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Abstract

Simulation of coupled dynamical systems, where each subsystem is bundled with an inter-
nal solver, is an important industrial method to support model-based design workflows.
is is due to that in many cases, with complex systems, this is the only viable option
in heterogeneous simulation landscapes where different parts of a system are modeled in
different simulation tools. In this setting, the dynamics of each system is hidden and in-
formation between subsystems is exchanged through sampled inputs and outputs. is is
often denoted as a weakly coupled system. While a new industrial standard for exchanging
models, the Functional Mock-up Interface (FMI), gains increasing acceptance, the numer-
ical consequences of treating complex systems in this way are not completely understood.

In this thesis, stability questions of weakly coupled linear systems with feed-through are
studied. New methods, within the scope of the FMI, are proposed which offer improved
stability properties compared to the classical approaches.

A simulation of a weakly coupled system introduces discontinuities due to input changes
for the internal solvers. If the internal solver is a multistep method, these discontinuities
will result in performance degradation. To avoid the degradation, a modification of the
predictor in a multistep method is proposed achieving increased performance.

Furthermore, two Python packages are presented. e package PyFMI is a high-level
package for working with models compliant with the FMI standard. PyFMI also contains
co-simulation masters for simulation of weakly coupled systems. e package Assimulo
unifies different integrators under a common interface which, together with PyFMI, pro-
vides an environment for using and evaluating solvers on industrial models. e packages
are demonstrated by various examples ranging from simple test cases to a more extensive
industrial application. Additionally, they have been used to verify the proposed methods
and predictor modification.
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Populärvetenskaplig sammanfattning

Utveckling av nya industriella produkter sker allt oftare med hjälp av datormodeller. Dessa
modeller beskriver fysiken för respektive produkt, vilket exempelvis kan vara en bil eller ett
kraftverk. Med hjälp av modellerna kan en stor del av analyserna på de framtida produk-
terna ske med hjälp av datorer, varför färre prototyper behöver konstrueras, vilket medför
kortare utvecklingstider samt kostnadsbesparingar. En vanlig analys som behöver genom-
föras på en bil är exempelvis att undersöka hur bilen kommer att bete sig på varierande
underlag eller vid olika manövreringar, dvs. man måste simulerar dess beteende. Utveck-
lingen mot att i högre grad använda datormodeller har pågått under en längre tid, men har
accelererat de senaste åren.

I en komplex datormodell, som av en bil, är det vanligt att olika fysikaliska domäner,
t.ex. mekaniken och elektroniken, modelleras separat. Dessa separata modeller skapas van-
ligtvis med hjälp av olika verktyg. För att sedan kunna analysera den komplexa bilmodellen
måste de separata modellerna kopplas samman, vilket leder till svårigheter eftersom mod-
ellerna behöver kunna utbytas mellan olika verktyg som representerar modellerna på olika
vis.

Med hjälp av en ny standard har emellertid utbytet av modeller mellan olika verktyg
blivit lättare - eller helt enkelt möjligt. Att koppla ihop dessa modeller har lett till att
det behövs nya algoritmer och fördjupad kunskap i hur man på bästa sätt simulerar dem
tillsammans. Risken är dock att resultatet man får inte går att lita på eller att algoritmen
misslyckas med simuleringen.

Till detta behövs lättillgänglig mjukvara med tillgång till algoritmer som är fördelaktiga
för olika typer av modeller. Det här är inte bara viktigt för forskning och industrin utan
även i undervisningssyfte.

I denna avhandling behandlas simulering av sammankopplade modeller, där mod-
ellerna följer den nya standarden. Fokus i avhandlingen har varit att analysera olika al-
goritmer, föreslår nya algoritmer, samt utveckla en mjukvara för simulering. Mjukvaran
som har tagits fram har gjorts publik.
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Notation

x e global state vector
xi e ith global state
x[i] e state vector of model i

x
[i]
j e jth state from state vector of model i

u e global input vector
y e global output vector
H e global step size
h e local step size
f(x, u) e global derivative function
g(x, u) e global output function
c(y) e coupling function
Φ(·) General function for performing a step in time
Ψ(H) Iteration matrix performing a step of the coupled system
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Chapter 

Introduction

Different simulation and modeling tools often use their own definition of how a model is
represented and how model data is stored. Complications arise when trying to model parts
in one tool and importing the resulting model in another tool, or when trying to verify a
result by using a different simulation tool. e Functional Mock-up Interface (FMI) [] is
a standard to provide a unified model execution interface for exchanging dynamic system
models between modeling tools and simulation tools. A model that follows the FMI is
called a Functional Mock-up Unit (FMU). e standard has gained widespread adoption
among users and numerous commercial and open source tools¹ implement support for the
standard. In the standard’s footsteps, a great deal of attention has been on simulation of
dynamic system models, and specifically simulation of coupled dynamic systems.

is thesis focuses on simulation of dynamic and coupled dynamical systems in relation
to the FMI standard, either directly or indirectly. Emphasis has been on simulation of
weakly-coupled systems (cf. Section .). Furthermore, software has been developed for
simulation and simulation of weakly-coupled systems (cf. Section .) in relation to the
FMI standard.

. Coupled systems

ere is a strong tradition among domain experts to use specialized modeling and simu-
lation environments for component models. ese tools are also favored as they usually
offer larger libraries of components and domain specific features than a multi-domain tool.
However, problems arise when trying to investigate a coupled system model, i.e. when
component models from various tools need to be coupled, as there is no standard way of
coupling the components. e problem is not only that of multi-domain modeling, it may
also be that the know-how of a component model needs to be protected. us, the prob-
lem is still how to connect the component models into a monolithic simulation model and

¹https://www.fmi-standard.org/tools [accessed: --]





 CHAPTER . INTRODUCTION

perform the necessary evaluations to compute the solution profiles. In Figure ., a typical
situation for a system with different domains is shown where the components are coupled
together.

Hydraulics

Airconditioning

Engine

Figure .: A schematic figure of a multi-domain coupled system.

Coupling the components together into a monolithic model can be performed via two
different approaches, strong-coupling or weak-coupling. Given that the model exposes its
internal dynamics, i.e. that it is possible to directly evaluate the model equations, one can
easily assemble these equations which in turn can be solved by standard time integration
algorithms. is approach is commonly known as strong-coupling. However, if the model
equations are not exposed, but instead hidden behind an interface with the only options
to set the inputs and retrieve the outputs, cf. Figure ., the strong-coupling is no longer
feasible. In these cases, one resorts to weak-coupling, where the separate models contain
an internal integrator and the information exchange between the connected models, via
inputs and outputs, is only performed at specified communication points. is approach
has several benefits as it allows tailored integrators for component models. In addition,
it allows the component models to be run in parallel. Moreover, the component models
may have widely different time scales, which, by using the weak-coupling, can be exploited
by the internal integrator. is becomes evident when comparing electrical components
to multibody components. However, a weakly-coupled system also introduces difficul-
ties, for example how the information exchange should be performed in order for a stable
simulation.

Hydraulics OutputsInputs

Figure .: A schematic figure of an input / output model.

is thesis focuses on simulation of weakly coupled systems. In Chapter , a back-
ground is given into the field of simulation of weakly coupled dynamical systems. Part II
focuses on theory of simulation of weakly coupled systems, both regarding initialization
and simulation as well as discuss novel results. Furthermore, the part focuses on the under-
lying solvers and discusses an efficient restart approach for multistep methods in a weakly



.. SIMULATION SOFTWARE 

coupled systems context.

. Simulation software

During the last three decades, a vast variety of methods to numerically solve ordinary differ-
ential equations and differential algebraic equations has been developed and investigated.
e methods are mostly freely available in different programming languages and with dif-
ferent interfaces. Accessing them using an unified interface is a need not only of the research
community and for education purposes, but also to make them available in industrial con-
texts.

An industrial model of a dynamic system is usually not just a set of differential equa-
tions. Instead, the models today may contain discrete controllers, impacts or friction, re-
sulting in discontinuities that need to be handled by a modern solver in a correct and
efficient way. In addition, the models may produce an enormous amount of data that puts
strain on the simulation software.

Due to the above, and to the FMI standard, software was developed during the thesis.
In Chapter , background of the developed simulation software is given. Part III, intro-
duces the developed software, Assimulo and PyFMI. e first contains solvers for dynamic
systems and the second is aimed at working with systems following the FMI standard, both
regarding simulation and simulation of weakly coupled systems. Essentially, Assimulo pro-
vides the solvers, while PyFMI provides the problems. e software implements the algo-
rithms discussed in Part II.

. Contributions

e contributions of this thesis are two-fold. One part is the developed open-source soft-
ware framework for simulation and simulation of weakly coupled systems together with
software for working with FMUs. e software are,

• Assimulo

• PyFMI

– e Master Algorithm

Assimulo is a simulation package for solving ordinary differential equations containing
various different solvers. e primary aim of Assimulo is to provide a high-level interface
for a wide variety of solvers rather than to develop new integration algorithms. PyFMI is a
package for interacting with models adherent to the FMI standard. It is designed to provide
a high-level, easy to use, interface for working with FMUs. Further, PyFMI contains the
developed master algorithm for simulation of weakly coupled systems.

In addition to the software framework, co-simulation in general with focus on stability
and on the underlying integrator is also discussed in this thesis. Specific contributions,
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• Analysis of the stability of the parallel co-simulation approach.

• Developed and implemented a linear correction algorithm.

• Efficient restart of multi-step methods at input changes.

.. Publications

e thesis is based on the below mentioned publications.

C. Andersson, C. Führer and J. Åkesson. ”Efficient Predictor for Co-Simulation
with Multistep Sub-System Solvers”. Preprint Math. Sci. Lund Uni. ().

C. Andersson, J. Åkesson and C. Führer. ”PyFMI: A Python package for simulation
of coupled dynamic models with the Functional Mock-up Interface”. Preprint Math.
Sci. Lund Uni. ().

C. Andersson, C. Führer and J. Åkesson. ”Assimulo: A unified framework for ODE
solvers”. Math. Comput. Simul. ().

e first publication introduces a novel approach for restarting a multistep method at input
changes. e second introduces the PyFMI package for working with and analyzing FMUs
while the third publication introduces the Assimulo package. e first author has been the
key contributor of the ideas, the case studies and the development, together with being
primarily responsible for drafting the manuscript.

C. Andersson. ”A Software Framework for Implementation and Evaluation of Co-
Simulation Algorithms”. Lic. eses Math. Sci. ().

e licentiate thesis by the author describes and introduces many of the parts on which this
thesis expands upon.

A. Holmqvist, C. Andersson, F. Magnusson, J. Åkesson. ”Methods and Tools for
Robust Optimal Control of Batch Chromatographic Separation Processes”. Processes
()”.

is publication extends and utilizes the developed software, PyFMI and Assimulo, with
support for solving Lyapunov equations on a chromatographic separation process used in
the chemical industry. e author has contributed ideas for solving the equations, imple-
mented support for solving the equations and written part of the manuscript related to
simulation and computation of the Lyapunov equations.
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... Related

e following publications are related to the work by the author, either by being building
blocks to the above publications or by being within the scope of the developed software.

P. Pannu, C. Andersson, C. Führer and J. Åkesson. ”Coupling Model Exchange
FMUs for Aggregated Simulation by Open Source Tools”. Proc. th Int. Modelica
Conf. ().

is publication is related to simulation of strongly coupled systems, as opposed to weakly
coupled systems, where models not only follow the FMI but also models implemented
directly for Assimulo. For this publication the author has contributed ideas and assisted
with the implementation and with the manuscript.

E. Fredriksson, C. Andersson, J. Åkesson. ”Discontinuities handled with events in
Assimulo, a practical approach”. Proc. th Int. Modelica Conf. ().

C. Andersson, J. Andreasson, C. Führer and J. Åkesson. ”A Workbench for Multi-
body Systems ODE and DAE Solvers”. nd Jnt. Int. Conf. Multibody Syst. Dyn.
().

e above publications are related to the developed Assimulo package where the second
publication provides the first building blocks for Assimulo while the first publication in-
vestigates and improves on the event capabilities for a number of attached integrators. For
the first publication, the author has contributed ideas and assisted with the implementation
and with the manuscript. For the second publication, the author has contributed with soft-
ware implementation of the workbench, and the evaluation on test models together with
being primarily responsible for drafting the manuscript.

S. Gedda, C. Andersson, J. Åkesson and S. Diehl. ”Derivative-free Parameter Opti-
mization of Functional Mock-up Units”. Proc. th Int. Modelica Conf. ().

is publication investigates parameter estimation using FMUs and implements support
for the estimations within PyFMI. For this publication, the author has assisted in improving
on the software implementation and in drafting the manuscript.

C. Andersson, J. Åkesson, C. Führer and M. Gäfvert. ”Import and Export of Func-
tional Mock-up Units in JModelica.org”. Proc. th Int. Modelica Conf. ()”.

is publication provides the first building blocks for the developed PyFMI package. e
author has contributed with software implementation for import of FMUs, evaluation of
the same, and has been primarily responsible for drafting the manuscript.
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Overview

In this part we discuss the background to the thesis. In Chapter , the Functional Mock-
up Interface standard is introduced, which this thesis is highly related to, either directly
or indirectly. In Chapter , simulation of weakly coupled systems is introduced together
with a background into the field of simulation of weakly coupled systems. In Chapter , a
motivation and background is given for the developed software.







Chapter 

Functional mock-up interface

e Functional Mock-up Interface (FMI) [] is a standard designed to provide a unified
model execution interface for dynamic system models between modeling tools and simu-
lation tools. e idea is that tools generate and exchange models that adhere to the FMI
specification. Such models are called Functional Mock-up Units (FMUs). is approach
enables users to create models in one modeling environment, connect them in a second
and finally simulate the complete system using a third simulation tool, cf. Figure ..

Functional 

Mock-up 

Interface 

Dymola 

JModelica.org 

SIMPACK 

SimulationX 

PyFMI 

JModelica.org 

FMI Toolbox for Matlab 

Custom User Environment 

Figure .: Exchange of dynamical models following the Functional Mock-up Interface.

e generated models, FMUs, are distributed and shared as compressed archives. ey
include either the source files for the model, allowing a user full access to the internals, or
a shared object file containing the model information which is accessed through the FMI
interface. Furthermore, both the source files and the shared object file can be included
in the FMU. e archive additionally provides an XML file containing metadata of the
model, such as the sizes of the dynamic system and the names of the variables, parameters,
constants and inputs. In the archive, there can also be additional information, which does
not impact a simulation of the model, but may be of interest to distribute with the FMU,
for example documentation.


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FMI was developed in a European project, MODELISAR¹, that was focused on im-
proving the design of systems and of embedded software in vehicles. e standard is now
maintained and developed by the Modelica Association².

Figure .: Functional Mock-up Interface³.

Since its release, the standard has received a significant amount of attention among
both tool vendors and users. ere are currently over  tools⁴ that support or plan to
support FMI. Examples include the commercial products Dymola [] and SIMPACK
[], as well as the open-source platform JModelica.org []. e large number of tool
vendors that have adopted the standard shows that there is a real and pressing need to be
able to export and import dynamic system models between existing tools, and also to be
able to develop custom simulation environments.

FMI specifies two types of models, one named a model exchange FMU, cf. Section .,
and the other named a co-simulation FMU, cf. Section ..

. Model exchange

For model exchange, the standard describes an interface for discontinuous ordinary differ-
ential equations, with means to set the continuous states and time as well as evaluating the
model equations, i.e. the right-hand-side, and specifying inputs.

e standard describes a model as,

ẋ = f(t, x, u; d, p) (.a)
y = g(t, x, u; d, p) (.b)

where t is the time, x are the continuous states, u are the inputs, d are the discrete variables
that are kept constant between events and p are the parameters. Furthermore, y are the
outputs. Additionally, the standard supports three kinds of events that can impact the
model behavior. e three events are:

¹https://itea.org/project/modelisar.html [accessed: --]
²https://www.modelica.org/association [accessed: --]
³©Modelica Association
⁴https://www.fmi-standard.org/tools [accessed: --]



.. MODEL EXCHANGE 

• State Events depends on the state solution profiles and are thus not known a priori.
e model provides a set of event indicators, z, that the integrator monitors during
the integration process,

z = hstate(t, x, u; d, p). (.)

If one of the event indicators, zi, switches domain, there is a state event. e inte-
grator is then responsible for finding the time when the event occurred.

• Time Events are known a priori, meaning that for each simulation segment it is
known when the time event occurs and thus this time is set as the simulation end
time for that segment. Given a previous time event, Tpre (or the initial time, T0),
the next time event is computed using,

Tnext = htime(tTpre , xTpre , uTpre ; dTpre , p). (.)

An example is that after a certain elapsed time in the integration, a force is applied
on the model.

• Step Events are events that typically do not influence the model behavior, instead
they are events to ease the numerical integration. For instance they can be used for
re-parameterization of a model. After each successful integrator step, Taccepted, the
equation,

Estep = hstep(tTaccepted , xTaccepted , uTaccepted ; dTaccepted , p) (.)

is evaluated and if Estep is True, a step event is triggered.

Further, Equation . is valid during continuous simulation and priori to this, the FMI
specifies that the FMU need to be initialized. e simulation and initialization is separated
as to allow a flexible definition of initial conditions. An example could be that the initial
values for the states are computed using an initial equation, which is only active during the
initialization. e initial equations are described by,

x̂0, d̂0, p̂ = finit(t0, x̄0, u0; d̄0, p̄), (.)

where x̄0 are states with known initial values, d̄0 are the known discrete variables and p̄
are known parameters. e complete initial states vector is x0 = [x̄0, x̂0], and for discrete
variables, d0 = [d̄0, d̂0], while the full parameter vector is p = [p̄, p̂].

For full details about the mathematical representation, cf. [] for version . and []
for version ..

Simulating a model exchange FMU requires that an external integrator is connected to
the FMI model, cf. Figure ..
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DLL XML 

FMU Tool 

Solver Solver 

Figure .: A model exchange FMU and the connection to a tool for simulation. Note that the solver is
outside of the FMU.

. Co-Simulation

For co-simulation, the standard rather describes a discrete interface to the underlying dy-
namic model, i.e. given the current internal state, input un and step size H of the model,
return the outputs, yn+1, at a time Tn + H = Tn+1,

yn+1 = Φ(H, un; p), (.)

where p are the parameters. e advancement of the states and time is completely hidden
outside of the model and is also not specified by the standard, cf. Figure .. A consequence
of this is that, if there are events, these are also handled internally and are not visible from
the outside. However, as the advancement is hidden, this allows for specialized solvers to

DLL XML 

FMU Tool 

Solver 

Figure .: A co-simulation FMU and the connection to a tool for simulation. Note that the solver is
inside the FMU.

be used for the particular subsystem at hand, which may give an increased performance
and a more stable simulation. As in the model exchange case, Section ., the initialization
is done separately for co-simulation FMUs. e initialization is defined by,

p̂ = finit(t0, u0; p̄), (.)

where p̄ are known parameters. e full parameter vector is p = [p̄, p̂].
For full details about the mathematical representation, cf. [] for version . and []

for version ..

. Features and restrictions

In the FMI standard there are a few key features that have been exploited and restrictions
that have in some cases limited what co-simulation schemes can be realized. ese are
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explained in this section. Additionally, between version . and version . of the standard,
changes have been made and features have been added. All of the features mentioned here
are optionally available.

In FMI ., a feature for saving and restoring the internal state of a FMU has been
added, Feature ..

Feature . (Save/ Get state). Methods for retrieving and restoring the internal state of a FMU
have been added.

Support for allowing restoring and saving the FMU state makes it possible to restart a
simulation from a previous point. Saving and restoring the internal state is, for example,
important in a co-simulation master when simulating a coupled system using an error con-
trolled algorithm as it allows for executing a step with different options and for rejecting
steps.

Another added feature is directional derivatives.

Feature . (Directional derivatives). Methods for computing the directional derivatives of
Equation . and Equation . has been added.

e addition of directional derivatives allow for computing the partial derivatives of
the functions f and g in Equation . with respect to x and u, i.e.,

∂f

∂x
,

∂f

∂u
,

∂g

∂x
,

∂g

∂g
, (.)

and the partial derivatives of Φ in Equation . with respect to u,

∂Φ
∂u

. (.)

With FMI ., when simulating a FMU with a method requiring the Jacobian of Equa-
tion ., the only option was to compute it using finite differences. With the directional
derivatives available the Jacobian can be computed analytically, if the FMU supports the
feature.

Furthermore, the dependency information was extended in FMI ..

Feature . (Dependency information). Information about which states and inputs directly
impact the derivatives and outputs in Equation . has been added. Further, information about
which inputs directly impact the outputs in Equation . has been added.

With the dependency information, the sparsity pattern for the Jacobian can be defined
and thus also allow for using sparse solvers. In FMI ., only the dependency between
inputs and outputs was available.

Changes have also been made to the initialization, cf. Feature ..
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Feature . (Separate initialization). e initialization of an FMU has been separated into a
state of the FMU instead of a single call to an initialization method.

e below mentioned features and restrictions are related to co-simulation FMUs. Ad-
vancing the solution to the next communication point in a co-simulation FMU is per-
formed using the do_step method. At a communication point there is a restriction for
the update of outputs, given inputs.

Restriction .. e outputs, y, cannot be evaluated, during simulation, for different inputs,
u, without advancing the solution time, i.e. performing a step with H > 0.

Remark ... During initialization, i.e. at t0, Restriction . does not apply.

At a communication point, values inside the model can be retrieved and inputs can be
set. In addition, there is a feature allowing higher order derivatives to be set.

Feature .. Higher order derivatives for the inputs, u, can be set to a co-simulation FMU at
communication points.

e input derivatives are represented by a vector,[
du

dt
(Tn), d2u

dt2 (Tn), d3u

dt3 (Tn), . . . ,
dku

dtk
(Tn)

]
. (.)

e input is evaluated during the next global integration step by a truncated Taylor series
expansions,

u(t) = u(Tn) +
k∑

i=1

1
i!

diu

dti
(t − Tn)i, t ∈ [Tn, Tn+1]. (.)

Furthermore, the standard supports that higher order derivatives for the outputs, y, can be
retrieved.

Feature .. Higher order derivatives for the outputs, y, can be retrieved from a co-simulation
FMU at communication points.



Chapter 

Coupled systems

Simulation of weakly coupled systems, commonly co-simulation, is about how to simulate
two or more dynamic systems that are connected. e systems are described as being dis-
crete on the interface level, meaning that the transition from a time Tn to a time Tn+1 is
done internally for each system. e solver used to make this transition is usually unknown
in a co-simulation scenario. is means that domain specific integrators can be used, which
may have a superior performance when compared to a general purpose integrator.

One distinguishes between performing a global integration step (or macro-step) and a
local integration step (micro-step). A global integration step is the transition of the system
model from Tn to Tn+1 while the local integration steps, tn,m, are the steps taken by the
internal solver in each subsystem, Tn = tn,0 < tn,1 < . . . < tn,m = Tn+1.

As an example of a co-simulation scenario, consider the following equation,

ż = Az (.)

where A is a 2 × 2 matrix. Decoupling the system into two separate subsystems with the
first being,

ẋ[1] = a11x[1] + a12u[1] (.a)

y[1] = x[1] (.b)

where x[1] is the state, u[1] is the input and y[1] are the output. e superscript [1] specifies
the first subsystem. e second subsystem is similarly defined,

ẋ[2] = a22x[2] + a21u[2] (.a)

y[2] = x[2]. (.b)

In a co-simulation approach these two systems use their own internal integrator for solving
the differential equation. e first could for instance be solved with the Implicit Euler


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method, while the second could be solved with the Explicit Euler method. However, this
is usually unknown and the only interactions with other subsystems are done through the
inputs and the outputs.

e interactions are specified via coupling equations which in this case are,

u[1] = y[2] (.a)

u[2] = y[1]. (.b)

ese coupling equations are in a sense ”outside” the individual subsystems. e following
questions arise:

• How does the decoupling impacts the stability of the overall system?

• How should the exchange of information between the two systems be performed?

– By extrapolation of the inputs?
– By introducing an ordering so that some signals are interpolated while some

are extrapolated?

e most commonly used co-simulation method is to simulate the models in parallel
and at predefined global time points exchange information. e inputs in between the
global steps are then kept constant, cf. Figure ..

𝑇𝑛 𝑇𝑛+1 

Subsystem 1 𝑡 

𝑡 Subsystem 2 

𝑢 𝑢 

Figure .: Schematic figure of two subsystems that are executed in parallel with data exchange at prede-
fined global time points.

An algorithm for determining the exchange of information, the type of extrapola-
tion/interpolation, the ordering and all information related to a simulation of the coupled
system is called a Master Algorithm.

In this thesis, we consider N coupled systems of the type,

ẋ[i] = f [i](t, x[i], u[i]), i = 1, . . . , N (.a)

y[i] = g[i](t, x[i], u[i]), i = 1, . . . , N (.b)
u = c(y) (.c)

if g[i] is depends on u[i], i.e. ( ∂g[i]

∂u[i] ̸= 0) we say that the subsystem is a feed-through
system, i.e. the output y[i] directly depends on the input u[i]. e function c determines
the coupling between the systems.
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Assumption .. A weakly coupled system of co-simulation FMUs, Equation ., is described
by Equation ..

Co-Simulation may also be referred to as modular simulation and the separate dynamic
systems are sometimes refereed to as slaves. In this thesis, we reserve the name subsystem for
a separate dynamic system and co-simulation for a simulation of coupled dynamic systems.

