can be obtained. Solutions 
are studied for n = I, 2 and 5/2 with emphasis on the extent of the region where the 
square root singular solution dominates. The case n = 3 is also compiled, and it is 
shown that an I’~ “J log (1.) singularity develops for the plastic strains. Since this 
singularity is stronger than the elastic strain singularity, the assumption of small 
plastic strains will be violated close to the crack tip. 

The presence of a near-tip square root singular field allows for simplified analyses, 
i.e. the process region may be treated as a point. In a real situation, the process region 
has a finite extent and a necessary condition, allowing for the simplified treatment, is 
of course that the elastic strains dominate over a region much larger than the process 
region. This condition is, however, very seldom checked. One reason may be difficulties 
in determining the extent of the process region. Probably most important, however 
(to the knowledge of the author), is that there are no available estimates of the region 
of dominance of the square root singular field. 

The present analysis is limited to small speeds m. However, experiments show that 
speeds exceeding 0.3-0.4 are very seldom reached, e.g. on wide plates of 533B steel 
(NAUSS et al., 1987). The accuracy here is to the order of nz’. One might get an 
indication of the accuracy of the results by noting that m6 = 0.004 for nz = 0.4. It was 
further shown for the wide plate experiments that a good portion of the crack 
growth could be considered to occur at high large strain rates (preferably below room 
temperatures) (STAHLE and FREUND, 1989). It is, therefore, believed that the results 
cover cases of interest for engineering practice. The selected mode of fracture is, 
however, a severe limitation in the respect that this case seldom occurs in real 
situations. The reason for selecting mode III is its mathematical simplicity and hope- 
fully the conclusions have some relevance also for mode I cracks. 

2. THE PROBLEM 

Consider an infinitely large visco-plastic body. A sharp crack is running in the plane 
JJ = 0 with a speed a relative to the body. A frame of reference moving with the crack 
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is employed, so that the crack edge is situated at s = J’ = 0 (see Fig. I). The material 
behaviour is given by (1) and (2) for T 2 T, and linear elasticity is assumed for T < T,. 

Small strains and deformations are assumed. The boundary tractions are such that 
the scale of yielding is small, and the stresses far away from the crack tip are given 
by [cf. ESHELBY ( 1969)] 

K,, I9 
and 5,.,+-----,cos 

(h)’ - 0 2 
as I’ + x . (3) 

where K,,, is the stress intensity factor and I’ and 8 define an elliptic polar coordinate 
system attached to the crack tip. These coordinates are given as follows : 

where 

r=(l-/n’)” and III=!. 
(‘, 

(5) 

The only significant elastic wave speed for mode III is the shear wave speed C, which 
is defined by 

(6) 

where p is the mass density. It was shown by ACHENBACH and BAZANT (1975) that 
the near-tip field for a crack running in a linearly elastic material is in a steady state. 
Here it is assumed that this also holds for a sufficiently small scale of yielding. The 
steady state implies that 

FIG. I, Coordinate systems attached to the moving crack tip. 
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where (‘) denotes differentiation of any state parameter with respect to time. The 
equation of motion is 

By differentiating (8) with respect to time and then reducing the time derivatives of 
the displacement rate by applying (7) 

is obtained. For convenience the following fluidity parameter, 

(9) 

is introduced. Insertion of (1), (2) and (IO) into (9) leads to 

for 7 B 7,. 

If nothing else is explicitly declared, the continued calculations are confined to the 
plastic region where 7 2 7,. Further, the fluidity is assumed to be small, i.e. it is 
assumed that 1 K 1. 

