

Crack Tip Energy Release Rate During Fast Fracture Talk given at ICM-6, Kyoto, Japan

Ståhle, P.

1991

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA): Ståhle, P. (1991). Crack Tip Energy Release Rate During Fast Fracture: Talk given at ICM-6, Kyoto, Japan. Eget.

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

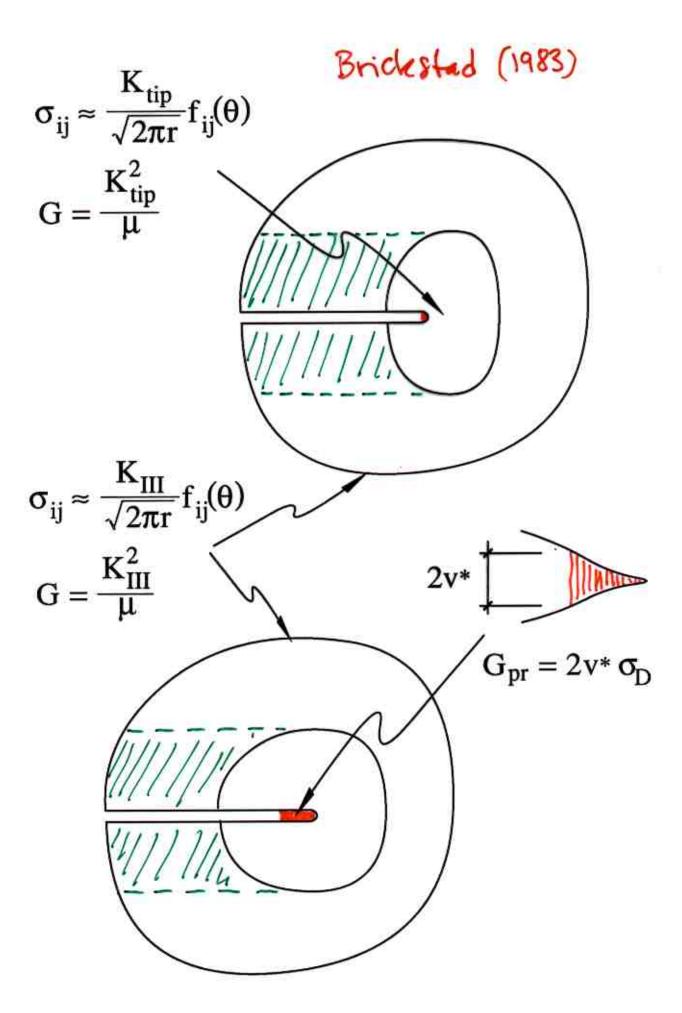
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CRACK TIP ENERGY RELEASE RATE DURING FAST FRACTURE

P. STÅHLE

Department of Technology, Uppsala University, Box 534, 751 21 Uppsala, Sweden.

- Visco-plastic Model; n<3
 - · Dynamic Steady-State
 - · Mode III
- Asymptotic Field
 vs.
 Line Model for Process Region



$$\begin{split} &\mu\frac{\partial \dot{w}}{\partial x}=\dot{\tau}_{xz}\,+\,\dot{\gamma}_{o}\tau_{Y}\!\!\left(\frac{\tau}{\tau_{Y}}-1\right)^{n}\frac{\tau_{xz}}{\tau}\\ &\mu\frac{\partial \dot{w}}{\partial y}=\dot{\tau}_{yz}\,+\,\dot{\gamma}_{o}\tau_{Y}\!\!\left(\frac{\tau}{\tau_{Y}}-1\right)^{n}\frac{\tau_{yz}}{\tau} \end{split}$$

$$\frac{\partial \dot{\tau}_{xz}}{\partial x} + \frac{\partial \dot{\tau}_{yz}}{\partial y} = \mu m^2 \frac{\partial^2 \dot{w}}{\partial x^2}$$

$$m = \frac{\dot{a}}{c_s}$$
 and $\alpha = (1 - m^2)^{\frac{1}{2}}$

$$\begin{split} &\frac{\partial^2 \dot{w}}{\partial x^2} + \frac{\partial^2 \dot{w}}{\alpha^2 \partial y^2} = \\ &\frac{\lambda \dot{a} \tau_t^2}{\alpha^2 K_{III}^2} \bigg\{ \frac{\partial}{\partial x} \bigg[\Big(\frac{\tau}{\tau_Y} - 1 \Big)^n \frac{\tau_{xz}}{\tau} \bigg] + \frac{\partial}{\partial y} \bigg[\Big(\frac{\tau}{\tau_Y} - 1 \Big)^n \frac{\tau_{yz}}{\tau} \bigg] \bigg\} \end{split}$$

$$\lambda = \frac{\dot{\gamma_o} K_{III}^2}{\dot{a} \tau_y \mu}$$

$$\dot{\mathbf{w}} = \dot{\mathbf{w}}_0 + \lambda \dot{\mathbf{w}}_1 + \mathbf{O}(\lambda^2) \dot{\mathbf{w}}_2$$

$$\tau_{xz} = \tau_{xz0} + \lambda \tau_{xz1} + \mathbf{O}(\lambda^2) \tau_{xz2}$$

$$\tau_{yz} = \tau_{yz0} + \lambda \tau_{yz1} + \mathbf{O}(\lambda^2) \tau_{yz2}$$