. Previous work

Dividing a set of equations into subsystems and solving them separately has been discussed
for decades and dates back to the late s. In [], solution of a set of equations divided
into subsystems of ”fast” and ”slow” components is considered. e discussion centers on
the benefits and performance gains of using different time scales in the integrator for the
components. ese type of methods are called multi-rate methods and a lot of research
has been performed in this area. In [], improvements for automatic step size selection of
multi-rate methods for linear multistep methods is discussed.

e difference between multi-rate methods and methods for co-simulation is that in the
latter case, the equations are not exposed directly and the integrator responsible for solving
the system is hidden and unknown. In co-simulation, the subsystems are essentially black
boxes with inputs and outputs.

In [], an overview of co-simulation approaches is given. e parallel and staggered
scheme is explained together with more sophisticated schemes. e parallel scheme is basi-
cally to let the subsystems simulate the same global time step, and once all subsystems are
finished, exchange information between them. Using this approach, the multi-core nature
of todays processors can easily be exploited for improving the simulation efficiency. e
staggered scheme on the other hand, requires an ordering, i.e. the first subsystem is solved
for a global time step. Once completed, the next subsystem is simulated over the same
global time step.

In [, ], co-simulation is discussed from the point of view of block representation
where the blocks contained the internal dynamics of a subsystem, inaccessible from the
outside. Here, a block interacts with another block via its inputs and via its outputs through
coupling equations outside of the blocks. e blocks are represented in a general state-
space formulation, cf. Equation .a and Equation .b, which is widely used in control
theory. e coupling equation, Equation .c, is here assumed to be linear, u = Ly.
e articles centers around stability issues when constant extrapolation for the inputs is
used. In addition, the articles covers the cases when there is direct feed-through and when
there is not. Constraints on the feed-through is highlighted in order to guarantee a stable
simulation of the coupled system. e articles later served as a foundation for the definition
of the FMI standard for co-simulation [].

e release of the FMI standard triggered a renewed interest in co-simulation, especially
in industry. e potential of coupling state of the art modeling tools using a standardized
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format and being able to utilize each tools strength was met with much interest. In [], it
is shown that the multi-domain environment, SimulationX [], and the multibody envi-
ronment SIMPACK can be coupled together using FMI components. e application is
to simulate a power-train of a heavy-duty truck where parts is modeled independently in
the separate tools and then coupled together for analysis.

e interest from industry, regarding co-simulation, is not only triggered by the cou-
pling of the environments but also by the potential efficiency gain of decoupling a large
system model. is is exemplified in [] where a model of an engine is decoupled into
subsystems. By decoupling the chain drive into a subsystem, a decrease of the simulation
time was achieved by an order of magnitude.

Research on the stability issues when using co-simulation has been active in recent years.
In [], stability of coupled differential algebraic equations are discussed and a contractivity
condition is formulated that must be fulfilled in order to guarantee a stable error propa-
gation. Stabilization of these systems is further discussed in [, ] where the Jacobian
information is utilized for performing a stable integration when using a sequential algo-
rithm. In [], a stabilization technique was implemented that did not take into account
loops on the coupling variables. An additional technique was proposed in [], which was
based on applying the constraint equations in a differential algebraic equation to more than
one subsystem. In [] a predictor - corrector approach was considered which required that
the global steps had to be done twice.

e common approach used in industry is to use constant extrapolation and manually
tune the global integration step size until the coupled system produces ”satisfactory” results.
is is a costly and time consuming approach, but has been known to work in practice.
Improving the situation requires that an error estimation procedure is developed so that
the step size can be automatically tuned according the local integration error. In [, ],
an error estimation procedure for coupled systems was proposed. e error estimate was
based on Richardson extrapolation and the assumption that the subsystems were integrated
exactly. In an engineering setting, this can be achieved by requiring higher accuracy on the
subsystems. e idea is that a global step is performed twice with step size H and H/2
following a comparison of the two results.

Another technique used for co-simulation is the Transmission Line Modeling (TLM)
which introduces delays between the subsystems in order to decouple the problem. e
delays that are introduced change the models and introduce errors, but on the other hand,
this delay can usually be physically motivated and the error can be dealt with explicitly. In
this thesis, TLM will not be covered, cf. [].
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Simulation software

e simulation software developed in this thesis are the Python packages Assimulo and
PyFMI.

Assimulo is a simulation package for solving ordinary differential equations containing
various solvers, both state-of-the-art and more experimental ones. e primary aim of
Assimulo is to provide a high-level interface for a wide variety of solvers rather than to
develop new integration algorithms. Furthermore, the aim is to allow comparison of solvers
for a given problem without the need to define the problem in different programming
languages to accommodate the different solvers. e software is designed to satisfy the
needs in research and education, as well as the requirements for solving industrial models
with discontinuities and data handling. Activities on unifying interfaces of ODE software
started already long before Assimulo and before object oriented programming became a
paradigm. One such activity led to the early Fortran package ODEPACK, [].

Assimulo was originally developed due to the need for an educational tool for students
in numerical analysis, engineering and physics, which provided an easy and unified access to
industrial quality ODE solvers, like Sundials []. Without Assimulo, students would need
for this purpose knowledge in C or Fortran together with more advanced programming
skills. A tool in a programming language which is used in the entire education together with
a unified interface to many different integrators gives the students more time for numerical
experiments which otherwise would be used for mere programming.

PyFMI grew from [] where there was a need for working with the FMI standard in
the open source tool JModelica.org. e software is designed to provide a high-level, easy
to use, interface for working with FMUs. It connects the full set of methods in the FMI
specification in an object-oriented approach. e package is not only a mapping of the
FMI interface to Python, it provides much of the functionality needed to perform various
experiments for both evaluating the complex dynamical system model by itself but also for
evaluating the physics that the model represents. e evaluation of the model could be to
verify the model dynamics by efficient simulation while evaluations of the physics could
be to performing parameter estimations. ese experimentations requires an extensive tool


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beyond the low-level FMI interface which motivates the package. Furthermore, with the
FMI, simulation of coupled models in a co-simulation setting is possible and within PyFMI
a master algorithm has been implemented and made available.

In order to promote widespread use of the FMI standard and make it easily accessible,
there is a need for an open package in an open platform for experimenting and working
with FMUs which is what PyFMI offers. e package offers an open platform for working
with FMUs and the algorithms that are included are open and accessible for modifications
and further experimentations. In addition, it includes an open and available master algo-
rithm for simulation of coupled FMUs. In a related work, PySimulator [], there is also
support for working with FMUs from Python. In their case they use a different approach
for coupling the FMUs to Python and are more focused on post processing of simulation
results. Furthermore, there is no included master algorithm.

PyFMI is commonly used together with Assimulo []. e packages complement each
other as Assimulo provides the solvers for solving dynamical systems, such as those repre-
sented by FMUs, and PyFMI provides the problems. Further, this resulted in that Assimulo
became a central part of the software project JModelica.org, together with PyFMI.

e software developed is written in the programming language Python which is a
powerful dynamic programming language with a clear and readable syntax. e choice of
using Python is highly influenced by the ability and the ease of connecting software written
in different programming languages, such as C or Fortran, and the ability of using Python as
glue. Another aspect is that due to the clear and readable syntax of Python a user can easily
create own scripts as the threshold is relatively low for learning the language compared
with the low-level languages C and Fortran, especially if the user has a background in
M []. Python is also a good choice for prototyping as there are specialized packages
for scientific computing and for visualization, much like M. Moreover, in the area
of scientific computing, Python has gained a great deal of momentum due to many freely
available packages, notably NumPy and SciPy [], but also due to the fact that the language
is easy to learn. By providing an interface for working with FMUs from Python, the model
is exposed to the full ecosystem that Python has to offer. Visualization and animations of
simulation results can be done through matplotlib [] and the flexibility that Python offers
make it suitable for prototyping.

e core of the packages is implemented in Cython [] which is a static compiler for
Python. It allows mixing the programming languages C and Python interchangeably. e
benefit of mixing the languages is that the main part of the package, where readability and
scripting functionality matter, is based on Python, and performance critical parts are kept
in C. In this way, computational performance is preserved, as opposed to if the package
was solely relying on Python.
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. Integrator museum

Research on numerical methods for solving explicit ODEs and implicit ODEs, in particular
differential algebraic equations (DAEs), produced dozens of academically approved algo-
rithms and related codes. Most of them were never tested under industrial conditions and
were soon forgotten. Together with the development of Assimulo, an activity, the ODE
museum, started with the intention of providing access to these codes. Wrapping them by
a unified interface makes it possible to apply such codes to highly sophisticated simulation
problems and to gain insight in the performance of these approaches.

A starting point for the museum was DASP [], one of the first DAE codes dating
back to .

Museum codes often do not have the same test level as the other codes. Primarily, this
is due to the fact that these codes were developed as a proof-of-concept and tested on a
limited number of problems. Also, recovering codes from a print medium by an OCR
scan is a source of errors.

Current work is devoted on the incorporation of extrapolation methods, which were
the focus of intense research activities in the ths and the ths, early DAE general purpose
methods and those specialized on mechanical systems, such as MEXX [], ODASSL []
and DAESolve []. Also methods of the SDIRK type [] and Rosenbrock methods are
planned to be incorporated in near future.
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Overview

In this part we consider the theoretical aspects related to simulation of weakly coupled
systems. We cover both simulation and initialization of the coupled systems as well as
discuss improvements to the underlying solvers in the subsystems, in case of a multistep
method is used. Initialization and simulation of the coupled systems has been divided into
two chapters, mainly due to Restriction .. e initialization chapter, Chapter , focus on
computing a consistent initialization via a structural analysis of the coupled system. e
simulation chapter, Chapter , analyses different algorithms for simulation of the coupled
systems and determine requirements for when we have a stable simulation. e chapter
also introduces new approaches. In Chapter , a modification of multistep methods is
proposed for cases when these methods are used internally in the subsystems which increase
the performance of the methods.







Chapter 

Initialization

Coupling models together in a co-simulation approach leads in general to an algebraic
system of equations that needs to be solved in order to start the simulation from a consistent
initial state, cf. Equation .,

y = g(x, u) (.a)
u = c(y) (.b)

for u and y with x fixed. Any nonlinear solver, such as Newton’s method, can be applied
to the problem, although with the issue of finding a good initial guess. Without a good
initial guess, there is a risk of a potential break down of the method.

In some cases, however, solving the arising equations may be unnecessary. Consider
Figure .. e illustration shows three coupled models where each has direct feed-through,
shown in red, which indicates that a loop is present.

Definition .. (Direct feed-through). Let y[i] = g[i](x[i], u[i]) be the outputs from model
i. If y[i] depends on the inputs u[i] then model i has direct feed-through.

Definition .. (Algebraic loop). Consider Equation .. If, no explicit evaluation sequence
can be found to compute the outputs, y, then the coupled system has an algebraic loop.

Tracking the evaluation from the external input to the external output, a path can be
found that contains no loops. is means that the models can be evaluated in sequence in
order to compute the external output and thus no equation system needs to be solved. is
is referred to as a coupling induced loop.

Remark .. (Coupling induced algebraic loop). Consider Equation .. If any model has
direct feed-through and if there is no algebraic loop in the coupled system, then the system has a
coupling induced algebraic loop.





 CHAPTER . INITIALIZATION

Model 1 

Model 2 

Model 3 

External  

Input 
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Output 

Figure .: A coupled system where it is possible to find a path from the external input (upper left) to the
external output (lower left) without the need for solving the algebraic equation.
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Figure .: A coupled system where it is not possible to find a direct path from the external input (upper
left) to the external output (lower left) without the need for solving the algebraic equation. Notice the
additional dependency on the outputs in Model .

ere are also situations where a subset of models introduces an algebraic loop and
needs to be solved together while another subset can be evaluated in sequence. An illus-
tration is shown in Figure .. Consider Example .., where a straightforward approach
based on solving the resulting nonlinear system fails due to a poor initial guess.

Example .. (Initialization failure). Consider two coupled models defined by,

ẋ[1] = x[1] + u[1], ẋ[2] = x[2] + u[2] (.a)

y[1] = x[1], y[2] = x[2]

u[2] (.b)

with x[1](t0) = 1 and x[2](t0) = −1. e coupling is defined by,

u[2] = y[1], u[1] = y[2]. (.a)

Assembling the coupled system and solving the resulting equations, Equation ., using a straight-
forward approach by employing Newton’s method will fail. e reason is that if no information
is available for the starting values provided to Newton’s method, commonly zero is used. Us-
ing zero as starting values, for the inputs u[1] and u[2], will result in a divsion by zero in the
expression x[2]

u[2] . Note that if other starting values are used, the example models can be trivially



.. STRUCTURAL ANALYSIS 

modified to highlight the same issue, without appropriate starting values the straightforward
approach might fail.

e initial system can be analyzed by considering a graph relating the inputs to the
outputs of the coupled system. In FMI, there is the possibility to provide this structural
information (Feature .). In Section ., this is further discussed.

. Structural analysis

e aim of structural analysis is to solve the initialization problem, Equation ., by finding
an evaluation order of the ui’s. e evaluation order can either be a direct sequence, i.e.
the equations can be solved by a forward evaluation, or that a subset of equations needs to
be solved together.

is section considers the initialization problem via graph theoretical concepts. In
order to understand graphs and operations on graphs described in this thesis, only the
necessary concepts are introduced. For a thorough introduction on graphs, cf. [].

e initialization problem can be studied by considering a directed graph [].

Definition .. (Directed Graph). A directed graph, or digraph, G(V, E), is a set of nodes V
and a set of edges E where the edges are ordered pairs of nodes.

Equation . is transformed into a directed graph where each component of the output
vector y and the input vector u is a node. An edge is added between y

[i]
j and u

[i]
k if,

∃u[i], x[i] s.t
∂g

[i]
j (x[i], u[i])

∂u
[i]
k

̸= 0. (.)

Further, an edge is added between ui and yj if,

∃y s.t
∂ci(y)

∂yj
̸= 0. (.)

is structural dependency between u and y is assumed to be available, if not, an all-to-all
dependency is assumed. It should be emphasized that finding an evaluation order and using
that to solve the equations is mathematically equivalent to solving the equations directly.

Finding the evaluation order is equivalent of finding the strongly connected compo-
nents in a directed graph.

Definition .. (Strongly Connected Graph ([])). Let G(V, E) be a directed graph. If, for
every pair of nodes v, w ∈ V , there exist paths p1 : v ⇒ w and p2 : w ⇒ v. en G(V, E)
is said to be strongly connected.
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Definition .. (Strongly Connected Component (SCC) ([]). Let G(V, E) be a directed
graph and let G(V̄, Ē) where Ē = {(v, w) ∈ E|v, w ∈ V̄} be a subgraph of G(V, E). If
G(V̄, Ē) is a strongly connected graph, then G(V̄, Ē)is said to be a strongly connected component
of G(V, E).

Note that the definition also considers single nodes as strongly connected components.
In general, the path and the strongly connected components can be found by employ-

ing Tarjan’s algorithm [] which is shown in Algorithm . e algorithm computes the
strongly connected components together with the order in which the nodes need to be
evaluated. is is worth emphasizing, Tarjan’s algorithm both gives us the evaluation order
in which nodes need to be evaluated which is exactly what is needed together with which
nodes need to be evaluated together (i.e. the nodes in the strongly connected components).
In Example .. the system illustrated in Figure . is revisited while in Example ..,
Example .. is revisited using the structural approach.

Example .. (Strongly connected components). Consider the models from Figure . with
the input-output relations,

y[1] =
[
0 1
1 0

]
u[1] y[2] =

[
1 1
1 0

]
u[2] y[3] =

[
0 1
1 0

]
u[3] (.a)

and the coupling,

u[2] =
[
1 0
0 1

]
y[1], u[3] =

[
0 1
1 0

]
y[2], y

[3]
1 = u

[1]
2 . (.a)

e coupled models can be represented by a directed graph where the nodes are y and u and the
edges are the relations between them. In Figure . the graph is shown. Analyzing the graph
using Tarjan’s algorithm a strongly connected component is found that contains more than one
node, cf. Figure .. e evaluation order is additionally given by the algorithm and shown in
the figure. e variables included in the strongly connected component are necessary to solve for
simultaneously.

Example .. (Initialization failure, revisited). Consider again Example ... Now instead
of using the straightforward approach for solving the initialization problem, structural analysis
is performed to compute the evaluation order. In Figure . the graph of the connection is shown.
As there are no algebraic loops in the graph, the evaluation order is clear. e evaluations become,

. Get y[1]: y[1] = 1

. Set u[2]: u[2] = 1

. Get y[2]: y[2] = −1

. Set u[1]: u[1] = −1
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Figure .: e connections between the models from Example ...

and the initialization is successful.

An important observation is if Equation . contain models with direct-feed through
and is free of strongly connected components then an ordering can be found for u and y
such that the equations can be solved in an explicit sequence.is is equivalent to a coupling
induced algebraic loop.

Consider the problem where g in Equation . is linear in u and c linear in y, i.e,

y = ĝ(x) + Du (.a)
u = Ly (.b)

⇒ (.c)
y = ĝ(x) + DLy. (.d)

If there are no strongly connected components then an explicit sequence can be found to
solve the above equation and specifically an evaluation order of the components of y can
be found such that Equation .d can be solved in sequence. In addition, this requires that
DL is nilpotent and consequently the spectral radius, ρ(DL) = 0. is is an important
aspect when considering stability in the simulation of coupled system, cf. Section ..

In summary, using Tarjan’s algorithm on the initialization problem, Equation ., an
evaluation order is given corresponding to the order in which the inputs, u, and outputs,
y, should be computed for a successful initialization. In case of an algebraic loop, Defini-
tion .., an explicit sequence for evaluating y and u cannot be found. For these cases,
Tarjan’s algorithm computes the strongly connected components, i.e. computes the inputs,
uj and outputs, yi, which are included in the loop. e variables included in the loop need
to be solved for simultaneously. e strongly connected components are included in the
evaluation order.



 CHAPTER . INITIALIZATION

Algorithm  Tarjan’s Algorithm for finding SCCs and the evaluation order.
Require: A directed graph G(V, E).

: initialize
: lowlink = number = {v : not numbered |∀v ∈ V}
: i = 0
: for v ∈ V do
: if v not numbered: call STRONGCONNECT(v)
: end for
: procedure STRONGCONNECT(x)
: lowlink(x) = number(x) = i
: stack.append(x)

: i = i + 1
: for w|(x, w) ∈ E do
: if w not numbered do
: call STRONGCONNECT(w)
: lowlink(x) = min(lowlink(x), lowlink(w))
: else if number(w) < number(x) and w ∈ stack do
: lowlink(x) = min(lowlink(x), number(w))
: end if
: end for
: if number(x) equal lowlink(x) do
: create new strongly connected component
: while stack and number(last in stack) >= number(x) do
: add last in stack to the component and remove from stack
: end while
: end if
: end procedure
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Figure .: e connections between the models from Example .. with the strongly connected compo-
nent of more than one node marked. e evaluation order is clearly shown, starting from u

[1]
1 .

u[1]u[2]y[1] y[2]

Figure .: e connections between the models from Example ... e evaluation order is obvious.

. Reducing model evaluations

Analyzing the initialization problem, Equation ., using the structural analysis from Sec-
tion ., we find that the computed evaluation order is not necessarily unique. Depending
on the relations between the connections, a reordering of the evaluation order may be per-
formed, resulting in an evaluation order that is computationally beneficial as compared to
the resulting order computed from Section .. Consider Example .., where the non-
uniqueness of the evaluation order is highlighted. Further, in Section .. the evaluation
order and reordering is considered for an industrial model.

Example .. (Non-unique evaluation order). Consider two coupled models with the input-
output relations,

y
[1]
1 = u

[1]
1 y[2] =

[
0 1
1 0

]
u[2] (.a)

and the coupling,

u[2] =
[
1
1

]
y[1]. (.a)
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e resulting directed graph of the coupled system is shown in Figure .. Analyzing the graph
using Tarjan’s algorithm results in that either the evaluation order is,

u
[1]
1 , y

[1]
1 , u

[2]
1 , y

[2]
2 , u

[2]
2 , y

[2]
1 (.)

or

u
[1]
1 , y

[1]
1 , u

[2]
2 , y

[2]
1 , u

[2]
1 , y

[2]
2 (.)

depending of the order of the edges in the directed graph. Both of the evaluation orders lead to
the correct result.

u
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y
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2
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y
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1
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Figure .: e connections between the models from Example ... As seen from the figure, either
branch that emanates from y

[1]
1 can be chosen for evaluation prior to the other due to the non-uniqueness

of the evaluation order.

In order to understand the possible performance differences between evaluation orders
it is necessary to revisit the model definition. e model considered here is a co-simulation
FMU defined by Equation .. Setting an input to the model and retrieving an output
triggers an evaluation of the internal dynamics which is assumed expensive.

Assumption .. If any input u[i] has been set between retrieving outputs y
[i]
j , an internal

evaluation of the dynamics in a co-simulation FMU, Equation ., is triggered.

Assumption .. Evaluation of a subsystems dynamics is expensive.

In general, Assumption ., can be relaxed if the internal subsystems only compute
the relevant equations when an input has been set. However, this is not common which
motivates the assumption. e goal here is to set as many inputs as possible before retrieving
the outputs in order to minimize the number of evaluations of the internal dynamics in view
of Assumption ..

An outline of an algorithm for reducing the number of model evaluations is as follow.
e graph of the initialization problem in Section ., contains a node for each input and
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output. To reduce the model evaluations, we first modify the graph before running Tarjan’s
algorithm on the graph. As a first step we group all output nodes from a model that are
not included in a feed-through term. is is due to that these nodes cannot create an
algebraic loop. Second, we group all output nodes from a model that are connected to
inputs which are not included in a feed-through term. ese can also not create algebraic
loops, cf. Example ... ese steps are done to simplify the graph by removing nodes and
connections which are not, in any way, involved in direct feed-through terms. After the
two steps, Tarjan’s algorithm is executed, as in the previous section, to identify the strongly
connected components and consequently return an evaluation order.

To reduce the model evaluations we now modify the evaluation order. We consider
each component in the sequence given by the evaluation order. If the component is a
single output (a), we try to move it so that it is evaluated earlier. is is possible in cases
when the evaluation order is not unique as shown in Example ... If the component
contains more than one node, we group these nodes in the graph. We test if a move is
possible by considering again the evaluation order. Starting from the first component, we
go through the components and check if the component (b) only contains output nodes
from the same model as a belong to. If b and a are outputs from the same model, we try to
group them into one component. If a is not a child of b then they can be joined, both in
the component and in the graph. is is performed until all components in the evaluation
order have been considered. e proposed algorithm is shown in Algorithm .

Example .. (Outputs and direct feed-through). Consider the initialization problem rep-
resented by the graph in Figure .. ere are three connected models but only one model has
multiple outputs, the second model. From the figure we note that the outputs from the second
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Figure .: Graph of the initialization problem in Example ...

model are connected to inputs which are not included in a feed-through term (u[3]). us, the
outputs from the second model can be grouped, without creating an algebraic loop. Further-
more, this results in a minimal number of model evaluations. e resulting graph is shown in
Figure ..
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Algorithm  Computing a reduced initial evaluation order
Require: A directed graph G(V, E).
Require: Information about which nodes belong to same model, M .
Require: Information about which nodes are output.

: {Group all outputs, from a model, that are not included in a feed-through term}
: {Group all outputs, from a model, that are connected to inputs which are not included

in a feed-through term}
: F = Tarjan(G) {Compute the strongly connected components}
: i := 0
: while i < dim(F) do
: fi ∈ F
: b := 0
: if dim(fi) = 1 and v ∈ fi|v output then
: for j = [0, . . . , i − 1] and ej ∈ F do

: if dim(ej) = 1 and w ∈ ej |w output, w, v ∈ M [k] and v not a child of w
then

: fi := {fi, ei} {Update the ith item in F , by joining fi and ei into one}
: b := 1 {Do not update the counter }
: break
: end if
: end for
: end if
: if b = 0 then
: i := i + 1 {Increment counter}
: end if
: G := G/fi {Group nodes in a strongly connected component}
: end while
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Figure .: Graph of the solution of the initialization problem from Example .. where all the outputs
from the second model, y[2], have been joined.

. Case studies

.. Academic test case

In this example five models with feed-through are connected. A graph of the couplings is
shown in Figure .. e example is intended to illustrate Algorithm  where the number
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Figure .: Graph showing five coupled models where as many as possible of the outputs for each model
should be joined.

of model evaluations is reduced.
As a first step, we note that in the graph outputs y

[1]
1 and y

[1]
4 can directly be joined

as they are not connected to inputs that are feed-through terms, cf. Figure .. In the
next step in Algorithm , Tarjan’s algorithm (Algorithm ) is executed in order to detect
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Figure .: Result after the first steps of Algorithm  for Section .. where y
[1]
1 and y

[1]
4 has been joined.

the strongly connected components and computing a first evaluation order. ere is one
strongly connected component with dimension greater than one (u[3]

1 , y
[3]
1 , u

[5]
3 , y

[5]
2 ). e

outputs in this component, cannot be matched to any other output. However, looping
through the outputs in the evaluation order, and trying to match the outputs higher up
in the evaluation order, we find that y

[1]
2 , y

[1]
3 and y

[2]
1 , y

[2]
1 can be joined. Joining these

nodes results in the graph shown in Figure . which gives also the evaluation order that
minimizes the number of model evaluations.