A regular perturbation expansion is suggested. It is thus assumed that the solution 
to (11) may be expanded as 

ti = 1+0+23, +o(1)=lG2, (12) 

7,n = 7,3 + f17,:, + 0(2,)=7 .- .A. 2 (13) 

and 

T)., = r~,o+~T~,,+o(~)~T~,~. (14) 

Third-order terms are neglected, i.e. those of the order of A2. A perturbation expansion 
is expected to work for n < 3 since this limit guarantees that the singularity at r = 0 
of the perturbing terms, ti,, dlz,. . . (with G = C A’+,) is weaker than the zeroth-order 
term, M’vo. Assume just for a moment that ii’i = O(r.“c) as I’ + 0. Let it be required that 

si+, >si for i=O,l,2,... (15) 

According to (1) and (2), txli and T,.:~ are of the order of + as I’ + 0. The right-hand 
side of (11) is then of the order of r”‘l- ’ and accordingly 

7 
IV;+ , I . = O(r)“‘~- ‘, as r+ 0. (16) 

It follows from (15) and (16) that 
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as,-I =s;+,-2>s;-2. (17) 

It is further necessary that the energy release rate at the crack tip is finite, which 
implies that s0 = - l/2. After insertion into (17) 

n<3 (18) 

is obtained, which imposes a limit for the present analysis. 
Equation (11) leaves the following two requirements : 

(19) 

and 

where r. = (~.$,+r~?~,) I” Obviously bti, is the linearly elastic solution . 

(21) 

The dynamic stress intensity factor K,,, is related to the elastic energy release rate G 
as 

G=K,‘,,, 
w 

(22) 

The shapes of the plastic zones at different crack-tip speeds are shown in Appendix 
A. As observed, the zone size expands indefinitely as the shear wave speed is 
approached, i.e. as CY + 0. 

Equation (20) will be solved in r 3 r, and in T < T, by means of Fourier series. The 
solution for the elastic material and the solution for the visco-plastic material have to 
be matched across the elastic plastic boundary, r = r,. Therefore, a simpler description 
of the elastic plastic boundary than (A6) is desired. That can be obtained through 
application of a hodograph-related transform [cf. FREUND and DOUGLAS (1968) or 
COURANT and HILBERT (1953)]. The following coordinates are used : 

5,--O 
t, = : = - 

&I 

*, CXT,(27Tr) 

and 

tj, - 2 - K,, tl 
5, r,(2nr)“‘CoS 2 0 

(23) 

(24) 

A polar coordinate system, t and cp, is attached to the origin of the t,.-t,. plane. Define 
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t = (tf+t,‘)’ ’ and cp = 

The elastic plastic boundary at vanishing plastic 

1, 
tan ’ t . 0 (25) 

> 

strains is now given by t = I and 
1~1 < x/2. The boundaries in the !,-I, plane are shown in Fig. 2(a) and (b). The 
segments in Fig. 2(a) correspond to the respective primed segments in Fig. 2(b). Note 
that II’ is anti-symmetric with respect to cp = 0. It is further obvious that r71i,/?cp = 0 
at cp = x/2, since here 0 = rr and thus dri,/?q is proportional to L’+/?>v, which in its 
turn is proportional to ?,., and along the stress-free crack surface ?, = 0. Thus 
(71i./?v = 0 along the segments Y, and’ l-g and II’ = 0 along f;< and I-;.-. 

On the left-hand side of (20), here denoted LH the chain rule is applied : 

Note that &p/?r = 0. The following substitutions are made : 

?I n7~t,t,. d’t n?‘[t~(t’-2t,?)+nzy] 

8 2at q do’ = 4&” 3 

% (‘-&(2 
(70 

--+ t?12t,t,(t’-lnl~t~) 
2w 

and 2 = - i,~~~-~~ . 
-2 

LH is now transformed to 

+(,‘-t&r:)($; + $$)I. (28) 

After inserting (23) and (24) into the right-hand side of (20), RH, 

FIG. 2. Boundaries in the /,-I, plane. The segments I-‘, -I-;. in (a) correspond to segments r., -I‘, in (b) 
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is obtained. 
The following relations become useful : 

(30) 

After substitution of these expressions into (39), RH appears as follows : 

Putting again LH = RH and using the definitions (25), (20) is now written as 

X(r- I)” I 

+f?7’[2(17+ I)/-?-nr’nl]sin” (q2)+/7rJ[(/7- I)/+ 1] sin’(q)). (32) 

where 

The boundary conditions (&i’/Sq = 0 along I, = 0 and I? = 0 along t, = 0) suggest 
that the solution can be expanded in the following Fourier series : 