Consumed energy alt. analytically determined

Sharp Crack Tip

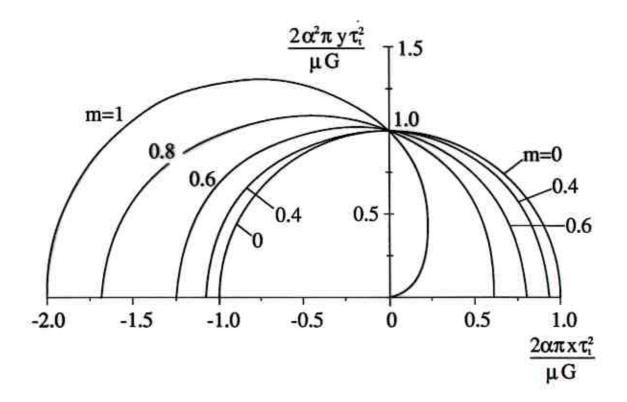
$$\tau_{xz0} = \frac{K_{III}}{\alpha\sqrt{2\pi r}}\sin\left(\frac{\theta}{2}\right) + \mathcal{O}(r)^{\frac{3}{2}}$$

$$\tau_{yz0} = \frac{K_{III}}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) + \mathcal{U}(r)^{\frac{3}{2}}$$

$$\begin{split} &\frac{\partial^2 \dot{w}_1}{\partial x^2} + \frac{\partial^2 \dot{w}_1}{\alpha^2 \partial y^2} = \\ &\frac{\dot{a} \tau_t^2}{\alpha^2 K_{III}^2} \frac{\partial}{\partial x} \! \left[\! \left(\frac{\tau_0}{\tau_Y} - 1 \right)^{\!n} \! \frac{\tau_{xz0}}{\tau_0} \right] \! + \frac{\partial}{\partial y} \! \left[\! \left(\frac{\tau_0}{\tau_Y} - 1 \right)^{\!n} \! \frac{\tau_{yz0}}{\tau_0} \right] \end{split}$$

Hodograph Transform ->

Series Expansion in τ_{xz} - τ_{yz} plane



$$n=1$$

$$\dot{w} = \left\{ \left(\frac{\dot{a}}{\dot{\gamma}_o R} - \frac{1}{3} \right) \dot{\textbf{f}}^{-\frac{1}{2}} + \dot{\textbf{f}}^{\frac{1}{2}} - \frac{2}{3} \dot{\textbf{f}} \right\} \Gamma$$

$$n=2$$

$$\dot{w} = \left\{ \left(\frac{\dot{a}}{\dot{\gamma}_o R} - \frac{2}{3} \right) \dot{\beta}^{-\frac{1}{2}} + 2 - 2 \dot{\beta}^{\frac{1}{2}} + \frac{2}{3} \dot{\beta} \right\} \Gamma$$

$$n=5/2$$

$$\begin{split} \dot{w} = & \left\{ \left(\frac{\dot{a}}{\dot{\gamma}_o R} - \frac{5 \tan^{-1}(z)}{4} \right) \dot{\beta}^{-\frac{1}{2}} \right. \\ & \left. + \left(\frac{11}{4} - \frac{13}{6} \dot{\beta}^{\frac{1}{2}} + \frac{2}{3} \dot{\beta} \right)_z \right\}_{\Gamma} \end{split}$$

$$z = \left[\hat{r}^{-\frac{1}{2}} - 1\right]^{\frac{1}{2}}, R = \frac{K_{III}^2}{2\pi\tau_Y^2} \text{ and } \Gamma = \frac{R\dot{\gamma}_0\tau_Y}{\mu}\sin(\frac{\theta}{2})$$