.. Race car

For racing applications finding the maximal performance of the car is crucial. One method
to quickly estimate the impact on performance of a change to the vehicle setup is to solve
for the steady state limits under different driving conditions. Identifying a set of critical
points along a race track and calculating the maximum achievable speed for each point
can give a good indication on how the change will affect the lap time. Simulations can be
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Figure .: Resulting graph after Algorithm  has been executed for Section ... As many as possible of
the outputs from the different models has been joined.

carried out with predefined input or by a feedback loop using either a simulator or a virtual
driver model to investigate the dynamic response.

In this example, a race car (cf. Figure .) is modeled in Modelica [] using the
commercial Vehicle Dynamics Library []. e car is driven by a virtual driver that tries to
stay onto an eight shaped course with increasing velocity in order to investigate the dynamic
response of the car, especially when changing the turning direction. Here, we consider
initialization of the race car in a co-simulation setting. ere are five coupled models, the
chassis and the four wheels. Between them, there are  connections. Additionally there
is direct feed-through in the wheels, cf. Figure . and cf. Appendix A..

By employing Algorithm  on the coupled system, we find that there are no strongly
connected components and thus no algebraic loops.

Analyzing the coupled system, given Assumption ., we see that a worst case scenario
for the number of model evaluations are , one evaluation of the chassis and  for each
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Figure .: Visualization of the race car from Section ... © Modelon.

wheel. is is due to that the torques, ti and forces fi, i = 1 : 4 in the couplings are
spatial. e best scenario is  model evaluations, one evaluation of the chassis and one for
each wheel.

Note though that we do not consider additional evaluations of the chassis as there is
no direct feed-through.

Comparing the elapsed initialization time for the two scenarios we see that for the worst
case, the initialization takes about 1 second while for the best case, about 0.1 seconds. For
this coupled system, the optimal evaluation order for the initialization is about  times
faster then the worst case. Furthermore, executing Algorithm  on the coupled system
gives the optimal evaluation order.

. Summary

In this chapter, the initialization problem has been analyzed. A structural approach has
been taken in order to simplify the initialization by identifying equations that result in
algebraic loops. e equations and variables resulting in an algebraic loop need to be solved
together while the variables and equations that are not involved, can be solved in a sequence.
Furthermore, due to Assumption . and Assumption . gains can be obtained, if the
evaluation order is not unique, by reordering the evaluation order so that as many as possible
of the outputs from a model are computed simultaneously. is resulted in Algorithm .
No claims are made that the algorithm finds the minimal number of model evaluations. In
our tests this reduced the number of model evaluations and increased performance.
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Figure .: Overview of the couplings between the wheels and chassis of the race car from Section ...
Shown in the figure is the direct feed-through in the wheels between the hubFrame and spinVelocity with
t[-] and f[-]. Note that the connections are vector valued. © Modelon.





Chapter 

Simulation

Classically, simulation of weakly coupled system follows the parallel algorithm, Algorithm 
(base algorithm), where the models are all treated in parallel and the inputs/outputs are
extrapolated from the previous global time step. A major benefit of this approach is its
obvious parallelism. is approach bears similarities with the Jacobi iteration for linear
equations and is also referred to as a Jacobi-like approach.

Algorithm  Base Parallel Algorithm, (Tn → Tn+1)
Require: M models and their connections

: for i = 1 to M do
: Set the input to the ith model, u

[i]
n .

: Perform global time step, Tn → Tn+1 for the ith model.
: end for
: for i = 1 to M do
: Retrieve model outputs, y

[i]
n+1 (y[i]

n+1 = g(x[i]
n+1, u

[i]
n )).

: end for
: Compute un+1 = c(yn+1).

In this chapter, extensions to the base algorithm are discussed. In Section ., stability is
discussed and it is shown when and why stability problems may occur during co-simulation.
In Section ., algorithms for stabilizing the simulation is introduced and in Section ., a
smoothing approach for the inputs is introduced and discussed. e smoothing is done in
order to preserve continuity over global time steps.

Other simulation approaches exist, such as the staggered approach where the models are
solved in sequence, i.e. the global step is performed for one model at a time, cf. []. is
and similar approaches will not be considered here due to that we only want to consider
parallelizable algorithms.


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. Coupling stability

In the analysis of co-simulation one is interested in how the coupling effects the overall
simulation with regard to stability and accuracy. In this section we focus on stability issues
that may be influenced, depending on the simulation approach. In the analysis we focus
on the parallel method for the overall simulation. As it is the coupling that is of interest
we assume that the subsystems are solved exactly and only study how the coupling impacts
the simulation. In practice this means that the subsystems are solved with high accuracy to
not influence the stability or error estimation of the coupled system.

e aim in this section is to determine a propagation matrix Ψ(H) which advances the
solution using old values of the states and outputs and potentially old values of the output
derivatives,

[xn+1, yn+1, . . . , y
(k)
n+1]T = Ψ(H)[xn, yn, ẏn, . . . , y(k)

n ]T. (.)

Depending on the co-simulation approach, this matrix will have different properties which
will influence the stability. e number of known values of the outputs used in advancing
the solution is denoted by the parameter k, which in turn depends on the approach used.
In order to prove stability we have to check the spectral radius of Ψ(H),

ρ(Ψ(H)) ≤ 1. (.)

We have in case of multiple eigenvalues  to ensure that their algebraic and geometric mul-
tiplicity is the same. A minimal requirement is that Equation . holds at least for H = 0.
is separates stability of the discretization method from the stability of the problem. is
leads to the notion of zero stable methods []. e internal methods used in the subsystems
are zero stable but in contrast to the classical case we will see, that in a co-simulation con-
text, the problem and in particular the feed-through terms matter even in the case H = 0.
Zero stability of the internal methods is not sufficient to guarantee stability of the coupled
system for H = 0. We have to set up conditions on the feed-through term as well. In
Definition .., we define the coupling stability.

Definition .. (Coupling stability). A coupled system is coupling stable, if the spectral radius
of Ψ(H), in Equation ., fulfills,

lim
H→0

ρ(Ψ(H)) ≤ 1,

and eigenvalues on the boundary are non defective, i.e. their algebraic and geometric multiplicity
is the same.

In the analysis we consider N linearly coupled linear systems (linearization of Assump-
tion .),

ẋ[i] = A[i]x[i] + B[i]u[i], i = 1, . . . , N (.a)

y[i] = C [i]x[i] + D[i]u[i], i = 1, . . . , N (.b)
u = Ly (.c)
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the connections between the systems is determined by the coupling matrix L, which maps
the outputs y to the inputs u. For convenience we write,

A =


A[1] · · · 0

...
. . .

...
0 · · · A[N ]

 , B =


B[1] · · · 0

...
. . .

...
0 · · · B[N ]



C =


C [1] · · · 0

...
. . .

...
0 · · · C [N ]

 , D =


D[1] · · · 0

...
. . .

...
0 · · · D[N ]


where A, B, C and D are block diagonal matrices and Equation . simplifies to,

ẋ = Ax + Bu (.a)
y = Cx + Du (.b)
u = Ly. (.c)

Moreover, the system can be reformulated as an ODE,

ẋ = (A + BL(I − DL)−1C)x (.)

where (I − DL) is assumed to be non-singular so that Equation . is an index one sys-
tem with y and u being the algebraic variables. Now, consider that each subsystem in
Equation .a is solved exactly for a global time step [Tn, Tn+1], we get for Equation .a,

Φ(xn, un) =
∫ Tn+1

Tn

eA(Tn+1−τ)Bundτ + eA(Tn+1−Tn)xn. (.)

It can be expected that the stability in Algorithm  depends on the coupling due to that
the outputs are explicit. Now we define this dependency. e algorithm is defined by,

xn+1 = Φ(xn, un) (.a)
yn+1 = Cxn+1 + Dun (.b)
un+1 = Lyn+1. (.c)

Note that a solution for the outputs, u, are directly given using Equation .b,c. Further-
more, Equation .b,c can be interpreted as constraints in a DAE and as the constraints
are not solved in the algorithm, we will onwards call this the inconsistent approach.

Starting by eliminating u we get,

xn+1 = Φ(xn, Lyn) (.a)
yn+1 = Cxn+1 + DLyn. (.b)
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e exact solution for the states in [Tn, t] is,

x(t) =
∫ t

Tn

eA(t−τ)BLy(τ)dτ + eA(t−Tn)x(Tn). (.)

In the next step, the solution is approximated using constant extrapolation for the inputs,
i.e,

y(τ) := y(Tn), τ ∈ [Tn, Tn+1]. (.)

Denoting the numerical approximation of x(Tn) by xn we get the full approximation for
a global step as,

xn+1 = Φ(xn, Lyn) (.a)

=
∫ Tn+1

Tn

eA(Tn+1−τ)dτBLyn + eA(Tn+1−Tn)xn (.b)

= A−1(eAH − I)BLyn + eAHxn (.c)

where H is the global step size which we assume to be the same for all steps. For simplicity,
we introduce K1(H),

K1(H) = A−1(eAH − I)BL with lim
H→0

K1(H) = 0. (.)

Inserting Equation . into Equation .b gives

yn+1 = CK1(H)yn + CeAHxn + DLyn

= [CK1(H) + DL]yn + CeAHxn. (.)

A global step is then calculated as,[
xn+1
yn+1

]
=
[

eAH K1(H)
CeAH CK1(H) + DL

]
︸ ︷︷ ︸

Ψ(H)

[
xn

yn

]
. (.)

Now, the interest is in the iteration matrix, Ψ(H), in the limit as the step size, H , tends to
zero,

lim
H→0

Ψ(H) =
[

I 0
C DL

]
(.)

with eigenvalues,
λ1,...,k = 1, λk+1,...,k+l = eig(DL). (.)

where k are the total number of states and l are the total number of outputs. For stability,
we require that the eigenvalues of DL are less or equal to one, ρ(DL) ≤ 1 and those on
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Algorithm  Parallel consistent, (Tn → Tn+1)
Require: M models and their connections

: for i = 1 to M do
: Set the input to the ith model, u

[i]
n .

: Perform global time step, Tn → Tn+1 for the ith model.
: end for
: Solve yn+1 = g(xn+1, c(yn+1)), for yn+1.
: Compute un+1 = c(yn+1).

the boundary not being defective. Note that an eigenvalue of one is excluded due to the
nonsingularity requirement of (I − DL)−1.

A similar algorithm is Algorithm , which is implicit in the outputs instead of explicit.
e question is, do we have the same stability requirements? e implicit algorithm
proceeds by first solving for the states xn+1 and then solving the outputs yn+1 together
with the inputs un+1, we get,

xn+1 = Φ(xn, un) (.a)
yn+1 = Cxn+1 + Dun+1 (.b)
un+1 = Lyn+1. (.c)

For D = 0, the two algorithms are identical, which is the case if no subsystem has feed-
through. Note that the algorithm requires that we are able to solve Equation .b and
Equation .c together and therefor it is an implicit method. is is in contrast to Equa-
tion .b,c where a solution is directly given. Considering Equation .b,c as constraints
in a DAE, as in Equation .b,c, we here solve the constraints and thus onwards call this
the consistent approach. Note that in a FMI co-simulation framework, solving Equa-
tion .b,c may not always be possible (Restriction .). In the nonlinear case,

y
[i]
n+1 = g[i](t, x

[i]
n+1, u

[i]
n+1), i = 1, . . . , N (.a)

un+1 = c(yn+1) (.b)

an iteration on the output and input variables should be performed in order to solve y[i]

and u together.
Going back to Equation . and by eliminating u we get,

xn+1 = Φ(xn, Lyn) (.a)

yn+1 = (I − DL)−1Cxn+1 (.b)

which is the algorithm we will investigate.
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Now, using Equation . and Equation . together with Equation .b we get,[
I 0

−C I − DL

] [
xn+1
yn+1

]
=
[

eAH K1(H)
0 0

] [
xn

yn

]
(.)

[
xn+1
yn+1

]
=
[

eAH K1(H)
(I − DL)−1CeAH (I − DL)−1CK1(H)

]
︸ ︷︷ ︸

Ψ(H)

[
xn

yn

]
. (.)

Now, considering the iteration, Ψ(H), as before, with the step size, H , tending to zero,

lim
H→0

Ψ(H) =
[

I 0
(I − DL)−1C 0

]
(.)

with eigenvalues,
λ1,...,k = 1, λk+1,...,k+l = 0 (.)

where k is the total number of states and l are the total number of outputs. ere is
no restriction for coupling stability in this case, the approach is unconditionally coupling
stable.

In Example .., both methods are run on two coupled systems.

Example .. (Linear example). Consider a linear coupled system of two subsystems that both
consist of a single state, x, a single input u and a single output y. e coupling is determined
by the values of two parameters, d[1] and d[2]. By setting both to zero we end up with a fully
decoupled system. System one is determined by,

ẋ[1] = −x[1] + u[1] (.a)

y[1] = x[1] + d[1]u[1] (.b)

and system two defined by,

ẋ[2] = −x[2] + 3u[2] (.a)

y[2] = −5x[2] + d[2]u[2]. (.b)

e coupling is determined by, [
u[1]

u[2]

]
=
[
0 1
1 0

]
︸ ︷︷ ︸

L

[
y[1]

y[2]

]
. (.)
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Discretizing the coupled system using constant extrapolation for the signals as described by Equa-
tion ., and by letting H → 0 we obtain,[

y
[1]
n+1

y
[2]
n+1

]
=
[
1 0
0 1

]
︸ ︷︷ ︸

C

[
x

[1]
n+1

x
[2]
n+1

]
+
[
d[1] 0
0 d[2]

]
︸ ︷︷ ︸

D

[
0 1
1 0

]
︸ ︷︷ ︸

L

[
y

[1]
n

y
[2]
n

]
(.)

e coupled system is stable, in case of the inconsistent approach is used, if the spectral radius
ρ(DL) ≤ 1. e eigenvalues are,

λ1,2 = ±
√

d[1]d[2]. (.)

In Figure ., simulations using the inconsistent approach together with constant extrapolation
for the inputs with different values on the parameters d[1] and d[2] are shown. As can be seen,
the simulations are stable if ρ(DL) ≤ 1 and unstable for ρ(DL) > 1. In Figure ., the same
coupled system is simulated using the consistent approach, and as can be seen from the figure,
there is no problem related to the stability.
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Figure .: Result of simulating Model . and Model . from Example .. in parallel using the
inconsistent approach, Equation ., and for varying values on d1 and d2. As expected, the simulation
become unstable for ρ(DL) > 1.

In [], the same coupling stability requirement, for both the consistent and the incon-
sistent method with constant extrapolation, was found. ey called it zero-stability.

In this section, we have used constant extrapolation for the inputs and identified the
cases where we have coupling stability. What if we increase the extrapolation order? When
do we have coupling stability in these cases? In Figure ., Example .. is simulated using
constant, linear,

un+1 = un + H
(un − un−1

H

)
(.)
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Figure .: Result of simulating Model . and Model . from Example .. in parallel using the
consistent approach, Equation ., and for varying values on d1 and d2. As expected, there is no problem
related to stability.

and quadratic extrapolation,

un+1 = un + H
(un − un−1

H

)
+ H2

2

(un − 2un−1 + un−2
H2

)
, (.)

where old values were used in the calculation of the output variables. As can be seen from
the figure, the stability is affected by the extrapolation order. e question is how the
requirement for a coupling stable integration changes with the extrapolation order.
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Figure .: Result of simulating Model . and Model . from Example .. in parallel using constant,
linear and quadratic extrapolation together with the inconsistent approach. As shown in the figure, the
simulations become unstable for higher order extrapolations. e constant extrapolation case is equal to
the case ρ(DL) = 1 in Figure ..



.. COUPLING STABILITY 

.. Linear extrapolation

Equation . is based on the assumption that constant extrapolation was used in-between
the global time steps. If we instead assume linear extrapolation (Equation .) for the
inconsistent approach we get,

xn+1 = Φ
(
xn, un,

un − un−1
H

)
(.a)

yn+1 = Cxn+1 + D
(
un + H

(un − un−1
H

))
(.b)

un+1 = Lyn+1. (.c)

What is the impact on the coupling stability using this approach? Starting by eliminating
u,

xn+1 = Φ
(
xn, Lyn, L

yn − yn−1
H

)
(.a)

yn+1 = Cxn+1 + D
(
2Lyn − Lyn−1

)
. (.b)

Again assuming that the states are solved exactly in each subsystem,

x(t) =
∫ t

Tn

eA(t−τ)BLy(τ)dτ + eA(Tn−t)x(Tn) (.)

and using the linear extrapolation we find for the states,

xn+1 = Φ
(
xn, Lyn, L

yn − yn−1
H

)
(.a)

=
∫ Tn+1

Tn

eA(Tn+1−τ)BL
(
yn + (τ − Tn)

(yn − yn−1
H

))
dτ (.b)

+ eA(Tn+1−Tn)xn (.c)
=
[
τ̄ = τ − Tn

]
(.d)

=
∫ H

0
eA(H−τ̄)BL

(
yn + τ̄

(yn − yn−1
H

))
dτ̄ (.e)

+ eA(Tn+1−Tn)xn. (.f )

Again, for simplicity, we introduce K2(H),

K2(H) = A−2(eAH − I − AH)BLH−1 with lim
H→0

K2(H) = 0. (.)

Now, Equation . and Equation . together with Equation . result in,

xn+1 = K1(H)yn + K2(H)
(
yn − yn−1

)
+ eAHxn

= (K1(H) + K2(H))yn − K2(H)yn−1 + eAHxn. (.)



 CHAPTER . SIMULATION

For the outputs we get,

yn+1 = Cxn+1 + 2DLyn − DLyn−1 (.a)

= C
(
K1(H) + K2(H)

)
yn − CK2(H)yn−1 + CeAHxn (.b)

+ 2DLyn − DLyn−1 (.c)
=
(
CK1(H) + CK2(H) + 2DL

)
yn (.d)

+
(

− CK2(H) − DL
)
yn−1 (.e)

+ CeAHxn. (.f )

e resulting global step is performed as,

 xn+1
yn+1
yn

 =

 eAH K1(H)+K2(H) −K2(H)
CeAH C(K1(H)+K2(H))+2DL −CK2(H)−DL

0 I 0


︸ ︷︷ ︸

Ψ(H)

 xn

yn

yn−1

 .

(.)
To determine the coupling stability we consider, Ψ(H), in the limit as the step size, H ,
tends to zero, which result in,

lim
H→0

Ψ(H) =

 I 0 0
C 2DL −DL
0 I 0

 . (.)

e eigenvalues are,

λ1,...,k = 1, λk+1,...,k+2l = eig
([

2DL −DL
I 0

])
(.)

where k are the total number of states and l are the total number of outputs. For stability,
the requirement is that |λk+1,...,k+2l| ≤ 1 and those on the boundary not being defective.
Note that an eigenvalue of one is excluded due to the nonsingularity requirement of (I −
DL)−1. If DL is diagonalizable, we find that,

λk+1,...,k+2l = λDL ±
√

λ2
DL − λDL (.)

where λDL are the l eigenvalues of DL.
Alternatively to Equation . where a finite difference approach was used to approx-

imate the derivative of inputs with respect to time, FMI allow for using the analytical
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derivative (Feature .). Using the analytical derivative we instead get,

xn+1 = Φ(xn, un, u̇n) (.a)

yn+1 = Cxn+1 + D
(
un + Hu̇n

)
(.b)

un+1 = Lyn+1 (.c)
u̇n+1 = Lẏn+1 (.d)

eliminating u,

xn+1 = Φ(xn, Lyn, Lẏn) (.a)

yn+1 = Cxn+1 + D
(
Lyn + HLẏn

)
(.b)

ẏn+1 = Cẋn+1 + DLẏn. (.c)

Following the above line of calculations we find that a global step is performed as, xn+1
yn+1
ẏn+1

=

 eAH K1(H) HK2(H)
CeAH CK1(H)+DL HCK2(H)+HDL

CAeAH C(AK1(H)+BL) HC(AK2(H)+BL)+DL


︸ ︷︷ ︸

Ψ(H)

 xn

yn

ẏn

 .

(.)
Considering Ψ(H) as before,

lim
H→0

Ψ(H) =

 I 0 0
C DL 0

CA CBL DL

 (.)

with

HK2(H) = A−2(eAH − I − AH)BL and lim
H→0

HK2(H) = 0. (.)

Note that the requirement for stability is the same as in the inconsistent approach with
constant extrapolation, ρ(DL) ≤ 1. Using linear extrapolation with analytical derivatives
do not reduce the region for coupling stability.

In Figure . the regions for which the inconsistent approaches are stable are shown for
constant, linear and quadratic extrapolation where the higher order extrapolations used fi-
nite differences. e requirements for quadratic extrapolation can be found straightforward
from above. In Figure . and in Figure ., result is shown for simulating Example ..
using linear and quadratic extrapolation respectively with the inconsistent approach.

Considering again the consistent approach, Equation ., where the output equations
and the coupling equations are solved, but this time with linear extrapolation,

xn+1 = Φ
(
xn, Lyn, L

yn − yn−1
H

)
(.a)

yn+1 = (I − DL)−1Cxn+1. (.b)
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Figure .: Regions for which the inconsistent approaches are coupling stable in terms of ρ(DL) using
different extrapolation orders and approximated by finite differences.

e states are calculated as in Equation . and inserting this into Equation .b,

yn+1 = (I − DL)−1C
(
(K1(H) + K2(H)

)
yn − K2(H)yn−1 + eAHxn) (.)

and a global step is calculated, with [K3 = (I − DL)−1C], as, xn+1
yn+1
yn

=

 eAH K1(H)+K2(H) −K2(H)
K3eAH K3(K1(H)+K2(H)) −K3K2(H)

0 I 0


︸ ︷︷ ︸

Ψ(H)

 xn

yn

yn−1

 . (.)

Considering, Ψ(H), as before, in the limit as the step size tends to zero,

lim
H→0

Ψ(H) =

 I 0 0
(I − DL)−1C 0 0

0 I 0

 (.)

with the eigenvalues,
λ1,...,k = 1, λk+1,...,k+2l = 0 (.)

where k are the total number of states and l are the total number of outputs. In this case
we have unconditionally coupling stability, just as in the constant extrapolation case, for
the consistent approach.

.. Summary

In this section, various methods for performing co-simulation based on the parallel base
algorithm, Algorithm , have been introduced and their coupling stability properties have
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Figure .: Result of simulating Model . and Model . from Example .. in parallel using the
inconsistent method together with linear extrapolation and for varying values on d1 and d2.

Table .: Coupling stability requirement for the different approaches, consistent and inconsistent. is
together with extrapolation order and finally if the higher order derivative is approximated using finite
differences or if it is available analytically.

Consistent Inconsistent
Order \ Type Analytical Finite Diff. Analytical Finite Diff.

Constant Unconditionally coupling stable ρ(DL) ≤ 1

Linear Unconditionally coupling stable ρ(DL) ≤ 1 ρ

(
2DL −DL

I 0

)
≤1, (Eq. .)

been analyzed. ere are two groups of method variations, one based on the consistent
approach, Equation ., where the outputs are solved for and one based on the inconsis-
tent approach, Equation ., where the outputs are computed using previous values in an
explicit sequence. Additionally, coupled to both, there is a possibility to use higher order
extrapolation for the inputs which are either available explicitly or approximated. In Ta-
ble ., the requirements for coupling stability is summarized for the different methods.

. Linear correction

A simulation of coupled systems may become unstable if the algebraic constraints are not
satisfied, recall the condition on ρ(DL) in the inconsistent approaches from Section .. In
[], Kübler et al. proposed to solve the algebraic constraints in each global step. However,
this is not possible when using models following the FMI standard due to that the outputs,
y, of a model cannot be recomputed with updated inputs without taking a step (Restric-
tion .). is is a restriction in the standard which results in that only the inconsistent
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Figure .: Result of simulating Model . and Model . from Example .. in parallel using the
inconsistent method together with quadratic extrapolation and for varying values on d1 and d2.

methods from Section . can be considered when performing co-simulation using FMI.

However, with the restriction in mind, a linear correction algorithm is proposed in Al-
gorithm  which stabilizes the inconsistent approach. e idea can be viewed as performing

Algorithm  Parallel Linear Correction, (Tn → Tn+1)
Require: e models and their connections.

: for i = 1 to N do
: Set the input to the ith model, u

[i]
n .

: Perform global time step, Tn → Tn+1 for the ith model.
: end for
: for i = 1 to N do
: Retrieve model outputs, y

[i]
n+1.

: Retrieve feed-through matrix, ∂g[i]

∂u[i] .
: end for
: Assemble ∂g

∂u and ∂c
∂y .

: Correct yn+1, zn+1 = yn+1 − ∂g
∂uun

: Solve ȳn+1 = (I − ∂g
∂u

∂c
∂y )−1zn+1

: Compute un+1 = c(ȳn+1)

a single step of Newton iteration in each global step. In the linear case, this corresponds to
the consistent approach.
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Consider a coupled system on the form,

ẋ = f(x, u) (.a)
y = ĝ(x) + Du (.b)
u = Ly. (.c)

In the inconsistent approach, Equation ., the instabilities occur due to the direct feed-
through determined by D and L, Section .. In order to stabilize the simulation, the
algebraic equation need to be solved, i.e,

y = ĝ(x) + DLy → y = (I − DL)−1ĝ(x). (.)