Ii,, = il (,=,i3 ~ ./Ad sin (CIY). (33) 

Insertion into the left-hand side of (32) gives 
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+~~~-~~.J;l~~~[~q-~~cpl+[~~f;‘-~~q+~~~f~+q~q+~~f,l~~~~~q+~~~l) (34) 

After changing the order of summation one may write 

ri i 
r,= 1.3.5 K ) 1-g (r2.~,+rl:,-q1/,,-~~~2f~-2-(2q-3)~f~~2+q(q-2)f,-2 

+t’f~~+z+(2q+3)~f;+~+4(4+2)f,+~l sin(w). (35) 
I 

Turning now to the right-hand side of (32), after expanding in n? and by changing to 
trigonometric expressions for multiple angles, 

2ir( I - 1)” - ’ 
---1- 

1- 
[(n-l)t+l]sin(cp)- 

(4 16) 
*+E [(5n-I)t+l]sin(3q) 

4 

+ y6 [(13n- l)t+ l]sin(5(p) +O(n7)’ 
I 

(36) 

is obtained. 
It is useful to notice that the character of (32) leads to f, = O(f&z’). The 

observation that J, is of the order of ,” as m -+ 0 implies that f, = O(nz)Y- ‘. Conse- 
quently, since truncation is desired for terms of order nr6, one may neglect .f, for 
q 2 7. Inserting (35) and (36) back into (32) gives three equations to solve : 

[(5~7-I)r+l]+O(m)~ (38) 

and 
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A matching of homogeneous solutions for T < r, with homogeneous and particular 
solutions for 7 > r, has to be done. The condition used is that continuous velocities 
Ii* and accelerations r’i are required everywhere and thus also across the boundary at 
7 = 7, [cf. HILL (1961)]. The plastic deformation affects the plastic zone shape, i.e. 
the elastic plastic boundary is shifted from the curve r = I by a quantity of the order 
of i [cf. (A6) in Appendix A]. Let IV+ denote the solution in the plastic zone and CI*~ 
the solution outside the plastic zone. 

The elastic boundary is situated at t = I +E, where E = O(2). The continuity 
conditions are 

[ Ii,+ - Ii,-I,= , +g = 0 (40) 

and 

This implies that 

and 

(41) 

(42) 

(43) 

It is assumed that II’+ or 11’~ is analytically continued across the elastic plastic bound- 
ary. Generally d+‘/dr’ is discontinuous across the elastic plastic boundary. However, 
the second derivative of the zeroth-order solution, &i$dt’, is continuous since the 
viscosity effects only enter to the order of 2.. Continuity is in the present analysis only 
required to the order of the accuracy of lb, i.e. R. This means that the continuity 
conditions (40) and (41) may be written as 

[++ - rix-],=, = O(i.)’ and (44) 

The elastic plastic boundary is shifted a distance which is of the order of 2. Even so, 
as (44) state, the perturbed shape of the plastic zone will make its influence on Ii, felt 
only to the order of i.‘. 

Solutions truncated for Ok can be found in Appendix B. Here, only the quasi- 
static solutions are given. The length parameter is defined as 

R=$, 
Icr; 

(45) 

which to the order of 1 equals the linear extent of the plastic zone straight ahead of 
the crack tip. After putting i: = r/R one obtains for II = I 
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for I? = 2 

where 

For II = 3 

II 1 2 
+ T +log(i) i: “-6+3i’ ?- r: 

3 
l-+0(/n)‘. 

The function f is given by 

(46) 

(47) 

(48) 

(49) 

(50) 

Solutions (46)-(48) are valid only in the plastic zone, i.e. for P < I. The solution for 
II = 3 [(49)] violates the unequality (I 5). Thus the strains cannot be expected to be 
elastic close to the crack tip. A weaker singularity will develop and the result for 17 = 3 
is therefore not of any further interest in the present analysis. 

It is the case that 

outside the plastic zone, i.e. for i: > I. This means that the effects of fluidity in the 
quasi-static limit vanish at the elastic plastic boundary. Somewhat surprisingly. this 
holds independent of II. However, that is not the case for dynamic cracks as can be 
seen in (B I 0)-( B 12) in Appendix B. 

