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Abstract
Weexploremagnetic order in the quantumspin chain compoundSrCo2V2O8up to 14.9 T anddown to
50mK,using single-crystal neutrondiffraction.Uponcooling in zero-field, commensurate antiferromag-
netic (C-AFM)orderwithmodulation vector kC=(0, 0, 1)develops belowTN;5.0K.Applying an
externalmagneticfield (HPc axis)destabilizes thisC-AFMorder, leading to anorder-disorder transition
betweenTNand∼1.5 K.Below1.5K, a commensurate to incommensurate (IC-AFM) transitionoccurs at
3.9 T, abovewhich themagnetic reflections canbe indexedby kIC=(0, 0, 1± δl). The incommensur-
ability δl scalesmonotonicallywithHuntil the IC-AFMorder disappears around7.0 T.Magnetic
reflectionsmodulated by kC emerge again at higherfields.While the characters of theC-AFM, IC-AFM
and the emergentAFMorder in SrCo2V2O8 appear tofit the descriptions of theNéel, longitudinal spin
densitywave and transverseAFMorder observed in the related compoundBaCo2V2O8, our results also
reveal several unique signatures that are not present in the latter, highlighting the inadequacy ofmean-field
theory in addressing the complexmagnetic order in systemsof this class.

1. Introduction

Magnetic field is a very important parameter when tuning the physical properties in quasi one-dimensional (1D)
spin-1/2magnets. Themagnetic excitation spectrumof a single quantum chain is a continuumcomposed of
pairs of spinons, eachwith S=1/2, that can propagate like domainwalls [1]. In quasi 1Dmagnets where there
are non-zero interactions between the chains, the spinons become confined by an attractive potential [2].
Concomitantly, the continuum spectrum is replaced by a series of discrete spinon bound states. It has been
found that the spinon confinement can be significantly tuned by applying amagnetic field [3–7].

Furthermore, exoticmagnetic long-range order (LRO)may appear in amagnetic field. For example, in
weakly coupled spin chains or ladders with a singlet-dimer ground state (S=0), applying amagnetic field splits
the associated triplet excitation (S=0,±1); a singlet-dimer to LRO transition occurs at the closure of the
energy gap corresponding to the lowest triplet branch (S= 1). This transition, also known asmagnonBose–
Einstein condensation (BEC), has been intensively studied in the last two decades [8–10].

Recently, theweakly coupled quantum spin chain compound SrCo2V2O8 has raisedmuch attention due to
the exoticmagnetism that it hosts, including themagnetic-field-induced order-disorder transition [11], spinon
confinement [5, 12] andBethe strings [7]. This compound crystallizes in a body-centred tetragonal lattice (space
group I41cd), inwhich 4-fold screw chains of CoO6-octahedra run along the crystallographic c-axis [13, 14].
These chains arewell separated in the ab plane, greatly reducing the strength of the interactions between the
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chains. TheCo2+ ion (3d7) has an effective spin of 1/2 because of the octahedral distortion and spin–orbit
coupling [15, 16]. The intrachain spin interactions in SrCo2V2O8 can be described by anXXZmodel written as

 å åm= + + -+ + +{ ( )} ( )J S S S S S S g S H, 1XXZ
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where J>0 is the nearest-neighbour (NN) antiferromagnetic (AFM) exchange constant, ò is the anisotropy
parameter, and gz is the component of the Landé g-tensor along the chain direction [5, 7, 12]. ThisHamiltonian
can be exactly solved by the Bethe ansatz [17]. The anisotropy in SrCo2V2O8 is Ising-like (ò<1) [5, 7, 12–14],
for which theXXZmodel predicts aNéel type AFMground state. A spin disordered state, described as a
Tomonaga–Luttinger liquid (TLL), can be induced above a criticalmagnetic field. The spinon spectrum in the
TLL state of an Ising-likeXXZ spin chain is dominated by a longitudinal (transverse)mode in the intermediate
(high)magneticfield region [18, 19]. In a quasi 1D system, the interchain exchange interactions come into play
at low temperatures. Consequently, the longitudinal (transverse)mode is expected to condense, giving rise to a
longitudinal spin density wave (LSDW) (transverse AFM) state. InMCo2V2O8 (M=Sr, Ba), this spin density
wave should be characterized by an incommensuratemodulation vector (δl),

d m= ´ á ñ = ´∣ ∣ ( )l S M g4 4 , 2zz z B

where Mz is the uniformmagnetization along the chain direction [20, 21].
In SrCo2V2O8, the interchain exchange interactions are nonnegligible, leading to the occurrence ofNéel

order at afinite temperatureTN=5.0 K [13, 14]. Theoretically, Okunishi and Suzuki have used bosonization
combinedwith amean-field treatment of the interchain interactions to study themagnetic phase diagram in
MCo2V2O8 (M=Sr, Ba) [22]. At very low temperatures, they obtained a LSDWphase that replaces theNéel
order above an intermediate criticalfield, and another LSDW to transverse AFMphase transition in the high
field region. So far, the exoticmagnetic-field-induced phases have only been confirmed in the Ba-compound by
single-crystal neutron diffraction [20, 21, 23, 24]. These studies have revealed that the criticalfield for theNéel to
LSDW transition (∼3.9 T) agrees well with themean-field prediction, while the one for the LSDW to transverse
AFM transition (∼9.0 T) appears to bemuch lower than the predicted value (∼15.1 T). The discrepancymight
indicate that the inter- and intra-chain exchange parameters used in [22] are not correct [24] or that themean-
field theory is inadequate. As pointed out by a recent nuclearmagnetic resonance (NMR) study, the intra- and
inter-couplings in BaCo2V2O8 are rather complicated and could be strongly field-dependent [25].