Using the proposed linear correction algorithm (Algorithm ) for the coupled semilinear
system, Equation ., a step results in,

xn+1 = Φ(xn, un) (.a)
yn+1 = ĝ(xn+1) + Dun (.b)
zn+1 = yn+1 − Dun (.c)

ȳn+1 = (I − DL)−1zn+1 (.d)
un+1 = L(ȳn+1). (.e)

It may seem redundant that first Dun is added for yn+1 and then subtracted from zn+1.
However, this is due to the fact that yn+1 is retrieved from each individual subsystem in a
co-simulation setup and that ĝ(xn+1) is not directly available. But, as we know both D
(Feature .) and the input, un, ĝ(xn+1) can be computed implicitly by subtracting Dun

from yn+1. We call the above the linearly corrected inconsistent approach.
Now, simplifying the equations for ȳn+1,

ȳn+1 = (I − DL)−1zn+1 = (I − DL)−1(yn+1 − Dun)
= (I − DL)−1(ĝ(xn+1) + Dun − Dun) = (I − DL)−1ĝ(xn+1). (.)

Comparing with Equation ., we note that this approach solves the algebraic equation
exactly as the system considered here was assumed to be semilinear. is approach results
in, for linear coupled systems, equivalence with the consistent approach, Equation .,
which do not impose a restricting for coupling stability. In Example .., linear correction
is used to stabilize a simulation of a double pendulum.

Other stabilization techniques have been proposed. In [], an overlapping approach
was proposed which was based on applying the constraint equations in a differential al-
gebraic equation to more than one subsystem. In [] a stabilization based on derivative
information was proposed for a staggered scheme while in [] an implementation of a sta-
bilization method was tested with the limitations that no algebraic loops should be present
in the coupled system.
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Figure .: e double pendulum from Example ...

Example .. (Double pendulum). In this example, a double pendulum (Figure .) is sim-
ulated using a co-simulation approach. e double pendulum is divided into two systems. e
top pendulum is defined by,

α̇[1] = ω[1] (.a)

ω̇[1] = 1
m[1]l[1]2

[
u

[1]
1 l[1] cos α[1] + (u[1]

2 − m[1]g)l[1] sin α[1] − d[1]ω[1]
]

(.b)

with the outputs,

y
[1]
1 = cos α[1]

m[1]

[
u

[1]
1 cos α[1] + (u[1]

2 − m[1]g) sin α[1]
]

− ω[1]2 l[1] sin α[1] (.a)

y
[1]
2 = sin α[1]

m[1]

[
u

[1]
1 cos α[1] + (u[1]

2 − m[1]g) sin α[1]
]

+ ω[1]2 l[1] cos α[1]. (.b)

e bottom pendulum is defined by,

α̇[2] = ω[2] (.a)

ω̇[2] = 1
l[2]

[
− g sin α[2] − u

[2]
1 cos α[2] − u

[2]
2 sin α[2]

]
(.b)

with the outputs,

y
[2]
1 = −m[2]

[
u

[2]
1 sin α[2] − u

[2]
2 cos α[2] − l[2]ω[2]2 − g cos α[2]

]
sin α[2] (.a)

y
[2]
2 = m[2]

[
u

[2]
1 sin α[2] − u

[2]
2 cos α[2] − l[2]ω[2]2 − g cos α[2]

]
cos α[2]. (.b)

In Table . the parameters and start values are shown.
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Table .: Parameters used in Example .. together with start values.

α[1](t0) = −1 rad l[1] = 1 m m[1] = 1 kg d[1] = 0.5 Nms
α[2](t0) = 0.3 rad l[2] = 1 m m[2] = 1.5 kg

In [], it was shown that if m[1] < m[2], the coupled system is not coupling stable in case of
constant extrapolation and using the inconsistent approach.

e coupled system is simulated using H = 0.01 together with constant extrapolation and
using the inconsistent approach, with and without correction. In Figure ., the results are
shown. As can been seen from the figures, the simulation is unstable when correction is not
used and stable when it is used. In Figure ., the coupling error is shown, when using linear
correction, for decreasing step sizes.
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Figure .: Simulation result for Example .. when using constant extrapolation and the inconsistent
approach (left) and together with linear correction (right). As shown, the simulation is unstable for the
non-corrected simulation and stable for the corrected.
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Figure .: Coupling error in Example .. when using linear correction.
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.. Linear extrapolation

Following the same idea as discussed in the previous section, a linear corrected algorithm
when using linear extrapolation of the inputs together with the inconsistent approach is
given in Algorithm .

Algorithm  Parallel Linear Correction with Linear Extrapolation, (Tn → Tn+1)
Require: e models and their connections.

: for i = 1 to N do
: Set the input to the ith model, u

[i]
n .

: Set the input derivative to the ith model, du
[i]
n

dt .
: Perform global time step, Tn → Tn+1 for the ith model.
: end for
: for i = 1 to N do
: Retrieve model outputs, y

[i]
n+1.

: Retrieve model output derivatives, dy
[i]
n+1
dt .

: Retrieve feed-through matrix, ∂g[i]

∂u[i] .
: end for
: Assemble ∂g

∂u and ∂c
∂y .

: Set, un,est = un + H dun
dt

: Correct yn+1, zn+1 = yn+1 − ∂g
∂uun,est

: Correct dyn+1
dt , dzn+1

dt = dyn+1
dt − ∂g

∂u
dun
dt

: Solve ȳn+1 = (I − ∂g
∂u

∂c
∂y )−1zn+1

: Solve dȳn+1
dt = (I − ∂g

∂u
∂c
∂y )−1 dzn+1

dt
: Compute un+1 = c(ȳn+1)
: Compute dun+1

dt = ∂c
∂y

dȳn+1
dt

Consider the semilinear problem,

ẋ = f(x, u) (.a)
y = ĝ(x) + Du (.b)
u = Ly. (.c)

In the linear extrapolation case, the state is calculated depending on the inputs at Tn and
additionally on their derivatives at Tn, i.e.

xn+1 = Φ(xn, un, u̇n). (.)

is in turn results in,

yn+1 = ĝ(xn+1) + Dun,est (.)
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where (H is the global step size),

un,est = un + Hu̇n. (.)

e proposed linear correction for the linear extrapolation case results in that a step is
computed as,

xn+1 = Φ(xn, un, u̇n) (.a)
yn+1 = ĝ(xn+1) + Dun,est (.b)

ẏn+1 = ˙̂g(xn+1) + Du̇n (.c)
zn+1 = yn+1 − Dun,est (.d)
żn+1 = ẏn+1 − Du̇n (.e)

ȳn+1 = (I − DL)−1zn+1 (.f )
˙̄yn+1 = (I − DL)−1żn+1 (.g)
un+1 = L(ȳn+1) (.h)
u̇n+1 = L( ˙̄yn+1). (.i)

Instead of, as in Algorithm , correcting the outputs, y, using un, the outputs is here
corrected using the estimated inputs, un,est, resulting in,

ȳn+1 = (I − DL)−1zn+1 = (I − DL)−1(yn+1 − Dun,est) =
(I − DL)−1(ĝ(xn+1) + Dun,est − Dun,est) = (I − DL)−1ĝ(xn+1). (.)

Furthermore, a correction of the input derivatives is motivated due to that,

u̇n+1 = Lẏn+1 = L(I − DL)−1 dĝ(x)
dx

ẋn+1. (.)

Considering now the corrected output derivatives in the proposed algorithm,

˙̄yn+1 = (I − DL)−1żn+1 = (I − DL)−1(ẏn+1 − Du̇n) =

(I − DL)−1(dĝ

dx
ẋn+1 + Du̇n − Du̇n) = (I − DL)−1 dĝ

dx
ẋn+1 (.)

and thus,

u̇n+1 = L(I − DL)−1 dĝ

dx
ẋn+1. (.)

In Example .., the double pendulum is revisited and simulated using the inconsistent
approach with linear extrapolation, with and without correction.



 CHAPTER . SIMULATION

0

1000

2000
A

n
g
le

 [
ra

d
] Ref. α[1]

α[1]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time [s]

0

1000

2000

A
n
g
le

 [
ra

d
] Ref. α[2]

α[2]

0.8

0.4

0.0

0.4

A
n
g
le

 [
ra

d
]

Ref. α[1]

α[1]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

1.5

0.5

0.5

1.5

A
n
g
le

 [
ra

d
]

Ref. α[2]

α[2]

Figure .: Simulation result for Example .. when using linear extrapolation and the inconsistent
approach (left) and together with linear correction (right). As shown, the simulation is unstable for the
non-corrected simulation and stable for the corrected.
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Figure .: Shown is the coupling error in Example .. when using linear correction for the inconsistent
approach with linear extrapolation.

Example .. (Double pendulum (revisited)). In this example, we revisit Example ..
and run the same experiments but instead of using constant extrapolation, we now use linear
extrapolation.

In Figure ., the results are shown. As can been seen from the figures, the simulation is
unstable, as before, when correction is not used and stable when it is used. In Figure ., the
coupling error is shown.

Higher order extrapolation schemes using linear correction is currently not possible
due to limitations in the FMI standard. For higher order extrapolation, derivatives of the
states are necessary for the correction which are not available as they are hidden inside the
model and not exposed to the simulation tools.
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. Smoothing of connections

Using the inconsistent approach with linear extrapolation for co-simulation, with and with-
out linear correction, discontinuities are introduced in the coupling inputs, u, and thus
propagated to the underlying subsystems due to un,est ̸= un+1, cf. Figure .. ese dis-
continuities may result in a degradation of the performance of the local solver. Consider
the case when a multistep method [] is used in the subsystems, then the introduction of a
discontinuity in the inputs, u

[i]
n , may result in order reductions and in worst case simulation

failure.

tn tn+1 tn+2

un

u̇n

un,est+τu̇n+1

ūn+1

ūn+1 +τ ˙̄un+1

un,est

un+1,est

Figure .: Illustration of smoothing. e red dashed line is the jump in the inputs if no smoothing is
used while the dashed dotted green line is the smooth input.

Instead of directly propagating un+1 and u̇n+1 in the subsequent step, we propose
using un,est instead and modify the derivatives so that still un+2 = un+1 + Hu̇n+1 is
reached. is results in that we preserve continuity (C0) of the inputs and thus do not
introduce jump discontinuities (C−1) to the underlying solvers. In Example .., an mo-
tivating example is shown.

Another smoothing approach can be found in [].

Example .. (Motivating example - Linear extrapolation with and without smoothing).
Consider the two models,

ẋ[1] = −x[1]u[1]2 ẋ[2] = −x[2] + u[2] (.a)

y[1] = x[1] y[2] = x[2] + sin(u[2]) (.b)

with the coupling,

u[2] = y[1] u[1] = y[2]. (.)

e coupled system is simulated using the inconsistent approach with linear extrapolation, with
and without smoothing, where the underlying solver is, in both subsystems, CVode.
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Table .: Statistics of the underlying solver for both subsystems from Example .., with and without
smoothing, using the same global step size, H = 0.02.

steps fevals steps (with) fevals (with)
Subsystem [1]    
Subsystem [2]    

Investigating the impact of the smoothing on the underlying solvers we see a big decrease in
the number of local steps and local function evaluations compared to the case without smoothing.
In Table . the statistics is shown for the local models. We see that the number of steps has
nearly been decreased by a factor of two. In Figure ., the inputs for subsystem [1] are shown
and compared to the reference, highlighting the difference of using smoothing versus not using it.
In Figure . the error is shown in the states for the two simulations. We see that the error is
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Figure .: e input for subsystem [1] in Example .. when using smoothing (right) vs only using
linear extrapolation (left). e figure clearly shows the introduced discontinuities in the inputs in the case
when only linear extrapolation is used (left).

larger for the simulation using smoothing. However, as the amount of work for the subsystems
was substantially decreased the global step size can be decreased while still doing less work than
in the non smoothing case. e question arises, can we decrease it enough for the error to be
equal while still doing less work?

In Figure . the error is shown when the global step size has been adapted so that the error
of both simulations are equal (step size 0.0145 vs 0.02). In Table ., the local simulation
statistics is shown. Noted from the table is that the number of steps and function evaluations in
the smoothing case remains significantly lower.
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Figure .: Error in the states when simulating the coupled system from Example .. with and without
smoothing. Here, the step size is set to 0.02 in both cases.
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Figure .: Error in the states when simulating the coupled system from Example .. using smoothing
with a global step size set to 0.0145 and without smoothing with a global step size set to 0.02.

Smoothing for the inconsistent approach, with linear extrapolation, is defined by,

xn+1 = Φ(xn, un, u̇n) (.a)

ȳn+1 = Cxn+1 + D
(
un + Hu̇n

)
(.b)

˙̄yn+1 = Cẋn+1 + Du̇n (.c)
un+1 = un + Hu̇n (.d)

u̇n+1 = Lȳn+1 + LH ˙̄yn+1 − un+1
H

. (.e)

Note that the updated inputs, un+1, are set depending on the previous inputs. e input
derivatives, u̇n+1 are modified so that,

un+2 = un+1 + Hu̇n+1 = Lȳn+1 + LH ˙̄yn+1. (.)
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Table .: Statistics of the underlying solver for both subsystems from Example .., with and without
smoothing. e step size for the simulation with smoothing is chosen so that both simulations give the
same solution (H = 0.0145 vs H = 0.02).

steps fevals steps (with) fevals (with)
Subsystem [1]    
Subsystem [2]    

Eliminating u, as before, we get,

xn+1 = Φ(xn, Lyn, Lẏn) (.a)
yn+1 = yn + Hẏn (.b)

ẏn+1 = Cxn+1 + DLyn − yn+1
H

+ Cẋn+1 + DLẏn. (.c)

Furthermore, we need ẋn+1 which, from Equation .a and due to linear extrapolation of
the inputs, is given by,

ẋn+1 = Axn+1 + BL(yn + Hẏn). (.)

Additionally, as the output derivatives, ẏn+1, only enters the equations together with the
step size, H, we introduce,

żn+1 = Hẏn+1. (.)

As in Section ., we are interested in an iteration matrix, Ψ(H), such that, xn+1
yn+1
żn+1

=Ψ(H)

 xn

yn

żn

 . (.)

In this case, the iteration matrix is defined by,

Ψ(H)=
[ eAH K1(H) K2(H)

0 I I
C(I+AH)eAH C(I+AH)K1(H)+K4(H) C(I+AH)K2(H)+K4(H)

]
(.)

with

K4(H) = DL − I + HCBL and lim
H→0

K4(H) = DL − I. (.)

We consider, Ψ(H), in the limit as the step size, H , tends to zero,

lim
H→0

Ψ(H) =

[
I 0 0
0 I I
C DL − I DL − I

]
. (.)
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e iteration matrix above leads to coupling stability as long as ρ(DL) ≤ 1. Note that this
is the same requirement as in the approach defined by Equation ., i.e. the inconsistent
approach with linear extrapolation using analytical derivatives.

In the same way as above, we define smoothing for the consistent algorithm with linear
extrapolation. e algorithm is defined by,

xn+1 = Φ(xn, un, u̇n) (.a)

ȳn+1 = (I − DL)−1Cxn+1 (.b)
˙̄yn+1 = (I − DL)−1Cẋn+1 (.c)
un+1 = un + Hu̇n (.d)

u̇n+1 = Lȳn+1 + LH ˙̄yn+1 − un+1
H

. (.e)

Note that the inputs, un+1, are not set to the consistent values, ȳn+1. e input derivatives,
u̇n+1, are set according to Equation .. By eliminating the inputs as before we get,

xn+1 = Φ(xn, Lyn, Lẏn) (.a)
yn+1 = yn + Hẏn (.b)

ẏn+1 = (I − DL)−1Cxn+1 − yn+1
H

+ (I − DL)−1ẋn+1. (.c)

With Equation ., the iteration matrix, Ψ(H), is defined by,

Ψ(H)=
[ eAH K1(H) K2(H)

0 I I
K3[I+AH]eAH K3[(I+AH]K1(H)+HBL)−I K3[(I+AH)K2(H)+HBL]−I

]
. (.)

We consider, Ψ(H), in the limit as the step size, H , tends to zero and we get,

lim
H→0

Ψ(H) =

 I 0 0
0 I I

K3 −I −I

 . (.)

Here, the approach is unconditionally coupling stable, as in the consistent approaches.
e above smoothing leads to a proposed linear correction algorithm with linear ex-

trapolation and smoothing which is shown in Algorithm .
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Algorithm  Parallel Linear Correction with Linear Extrapolation and Smoothing, (Tn →
Tn+1)
Require: e models and their connections.

: for i = 1 to N do
: Set the input to the ith model, u

[i]
n .

: Set the input derivative to the ith model, du
[i]
n

dt .
: Perform global time step, Tn → Tn+1 for the ith model.
: end for
: for i = 1 to N do
: Retrieve model outputs, y

[i]
n+1.

: Retrieve model output derivatives, dy
[i]
n+1
dt .

: Retrieve feed-through matrix, ∂g[i]

∂u[i] .
: end for
: Assemble ∂g

∂u and ∂c
∂y .

: Set, un,est = un + H dun
dt

: Correct yn+1, zn+1 = yn+1 − ∂g
∂uun,est

: Correct dyn+1
dt , dzn+1

dt = dyn+1
dt − ∂g

∂u
dun
dt

: Solve ȳn+1 = (I − ∂g
∂u

∂c
∂y )−1zn+1

: Solve dȳn+1
dt = (I − ∂g

∂u
∂c
∂y )−1 dzn+1

dt
: Compute un+1 = un,est

: Compute dun+1
dt = c(ȳn+1) − un,est + ∂c

∂y
dȳn+1

dt
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. Case studies

.. Mass-spring-damper

Consider a mass-spring-damper problem with three coupled springs and three coupled
dampers which are connected between two fixed points and two masses, cf. Figure ..
e problem is governed by the equations,

𝒎𝟐 𝒎𝟏 

𝒌𝟏 𝒌𝟐 𝒌𝟑 

𝒄𝟏 𝒄𝟐 𝒄𝟑 
𝒙𝟏 𝒙𝟐 

Figure .: Mass-spring-damper problem.

m1ẍ1 = −(k1 + k2)x1 − (c1 + c2)ẋ1 + k2x2 + c2ẋ2 (.a)
m2ẍ2 = −(k3 + k2)x2 − (c3 + c2)ẋ2 + k2x1 + c2ẋ1. (.b)

e problem is divided into two subsystems. e first is defined by,

m1ẍ1 = −k1x1 − c1ẋ1 + k2u11 + c2u12 (.a)

y1 = [x1, ẋ1]T. (.b)

e input is the difference in position and velocity between the two subsystems and the
output is the position and velocity. In the second subsystem, the output is the difference
between the position and the velocity,

m2ẍ2 = −(k3 + k2)x2 − (c3 + c2)ẋ2 + k2u21 + c2u22 (.a)

y2 = [x2, ẋ2]T − [u21, u22]T. (.b)

e input for this second subsystem is the position and velocity of the first subsystem. is
leads to the coupling equation,

u11 = y21, u21 = y11 (.a)
u12 = y22, u22 = y12. (.b)

e coupled system is first simulated with three different approaches, all using extrapolation
order one and a fixed step size of H = 0.085. e intention is to highlight different stability
properties of the algorithms for H > 0. A reference solution was computed from an FMU
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of the monolithic system, Equation ., exported using JModelica.org. Using PyFMI
and Assimulo, the reference was computed with CVode [] using relative and absolute
tolerance set to 10−10.

In Figure . the coupled system is simulated using the inconsistent approach while
in Figure ., the system is simulated with smoothing, with and without linear correction.
ese figures highlights that there are stability differences between using the different ap-
proaches. However, in Figure . the same approaches as above are used in simulations as
H → 0 and the expected results are achieved.
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Figure .: Simulation result for Section .. when using the inconsistent approach with step size
H = 0.085.
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Figure .: Simulation result for Section .. when using the inconsistent approach with smoothing
(left) and when using smoothing together with linear correction (right). e step size used: H = 0.085.
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Figure .: Coupling error in Section .. when simulated using the inconsistent method, the incon-
sistent method with smoothing and the inconsistent method with smoothing and linear correction. All
simulations were carried out using linear extrapolation.

.. Race car

Revisiting the race car from Section .. in a co-simulation setting and now considering,
instead of initialization, simulation of the coupled systems. In Section .., it was found
that the couplings did not introduce any algebraic loops and thus ρ(DL) = 0 which means
that we can expect coupling stability for the inconsistent approaches.

A reference solution was computed from an FMU of the monolithic system, Appendix
A., exported using Dymola  []. Using PyFMI and Assimulo, the reference was
computed with CVode using relative and absolute tolerance set to 10−8.

In Figure ., result of the simulated system is shown when the inconsistent approach
was used together with constant extrapolation and step size H = 0.005. In Figure ., the
coupling error is shown for different orders of extrapolation together with the inconsistent
approach, with and without linear correction and in Figure . with smoothing.

. Summary

In this chapter, algorithms for simulation of weakly coupled systems has been considered.
e algorithms are variants of the consistent approach, where the constraints are solved
(Equation .b,c), and of the inconsistent approach, where the constraints are not solved.
Focus has been on stability in the limit as H → 0. In Table ., the conditions for stability
for the different algorithms are shown. Furthermore, in Section ., smoothing of the
coupling variables was considered. In Table ., the conditions for stability is shown for
these cases.

Using the FMI, the consistent approach is not realizable due to Restriction .. To
overcome this restriction, a modification of the inconsistent approach was considered in
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Section . and a linearly corrected inconsistent approach was proposed.

Table .: Coupling stability requirement for the different approaches, consistent and inconsistent, when
using smoothing on the coupling variables.

Consistent w. smoothing Inconsistent w. smoothing
Order \ Type Analytical Analytical

Linear Unconditionally coupling stable ρ(DL) ≤ 1
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Figure .: Simulation result for Section .. when using the inconsistent algorithm with constant
extrapolation and a step size of H = 0.005.
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Figure .: Coupling error result for Section .. when using the inconsistent algorithm (left) and
when using the inconsistent algorithm with linear correction (right).
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Figure .: Coupling error result for Section .. when using the inconsistent algorithm together with
smoothing.



Chapter 

Modification of multistep predictor

A common underlying integrator, in a subsystem, is a multistep method []. A multistep
method uses the solution from previous steps to predict future solutions. It is usually im-
plemented using a variable time grid, which means that the step size of the method adapts
to the problem during the simulation. Additionally this is complemented with adapting
the order of the method.

Restarting a multistep method used for solving initial value problem is expensive. A
restart resets the current integrator order to one and discards the information from previous
steps. In certain situations this is necessary, such as when a discontinuity in the states are
detected. Here, we intend to use the knowledge of what has changed in the problem and
modify the method so that a restart becomes unnecessary.

Instead of considering the fully coupled system, Equation ., we consider in this chap-
ter an initial value problem (IVP) together with an external input u(t),

ẋ(t) = f(x(t), u(t)), x(T0) = x0, t ∈ [T0, TM ]. (.)

e input is assumed to be a given piecewise constant signal, on a global grid, defined as,

u(t) = ui, t ∈ [Ti, Ti+1) (.)

with i = 0, . . . , M − 1. Alternatively, we consider a piecewise linear input signal, possibly
discontinues,

u(t) = ui + (t − Ti)u̇i, t ∈ [Ti, Ti+1]. (.)

e IVP (.), is solved using a variable-step, variable-order multistep method. e as-
sumption is that during a global step, i.e., t ∈ [Ti, Ti+1], the method requires many local
steps to satisfy the tolerance requirements.

e above setting is exactly the case when performing simulations of weakly coupled
systems. Another situation where the above is relevant is the case when the IVP is coupled


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to an external process which is responsible for providing the inputs. Consider a hardware-
in-the-loop simulation [], here the inputs are not known for the complete simulation
horizon at initial time (due to that they do not exist), but rather at known time-points
where an update occur.

ere are two approaches that first come to mind when simulating the IVP using the
discussed inputs. Either the method is restarted at each segment or the method proceeds
using values computed from the previous segment. In Figure ., a typical plot of the step
size history and order history is shown for the two cases. As can be seen, neither are efficient.
Both approaches experience order and step size reductions at the global input changes.
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Figure .: Step size and order for a simulation of an example model using linear input segments. In
the left figure, the method is restarted at every global step while in the right figure, it proceeds from stored
values.

In this chapter, an approach is presented that modifies the predictor in a multistep
method at the start of each global step. e modification is shown to significantly improve
the simulation performance.

. Multistep methods

A general multistep method for solving an IVP is defined as,

q∑
i=0

αn,ixn−i + hn

q∑
i=0

βn,if(xn−i) = 0 (.)

where q determines the number of steps, i.e. the number of previous solution points used,
in the formula. e coefficients α and β determine the method. ey are dependent on
the step size history and order.

A multistep method needs during the integration access to the previous solutions points,
i.e. the solution history. e representation of the history varies between implementations
of a multistep method. Most commonly used history representation is via a Nordsieck
array or an array of modified divided differences. For a detailed description cf. [].
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In a Nordsieck history array, the history is represented as,

zn−1 =
[
xn−1, hnẋn−1, . . . ,

hq
nx

(q)
n−1

q!

]
. (.)

From the solution history zn−1, a prediction to zn, denoted zn(0), and also xn (xn(0)),
is computed. is prediction is used as an initial guess to the nonlinear equation system,
resulting from Equation .,

G(xn) = 0. (.)