3. RESULTS AND DISCUSSION 

The question of defining the extent of the region where the square root singular 
terms dominate can, of course, be given many answers. The present study is compiled 
under the assumption of small deviations from the elastic stress and strain distribution 
as a whole. Note that the deviations consist of terms proportional to the strain rate 
sensitivity j,, [see (46)-(48)]. Of these terms the most dominant is of the order of r ’ ’ 
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for overstress exponents II = I. 2 and 5/2. The plastic deformation work per unit of 
crack extension is given by the amplitude of this term. and the result can be compared 
with the result found through calculation of an energy balance (see Appendix C). 

Here. II parameter /?,,, is defined as 

(5’) 

At a large distance from the crack tip I?,,, approaches the elastic stress intensity factor 
K,,,, i.e. 

lim R,,,(r) = K ,,,. (53) ,-I 

As the crack tip is approached. it is found that 

where ~(III) and the factor S can be obtained from (B7). (B8) and (47). Equation (54) 
is accurate to the order of 2. In Appendix C the exact result for the limit as I’ + 0 is 
found by applying the theory of FREUND and HUTCHINSON ( 1985). The speed function 
~(/II) is found to be independent of II and the result according to (C5) is 

S-8nz’+3117 I 717 3717? 
9(/77) = 

87i7( I - ,17? j3 ? = 777 
+ 2 + 4 fO(777)'. (55) 

The magnitude is chosen so that 777 x g(r77) + I. The parameter 5 is determined to be 
as given in Table I. An approximation of 5 ~~(777) can be obtained from (B7). By 
putting 6 according to Table I. the following are obtained for II = I. 3 and 5,‘2 : 

y(717) = 
(l-n?) 3 

[ - 
I + p7'+ ;,77'+0(777)6 , 

117 1 (56) 

which coincides to the order of 177’ with the result (55). Figure 3 shows y(/~) for 
0 < 717 < I. It is observed that 9(717) has a minimum in the interval. Through differen- 
tiation of (55) with respect to 777 the following solution is obtained : 

II is 

I I (27c) 
2 I/% 

512 l5/16 
3 x 
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0 

m=& 

FIG. 3. Function g(m). The minimum 2.24 ofg is found at ~1 = 0.612. 

mrnin = (“-‘;““‘>‘I’ % 0.611,. (57) 

At this speed a crack can be driven by the least possible energy release rate G, assuming 
that the crack-tip driving force G,,, is constant. Insertion of m = mm,” into (55) gives 
LJOT1rnin) z 2.2399. In the quasi-static limit m xg(m) + 1. 

The primary scope of this paper is to estimate the extent of the region where the 
square root singular solution dominates. Since Kt,p fully determines the asymptotic 
behaviour, it is of interest to study how far away from the crack tip Ktip actually 
provides a good approximation of K,,,. 

Figure 4 shows the relative difference between K,,, and K,ip in the form of the 
following measure : 

(58) 

As observed, the region of K,,,, dominance decreases with increasing values of n. Use 
K,ip as an estimate of &,,, with an accuracy depending on I’. Assume further that, for 
instance, 90% of the shielding effect that the plastic straining has on the stress intensity 
factor has to be captured. Then K,ip may be approximated by Z?,,, only closer to the 
crack tip than about 0.03 of the distance R to the elastic plastic boundary straight 
ahead of the crack tip, for n = 1. The corresponding distance for n = 2 is about 
O.OOlR and for n = 5/2 the distance is about IO-‘R. This is a fairly small distance 
and the size of the process region cannot be expected to be much smaller than that. 
It is proposed that n = 2 is a limiting case which leaves us with the conclusion that 
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- m=O 

------ m=o.5 

f 

FIG. 4. Variation of apparent stress intensity factor in, vs distance from the crack tip for irjc, -+ 0 and 
d = 0.5c,. 

the approximation Of K,ip with I?,,, cannot safely be used for materials with n > 2. At 
higher speeds the result improves somewhat but not enough to essentially change our 
conclusion. 