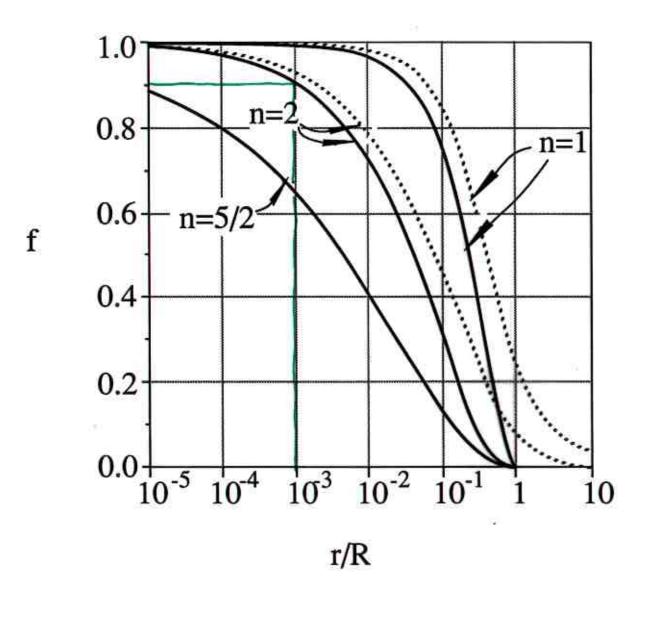
$$\sigma_{ij} \approx \frac{K_{tip}}{\sqrt{2\pi r}} f_{ij}(\theta) + \overline{\sigma}_{ij}$$

$$\overline{\sigma}_{ij} \rightarrow r^{\frac{1}{2}}$$
 for $n = 1$

$$\overline{\sigma}_{ij} \rightarrow r^0$$
 $n = 2$

$$\overline{\sigma}_{ij} \rightarrow r^{-\frac{1}{4}}$$
 $n = \frac{5}{2}$

$$\left(\overline{\sigma}_{ij} \rightarrow r^{-\frac{1}{2}} \log(r) \quad n = 3\right)$$



sharp crack tip

$$f(r) = \frac{\widetilde{K}_{III}(r) - K_{III}}{K_{tip} - K_{III}}$$

$$\widetilde{K}_{III}(r) = \frac{\mu(2\pi r)^{\frac{1}{2}}\dot{w}}{\dot{a}\sin(\frac{\theta}{2})}$$

Line Model for Process Region

$$\tau_{xz0} = \frac{\tau_D}{\alpha\pi} \cosh^{-1} \left(\frac{d + \left[d^2 + r^2 - 2rd\cos(\theta) \right]^{1/2}}{r} \right)$$

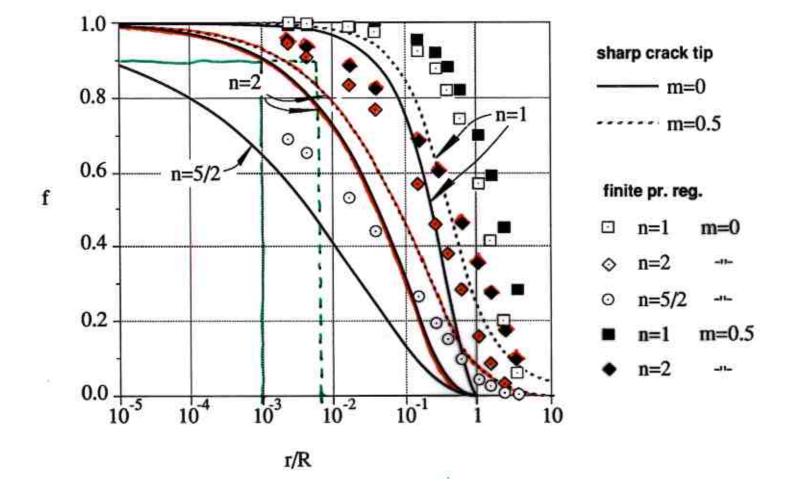
$$\tau_{yz0} = \frac{\tau_{D}}{\pi} \cos^{-1} \left(\frac{d - \left[d^2 + r^2 - 2rd\cos(\theta) \right]^{1/2}}{r} \right)$$

$$d = \frac{\pi}{8} \left(\frac{K_{III}}{\tau_D} \right)^2$$
(fremds himselings)

$$G_{tip} = G - \frac{1}{\dot{a}} \int_{A} (\tau_{xz} \dot{\gamma}_{xz}^{p} + \tau_{yz} \dot{\gamma}_{yz}^{p}) dA - \int_{-R_{max}}^{R_{max}} U_{e}^{*} dy$$

$$G/G_{pr} = 1 + \delta g(m,n) \frac{\dot{\gamma}_o(\mu \rho)^{\frac{1}{2}} G_{pr}}{3\tau_t^2}$$

$$f(d) = \frac{G_{pr}^{\frac{1}{2}}(d) - G^{\frac{1}{2}}}{G_{pr}^{\frac{1}{2}}(0) - G^{\frac{1}{2}}}$$



One condition for using an asymptotic field instead of a detailed model of the process is that the process region is sufficiently embedded in the region where the asymptotic field dominates.

What does sufficiently mean?

It would mean a process region even larger than the region of dominance.