In order to accept the computed solution xn, an error test must be passed,

||en|| = ||xn − xn(0)|| ≤ TOL. (.)

If the error test succeeds for a given tolerance TOL the step is accepted. e above steps
are independent of how the solution history is represented.

. Problem formulation

Here we consider the IVP, Equation ., with either a piecewise constant input or a piece-
wise linear input resulting from a co-simulation. At the start of a global segment [Ti+1, Ti+2]
the solution history of the multistep method is based on,

ẋ = f(x, ui), t ∈ [Ti, Ti+1]. (.)

Once the inputs are updated, at Ti+1, the equation,

ẋ = f(x, ui+1) (.)

are no longer consistent,

ẋ−
i+1 := f(xi+1, ui, ) ̸= f(xi+1, ui+1) =: ẋ+

i+1. (.)

is means that the solution history is no longer valid and that the the error test (Equa-
tion .) is likely to fail due to a poor prediction. Additionally, there is also the problem
that the predicted step delivers a bad initial guess for the nonlinear system (Equation .),
resulting in convergence failures.

. Modifying the predictor

As previously mentioned, most of the order reductions and step size reductions seen are
due to error test failures caused by a poor prediction.

e predicted next step is computed by extrapolating the polynomial defined with
the solution history array. By modifying the history array, a better prediction is achieved
resulting in a reduced risk for error test failures and convergence failures.
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Considering specifically the Nordsieck representation, Equation ., the second term
in the array is,

zi+1,1 = hẋi+1. (.)

Here, a correction is computed as,

∆ẋi+1 = ẋ−
i+1 − ẋ+

i+1 ⇒ zi+1,1 = zi+1,1 − h∆ẋi+1 ⇒ zi+1,1 = ẋ+
i+1. (.)

A single additional function evaluation is required in order to correct the first derivative.
For the second derivative,

∆ẍi+1 = ẍ−
i+1 − ẍ+

i+1 = ẍ−
i+1 −

[∂f(xi+1, ui+1)
∂x

ẋ+
i+1 + ∂f(xi+1, ui+1)

∂u
u̇i+1

]
(.)

we correct by,

zi+1,2 = zi+1,2 − h2

2
∆ẍi+1 ⇒ (.)

zi+1,2 =
[∂f(xi+1, un+1)

∂x
ẋ+

i+1 + ∂f(xi+1, ui+1)
∂u

u̇i+1
]
. (.)

Correcting the second derivative requires a new Jacobian evaluation. Additionally, if the
inputs are linear segments, an evaluation of the partial derivatives with respect to the inputs
is necessary.

Higher order corrections are considered too costly and therefore not considered here.

. Case studies

In the experiments below, the models were modeled in the modeling language Modelica and
compiled into FMUs [] using the open-source tool JModelica.org. e multistep method
used was CVode to which the correction, discussed in Section ., has been implemented.
No changes were made inside CVode. Further, the correction to the predictor does not
disable any of the features in CVode for step size reductions or order reductions for cases
when the error test still fails or when the nonlinear solver fail to converge.

.. Mass-spring-damper

Consider a linear spring-damper problem with three coupled springs and three coupled
dampers which are connected between two fixed points and two masses, cf. Figure ..
e problem is governed by the equations,

m1ẍ1 = −(k1 + k2)x1 − (c1 + c2)ẋ1 + k2x2 + c2ẋ2 (.a)
m2ẍ2 = −(k3 + k2)x2 − (c3 + c2)ẋ2 + k2x1 + c2ẋ1. (.b)

e parameters are listed in Table ..
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𝒎𝟐 𝒎𝟏 

𝒌𝟏 𝒌𝟐 𝒌𝟑 

𝒄𝟏 𝒄𝟐 𝒄𝟑 
𝒙𝟏 𝒙𝟐 

Figure .: A triple spring, triple damper example.

Table .: Parameters used in Section ...

k1 = 10 Nm−1 k2 = 25 Nm−1 k3 = 50 Nm−1 m1 = 1 kg
c1 = 1 Nsm−1 c2 = 0.1 Nsm−1 c3 = 2 Nsm−1 m2 = 1 kg

Dividing the system into two subsystems along the dotted line in Figure . results in that
the dynamics for the right subsystem is described by.

m2ẍ2 = −(k3 + k2)x2 − (c3 + c2)ẋ2 + k2u21 + c2u22 (.a)

where u21 and u22 are inputs due to coupling.
In the following experiments, Equation ., was solved with high accuracy and used

as the reference solution. Furthermore, the inputs to the right subsystem were computed
from the reference solution. In Figure . the inputs are shown when using piecewise linear
segments.

e right subsystem, Equation ., was simulated for two seconds using twenty piece-
wise linear segments. e tolerances were set to 10−6 for both the relative and absolute
tolerance. In Figure . and Figure ., the step size history and order history is shown
when using different approaches for handling the crossing of segments. In Table ., the
simulation statistics is shown.

From the statistics we draw the conclusion that a correction in both the first and second
derivative is beneficial as it reduced the number of function evaluations and number of steps
taken as compared with the restart case. Additionally, the worst choice is to proceed with
old values. Considering the figures, we note that CVode, in the corrected case, persistently
remain at high order. e global error is on the same magnitude and are nearly equal in all
four cases.
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Figure .: e piecewise linear inputs to Equation ..

Table .: Statistics from simulating Equation . with different options for crossing the global segments.
e elapsed time is normalized with respect to the restart option.

Restart Proceed Pred. Corr. in ẋ Pred. Corr. in ẋ, ẍ

 steps    
 fevals    
 jacs    
 errfails    
time . . . .

.. Coupled pendula

Consider two pendula coupled via a spring, cf. Figure .. For a detailed description, cf.
[]. e pendula are described in polar coordinates as,

ẋ
[i]
1 = x

[i]
2 (.a)

ẋ
[i]
2 = (−g + u

[i]
3 ) sin(x[i]

1 ) + (u[i]
1 + u

[i]
2 ) cos(x[i]

1 ) (.b)

for i = 1, 2. e inputs to the pendula are external excitation forces acting on the pivot u
[i]
1

and the inputs u
[i]
2 and u

[i]
3 are computed through the spring coupling with the coupled

pendula. As in the previous example, we consider only part of the full system, the left
pendulum (i = 1), and regard the inputs as known. e known inputs are computed from
a simulation of the fully coupled system.

e left pendulum was simulated for two seconds with forty constant segments for the
three inputs. e tolerances were set to 10−6 for both the relative and absolute tolerance.
In Table . the simulation statistics is shown and in Figure . and Figure . the step size
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Figure .: Step size history and order history when simulating Equation . using linear input segments.
e figure to the left show a simulation when CVode is restarted at each global step while the right show
a simulation when CVode proceeds without any modifications.
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Figure .: Step size history and order history when simulating Equation . using linear input segments.
e figure to the left show a simulation when the predictor is corrected in the first derivative while the
right figure show when the predictor is corrected in the first and second derivative.

histories and order histories are shown. In Figure ., the predictor polynomial for a time
step is shown to illustrate the impact of the correction.

Again, as in the previous example, we draw the conclusions, that a correction in both the
first and second derivative is beneficial as it reduced the number of function evaluations and
number of steps taken as compared with the restart case. Additionally, the worst choice is
to proceed with old values. Considering the figures, we note that CVode, in the corrected
case, persistently remain at high order. e global errors are on the same magnitude and
are nearly equal in all four cases.
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𝑢2  

𝑢3  

𝑥1  

𝑢1  

Figure .: Two coupled pendula with a spring. e dashed square is the model considered in Equa-
tion ..

Table .: Statistics from simulating Equation . with different options for crossing the global segments.
e elapsed time is normalized with respect to the restart option.

Restart Proceed Pred. Corr. in ẋ Pred. Corr. in ẋ, ẍ

 steps    
 fevals    
 jacs    
 errfails    
time . . . .

.. Race car

In this example, we consider a race car model previously seen in Section .. and in Sec-
tion ... e race car is modeled in Modelica and exported as an FMU using Dymola
. Additionally, a separate Modelica model of the wheels used in the race car is ex-
ported from JModelica.org. e interest, in this example, is in the right front wheel, cf.
Figure ., and the impact of the corrections to the predictor on the simulation. In each
wheel, there are  inputs. As before, CVode is used, in the wheel, with a relative and
absolute tolerance set to 10−6 and 200 global segments. e reference trajectories was
computed using Assimulo with the solver Radau [] together with a relative and abso-
lute tolerance set to 10−10. e input trajectories for the wheel were computed with a
simulation of the full race car.

e wheel is simulated using the different approaches for when crossing global seg-
ments. In Figure ., the state trajectories are shown together with the error in the states
when using the different approaches. e figure show that the error is on the same magni-
tude for all approaches, i.e. at the requested accuracy, and thus the error is not impacted
by the correction.

In Table ., the simulation statistics are shown. e statistics show a clear decrease in
the number of steps taken when using the corrections for the predictor. However, for the
second order correction, the cost of computing a new Jacobian has to be weighed against
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the reduction in the number of steps. For this case, a second order correction is beneficial.

Table .: Statistics from simulating the right front wheel in the race car example, Section .., with
different options for crossing the global segments. e elapsed time is normalized with respect to the restart
option.

Restart Proceed Pred. Corr. in ẋ Pred. Corr. in ẋ, ẍ

 steps    
 fevals    
 jacs    
 errfails    
time . . . .

. Summary

In this chapter, we presented efficient restart of the multistep method CVode in the context
of the FMI and co-simulation FMUs. Modifications to the predictor is computed when
inputs are set instead of restarting the multistep method. e approach show a significant
reduction of work necessary for computing the solution trajectories. e method has been
implemented in the open-source tool JModelica.org.

If the structure of a given problem is available, further improvements to the correction
can be made, for instance if the problem is linear in the states. In the tool JModelica.org,
this information can be made available and should be considered for future improvements.
Also, if the dependency information between state derivatives and inputs are given, then
only a partial update of the Jacobian might be necessary. Finally, further investigations into
whether or not an update of the Jacobian is required at a given global segment is needed.
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Figure .: Step size history and order history when simulating Equation . using constant input
segments. e figure to the left show a simulation when CVode is restarted at each global step while the
right show a simulation when CVode proceeds without any modifications.
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Figure .: Step size history and order history when simulating Equation . using constant input
segments. e figure to the left show a simulation when the predictor is corrected in the first derivative
while the right figure show when the predictor is corrected in the first and second derivative.
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Figure .: Predictor trajectories at t = 0.1s extrapolated to the next accepted solution when simulating
Equation . using constant input segments. e figures show the original (non-corrected) predictor
polynomial together with the corrected predictor polynomial. e figure to the left uses first order correction
while the second uses first and second order correction.
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Figure .: Illustration of the couplings in the race car model from Section ... © Modelon.
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Figure .: In the left figure, the reference state trajectories when simulating the right front wheel in the
race car example, Section ... In the right figure, the state errors when using the different approaches for
crossing the global segments. e solid line represents a proceeded simulation, the dashed line represents
a correction in the first derivative, the dashed dot in the second while the circled represents a restarted
simulation.





P III:

S







Overview

In this part we introduce the developed Python packages, PyFMI and Assimulo. In Chap-
ter , Assimulo is introduced which is package that unifies different integrators for solving
ordinary differential and differential algebraic equations under a common interface. In
Chapter , PyFMI is introduced which is a package for working with models compliant
with the FMI and which connects the models to the solvers in Assimulo. Furthermore, the
package contain a master algorithm which implements the algorithms discussed in Part II.







Chapter 

Assimulo

Assimulo is a simulation package for solving ordinary differential equations containing
various different solvers, both state-of-the-art and more experimental ones. e primary
aim of Assimulo is to provide a high-level interface for a wide variety of solvers rather than
to develop new integration algorithms. Furthermore, the aim is to allow comparison of
solvers for a given problem without the need to define the problem in a number of different
programming languages to accommodate the different solvers.

Assimulo distinguishes between a problem (or model), which contains the problem
equations and the actual solver used for integrating the problem. For instance, the toler-
ances, which are important quantities to control the solver, are attributes of the solver class
and are kept separate from the problem description. e problem definitions are not only
limited to the so-called right-hand-side function of the problem, but they may also contain
event functions in order to support systems with state, step and time events - so-called hy-
brid systems. Additionally, a problem definition can specify options related to the problem
such as which states are actually algebraic variables.

Assimulo is designed so that it can easily be incorporated and used as a simulation
engine in other modeling or simulation tools. e idea is that the problem class is ex-
tended and adapted for the specific tool at hand which makes all the integrators available
in Assimulo to the tool, cf. Figure ..

Figure .: Overview of how Assimulo is extended and integrated into other tools.


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Assimulo is currently used as the simulation engine in JModelica.org and has been
successfully applied to a number of applications such as in simulation of dynamical systems
with interacting fluid flow [], simulation of networked control systems [], simulation
of a polyethylene plant [] and in conjunction with derivative-free optimization [] to cite
a few. Apart from its use in research and in industry, Assimulo is also used as a teaching
tool at the Centre for Mathematical Sciences at Lund University ¹². Due to its use as a
teaching tool, a great effort has been put into the documentation which contains detailed
information about all the solvers, a tutorial and an extensive set of examples showing how
the various solvers are used and can serve as a basis for further studies.

. Integrators

In the present state, Assimulo provides interfaces to production quality solvers like CVode
and IDA from the Sundials suite [] developed at Lawrence Livermore National Labora-
tory (LLNL). Sundials is a further development of the codes VODE and DASPK dating
back to the s. CVode solves problems defined by explicit ordinary differential equa-
tions, ẏ = f(t, y). A method flag allows to use BDF methods for stiff problems and
Adams–Moulton methods for non-stiff problems. CVode uses a variable order and vari-
able step size implementation. IDA, on the other hand solves the more general problem
described as implicit ODEs (differential algebraic equations, DAEs). It uses BDF methods
of variable order and variable step size. While primarily intended to solve index- problems
(in mechanics, problems with constraints on acceleration level), it allows to exclude certain
solution components from the step size selection procedure and thus at least technically
enables the possibility to solve higher index systems, e.g. mechanical systems with con-
straints on position or velocity level. As the method tolerances are used to control both
step size selection and the corrector iteration process even the tolerances on the algebraic
components have to be raised when dealing with higher index problems in order to avoid
corrector convergence failures.

One important purpose of the Assimulo project is to give the simulation and model-
ing engineer access to the wide spread flora of research codes. A typical representative for
this class of codes is GLIMDA [] which is now accessible by Assimulo. GLIMDA is
an implementation of general linear multistep methods to solve lower index DAEs. ese
methods can be viewed as a blend of collocation type implicit Runge–Kutta methods with
interpolation-based linear multistep methods. ese techniques allow to adapt the method
coefficients to the special stability characteristics of the problem at hand. Assimulo’s con-
cepts expose this method class to a wide range of mechanical problems and help in this way
to gain experience of this relatively new method class when applied to large and industrial
models.

¹http://ctr.maths.lu.se/na/courses/FMNN/ [accessed: --]
²http://ctr.maths.lu.se/na/courses/FMNN/ [accessed: --]
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e implicit Runge–Kutta method RADAU [] shares stability properties with the
implicit Euler method but promises higher efficiency due to its larger order. A classical
implementation of this method by Hairer is included in Assimulo. e solvers DOPRI
[] and RODAS [] are additionally available for problems on the form ẏ = f(t, y).
e solvers are various Runge–Kutta and Rosenbrock type methods with variable step size.
RADAU and RODAS are suitable for stiff problems while DOPRI is a non stiff integrator.

e codes wrapped into Assimulo are kept in their original form, only I/O parts and
user communication is lifted to the Python level in order to guarantee a homogeneous
handling. But Assimulo also supports experimental code directly written in Python. A
constant step size Runge–Kutta method and an explicit Euler method, both implemented
in Python, are included in Assimulo. ey serve as templates for adding own method
prototypes. Assimulo also aims to expose even historically interesting codes together with
modern industrial codes and more unknown research codes. Among the classical codes we
name the solver LSODAR from ODEPACK[] which is a multistep method that depend-
ing on the stiffness of the problem switches between variable order Adams–Moulton and a
BDF methods. Also ODASSL [] is provided as a code specialized on mechanical systems
described by the problem class of overdetermined DAEs. It is a variant of DASSL []
with the linear algebra part of the corrector iteration replaced by a special pseudo-inverse
reflecting a transformation to state space form. Other classical MBS simulation codes are
planned to be included.

. Problem formulations

Assimulo can solve problems formulated in a number of different ways with the most com-
mon being problems formulated by explicit ordinary differential equations,

ẋ = f(t, x), x(t0) = x0 (.a)
with t ∈ R, x ∈ Rn, f : R × Rn → Rn. (.b)

Another common problem formulation is based on implicit ordinary differential equations
including differential-algebraic equations (DAEs),

0 = F (t, x, ẋ), x(t0) = x0, ẋ(t0) = ẋ0 (.a)
with t ∈ R, x ∈ Rn, ẋ ∈ Rn, F : R × Rn × Rn → Rn. (.b)

ese problem formulations can be extended in order to be able to describe problems with
discontinuities. e extension consists of allowing the differential equation to depend on a
set of switches, s, which determines the active problem branch. e extended formulations
then take the form,

ẋ = f(t, x, s), x(t0) = x0, s(t0) = s0 (explicit problem)
0 = F (t, x, ẋ, s), x(t0) = x0, ẋ(t0) = ẋ0, s(t0) = s0 (implicit problem).
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Other supported formulations include singular perturbed problems,

ẋ = f(t, x, z), x(t0) = x0 (.a)
εż = h(t, x, z), z(t0) = z0 (.b)

with t ∈ R, x ∈ Rn, z ∈ Rm (.c)
f : R × Rn × Rm → Rn h : R × Rn × Rm → Rm. (.d)

Additionally, a further generalization of the problems described by DAEs, Equation .,
is supported. e generalization consists of allowing the number of equations or compo-
nents of F , be greater than the number of states, x, resulting in an overdetermined problem

0 = F (t, x, ẋ), x(t0) = y0, ẋ(t0) = ẋ0 (.a)
with t ∈ R, x ∈ Rn, ẋ ∈ Rn, F : R × Rn × Rn → Rm and m > n.

(.b)

ese type of problems are commonly occurring in mechanical systems which is given its
own problem class.

In Figure . an overview is given over the various problem formulations and the avail-
able integrators.
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Figure .: Connection between problem formulations and solvers.

. Support for discontinuous systems

Assimulo supports general discontinuous systems. ree types of discontinuities are sup-
ported: discontinuities dependent on state variables, discontinuities dependent on time
and discontinuities dependent on the current integrator state.

e different events are commonly called,

• State Events
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• Time Events

• Step Events

State events depend on the solution trajectory and thus their location is not known a priori.
is means that the integrator needs to use a monitoring algorithm to detect when an event
has triggered. is is commonly done via user provided event indicator functions that change
their sign when there is an event. e integrator thus needs to check for sign changes of
these functions, and if detected, to locate the time for the sign change. e event indicator
function has to be provided as part of the problem description. A typical scenario of these
kind of events are bounces in mechanical multibody systems, where the time of the impact
depends on overall dynamics.

e location of time events on the other hand is known a priori, meaning that for each
simulation segment it is known when the time event occurs. Consequently, this time can
be set as the simulation end time for that segment. A typical scenario is a change of a force
at a given time point.

Step events are similar to state events but the localization of the event can be done with
less precision. It is sufficient to react on the event after a completed integrator step instead
of locating a time point within a step. Often, step events are used when a model has to
be re-parametrized during integration due to that the current parametrization approaches
a singularity. A typical scenario is coordinate partitioning []. Step events differ from the
state and time events in that they do not change the solution trajectory.

e following example combines state and step events to clarify their conceptual dif-
ferences: Consider a bell modeled as a pendulum with a stop. It can be described by the
equations,

θ̇ = ω (.)

ω̇ = −g0
l

sin(θ) (.)

where θ and ω is the angle and angular velocity respectively. e parameter g0 is the
gravity while l is the length of the pendulum. e stop is a wall situated at an angle −3π/4
refraining the pendulum from swinging freely, cf. Figure .. e impact can be modeled

Figure .: A blocked pendulum.
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by a state event dependent on the angle, θ,

g(θ) = θ + 3π

4
(.)

where g is the event indicator function. At the event, te, the sign of the current angular
velocity is inverted, i.e:

ω(t+
e ) = −ω(t−

e ). (.)

As it turns out, this model of the discontinuity causes the integrator to get stuck at the
wall. is is due to that the event is detected when g(θ) < −ϵ and once the velocity
is inverted an event will be detected again due to that now g(θ) will be increasing. At
this point the angular velocity is again inverted and we are stuck in an infinite loop. One
idea for rectifying this situation is by introducing another event indicator that deactivates
and reactivates the primary event indicator at appropriate times. However, this introduces
additional unnecessary cost in the integration. A better alternative is to introduce a step
event in the model. e reactivation time can be at the end of the first step where the
velocity changed its sign again. e exact time for the sign change is not required. In
Figure ., simulation result is shown for the blocked pendulum when using the solver
CVode.
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Figure .: Simulation result of the blocked pendulum.

As default, there are only the Sundials solvers CVode and IDA together with LSODAR
that supports state events. is is unfortunate as many industrial simulation problems
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exhibit state discontinuities. It is desirable to be able to use the other solvers as well for
these problems. is led to a general implementation of an algorithm for locating state
events in Assimulo [] that has been combined with most of the other available solvers.

. Simulation strategy

In Figure ., steps for performing an integration are shown. Here, filled boxes represent
methods in the problem description giving the user a significant amount of flexibility for
controlling different aspects of the simulation process. is is specifically important for
cases where Assimulo is integrated into other tools which may for instance use specialized
algorithms for initialization or storing the result over the network. e flowchart largely
represents what is common simulation practice. e addition is the step events which have
been influenced by the work done with the FMI [].

Figure .: Flowchart over how the integration is performed. e filled boxes represent methods that can
be defined in the problem class. e other boxes are internal.
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. Implementation overview

e core of Assimulo is implemented in Cython which is a static compiler for Python.
It allows to mix the programming languages C and Python interchangeably. e added
benefit of mixing the languages is that the main part of the package, where readability and
scripting functionality matter, is based on Python and performance critical parts are kept
in C. In this way computational performance is preserved as opposed to relying solely on
Python.

In Assimulo, each type of problem formulation, as explained in Section ., has its
own Cython class. In addition to the Cython class, there is an inherited Python class. In
Figure ., the structure of the problem classes is shown. e classes correspond to,

Figure .: Structure of the problem classes.

• Explicit_Problem , Equation ..

• Implicit_Problem , Equation ..

• Singular_Perturbed_Problem , Equation ..

• Overdetermined_Problem , Equation ..

e reason for having a corresponding Cython class is the obvious benefit of allowing parts
of the implementation to be optimized and allowing a problem to be fully implemented
in Cython. In this regard it may seem redundant to have Python classes on top. However,
this is due to Cython restrictions which might cause inconveniences to a non specialized
user.

A problem, in its basic form, accepts a method containing the differential equations
and the initial conditions in its constructor. In the case of an explicit problem, this cor-
responds to providing the right-hand-side, f(t, y), and t0 together with y0. However, in
order to facilitate a broader use of a problem, additional methods can be provided that do
not directly belong to the strictly mathematical problem of solving a set of differential equa-
tions. One of the additional methods is a method for handling the solution. is method
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is called at each requested solution point to enable the user to control how the solution is
handled. An example where it is vital to be able to modify data handling is the case when
simulating large models over a long time horizon which results in a large amount of result
data.

Other methods are provided for initialization and finalization. ey are called prior
and respectively after the simulation process. Finally there is a reset method, which allows
for a custom reset of a problem, cf. Figure ..

Figure .: Additional methods available in a problem class that are not strictly related to the mathe-
matical problem.

e core of Assimulo is the general solver class ODE together with the explicit and
implicit ODE classes shown in Figure .. eses classes contain the logic for performing

Figure .: Structure of the simulation core and the general solver classes.

a simulation including the logic for following the calling sequence explained by Figure ..
Apart from the simulation logic, they contain the common implementation for the logging
and the options.

Assimulo connects integrators that are implemented in different programming lan-
guages. For this task some additional tools are needed. For integrators that are imple-
mented in C, for example CVode, Cython is used as it is already used in the core and as it
provides a fast interface to external C code. For other integrators, for example those im-
plemented in Fortran, the connection between Fortran code and Python code is done by
FPY [] which allows to directly invoke a Fortran subroutine from Python.

In Figure . and Figure ., the class structure for the available solvers and its con-
nection to one of the general solver classes is shown. e figures depict also the connection
to the external codes containing the solvers mentioned in Section .. What is not shown
in the figures however, is which problem type each solver accepts. For solvers connected
to the general explicit ODE class, all solvers except DASP accept a problem on the form
described by Equation . (explicit problem) while DASP accepts singular perturbed prob-
lems described by Equation .. For the solvers connected to the general implicit ODE class,
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Figure .: Structure of the solvers for explicit ODEs together with the connection to external codes.

ODASSL accepts overdetermined problems (Equation .) while the other accept implicit
problems (Equation .). As mentioned before, the only solvers that by default support
state events are IDA, CVode and LSODAR but with the addition of the algorithm de-
scribed in [], the number of solvers that do support state events has been increased. e
only solvers that do not currently support state events are, ODASSL, GLIMDA, DASP
and RungeKutta.