The region where the asymptotic (square root singular) field for the plastic effects 
describes the actual plastic effects on the displacement rate, +-CO, depends, of course, 
on what the desired level of accuracy is. The accuracy is here taken to be 1 -f, where 
f is given by (58). In the quasi-static case, this region is a circle. In the dynamic case 

x lo%, m=O.5 
0 10%. m=O 
A 5%. m=O 
. 1%. m=O 

n=l n=2 n=5/2 

FIG. 5. Extent straight ahead of the crack tip of the region of dominance for the asymptotic field for 
different materials and levels of accuracy. The accuracy is given by I -.b The region is nearly circular for 

crack-tip speeds of interest, say m < 0.5. 
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the deviation from the circular shape is insignificant, at least for speeds of practical 
relevance, for say m < 0.5. The radius of this region in the quasi-static case and the 
extent straight ahead of the crack tip in the dynamic case is shown in Fig. 5, for 
different levels of accuracy. It is noted that, if a higher accuracy is desired, e.g. I%, 
then a reasonably large region of dominance for the asymptotic field cannot be found 
for materials with II > 1. 

For n = 3 the model develops an r ’ 2 log (r) strain singularity. This is stronger 
than the square root singular field, implying that the apparent stress intensity factor 
I?,,, is likely to decrease towards zero as the crack tip is approached. When the plastic 
strains become of the order of the elastic strains, the limit for the present theory will 
be exceeded. The analysis is uncertain in this case since the effect on the solution due 
to the different conditions at the crack tip is unknown. Thus, the character of the 
asymptotic field for II = 3 is not determined in the present analysis. 
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APPENDIX A: ELASTIC PLASTIC BOUNDARY AT VANISHING PLASTIC STRAINS 

The elastic plastic boundary, given by x,, and y,, is obtained by putting 7 = z,. It is found 
after using (4) that 

where 

x,, = R,(O)cos(O) and y, = a-‘R,,(B)sin(Q, (Al) 
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-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 
2anxTf 

PG 

FIG. A I. Elastic plastic boundary at vanishing plastic strains and ditferent crack-tip speeds. The limiting 
case (j + C. is also included. 

R,(O) = RpdO+~p(~~) and R,,,(@ = !iy” R,(O). 

The effective stress r is given by (I 3) and (14). One may write 

r(r) = r”(l.)+i~T,(1.)+O(j.):. 

It is assumed that p,, CC R,,,. After differentiation and insertion of (A2) into (A3) 

5, = 0,) = ~,,W,,)+P,, ‘2 _ i 1 +i.r,(R,,)+O(i,)' 
r - Rpt, 

WI 

643) 

(A4) 

is obtained, but r,(R,,) = r, and thus 

+0(i)' 
r = R,.,, 

The shape is to the zeroth order of i. obtained by putting T(, = T ,  : 

R,M) = 2;a;“,- ~[I+,77’coS’(~)]+O(i) for -n<0<7r ow 

Note that R,(O) is the distance from the crack-tip in the elliptic polar coordinate system (4). 
Figure AI shows the elastic plastic boundary for a few different values of 171 for a constant K,,, 
and for a constant C. The limiting shape assumed when the crack-tip speed approaches the 
shear wave speed is included. The normalized coordinate axes indicate how the plastic zone 
extends indefinitely as TV + 0. 

APPENDIX B : SOLUTIONS TRUNCATED FOR O(m)(’ 

The displacement rate is composed of one particular solution, Ii;, to (35)-(37) and the 
solutions, ril,,, to the corresponding homogeneous equations. A homogeneous solution to (35)- 
(37) is given by 

C*,, = A,r~5[4+3n~2+2m’]sin(5~)+A,f-‘[(16+20m’+2I,nJ)sin(3~) 

-(12m~+21m4)sin(5~)]+A~~~‘[(16+12m~+10mJ)sin(cp) 

-(4m’+5m4)sin(3~)+m4sin(5~)+A,tsin(cp)+B,f~[3,n’sin(cp)+(4-m’)sin(3~)] 