Figure .: Structure of the solvers for implicit problems together with the connection to external codes.

. Case studies

In this section, the use of Assimulo for solving various problems is demonstrated. First,
the classical van der Pol oscillator is used as an example and a detailed explanation of the
steps involved for solving the problem using Assimulo is given. Next, a problem with state
discontinuities is discussed with emphasis on how the necessary methods are provided to
the problem class. Finally, a model of an industrial robot is simulated together with a
discussion of the performance of Assimulo along with comparisons with other simulation
environments.

e intention of these demonstrations is to highlight the use of these solvers within
Assimulo and the possibilities of the package rather than to evaluate the solvers on the
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particular problems.

.. Van der Pol oscillator

e van der Pol oscillator is given by the two differential equations,

ẋ1 = x2 (.a)

ẋ2 = µ[(1 − x2
1)x2 − x1], µ = 2 · 103 (.b)

together with the initial conditions, x1 = 2.0 and x2 = −0.6.
Simulating the oscillator using Assimulo requires that first the differential equations,

the dynamics of the problem, are defined in a Python method:

def van_der_pol(t, x):
x1, x2 = x
xd1 = x2
xd2 = 2e3 * ((1. - x1**2) * x2 - x1)
return [xd1, xd2]

is method together with the initial conditions is used to create an instance of an explicit
problem. e initial time defaults to t0 = 0.

x0 = [2.0, -0.6] #Initial conditions
oscillator_model = Explicit_Problem(van_der_pol , x0)

e problem, oscillator_model, can now be used to create any instance of a solver,
Figure ., for example Dopri, by providing it to the solver constructor.

oscillator_dopri5 = Dopri5(oscillator_model) #Creates the solver

Finally, a simulation is performed by invoking the simulate method of the solver which
returns the simulation results. e arguments are the final time, 2, and the number of
result points, 1000.

td, xd = oscillator_dopri5.simulate(2, 1000)

e results can easily be used for visualization, cf. Figure .. e figure displays the
simulation results for the oscillator obtained by DOPRI along with results from CVode.
Using CVode instead of Dopri only requires that the above code, where the solver is cre-
ated, Dopri5(...) is changed to CVode(...). ese two simulations are additionally
compared with a reference solution calculated by RADAU using extreme tolerance re-
quirements, atol = rtol = 10−12.

.. e woodpecker

is example is intended to show how Assimulo can handle hybrid systems illustrated by a
toy woodpecker, []. e model consists of a vertical bar attached to the ground, a sleeve



 CHAPTER . ASSIMULO

0.0 0.5 1.0 1.5 2.03
2
1
0
1
2
3

y 1
CVode
Dopri5

0.0 0.5 1.0 1.5 2.0
Time [s]

10-1310-1210-1110-1010-910-810-710-610-510-410-310-210-1

Er
ro

r

CVode
Dopri5

Van der Pol Oscillator

Figure .: Simulation result of the van der Pol oscillator together with a comparison of the error between
a reference solution and solutions obtained by both CVode and Dopri.

able to slide along the bar and the woodpecker which is attached to the sleeve via a spring,
cf. Figure .. Impact is modeled without friction for simplicity.

e model can be in one of three states. In State I, there is no blocking and the sleeve
is free to move along the bar. In State II, the sleeve is blocked by a contact with the bar at
the sleeve’s upper left and lower right corner. Finally in State III, the sleeve is blocked by
the opposite corner pair. e equations of motion are given for the three states, I,II,III, by
three different functions on the same form,

0 = Fi(t, y, ẏ) with i ∈ {I,II,III} (.)

A change of state is determined by switching conditions. Changing from State I, where
the sleeve is free to slide, occurs when,

hSφS > rS − r0 and φ̇B > 0 (.)

or when
hSφS < −(rS − r0) and φ̇B < 0. (.)

In the first case, the state is changed from I to III and in the second case the state is changed
from I II. Changing back to State I occurs when,

λ1 = 0. (.)
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Figure .: Schematic figure of the woodpecker.

where λ1 is the lagrange multiplier taking care of the constraints. Additionally, another
state change occurs when the woodpecker hits the bar. However, after this impact, the
state is directly changed back to the previous state and only state values are reset. e
woodpecker hits the bar when,

hBφB > lS + lG − lB − r0. (.)

is leads to four event indicators that are monitored during the integration. e event
indicators are given by,

g1 = hSφS + (rS − r0) (.a)
g2 = hSφS − (rS − r0) (.b)
g3 = λ1 (.c)
g4 = hBφB − lS − lG + lB + r0. (.d)

When the model changes to either of the blocking states, the momentum is preserved,
i.e I− = I+. e momentum prior to the impact, I−, is given by,

I− = mBlGż− + (mBlSlG)φ̇−
S + (JB + mBlG)φ̇−

B (.)

where the superscript ż− indicates the value prior to the impact. Post impact, the sleeve is
in a blocking state and thus ż+ = 0 and φ̇+

S = 0, allowing computation of φ̇+
B due to,

I+ = mBlGż+ + (mBlSlG)φ̇+
S + (JB + mBlG)φ̇+

B. (.)

For the case when the woodpecker hits the bar, the angular velocity of the woodpecker, φ̇B ,
is reset by changing its sign.

In Appendix A., the details of the differential equations are given and the Python code
for simulating the woodpecker is described.

e results of simulating the woodpecker 0.16s and 1.0s with IDA are depicted in
Figure .. e simulations were performed with the absolut and relative tolerance being
10−6 (default values). For the first simulation, the woodpecker hits the bar twice and for
the second simulation 11 times.
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Figure .: Simulation results for when simulating the woodpecker from Section ... e model was
simulated using the solver IDA for 0.16s (left) and 1.0s (right). e absolute and relative tolerances
were set to 10−6.

.. Performance considerations

In order to demonstrate the capabilities of Assimulo and discuss the performance of the
package as compared to using similar solvers from commercial tools, a robot model was
chosen as a test example. e model is described in [] and depicted in Figure .. In

Figure .: Robot model. © Modelica Association.

order to perform a fair comparison, we use the robot modeled in the Modelica language
[] from the Modelica Standard Library [] and export the model using the FMI from
the modeling and simulation tool Dymola  []. Using PyFMI (cf. Chapter ) this
model can be simulated in Assimulo. In this way we have a model that we can simulate
under same conditions, i.e. we have decoupled the modeling part including event handling
from the actual integrator part as exactly the same modeling description is used in Dymola
and Assimulo due to the FMI concept. Moreover, the model can be imported into M-
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Table .: Simulation statistics for the robot model using adaptive solvers from Assimulo.

Solver Steps F-Evals J-Evals Elapsed Time
CVode    .s
Dopri   - .s
LSODAR    .s
Radau    .s
Rodas    .s

Table .: Simulation statistics for the robot model using two similar BDF methods.

Solver Steps F-Evals J-Evals Elapsed Time
CVode (Assimulo)    .s
odes (M)    .s

 using the FMI Toolbox for M [] and simulated using the available solvers in
M.

e robot has  states and  event indicators and is simulated from t0 = 0 to tf = 2
seconds using a relative tolerance of 10−4 and a absolute tolerance of 10−6. Addition-
ally, generation of a result file has been disabled in all cases in order to not influence the
simulation time.

Before a performance comparison is made, the robot is simulated using the adaptive
solvers from Assimulo in order to highlight that it is indeed possible to use the various
solvers from the package to solve complex problems, including problems with events. In
Table . the simulation statistics are shown.

In a first performance test, the integrator ODES in M, is compared with a sim-
ilar solver, CVode within Assimulo. In Table . the simulation statistics are shown. From
the statistics it is clear that CVode is a competitive solver for this particular problem and
even superior in terms of computation time. In Figure . the simulation error over time is
depicted which shows that the achieved accuracy is approximately the same. is motivates
the comparison of the simulation statistics. However, it should be mentioned again that
these two solvers are similar, both are BDF-type methods of variable order intended for the
same class of differential equations.

In the second performance test LSODAR is used as it is available both in Dymola and
Assimulo. e same settings as above are used. In Table . and in Figure . simulation
statistics and the error are shown. It is worth mentioning that even though Assimulo is
written in Python the solver LSODAR is written in Fortran and the model is in C so the

Table .: Simulation statistics for the robot model when using LSODAR in Assimulo and in Dymola.

Solver Steps F-Evals J-Evals Elapsed Time
LSODAR (Dymola)    .s
LSODAR (Assimulo)    .
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Figure .: Simulation error when simulating the robot model using both CVode and ODES.

effect of the overhead of using Python will decrease with increasing size of the models.
e conclusion is that even though Assimulo is used from Python, the performance is

on par with other simulation environments and even in some cases superior.

. Summary

In this chapter, we presented the background and aim of the simulation framework As-
simulo. Different problem classes and related solvers were described and examples served
to highlight various aspects of the package - in particular the use of Assimulo coupled to
modeling tools by the FMI standard was illustrated. Assimulo³ is freely available under the
LGPL [] license and the future plan is to include an increasing variety of original codes
and make them available through the framework presented.

³http://www.assimulo.org [accessed: --]
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Figure .: Simulation error when simulating the robot model using LSODAR both in Assimulo and
in Dymola.





Chapter 

PyFMI

PyFMI is a Python package for working with models compliant with the FMI standard and
based on the open source package FMI Library []. It is designed to provide a high-level,
easy to use, interface for working with FMUs. It connects the full set of methods in the
FMI specification in an object-oriented approach. e package is not only a mapping of the
FMI interface to Python, it provides much of the functionality needed to perform various
experiments for both evaluating the complex dynamical system model by itself but also for
evaluating the physics that the model represents. e evaluation of the model could be to
verify the model dynamics by efficient simulation while evaluations of the physics could
be to performing parameter estimations. ese experimentations requires an extensive tool
beyond the low-level FMI interface which motivates the package. Furthermore, with the
FMI, simulation of coupled models in a co-simulation setting is possible. In this setting,
the dynamics of each system is hidden and exchanging information between systems is done
through inputs and outputs. is is important as in many cases, with complex systems, this
is the only viable option due to that parts of the model is modeled in different tools. An
algorithm for performing a co-simulation is called a Master Algorithm and within PyFMI a
master algorithm has been implemented and made available.

PyFMI has been used successfully in a number of different applications such as in []
and [] as well as in []. It is additionally an integral part of the open source JModelica.org
platform.

. Overview and analyses

e FMI standard describes a light-weight interface for interacting with a model which by
itself does not include any analyses of the dynamic model. In this section, the available
capabilities of PyFMI is described and shown how they can be used. e major features of
the package is linearization of an FMU, Section .., simulation of an FMU, Section ..,
simulation of coupled FMUs, Section .., and estimation of parameters within an FMU,
Section ...


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ese analyses are necessary in order to support model-based design workflows. Lin-
earization of a model is useful when, for instance, designing control systems using classical
approaches and when analyzing stability of the model. Simulation and simulation of cou-
pled systems are vital to understanding the dynamics and how the dynamics behave over
time. With efficient simulation and access to solvers that are appropriate for a given prob-
lem, the return time is reduced resulting in more time for experimentations. Furthermore,
a common situation in a model of a system is that not all parameters are given, only an
approximation is known due to that the parameter can be hard to measure on a physical
system that the model represents. In these cases, parameter estimation is key to make the
model more representative of the physical system.

For illustration purposes, we consider a model of the van der Pol oscillator given by,

ẋ1 = µ[(1 − x2
2)x1 − x2] + u, x1(t0) = −0.6 (.a)

ẋ2 = x1, x2(t0) = 2 (.b)

where µ = 20 and u is the input signal. e Modelica code of the example is shown in
Appendix A. and the model is compiled into an FMU named VDP.fmu.

As a first step for using PyFMI, the FMU needs to loading into Python. In Exam-
ple .. this is explained. In Example .., it is shown how to interact with the FMU.

Example .. (Loading an FMU). e first step for working with FMUs is to load the model
into Python, i.e. couple the binary from the FMU and read the model description containing
information about the variables etc.

#Convenience function for loading a general FMU
from pyfmi import load_fmu

#Loads the FMU and return a model object
model = load_fmu("VDP.fmu")

e FMU is automatically extracted and the metadata is read together with coupling of mem-
ory handling. If the model is discarded, memory is automatically handled and deallocated if
necessary. No manual handling of memory is necessary.

Example .. (Interacting with a model). Once the model is loaded into Python, values can
be retrieved from the model using the high-level get/set methods.

#Get the value of the variable 'mu'
mu = model.get("mu") #.set for setting values
print mu

>>> 20

For variable attributes, these can be obtained similarly,
#Get the start value of variable 'x1'
start_x1 = model.get_variable_start("x1")
print start_x1

>>>-0.6
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All attributes such as min, max, nominal and start can just as easily be retrieved.

.. Linearization

For analyzing the dynamics of the system, linearizing the model (Equation .) is usually
the first step. e linearized state space form for a model exchange FMU is,

ẋ = Ax + Bu (.a)
y = Cx + Du. (.b)

In FMI there is no direct way of computing the matrices in the linearized state space
form (Equation .). ere are however, methods for computing the directional derivatives,
in FMI ., with respect to a set of variables (here either x, u or a subset of them) and a
set of functions (f or g or a subset) together with a seed vector. e definition of the
directional derivatives are,

gz = dg(z)
dz

v (.)

where g(z) is a vector-valued function, z is the vector of variables and v is the seed vector.
From the directional derivatives, the partial derivatives, the matrices A, B, C, D in Equa-
tion ., can directly be computed by a sequence of calls with v replaced by unit vectors.

If structural information is available, e.g. if the structural dependency between xi, ui

and ẋj is known and between xi,ui and yj , compression can be employed such that the
number of evaluations of either the directional derivatives or evaluations of f (in case a
finite difference approximations is used) is reduced.

Consider the ODE in Equation .,

ẋ1 = x1 (.a)
ẋ2 = x2 + x3 (.b)
ẋ3 = x1 + x3. (.c)

Now consider that the Jacobian, dẋ
dx , is computed using a first order finite difference scheme

requiring 3 + 1 evaluations of the derivatives. However, due to the structure of the ODE,
the partial derivatives ∂ẋ

∂x1
and ∂ẋ

∂x2
can be computed simultaneously as ẋ1 and ẋ3 are

independent of x2 and ẋ2 are independent of x1. is leads to that the construction of the
Jacobian only need 2 + 1 evaluations of the derivatives. In general, an adjacency matrix,
determining the structural relation between the variables (states or inputs) and the functions
(derivatives or outputs), can be constructed, Equation . for the given ODE.

Aadj =

1 0 0
0 1 1
1 0 1

 . (.)
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Given the adjacency matrix, a compression can be computed aimed at reducing the number
of evaluations of the derivatives or outputs. In PyFMI, the algorithm proposed in [] is
used.

With the growing size of models and due to that in general the state space matrices are
sparse, utilizing this information is essential in order for efficient handling of the system.
Using SciPy, the ability to represent these matrices is available and supported by PyFMI.

For co-simulation FMUs, the derivatives are not exposed, cf. Equation .. However,
the above applies to the outputs which are available.

.. Simulation of single models

A key feature of the package is the connection to Assimulo, which provides capabilities
for performing simulations of model exchange FMUs using ODE solvers interfaced with
Assimulo. e coupling is made possible by extending the definition of the problem classes

Functional Mock-up Unit

PyFMI ASSIMULO

Figure .: Coupling between PyFMI and Assimulo.

accepted by Assimulo, Figure .. With the extension, customizations related to FMI is
made possible, such as exposing the different events in FMI to the solver.

Assimulo separates between a problem, which contains the problem equations, and
the actual solver used for the integration. e problem object is not only limited to the
derivatives equation, but it may also contain event functions which is necessary in the FMI
case. Furthermore, the problem object can be used to define specific event handling and
user defined result handling. All of these features are necessary in order to couple a model
exchange FMU to a simulation environment. In Example .., a simulation of an FMU
is shown.

Example .. (Simulating an FMU). A simulation of an FMU, either a model exchange or
a co-simulation FMU, follows the same steps. First, the model is loaded.

#Convenience function for loading a general FMU
from pyfmi import load_fmu

#Loads the FMU and return a model object
model = load_fmu("VDP.fmu")

en, a simulation is performed by invoking the simulate method on the model object.
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#Simulate the model
res = model.simulate(final_time=2)

e simulation results are returned in the res object. In Figure ., the simulation result for
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Figure .: Simulation result of the van der Pol oscillator from Example ...

x2 is shown.

A dynamical model typically has control signals or external forces acting on the model
during a simulation. An example is the road profile for a vehicle. In general, this data is a
list of points connected to a point in time,

(ti, ui), i = 0, . . . , N. (.)

Within PyFMI, this data can be provided to the simulation setup and will be evaluated
during the simulation using linear interpolation between the data points,

u(t) = ui + (t − ti)
ui+1 − ui

ti+1 − ti
, t ≥ ti ∧ t < ti+1, i ∈ [0, N ]. (.)

Another option is that the expression for the control signals are known and for these
cases providing a function, instead of data points,

u(t) = h(t) (.)

is beneficial. e reason is that in the first case, discontinuities in higher derivatives are
introduced which may degrade the performance of the simulation. In Example .. an
example using an input function is shown.

Example .. (Inputs). In this example, an input function, f(t) = 100 sin(30t), is defined
which provides the input to the variable u in the van der Pol oscillator model, Equation ..
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import numpy as np #Import numpy

#Define the function , need to be dependent on time
def f(time):

return 100*np.sin(30*time)

#Specify the input variable together with the function
input = ('u', f)

#Provide the input object to the simulate method
res = model.simulate(final_time=2, input=input)

During the integration, the input will be invoked during each evaluation of the model equations,
for model exchange. For co-simulation FMUs, the input function will be evaluated at every step.
In Figure ., the simulation result for x2 and the input, u, is shown.
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Figure .: Simulation result of the van der Pol oscillator from Example .. together with the input
function, u.

Furthermore, general options for controlling the simulation are available. In Exam-
ple .., changing options are shown and in Table ., the options for controlling a simu-
lation of a model exchange FMU is shown.

A simulation of a co-simulation FMU follow the syntax as shown above. However,
as the simulation do not require an external solver, the options available are limited, cf.
Table ..

Example .. (Providing options to the simulation). Setting options for controlling the sim-
ulation can be done in two steps. First the available options are retrieved from the model object.

#Retrieves the options dictionary
opts = model.simulate_options()

e opts object is a Python dictionary which contains the available options. Setting an option
is done using the normal Python dictionary syntax.
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opts["ncp"] = 500 #Change the number of output points

For the simulation to use the options, these need to be provided when invoking the simulation.
#Provide the options object to the simulate method
res = model.simulate(options=opts)

Table .: Description of the options available in the default algorithm in order to control the simulation
of an model exchange FMU.

Option Description
solver e ODE solver to use. By default, all solvers from Assimulo can be used.
ncp e number of communication points, i.e. the number of requested (equally spaced) points

to store the result.
initialize If the model should be initialized or not.
result_handling Determines how the result should be stored, either on file or directly in memory.
result_handler Ability to specify a custom result handler.
filter A filter for choosing which variables to actually store result for.
extra_equations Determines if additional equations should be solved together with the model.
{solver}_options Specifies additional solver specific options.

Table .: Description of the options available in the default algorithm for simulation of a co-simulation
FMU.

Option Description
ncp e number of communication points, i.e. the number of requested (equally spaced) points

to store the result.
initialize If the model should be initialized or not.
result_handling Determines how the result should be stored, either on file or directly in memory.
result_handler Ability to specify a custom result handler.
filter A filter for choosing which variables to actually store result for.

.. Simulation of coupled models

A second key feature of the package is the ability to simulate coupled systems, i.e. coupled
FMUs. PyFMI implements a master algorithm which includes the approaches used for
co-simulation discussed and analyzed in Chapter  and in Chapter . e implementation
supports simulation of a coupled system via a parallel approach, i.e. Jacobi-like, defined as
(for M models),

y
[i]
n+1 = Φ[i](H, u[i]

n ; p), i = 1, . . . M (.)
un+1 = c(yn+1). (.)

e algorithm proceeds by first providing inputs to a model and then performing a global
time step, for the ith model: y

[i]
n+1 = Φ[i](H, u

[i]
n ; p). is can be done for all models
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simultaneously and once all models have performed the step, information is exchanged
between the models and inputs for the next step are computed using the coupling equa-
tions, c(·). is is the commonly used approach for simulation of coupled systems. In
Example .., a simulation of a coupled system using PyFMI is explained.

Example .. (Coupled system simulation). In order to simulate a coupled system, first of
all the models needs to be loaded and collected together,

sub_system1 = load_fmu("Subsystem1.fmu") #First model
sub_system2 = load_fmu("Subsystem2.fmu") #Second model
models = [sub_system1 , sub_system2] #List the models

is list may contain an arbitrary number of models and the ordering in the list is irrelevant.
Secondly, the coupling needs to be specified. Here the following convention is used. First,

from which model is the variable data coming from? It should be an reference to a model.
Second, the name of the variable in the model where data is coming from. irdly, the reference
to the receiving model and finally the name of the receiving variable.

#Connecting inputs / outputs from two models
connections = [(sub_system1 ,"x_chassi",sub_system2 ,"x_chassi"),

(sub_system2 ,"v_chassi",sub_system1 ,"v_chassi")]

e connection list can contain an arbitrary number of connections.
e main implementation and the user entry-point is the Master class for a simulation of

a coupled systems. is class needs to be imported from the package.

#Import of the Master object
from pyfmi import Master

e models together with their connections can then be loaded into the Master class.

#Create the simulator object
master_simulator = Master(models, connections)

Once the simulator object is created, a simulation is performed using the simulate method.

master_simulator.simulate(start_time=0.0, final_time=1.0)

e simulation statistics are printed and the simulation result are returned in the res object,
just as in the case for a simulation of a single system.

Included in the master algorithm are variants of the above algorithm. Higher order
extrapolation is possible for the inputs, from using constant polynomials, as is shown, up-to
using quadratic polynomials for the inputs. Additionally, the update of inputs between time
steps introduces discontinuities in the input signals due to the coupling equations. Using
a smoothing approach on the inputs, continuity is preserved, cf. Section .. Another
issue is the stability of the algorithm, depending on the couplings between the models
the algorithm may become unstable. Using the directional derivatives, a stabilization can
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be performed. For details, cf. Section .. Both the smoothing and the stabilization is
implemented in the master algorithm.

Furthermore, the master algorithm may used together with an error estimation based
on Richardson extrapolation []. e estimate is based on performing a global integration
step twice using different input. A first step is performed using a step size H . is step is
compared with two steps of step size H/2 where inputs and outputs between the subsystems
are updated before taking the second step of step size H/2.

For initialization, the master algorithm supports initialization based on graph cycle
detection, cf. Chapter . e idea is that the dependency information between inputs
and outputs are used to detect cycles and in so doing, computing an evaluation order of
the input / output variables of the separate models. is is done in order to simplify the
initialization problem.

Simulation of coupled systems are restricted to models following the co-simulation
interface for FMI  and as in the case of simulation of a single system, options are available
to control the mater algorithm and are shown in Table ..

Table .: Description of the options available in the master algorithm in order to control the simulation
of the coupled system.

Option Description
step_size e global step size to be used when using the fixed step approach.
extrapolation_order e order of the extrapolation for the coupling variables.
linear_correction Defines if linear correction for the coupling variables should be used during the simula-

tion.
execution Defines if the models are to be evaluated in parallel or in serial.
smooth_coupling Defines if the extrapolation should be smoothen, i.e. the coupling variables are adapted

so that they are C0 instead of C−1 in case the extrapolation order is > 0.
num_threads Specifies the number of threads to be used when the execution is set to parallel.
error_controlled Defines if the algorithm should adapt the step size during the simulation.
atol e absolute tolerance in case an error controlled simulation is performed.
rtol e relative tolerance in case an error controlled simulation is performed.
result_handling Specifies how the result should be handled. Either stored to file or stored in memory.
filter A filter for choosing which variables to actually store result for.

.. Parameter estimation

Verifying the dynamics of a model usually requires that parameters are validated against
experimental data due to that not all parameters are known. e parameters can either be
tuned manually or by an optimization aimed at minimizing the difference between experi-
mental data and the model response. In [], PyFMI were extended with parameter estima-
tion using derivative free methods and which has since been further extended by coupling
to SciPy’s minimization algorithms and with an improved user interface. In Example ..,
an example on how to perform parameter estimation is shown.
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Example .. (Parameter estimation). is example illustrates how parameter estimation can
be performed. As before, the model is loaded into Python using the load_fmu method.

from pyfmi import load_fmu

# Load model
model = load_fmu("MyModel.fmu")

Second, the measurment data need to be stacked into a matrix. Here it assumed that the data is
stored in the arrays, t_meas, x1_meas and in x2_meas.

#Stack the measurement data into a matrix
#The measurments , x1_meas ,x2_meas , are 1-dim arrays
meas_data = np.vstack((t_meas,x1_meas,x2_meas)).transpose()

Following the same approach as in the simulation case, the estimation is performed by invoking
the estimation method on the model object.

#Invoke the estimation for the parameters k1 and k2
res_est = model.estimate(parameters=['k1','k2'], measurements=(['x1'

,'x2'],meas_data))

Here, the parameters of interests, k1 and k2, are specified together with the measurement data.
e estimation is performed, by default, with SciPy’s Nelder-Mead routine. e resulting pa-
rameters are returned in the res object.

e parameter estimation is coupled to SciPy’s optimization routine and the default
algorithm used is the Nelder-Mead method []. e method is a derivative free method.
e parameter estimation is available for all FMU types using the same syntax as shown in
the above example.

. Implementation overview

e core of PyFMI is implemented in Cython which is a static compiler for Python. It al-
lows to mix the programming languages C and Python interchangeably. e added benefit
of mixing the languages is that the main part of the package, where readability and scripting
functionality matter, is based on Python and performance critical parts are kept in C. In
this way computational performance is preserved as opposed to relying solely on Python.
Not only does Cython allow to mix the languages, it also allow to connect to external C
code which is imperative due to the dependency on the FMI Library.

As shown in Example .., the high-level methods commonly uses the names of the
variables instead of the value references which is an identifier for a variable, used by the
FMI interface. Using the names results in a convenient way for working with variables
although it introduces an overhead, cf. Figure ..

e methods in the specification are connected via a high-level interface as well as access
to the metadata. For specific use cases, direct access to the low-level methods are necessary
and they have additionally been made available.
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Figure .: Overview of the functionality of the high-level method get. e variable name for which
the value is requested is sent to PyFMI. e variable name is translated into a value reference by help of
the metadata using FMI Library. Using the value reference, the value is retrieved from the binary, also
through FMI Library, and passed to the user.

e algorithms implemented in the master algorithm are all based on a Jacobi-like
scheme where the individual models perform a global time step and then exchange infor-
mation. A global time step can be performed simultaneously for all models and thus also
be straightforwardly parallelized. In PyFMI this is implemented, cf. Figure ..

Do Step 

Model A 

𝑇𝑛 𝑇𝑛+1 

Model B 

Model C 

Exchange 
Information 

Model A 

Model B 

Model C 

Do Step 

Model A 

𝑇𝑛+1 𝑇𝑛+2 

Model B 

Model C 

Figure .: Performing the global time steps in parallel when simulating a coupled system using the
implemented master algorithm. e exchange of information is done in serial.

.. Architecture

In PyFMI, each version and type of model defined in the standard is represented by its own
Cython class, cf. Figure .. e versions and model types all contain their specific func-

Figure .: Overview of the class diagram for the classes holding the FMUs.
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tionality and extensions. However, much of the functionality between them are common
motivating the structure.

A simulation, as previously shown, is performed by invoking the simulate method on
the model object.

#Definition of the simulate method
model.simulate( start_time='Default', final_time='Default',

input=(), algorithm='AssimuloFMIAlg', options={} )

e method allows a number of arguments such as defining the start and final time of
the simulation, inputs and specifying an algorithm. ere are two algorithms available in
PyFMI, one with the coupling to Assimulo in order to gain access to solvers and one for
simulation of co-simulation FMUs. Additionally, user defined algorithms may be used.
In Figure ., the relation between the model objects and the algorithms together with
algorithmic options are shown.

Figure .: Overview of the class diagram and the coupling between model objects and algorithms for
simulation together with the algorithms options.

A simulation of a coupled system is different from simulating a single system. is
is due to that the coupled system needs to be defined. Specifically the coupling between
the models needs to be specified. An algorithm for simulating a coupled system is usually
called a master algorithm and here the implementation is contained in a Master class. In
Figure ., the relations between the classes are shown.

e interface for the parameter estimation follow that of the simulate method where
the method is invoked on a model object.

#Definition of the estimate method
model.estimate( parameters , measurements ,

input=(), algorithm='SciEstAlg', options={} )
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Figure .: Coupling between the FMU model class, options and the master algorithm.

e parameters are the parameters of interest to tune while the measurements is the
experimental data. Additionally, inputs can be set. In Figure ., the relation between the
model objects and the algorithm for parameter estimation is shown together with algorith-
mic options.

Figure .: Overview of the class diagram and the coupling between model objects and algorithms for
parameter estimations together with the algorithms options.

.. Result handling

Within the package, simulation results are handled through a base class, ResultHandler,
that determines the interface for the underlying specific storage types, cf. Figure .. e
possible options are to store the result to a specific file format supported by the Modelica
tool Dymola, store the result in a CSV file or store the result directly in memory. Addition-
ally, a custom result handler can be provided to the simulation so that the result is handled
in a user defined way.

e simulation result is returned to the user after a successful simulation in a general
format, independent on how the result was actually stored. In Example .., accessing the
simulation results are shown.
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Figure .: Overview of the class diagram for the classes storing the result.

Example .. (Result handling). Invoking the simulate method on a model object result in
that the computed simulation result is returned.

res = model.simulate()

Trajectories for specific variables are easily retrieved by operations on the result object.

res["x"] #Result trajectory the variable x
res["time"] #Result trajectory for the time

In case of a simulation of a coupled system, the result is returned as above.

res = master_simulator.simulate()

However, accessing the individual variable trajectories, both the model from which the variable
is defined and the variable itself is needed.

res[sub_system1]["x"] #Result trajectory the variable x
#from the model object "sub_system1"

res[sub_system1]["time"] #Result trajectory for the time
#from the model object "sub_system1"

Visualization of the trajectories can easily by done using the matplotlib [] package.

For large industrial models, the stored result can easily be gigabytes of data and the
data handling can have a significant impact on the simulation performance. Coupling the
result handling with the filter option in Table .,Table . and Table ., i.e. storing only
the variables of interest, reduces both.

. Case studies

.. Simulation of a woodpecker

is example is intended to show how PyFMI can handle hybrid systems, as model ex-
change FMUs from different sources, illustrated by a toy woodpecker, []. e model
consists of a vertical bar attached to the ground, a sleeve able to slide along the bar and the
woodpecker which is attached to the sleeve via a spring, cf. Figure .. Impact is modeled
without friction for simplicity. In [], the woodpecker was defined in Python and sim-
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Figure .: Schematic figure of the woodpecker.

ulated using Assimulo. Here, the model is modeled in Modelica and exported as model
exchange FMUs from Dymola  and JModelica.org. e Modelica code is shown in
Appendix A..

e woodpecker is loaded into PyFMI and simulated with the solver CVode connected
through Assimulo with absolute and relative tolerance set to 10−6.

model = load_fmu("Woody.fmu")

#Get the options
opts = model.simulate_options()

#Specify tolerances
opts["CVode_options"]["atol"] = 1e-6
opts["CVode_options"]["rtol"] = 1e-6

#Simulate
res = model.simulate(final_time=tf, options=opts)

is was performed for the FMUs from the different tools. In Figure . the simulation
results are shown for the Dymola FMU. In Figure ., a comparison is made between an
FMU generated from JModelica.org and Dymola, simulated using CVode and tolerances
set to 10−6. e reference used was computed using the JModelica.org generated FMU
with the Radau solver connected through Assimulo together with absolute and relative
tolerance set to 10−10.

.. Co-simulation of a quarter car

In this example, a quarter car, cf. Figure ., is simulated with step size control. In a
co-simulation setup, this example was discussed in [] and the intention with the example
is to show that PyFMI are able to replicate the results shown in that article. e quarter
car is governed by the equations,



 CHAPTER . PYFMI

0.010

0.006

0.002

0.002

H
e
ig

h
t 

[m
]

sleeve

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

0.6

0.4

0.2

0.0

0.2

A
n
g
le

 [
ra

d
] sleeve

bird

Figure .: e height of the sleeve and the angle of both the sleeve and the bird of the woodpecker from
Section ...

mcẍc = kc(xw − xc) + dc(ẋw − ẋc) (.a)
mwẍw = kw(0.1 − xw) + kc(xw − xc) + dc(ẋw − ẋc) (.b)

with the constants, mw = 40kg, mc = 400kg, kw = 150000N/m, kc = 15000N/m
and dc = 1000Ns/m.

e system is decoupled with the chassis being one subsystem and the wheel another.
e coupling is given by

y = I


xc

ẋc

xw

ẋw

 (.a)

u =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 y (.b)

where there is no direct feed-through.
FMUs of the subsystems were generated using Dymola  as co-simulation FMUs

with support for saving the internal state and setting the internal state which allows for
re-computation of a global step (Feature .).

Using the implemented master algorithm, cf. Section .., to simulate the coupled
system the algorithm itself needs to be imported together with methods for loading the
FMU into Python.
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Figure .: Comparison between a JModelica.org and a Dymola generated FMU of the toy woodpecker
in Section ...

from pyfmi import load_fmu
from pyfmi.master import Master

e FMUs are then loaded into Python.

#Load the FMUs
model_wheel = load_fmu(fmu_wheel)
model_chassi = load_fmu(fmu_chassi)

e coupling is specified by a connection matrix where the first object specifies the model
from where the output should be retrieved from. e second part specifies to what subsys-
tem the values should be provided and to which variable.

#Specify the coupling
connections = [(model_chassi ,"x_chassi",model_wheel ,"x_chassi"),

(model_chassi ,"v_chassi",model_wheel ,"v_chassi"),
(model_wheel ,"x_wheel",model_chassi ,"x_wheel"),
(model_wheel ,"v_wheel",model_chassi ,"v_wheel")]

e next step is to load the master algorithm with the models and the couplings.

models = [model_chassi , model_wheel]

#Load the models into the master algorithm
master_simulator = Master(models, connections)
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Figure .: e quarter car model from Section ...

Specifying the options is done through the options dictionary.

opts = master_simulator.simulate_options()

#(0 = Constant , 1 = Linear)
master_opts["extrapolation_order"] = 0
master_opts["error_controlled"] = True
master_opts["rtol"] = 1e-4
master_opts["atol"] = 1e-4

e use of Richardson for the error estimation is specified as well as both the absolute and
the relative tolerance. e tolerances was set to 10−4. Finally the coupled system can be
simulated using the simulate method.

#Simulate the coupled system
res = master_simulator.simulate(final_time=1)

In Figure . the result is shown for both the position and the velocity. e figures also
show the reference trajectory which was calculated by simulating the monolithic system
using the solver CVode with a tolerance of 10−12. e monolithic system was exported as
an model exchange FMU using JModelica.org and simulated using PyFMI together with
Assimulo. In Figure . the estimated error is shown together with the global step size and
the time points where a step rejection occurred.

Simulations using higher order extrapolation was additionally carried out to investigate
the influence of the extrapolation order on the number of steps. In Table ., simulation
statistics is shown for when using various order on the extrapolation. As can be seen from
the table, using a higher order extrapolation polynomial results in a decrease of the number
of steps.

e example show that we are able to reproduce the results in [] using the developed
tools.
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Figure .: e velocity and the position of the quarter car from Section .. simulated using constant
extrapolation and a step size of 0.001 together with the reference solution.

Table .: Simulation statistics for when simulating the Quarter Car in Section .. using various order
on the extrapolation. e simulation was performed using the parallel approach together with variable
step size and an absolute and a relative tolerance of 10−4.

Extrapolation order 0 1 2
Number of global steps 300 92 71
Number of error test failures 4 1 5

.. Parameter estimation in a quadruple tank

In this example, the parameter estimation capabilities within PyFMI is demonstrated on a
quadruple tank model []. e example is inspired by the tank example in JModelica.org.
e model consists of four coupled tanks, stacked two by two, and coupled so that the
third tank deposits water into the first and the fourth tank deposits water into the second.
e amount of water deposited is dependent on the size of the tube, connecting the tanks.
Furthermore, tank one and two also have runoff dependent on the size of a tube, although
they are not connected any other tank. e input to the model are voltages, controlling
two pumps which pumps water into the system. Pump one pumps water into the first and
fourth tank, while the second pump pumps water into the second and third, cf. Figure ..
e goal of the parameter estimation is to estimate the size of the tubs for the water runoff.
e quadruple tank was modeled in Modelica and given in Appendix A., and compiled
into an FMU using JModelica.org.

e input trajectories and measurement used in this example was recorded on a exper-
imental setup of the tank system¹. In Figure ., the input voltages are shown. Further-
more, an initial estimate for the parameters controlling the runoff (a[1−4]) are shown in

¹e data was recorded at the Department of Automatic Control, Lund, Sweden by Kristian Soltesz
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Figure .: e normalized estimated error (solid) together with the global step size (dashed) and the
time points for where a step was rejected (cross) when simulating the quarter car from Section ... e
simulation was carried out using constant extrapolation together with a relative and an absolute tolerance
of 10−4.

Table ..

Table .: Initial parameters in Section ...

a1 = 0.03 cm2 a2 = 0.03 cm2

a3 = 0.03 cm2 a4 = 0.03 cm2

Now, as a first step, the data needs to be imported into Python. e data is stored in a
M format and using SciPy, this can be read.

from scipy.io.matlab.mio import loadmat
data = loadmat('quadtank_measurements')

e measurement and input signals are extracted from the loaded data.

#Time vector
t_meas = data['t'][6000::100,0]-60
#Tank levels
x1_meas = data['y1_f'][6000::100,0]/100
x2_meas = data['y2_f'][6000::100,0]/100
x3_meas = data['y3_d'][6000::100,0]/100
x4_meas = data['y4_d'][6000::100,0]/100
#Input signals
u1 = data['u1_d'][6000::100,0]
u2 = data['u2_d'][6000::100,0]

With the loaded input signals and the initial parameter values, a simulation is performed
as below.
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Figure .: Visualization of the quadruple tank in Section ... e tanks all have runoff determined
by a1−4 and the top tank deposits water into the bottom tanks. Water enters the tanks and is controlled
via pumps one and two. e water level in the tanks is the variables, x1−4.

model = load_fmu("Quadtank.fmu") #Load the FMU

# Create the input matrix
u = N.transpose(N.vstack((t_meas,u1,u2)))

# Simulate the model response , given the initial parameters
res = model.simulate(final_time=60, input=(['u1','u2'],u))

e model response, for the simulation, is shown in Figure .. As seen in the figure, there
is a discrepancy between the simulated response and the measurement. By performing the
parameter estimation, the hope is that this discrepancy will be decreased.

Performing the parameter estimation requires that the interested parameters are spec-
ified, here a[1−4]. Furthermore, which variables that have measurements need to be spec-
ified together with the measurement data. As in the simulation case, the inputs need also
be provided.

meas_data = N.vstack((t_meas,N.vstack((y1_meas,y2_meas,y3_meas,
y4_meas)))).transpose()

res_est = model.estimate(parameters=['a1','a2','a3','a4'],
measurements=(['x1','x2','x3','x4'],

meas_data),
input=(['u1','u2'],u))

Using the default algorithm, the call to the estimate method will invoke the Nelder-Mead
algorithm [], which is a derivative free optimization method, included in SciPy. e
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Figure .: Input signals in Section ..

returned object contains the estimated parameters which are shown in Table .. In order
to verify the model response, the estimated parameter values are set to the model and the
model is simulated once more.

model = load_fmu("Quadtank.fmu") #Load the FMU

# Setting the estimated parameter values into the model
model.set(['a1','a2','a3','a4'],

[res_est["a1"], res_est["a2"],res_est["a3"],res_est["a4"]]
)

# Simulate the model response , given the estimated parameters
res = model.simulate(final_time=60, input=(['u1','u2'],u))

e simulated response, given the estimated parameter values, are shown in Figure .. As
seen in the figure, using the estimated parameters, the model response has substantially been
improved when compared to the simulation with the initial parameter values, Figure ..

Table .: Estimated parameters in Section ...

a1 = 0.02660115 cm2 a2 = 0.0270179 cm2

a3 = 0.03008687 cm2 a4 = 0.02929907 cm2
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Figure .: A comparison of the measured data (dashed) together with the simulated response (solid)
given the initial values of the parameters. e trajectories are the tank levels. e left top figure represents
the third tank and the top right, the fourth tank. e left bottom figure is the first tank while the right
figure is the second.

.. Parallel co-simulation of a race car

In this example, a race car is modeled in Modelica using the commercial Vehicle Dynamics
Library. e race car model is the same as previously seen in Part II. In the example, the
car is driven by a virtual driver that tries to stay onto an eight shaped course with increasing
velocity in order to investigate the dynamic response of the car, especially when changing
the turning direction. e model is simulated as a coupled system in a co-simulation setup
where the model has been separated into wheels and chassis, Figure .. e intention of
the example is to highlight the parallelization feature in the implemented master algorithm.
e model of the chassis was compiled into a co-simulation FMU using Dymola  while
the model of a wheel was exported using JModelica.org. e models contain about 90k
parameters, constants and variables in total.

An increase in performance using the parallelization can only be expected if the majority
of the simulation time is not spent in a single model. In this example, more time is spent
in the simulation of the chassis than for a wheel, cf. Table .. However, when considering
the total simulation time and the chassis part of it, a speedup is expected when using the
parallelization.

In order to specify that global steps, in the master algorithm, should be performed in
parallel, the options need to be set.

# Retrieve the simulation options
master_options = master_simulator.simulate_options()
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Figure .: A comparison of the measured data (dashed) together with the simulated response (solid)
given the estimated values of the parameters. e trajectories are the tank levels. e left top figure
represents the third tank and the top right, the fourth tank. e left bottom figure is the first tank while
the right figure is the second.

Table .: Normalized elapsed time, for each model, for a simulation of the race car from Section ...
e overhead is time not spent in the separate models, storing the results for example.

Total Chassis Wheels (each) Overhead
1.0 0.31 0.16 0.05

master_options["execution"] = "parallel"
master_options["num_threads"] = 1

Furthermore, due to the amount of variables and parameters in the models, the filter is set
so that only the interesting variables are stored.

master_options["filter"] = {model_chassi:"*summary*" ,
model_wheel_lf: "forces.f_*",
model_wheel_lb: "forces.f_*",
model_wheel_rf: "forces.f_*",
model_wheel_rb: "forces.f_*"}

e test was run on laptop with two cores. Using the two cores, the simulation time
was reduced by 34. While this is not optimal, this is still a substantial decrease of the
simulation time.

e full Python script can be found in Appendix A..



.. CASE STUDIES 

hubFrame 

rimFrame 

spinVelocity 

h
u
b
F

ra
m

e
1
 

ri
m

F
ra

m
e

1
 

s
p

in
V

e
lo

c
it
y1

 

f1 

t1 

f1
 

t1
 

hubFrame 

rimFrame 

spinVelocity 

h
u
b

F
ra

m
e

2
 

ri
m

F
ra

m
e

2
 

s
p

in
V

e
lo

c
it
y
2

 

f2 

t2 

f2
 

t2
 

hubFrame 

rimFrame 

spinVelocity 

h
u
b
F

ra
m

e
3

 

ri
m

F
ra

m
e

3
 

s
p
in

V
e

lo
c
it
y
3

 

f3 

t3 

f3
 

t3
 

hubFrame 

rimFrame 

spinVelocity 

h
u
b

F
ra

m
e

4
 

ri
m

F
ra

m
e

4
 

s
p
in

V
e

lo
c
it
y
4

 

f4 

t4 

f4
 

t4
 

Figure .: Visualization of the race car (left) and visualization of the couplings in the race car from
Section .. in a co-simulation setup where the wheel and chassis has been divided into separate models
(right). © Modelon.

.. Sparsity exploitation in a chromatography separation process

In [], the robustness of a high-pressure liquid chromatographic process (Figure .) was
investigated. Given a nominal input trajectory, the aim was to quantify the robustness of
the process with regards to disturbances in the input. e process is described by an ODE
with a scalar input,

ẋ = f(x, u), x ∈ R142, u ∈ R. (.)

An FMU for the process was generated from Dymola .
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Figure .: Visualization of the chromatography separation process used in Section ... e input,
u, controls how much of buffer A and B enters the process through the mixing tank (). e feed enters
the system through (), where also the buffers passes. e separation takes place in the separation column
(). e output from the process is collected in either I , II , III or dumped as waste. e collection is
determined using the detector () and the valve ().
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In order to quantify robustness towards disturbances, a Lyapunov equation needs to be
solved,

Ṗ = AP + PAT + BBT , P (t0) = B(t0)BT (t0) (.)

where, A = ∂f
∂x and B = ∂f

∂u . e primary focus of this section is to demonstrate how
sparsity information in FMUs can be used to significantly decrease simulation times. For
a full problem statement and results, cf. []. In Figure ., the structure of A is shown.
As Equation . is matrix valued, we first vectorize the equation which results in,
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Figure .: e structure of the matrix A from Section ...

vec(Ṗ ) = (I ⊗ A)vec(P ) + (A ⊗ I)vec(P ) + vec(BT B), (.)

where ⊗ is the Kronecker product. e full system can then be formed as,[
ẋ

vec(Ṗ )

]
=
[

f(t, x, u)
(I ⊗ A)vec(P ) + (A ⊗ I)vec(P ) + vec(BT B)

]
. (.)

Furthermore, the process model results in a stiff problem which requires an implicit solver.
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us, we need the Jacobian of Equation . which is defined as,

J =
[
A 0
0 I ⊗ A + A ⊗ I

]
. (.)

In Figure ., the structure of the Jacobian is shown.

Figure .: e structure of the Jacobian for the augmented system, Equation ., used in Section ...

In order to solve the augmented system, Equation ., PyFMI was extended to be
able to add equations that are solved together with the FMU. Furthermore, in order to
efficiently solve the above problem, the structure of A needs to be taking into account.
By using the compression discussed in Section .., the number of calls to the directional
derivatives was reduced by 90. Furthermore, with the connection to SuperLU [] from
CVode, the Jacobian can be provided as a sparse matrix.

By using both the compression for computing A and by providing the Jacobian (Equa-
tion .) as a sparse matrix, the simulation time was reduced to only 4 of the original
time where a dense representation of the Jacobian was used and no compression.

In Appendix A., the full Python script for adding the Lyapunov equations to a simu-
lation of an FMU is shown.
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. Summary

In this chapter, we presented PyFMI, a software for working with models following the
Functional Mock-up Interface. e package support models following version . and .
of the standard as well as the different model types, model exchange and co-simulation.
Interactions with the models are conveniently performed using high-level methods and if
needed, access to the low-level methods is additionally available.

With a connection to the simulation package Assimulo, simulation of model exchange
FMUs can be performed using state of the art integrators. For coupled systems, PyFMI im-
plements a master algorithm for simulation of coupled co-simulation FMUs. Furthermore,
the simulation analyses are complemented with support for parameter estimation. Having
these analyses easily available in an open tool, we hope that the standard will continue to
grow and spread even further.

e package is demonstrated on a number of problems and show promising results.
PyFMI² is freely available under the LGPL [] license.

²http://www.pyfmi.org [accessed --]
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Chapter 

Conclusions and future work

. Coupled systems

In this thesis, stability properties of different approaches for simulation of weakly cou-
pled linear systems with feed-through have been studied. We considered the consistent
approach, where the constraint equations are solved at each global time step, and the in-
consistent approach, where the constraint equations are not solved at the global time steps.
Furthermore, higher order extrapolations for the inputs between the global time steps were
considered for both approaches.

In Table ., the coupling stability requirements are summarized. Using higher or-
der extrapolation in the inconsistent approach leads to a smaller stability region. It could
be shown that using analytical derivatives, instead of using approximated derivatives, to
compute the linear extrapolation of the inputs, stability properties from the constant ex-
trapolation case are recovered.

In a co-simulation setting, the update of the inputs at each global time step introduces
discontinuities which can lead to a general performance degradation. In Section ., a
smoothing approach was considered that preserves the continuity of the inputs and that
does not affect stability, cf. Table ..

Using the FMI standard, only the inconsistent approaches can be used for simulation
of the coupled system. is is due to Restriction . which does not allow recomputing
the outputs based on new input values at global time steps. is is a problem if there is an
algebraic loop in the coupled system as the inconsistent approaches are not unconditionally
coupling stable. In order to overcome this limitation, a linear correction to the inconsistent
approaches was proposed in Section .. For linearly coupled linear subsystems, the correc-
tion to the inconsistent approach is equivalent to the consistent approach. e correction
has been tested on a number of linear and nonlinear test examples and shown to stabilize
the simulations.

In Chapter , a structural approach for initializing coupled systems is presented. With
the structural approach, an evaluation order of subsystem inputs and outputs is computed,


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and algebraic loops are detected. e inputs and outputs involved in algebraic loops need
to be solved simultaneously while the others are computed sequentially. Performance gains
can be obtained by exploiting the non-uniqueness of the evaluation order of the outputs.
Reordering the outputs leads to fewer subsystem evaluations and an algorithm for com-
puting the reordering is proposed in Algorithm . In our tests this approach reduced the
number of subsystem evaluations and increased performance. Further studies are necessary
in order for a general claim about the algorithm’s performance.

Due to its unconditionally coupling stability, a master algorithm implementing the
consistent approach is a significant improvement compared to the inconsistent approach.
Using the structural approach for detecting algebraic loops together with the proposed algo-
rithm for reducing subsystem evaluations during simulation is another source of improve-
ment. Consequently we propose to remove Restriction . to allow these improvements in
future versions of the standard.

With the current versions of the FMI standard (version . and version .) there is
no means to rigorously handle subsystems with events in a co-simulation setting. Events
are handled internally in co-simulation FMUs and they are not exposed externally. ere
is a discussion within the FMI community to introduce a new kind of FMU, a hybrid co-
simulation FMU, with the possibility of signaling events. is direction is important to
enable robust and accurate co-simulation of FMUs with events and should be pursued.