+B~f5[lOn~Jsin(~)+(20m~-5mJ)sin(3~)+(l6-I2m’+mJ)sin(5~)], @I) 
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where A ,-A + B, and Bz are undetermined constants. A reasonable requirement is that the 
effects of crack-tip plasticity vanish on large distances from the crack tip, i.e. ri, + ril, as I -+ 0. 
This implies that Ii*+ O(r) as 7 + 0. Thus. it is obvious that Az = Al = A, = 0 in the elastic 
region and further 

A, = - y  in t > 0, i.e. in r > R,,(O). (W 

It is further noted that B, and Bz are zero in the plastic region since here ri* = O(r) as t --* Z. 
It is found that A, is the only constant that may be non-zero in the entire plane. It should, 
however, be remembered that A, as well as the other constants (,4-B,) may suffer a jump 
across the elastic plastic boundary. 

For 7 2 I the following particular solutions to (35)-(37) are found : 

~ti, = - i.ri 
K 

I +m’+ ~)$sin(~)+[l+~-(*+T)-&]gsin(3q) 

+(9-77)$sin(5q) +0(m)” (B3) 
1 

for 77 = I, 

-(k-i+& gsin(5q)+O(m)” (B4) 
> 

for n = 2, and 

ri*, gtan-‘[(r-l)“‘]- (B5) 

for n = 5/2 for which only the quasi-static limit is given. Finally, the case n = 3 is calculated 
with the following result : 

-27m’+(12+21m2)& -(16+23m’)$ 1 m’sin(3q) 

3r 9 1 -(-- 4 
5 + 7 - $ 

> 
Tsin(5q)+O(m)6. u36) 

The particular solutions (B3)-(B6) are all valid only for I 2 1 whereas the homogeneous 
solutions can be applied in the entire t,x-zr plane including t < I. 

The continuity conditions are that stresses and stress rates are continuous across the elastic 
plastic boundary [cf. HILL (1961)]. This means that i! and its first derivative with respect to f  
are continuous across the boundary I = 1. Thus, the constants A,-B2 can be determined to 
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the order of I??‘. After transformation back to the polar coordinates r and 0 the following 
solutions are found : 

jlli, 

K 

d I /ll? 3t11” _ , L‘ --= -------- ) 
;‘,,r,R xf, R 3 2 4 > 

5tn’i 511 
+ 448 sm 

0 
y +u(t?7Jh (B7) 

or n = 2. and finally 

PG. 

--=K d,,T,R 

27t11 J 273n7’ + ,--6--.4-.-m-3T. 

(BY) 
for n = 3. 

The solutions in the region r > R(O) are 

fern= 1, 



for II = 3. Bccausc of the cumbersome analysis, inertia terms were never sought for II = 5/2. 

APPENDIX C: ASYMPTOTIC FIELD CALCULATED WITH PATH INDEPENDENT 
INTEGRAL 

From FREUND and HUTCHINSON (1985) the energy release rate at the crack tip is obtained 
as follows : 

where Ufis the residual elastic strain energy density in the remote wake. The plastic zone is 
denoted A and its largest linear extent in the j--direction is R,,;,,. The plastic strain rates 7:. 
and 7:: are given by 

The residual stresses are proportional to the amplitude of the plastic strains. and thus Ufis 
proportional to the squared amplitude of the plastic strains. The last term on the right-hand 
side of (Cl) can therefore be shown to be of the order of 2’ and will be neglected in the 
continued analysis. Further 

The distance to the elastic plastic boundary is given by (AZ). The integration with respect to I 
is changed to integration with respect to T .  The following is obtained : 

Writing becomes simplified after the introduction of 

y(,n) _ 1-m’ * R,(O) ‘do = 8-8m-+3mJ 

S[ I 

7 

27~1 -z R,(O) 8/??(l -f???)?Z 

and 

c & for 17 = I, 

(C5) 

(C6) 
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Inserted into (Cl), this gives a relation bctwccn the elastic energy rclcasc ralc G and the crack- 
tip driving force G,,, : 

or, to relate K,,, and K,,,. 

K 
“P 

,K 

(c-7) 

(C8) 

Equations (C7) and (0) are accurate to the order of i’ 