. Subsystem solvers

In Chapter , subsystem solvers were discussed. In a co-simulation context, the inputs to a
subsystem are typically discontinuous at communication points. Such discontinuities pose
challenges for internal integrators, in particular in the case of multistep methods, as they
may lead to order reductions and step size reductions in the method. A modification to the
predictor for multistep methods was proposed and it could be shown to reduce simulation
times by up to 50 for the examples considered. A formal analysis of the impact on the
method, with regards to stability and accuracy, is left for future work.

Furthermore, as the considered case here is with an internal solver in a subsystem,
potential performance improvements can be made to the proposed modification. is is
due to that with an internal solver, more information can potentially be shared between the
subsystem and the solver allowing for tailored modifications. If information about how an
input impacts the subsystem equations is available a full update of the Jacobian might be
unnecessary. is is left for future studies.

. Software

Two Python packages have been developed and are presented in this thesis: Assimulo and
PyFMI. e packages have been successfully applied to a number of industrial problems
and in teaching. Both packages are open source and freely available and the number of
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downloads of the packages currently counts in the thousands. As both packages are open
and are publicly available, they support the further adoption of the FMI standard and add
to its success.

e co-simulation master algorithm, which implements the approaches presented in
this thesis is available as part of PyFMI. It is intended for the master algorithm available in
PyFMI to serve as a basis for further research, as well as offer a capable means of solving
industrial co-simulation problems.

e packages have been successfully used in research, such as in [] and []. Further-
more, they are integrated as the simulation engine into the open source tool JModelica.org
and the commercial OPTIMICA Compiler Toolkit []. Within these tools, the packages
are used to successfully simulate complex industrial models from commercial Modelica li-
braries such as the Vehicle Dynamics Library as well as models from the Modelica Standard
Library.

Apart from its use in research and in industry, Assimulo is also used as a teaching
tool at the Centre for Mathematical Sciences at Lund University¹². Due to its use as a
teaching tool, a great effort has been put into the documentation which contains detailed
information about all the solvers, tutorials and an extensive set of examples showing how
the various solvers are used and can serve as a basis for further studies. Additionally, its use
as a teaching tool contributed to its development.

ere are discussions within the FMI community to also extend the directional deriva-
tives with respect to parameters. is would allow to compute the sensitivity equations of
a model, with respect to parameters. As the solver CVodes [] supports the addition of the
sensitivity equations to the original problem, and due to its availability through Assimulo
adding support within PyFMI is straightforward.

¹http://ctr.maths.lu.se/na/courses/FMNN/ [accessed: --]
²http://ctr.maths.lu.se/na/courses/FMNN/ [accessed: --]





Appendix A

Reference system models

A. e woodpecker

e equations of motion of the toy woodpecker stated here are a slight simplification of
the model given in []. e equations are given for the three model states described in
Equation . separately. e dependent variables are z, φS , φB, λ1, λ2, where z denotes
the vertical translatory degree of freedom, φ the inclination of the sleeve S and the bird
B, λi, i = 1, 2 are the Lagrange multipliers if constraints are active (State II, III) or zero
otherwise (State I). e linearized equations of motion for State I are,

f1(z̈, φ̈S , φ̈B) = −(mS + mB)g (A.a)
f2(z̈, φ̈S , φ̈B) = cp(φB − φS) − mBlSg − λ1 (A.b)
f3(z̈, φ̈S , φ̈B) = cp(φS − φB) − mBlGg − λ2 (A.c)

0 = λ1 (A.d)
0 = λ2 (A.e)

where,

f1(z̈, φ̈S , φ̈B) = (mS + mB)z̈ + mBlSφ̈S + mBlGφ̈B (A.a)

f2(z̈, φ̈S , φ̈B) = (mBlS)z̈ + (JS + mBl2S)φ̈S + (mBlSlG)φ̈B (A.b)

f3(z̈, φ̈S , φ̈B) = (mBlG)z̈ + (mBlSlG)φ̈S + (JB + mBl2G)φ̈B. (A.c)

For State II, the equations of motion read,

f1(z̈, φ̈S , φ̈B) = −(mS + mB)g (A.a)
f2(z̈, φ̈S , φ̈B) = cp(φB − φS) − mBlSg − hSλ1 − rSλ2 (A.b)
f3(z̈, φ̈S , φ̈B) = cp(φS − φB) − mBlGg (A.c)

0 = hSφ̈S (A.d)
0 = ż + rSφ̇S . (A.e)


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Table A.: Parameters used in the woodpecker example, cf. Appendix A.. B stands for parameters
related to the bird, while S denotes the sleeve.

mS = 3.0-4 kg mB = 4.5-3 kg JS = 5.0-9 kgm JB = 7.0-7 kgm
r0 = 2.5-3 m rS = 3.1-3 m hS = 5.8-3 m lS = 1.0-2 m
lG = 1.5-2 m lB = 2.01-2 m hB = 2.0-2 m cP = 5.6-3 N/rad
g = 9.81 m/s2

Finally for State III, the equations of motion are given by,

f1(z̈, φ̈S , φ̈B) = −(mS + mB)g − λ2 (A.a)
f2(z̈, φ̈S , φ̈B) = cp(φB − φS) − mBlSg + hSλ1 − rSλ2 (A.b)
f3(z̈, φ̈S , φ̈B) = cp(φS − φB) − mBlGg (A.c)

0 = −hSφ̈S (A.d)
0 = ż + rSφ̇S . (A.e)

e parameter values are defined in Table A..

Assimulo description

Simulating the model using Assimulo first requires that the problem class and the solver
class are imported into Python.

from assimulo.problem import Implicit_Problem
from assimulo.solvers import IDA

e model is a hybrid DAE and we imported the solver IDA for performing the simulation.
e residual is defined in a method res using Equation A., A. and A. together with a
switch parameter sw, which indicates the model state. is parameter is kept constant
during the integration and only changed at an event.

def res(t,y,yd,sw):

z,phiS,phiB,zp,phiSp,phiBp,lam1,lam2 = y
zpp,phiSpp,phiBpp = yd[3:6]

pre1 = (mS+mB)*zpp+mB*lS*phiSpp+mB*lG*phiBpp
pre2 = mB*lS*zpp+(JS+mB*lS**2)*phiSpp+mB*lS*lG*phiBpp
pre3 = mB*lG*zpp+mB*lS*lG*phiSpp+(JB+mB*lG**2)*phiBpp

res01 = y[3]-yd[0]
res02 = y[4]-yd[1]
res03 = y[5]-yd[2]

if sw[0]: #State I
res1 = pre1+(mS+mB)*g
res2 = pre2-cP*(phiB-phiS)+mB*lS*g+lam1
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res3 = pre3-cP*(phiS-phiB)+mB*lS*g+lam2
res4 = lam1
res5 = lam2

if sw[1]: #State II
res1 = pre1+(mS+mB)*g+lam2
res2 = pre2-cP*(phiB-phiS)+mB*lS*g+hS*lam1+rS*lam2
res3 = pre3-cP*(phiS-phiB)+mB*lG*g
res4 = hS*phiSpp
res5 = zp+rS*phiSp

if sw[2]: #State III
res1 = pre1+(mS+mB)*g+lam2
res2 = pre2-cP*(phiB-phiS)+mB*lS*g-hS*lam1+rS*lam2
res3 = pre3-cP*(phiS-phiB)+mB*lG*g
res4 = -hS*phiSpp
res5 = zp+rS*phiSp

return N.array([res01,res02,res03,res1,res2,res3,res4,res5])

e event indicators, Equation ., are defined in a state_events method.

def state_events(t,y,yd,sw):

z,phiS,phiB,zp,phiSp,phiBp,lam1,lam2 = y
zpp,phiSpp,phiBpp = yd[3:6]

event_1 = hS*phiS+(rS-r0)
event_2 = hS*phiS-(rS-r0)
event_3 = lam1
event_4 = hB*phiB-lS-lG+lB+r0

return N.array([event_1,event_2,event_3,event_4])

e third method that is defined handles the events once they have been detected. is is
the method responsible for the actual transition between the states and it is called once an
event indicator has indicated the occurrence of an event.

def handle_event(solver, event_info):

events = event_info[0]

if solver.sw[0]: #We are in the first state
if events[0] and solver.y[5] < 0: #Switch from 1 to 2

solver.sw[0] = False
solver.sw[1] = True

solver.y[5] = 1./(JB+mB*lG**2)*(mB*lG*solver.y[3]+ \
mB*lG*lS*solver.y[4]+(JB+mB*lG**2)*solver.y[5])

solver.y[3] = 0.0
solver.y[4] = 0.0
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return

if events[1] and solver.y[5] > 0: #Switch from 1 to 3
solver.sw[0] = False
solver.sw[2] = True

solver.y[5] = 1./(JB+mB*lG**2)*(mB*lG*solver.y[3]+ \
mB*lG*lS*solver.y[4]+(JB+mB*lG**2)*solver.y[5])

solver.y[3] = 0.0
solver.y[4] = 0.0

return

if solver.sw[1]: #We are in the second state
if events[2]: #Switch from 2 to 1

solver.sw[1] = False
solver.sw[0] = True
return

if solver.sw[2]: #We are in the third state
if events[2] and solver.y[5] < 0: #Switch from 3 to 1

solver.sw[2] = False
solver.sw[0] = True
return

if events[3] and solver.y[5] > 0: #Woodpecker hit
solver.y[5] = -solver.y[5]

return

Prior to starting the simulation, initial conditions are specified. ey are specified such
that the woodpecker starts in the second state.
x0 = [0.0, -0.1, -0.65, 0.0 ,0.0 ,0.0 ,0.0 , 0.0]
xd0 = [0.0, 0.0, 0.0, 0.0 ,0.0 ,0.0 ,0.0, 0.0]
switches0 = [False,True,False]

Using the initial conditions together with the residual method, an implicit problem is cre-
ated.
woody = Implicit_Problem(res,x0,xd0,sw0=switches0)

Additional information is provided to the problem, such as the event indicators, how to
handle an event once it has been detected and also the name of the problem together with
information about which variables are dynamic and which are algebraic.
woody.state_events = state_events #Provide the event indicators
woody.handle_event = handle_event #How to handle an event
woody.name = "Woodpecker w/o friction"

#Specify the dynamic variables (1) and the algebraic variables (0)
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woody.algvar = [1]*6+[0]*2

A simulation is then performed using the simulate method, where we have addition-
ally specified that the algebraic variables have to be excluded from the error test. Excluding
algebraic variables from the error test is required when dealing with DAEs of index larger
than one, as the error model in most error estimators does not apply to algebraic variables
and would overestimate the error. Sundials provides special control parameters to exclude
these variables from the error test, which are also accessible in Assimulo.

sim = IDA(woody)

#Specify simulation options
sim.suppress_alg = True #Suppress the algebraic variables

#from the error test.

t,x,xd = sim.simulate(0.16)

e computed solution trajectories are returned and stored in t, x and xd

Modelica description

Modelica code representing the toy woodpecker is shown below.

model Woody
//Constants
constant Real g = 9.81;
//Parameters
parameter Real mS = 3.0e-4, mB = 4.5e-3;
parameter Real r0 = 2.5e-3, rS = 3.1e-3;
parameter Real JS = 5.0e-9, JB = 7.0e-7;
parameter Real hS = 5.8e-3, hB = 2.0e-2;
parameter Real lS = 1.0e-2, lB = 2.01e-2;

parameter Real masstotal = mS + mB;
parameter Real rM = rS - r0;
parameter Real cp = 5.6e-3, lG = 1.5e-2;

//Continuous variables
Real z(start = 0.0), zp(start = 0.0);
Real phiS(start = -0.10344), phiSp(start = 0.0);
Real phiB(start = -0.65), phiBp(start = 0.0);
Real phiBpp(start = 1.40059e2);
Real lam1(start = -0.6911), lam2(start = -0.1416);
Integer state(start = 2, fixed = true);
discrete Real last_update(start=0);

equation
der(z) = zp;
der(phiS) = phiSp;
der(phiB) = phiBp;
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phiBpp = der(phiBp);
if state == 1 then

masstotal * der(zp) + mB * lS * der(phiSp) + mB * lG * der(phiBp
) + masstotal * g = 0;

mB * lS * der(zp) + (JS + mB * lS * lS) * der(phiSp) + mB * lS *
lG * der(phiBp) - cp * (phiB - phiS) + mB * lS * g = -lam1;

mB * lG * der(zp) + mB * lS * lG * der(phiSp) + (JB + mB * lG *
lG) * der(phiBp) - cp * (phiS - phiB) + mB * lG * g = -lam2;

lam1 = 0;
lam2 = 0;

elseif state == 2 then
masstotal * der(zp) + mB * lS * der(phiSp) + mB * lG * der(phiBp

) + masstotal * g = -lam2;
mB * lS * der(zp) + (JS + mB * lS * lS) * der(phiSp) + mB * lS *

lG * der(phiBp) - cp * (phiB - phiS) + mB * lS * g = (-hS *
lam1) - rS * lam2;

mB * lG * der(zp) + mB * lS * lG * der(phiSp) + (JB + mB * lG *
lG) * der(phiBp) - cp * (phiS - phiB) + mB * lG * g = 0;

//Index 3
//0 = (rS-r0)+hS*phiS;
//0 = der(z)+rS*phiSp;
//Index 1
0 = hS * der(phiSp);
0 = der(zp) + rS * der(phiSp);

else
masstotal * der(zp) + mB * lS * der(phiSp) + mB * lG * der(phiBp

) + masstotal * g = -lam2;
mB * lS * der(zp) + (JS + mB * lS * lS) * der(phiSp) + mB * lS *

lG * der(phiBp) - cp * (phiB - phiS) + mB * lS * g = hS *
lam1 - rS * lam2;

mB * lG * der(zp) + mB * lS * lG * der(phiSp) + (JB + mB * lG *
lG) * der(phiBp) - cp * (phiS - phiB) + mB * lG * g = 0;

//Index 3
//0 = (rS-r0)-hS*phiS;
//0 = der(z)+rS*phiSp;
//Index 1
0 = -hS * der(phiSp);
0 = der(zp) + rS * der(phiSp);

end if;
algorithm

when {rM + hS * phiS < 0.0, rM - hS * phiS < 0.0} then
if state == 1 and phiBp < 0 then

state := 2;
last_update := time;

end if;
if state == 1 and phiBp > 0 then

state := 3;
last_update := time;

end if;
elsewhen {lam1 > 1e-8, lam1 < -1e-8} then
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if state == 2 and time - last_update > 0 then
last_update := time;

state := 1;
end if;
if state == 3 and time - last_update > 0 then

state := 1;
last_update := time;

end if;
end when;

equation
when {hB * phiB - (lS + lG - lB - r0) > 0 and phiBp > 0} then

reinit(phiBp, -pre(phiBp));
elsewhen state == 2 then

reinit(phiBp, (mB * lG * pre(zp) + mB * lS * lG * pre(phiSp) + (
JB + mB * lG * lG) * pre(phiBp)) / (JB + mB * lG * lG));

reinit(phiSp, 0.0);
reinit(zp, 0.0);

elsewhen state == 3 then
reinit(phiBp, (mB * lG * pre(zp) + mB * lS * lG * pre(phiSp) + (

JB + mB * lG * lG) * pre(phiBp)) / (JB + mB * lG * lG));
reinit(phiSp, 0.0);
reinit(zp, 0.0);

end when;
end Woody;

A. e van der Pol oscillator

Modelica code representing the van der Pol oscillator used in the examples in Section ..

model VDP
// Parameters
parameter Real mu = 2e1;

// The states
Real x1(start=-0.6);
Real x2(start=2);

// The control signal
input Real u;

equation
der(x1) = mu*((1 - x2^2) * x1 - x2) + u;
der(x2) = x1;

end VDP;
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A. Quadruple tank

Modelica code representing the quadruple tank model from Section .. is shown below.
Courtesy of JModelica.org.

model QuadTank
// Process parameters
parameter Modelica.SIunits.Area A1=4.9e-4, A2=4.9e-4, A3=4.9e-4, A4

=4.9e-4;
parameter Modelica.SIunits.Area a1(min=1e-6,nominal=1e-6)=0.03e-4,

a2(nominal=1e-6)=0.03e-4;
parameter Modelica.SIunits.Area a3(nominal=1e-6)=0.03e-4, a4(nominal

=1e-6)=0.03e-4;
parameter Modelica.SIunits.Acceleration g=9.81;
parameter Real k1_nmp(unit="m^3/s/V") = 0.56e-6, k2_nmp(unit="m^3/s/

V") = 0.56e-6;
parameter Real g1_nmp=0.30, g2_nmp=0.30;

// Tank levels
Modelica.SIunits.Length x1(start=0.0627);
Modelica.SIunits.Length x2(start=0.06044);
Modelica.SIunits.Length x3(start=0.024);
Modelica.SIunits.Length x4(start=0.023);

// Inputs
input Modelica.SIunits.Voltage u1;
input Modelica.SIunits.Voltage u2;

equation
der(x1) = -a1/A1*sqrt(2*g*x1) + a3/A1*sqrt(2*g*x3) +

g1_nmp*k1_nmp/A1*u1;
der(x2) = -a2/A2*sqrt(2*g*x2) + a4/A2*sqrt(2*g*x4) +

g2_nmp*k2_nmp/A2*u2;
der(x3) = -a3/A3*sqrt(2*g*x3) + (1-g2_nmp)*k2_nmp/A3*u2;
der(x4) = -a4/A4*sqrt(2*g*x4) + (1-g1_nmp)*k1_nmp/A4*u1;

end QuadTank;

A. Race car

For racing applications, finding the maximal performance of the car is crucial. One method
to quickly estimate the impact on performance of a change to the vehicle setup is to solve
for the steady state limits under different driving conditions. Identifying a set of critical
points along a race track and calculating the maximum achievable speed for each point
can give a good indication on how the change will affect the lap time. Simulations can be
carried out with predefined input or by a feedback loop using either a simulator or a virtual
driver model to investigate the dynamic response.
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Here a race car is modeled in Modelica using the commercial Vehicle Dynamics Library
[], Figure A.. In the model, the car is driven by a virtual driver that tries to stay onto an
eight shaped course with increasing velocity in order to investigate the dynamic response
of the car, especially when changing the turning direction. e model contains about 90k

Figure A.: Visualization of the race car from Section A.. © Modelon.

parameters, constants and variables resulting in that the XML data file is 700k lines when
compiled into an FMU. ere are 47 continuous states and 44 event indicators.

e race car model is used in a number of different settings within this thesis. e
model is simulated as a monolithic model and in a co-simulation setup where the model
has been separated into wheels and chassis, Figure A.. In a co-simulation setup, there are
172 connections between the separate models. e example is considered in Section ..
where initialization of the model is discussed. In Section .., the different approaches for
co-simulation are tested on the model. Further, in Section .., a wheel from the model
is considered when evaluating the modification to the predictor in a multistep method.
Finally, in Section .., the model is used to evaluate parallelization in PyFMI.

PyFMI description

is section describes how the race car can be simulated, as a coupled system, using PyFMI.
Before a simulation can be started, the methods for loading an FMU and the master algo-
rithm is imported into Python.

from pyfmi import load_fmu
from pyfmi.master import Master

e models are loaded into Python using the method from PyFMI.

#Load the corresponding FMUs
model_chassi = load_fmu("Chassis.fmu")
model_wheel_lf = load_fmu("TyreForcesSlick.fmu")
model_wheel_lb = load_fmu("TyreForcesSlick.fmu")
model_wheel_rf = load_fmu("TyreForcesSlick.fmu")
model_wheel_rb = load_fmu("TyreForcesSlick.fmu")
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Figure A.: Visualization of the couplings in the race car from Section A. in a co-simulation setup
where the wheel and chassis have been divided into separate models. © Modelon.

Next, we list the models that are in the coupled system.
#Define a list of loaded FMUs
models = [model_chassi , model_wheel_lf , model_wheel_lb ,

model_wheel_rf , model_wheel_rb]

e couplings between the systems are specified next.
#Specify the connections
connections = []
for i,wheel_number in enumerate([1,2,3,4]):

connections.extend(
[(models[i+1], out, model_chassi ,
out.replace("1","%d"%wheel_number ,1))
for out in models[i+1].get_output_list().keys()])

for out in model_wheel_lf.get_input_list().keys():
if out != "spinVelocity":

connections.append(
(model_chassi , out.replace(".", "%d."%wheel_number , 1),
models[i+1], out))

else:
connections.append(

(model_chassi , "spinVelocity%d"%wheel_number , models[i+1], out))

Before the simulation starts, we specify the initial position of the steering in the chassis.
#Specify start steering
model_chassi.set("steeringInEight.left_turn", 1)
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In order to create the master algorithm object, the models and their connections need to
be provided.

#Create the Master simulator
master_simulator = Master(models, connections)

To control the simulation, options need to be specified. Here we specify a few options,
such as the step size.

#Specify the simulation options
master_options = master_simulator.simulate_options()
master_options["local_rtol"] = 1e-9 #Local tolerance in the models
master_options["step_size"] = 0.01 #Global step size
master_options["linear_correction"] = False #Correction
master_options["extrapolation_order"] = 0 #Order
master_options["smooth_coupling"] = False #Smoothing
master_options["execution"] = "serial" #or parallel
master_options["num_threads"] = 2 #Set the number of threads (if

parallel)
master_options["block_initialization"] = True
master_options["filter"] = {model_chassi:"*summary*" ,

model_wheel_lf: "forces.f_*",
model_wheel_lb: "forces.f_*",
model_wheel_rf: "forces.f_*",
model_wheel_rb: "forces.f_*"}

Finally, we are ready to simulate the coupled system by invoking the simulation method.

res = master_simulator.simulate(final_time=25,
options = master_options)

e computed solution is stored in the res object and the individual trajectory for the
variables are retrieved using the Python directory syntax.

t = res[model_chassi]["time"]
stearing_wheel = res[model_chassi]["chassis.summary_p_sw"]
p_x = res[model_chassi]["chassis.summary_r_0[1]"]
p_y = res[model_chassi]["chassis.summary_r_0[2]"]

Now, these trajectories can be plotted by using for instance the package matplotlib.

import pylab as plt
plt.rcParams["lines.linewidth"] = 2
plt.rcParams["font.size"] = 18
plt.rc('legend',**{'fontsize':16})
plt.figure()
plt.plot(t, stearing_wheel , '--', label="Steering wheel")
plt.legend()
plt.grid()
plt.xlabel("Time [s]");plt.ylabel("Angle [rad]")
plt.figure()
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plt.plot(p_x,p_y, '--', label="Car position")
plt.xlabel("Position (x-dir.)");plt.ylabel("Position (y-dir.)")
plt.grid()
plt.legend()
plt.show()

A. Chromatography separation process

e Python script used for adding the Lyapunov equations in Section .. to a simulation
using PyFMI.

import numpy as np
import scipy.sparse as sp
from assimulo.problem import Explicit_Problem

class AppendedODEs(Explicit_Problem):

def __init__(self, model):

assert model.get_version() == "2.0" #Assert the FMI version
is 2.0

assert model.get_capability_flags()["
providesDirectionalDerivatives"] == True #Assert
directional derivatives are provided

self._model = model
self.setup()

self._res = []
self._res_C = []
self._res_CPCT = []
self._order = "F"
self._sparse_representation = True

self.f_nbr = self._nbr_states*self._nbr_states
self.y0 = np.zeros(self.f_nbr)

[derv_state_dep , derv_input_dep] = model.
get_derivatives_dependencies()

self.jac_nnz = 2*self._nbr_states*np.sum([len(derv_state_dep
[key]) for key in derv_state_dep.keys()])+self.
_nbr_states*self._nbr_states

def get_size(self):
return self.f_nbr

def setup(self):
self._nbr_states = len(self._model.get_states_list())
self._nbr_inputs = len(self._model.get_input_list())
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#User defined extra right -hand-side
def rhs(self, P):

#A = df/dx, B = df/du
A,B,C,D = self._model.get_state_space_representation(C=False

, D=False)
A = A.toarray(order=self._order)
B = B.toarray(order=self._order)

P = P.reshape(self._nbr_states ,self._nbr_states , order=self.
_order)

#dP = A P + P A^T + B B^T
dP = A.dot(P)+P.dot(A.transpose())+B.dot(B.transpose())

return dP.flatten(order=self._order)

def jac(self, P):

[A,B,C,D] = self._model.get_state_space_representation(A=
True, B=False, C=False, D=False)

data = []
row_ind = []
col_ind = []

Aco = A.tocoo()
AjFull = [A[:,j] for j in range(self._nbr_states)]

for i in range(self._nbr_states):
data.extend(Aco.data)
row_ind.extend(i*self._nbr_states+Aco.row)
col_ind.extend(i*self._nbr_states+Aco.col)

col_ind_i = range(i*self._nbr_states ,(i+1)*self.
_nbr_states)

for j,val in enumerate(AjFull[i].data):
data.extend([val]*self._nbr_states)
row_ind.extend(range(AjFull[i].indices[j]*self.

_nbr_states ,(AjFull[i].indices[j]+1)*self.
_nbr_states))

col_ind.extend(col_ind_i)

PJac = sp.coo_matrix((data, (row_ind, col_ind)))

return PJac

#User defined handle result for the extra equations
def handle_result(self, export, P):
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[A,B,C,D] = self._model.get_state_space_representation(A=
False, B=False, C=True, D=False)

C = C.toarray(order=self._order)

P = P.reshape(self._nbr_states ,self._nbr_states , order=self.
_order)

self._res_CPCT.append(np.dot(np.dot(C,P),np.transpose(C)).
flatten(order=self._order))
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