The staticmagnetic order in SrCo2V2O8 has only been investigated in zero-field by neutron powder
diffraction [14], while its evolution in a longitudinalmagnetic field, especially in the low temperature region
where the LSDWand transverse AFMare predicted to develop [22], is not known. To further check themean-
field theory, andmore importantly, obtainmore insights into themagnetic properties inmaterials of this class,
we report themagnetic phase diagramof SrCo2V2O8 up to 14.9 T (HPc axis) and down to 50mK, using single-
crystal neutron diffraction. Our experimental results are organized into two sections. The first focuses on the
commensurate (C)AFMorder andmagnetic-field-induced order-disorder transition above 2.0 K (section 3).
The second looks at the phase diagrambelow 2.0K forfields up to 14.9 T, covering amagnetic-field-induced
incommensurate (IC)AFMorder (3.9 T<μ0H<7.0 T) and emergent commensurate antiferromagnetic
(C-AFM) order (μ0H>7.0 T) (section 4). Finally, in section 5, wewill discuss several unique signatures of the
spin states in SrCo2V2O8 that are not present in BaCo2V2O8.

2. Experimentalmethods

Twohigh quality SrCo2V2O8 single crystals (∼3×3×6mm3)weremeasured in this investigation. Theywere
grownby the spontaneous nucleationmethod described in [13]. All single-crystal neutron diffraction
measurements were carried out at the Swiss SpallationNeutron Source (SINQ) at the Paul Scherrer Institute.
Both single crystals were aligned using the two-axis neutron diffractometerORION. The first single-crystal was
mounted into a dilution refrigerator and then into a 6 T vertical cryomagnet, with themagnetic field applied
along the c-axis. This was installed on the thermal neutron diffractometer TriCS andmeasuredwith a lifted
detector (normal beam geometry). For themagnetic structure determination, a set ofmagnetic and nuclear
reflections were collected at neutronwavelengthλ=1.178Åusing aGe(311)monochromator. All the other
measurements were performed atλ=2.317Åusing a PG(002)monochromator with a vertical 80′ collimator
installed to improve the resolution along the c direction in the reciprocal space.

The second crystal wasmounted in a 15 T vertical cryomagnet equippedwith a dilution refrigerator insert
and thenmeasured on the cold triple-axis spectrometer RITA-II. The c-axis was aligned along themagnetic field.
The incident neutron energywasfixed at 5 meVusing a vertically focusing PG(002)monochromator. The
energy of the scattered neutronswas analysed using amulti-blade PG(002) crystal analyser, whichwas operated
in amonochromatic imagingmode [26]. A cooled berylliumfilter was placed between the sample and analysers
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to suppress theλ/2 contamination. The neutrons were detected using a position-sensitive detector (PSD)
consisting of 128×128 pixels. In allmeasurements, only the elastic scattering signal was recorded.

3.Néel order andmagnetic-field-induced order-disorder transition above 2.0K

Several crystallographically forbidden reflections are observed atT= 50 mKandμ0H=0 T. They can be
indexed by the commensuratemodulation vector kC=(0, 0, 1), which is consistent with theNéel order
reported in the previous neutron powder diffraction study [14]. Figures 1(a)–(c) shows cuts through the (2, 3, 0)
reflection,measured onTriCS. Each peakwasfitted using aGaussian function, giving full width at half
maximum (FWHM) values of 0.0310(5), 0.0242(4), and 0.098(1) r.l.u. for the h-, k-, and l-scans, respectively.
These values serve as the TriCS instrumental resolution parameters around this particularmomentum transfer
referred to below. The temperature dependencemeasurements reveal that this reflection disappears around
5.0 K (figure 1(d)), which agrees with theTN extracted froma previous heat capacity investigation on the same
crystal [13].

To study themagnetic structure in theNéel phase, we carried out a representational analysis using the
SARAhRepresentational Analysis software [27]. Five irreducible representations (Γn, n=1, 2, 3, 4, 5) could be
obtained [14].Γ1,Γ2,Γ3, andΓ4 did not yield satisfactory agreements to our data. This leavesΓ5 (table 1) for our
refinement, which is consistent with the conclusion in a neutron powder diffraction study [14]. For the nuclear
structure, we have collected 17 reflections to refine the scale factor, while the atomic positions and isotropic
atomic displacement parameters were fixed to the values reported in [14].

We have collected 46magnetic reflections for themagnetic structure determination at 50mKand 0 T.We
first discuss the two-domain solution proposed in [21]; the correspondingmagnetic structures are illustrated in
figures 2(a) and (b). This scenario is allowed because the basis functions ofCon (n=1–4) are independent of
those ofCon (n=5–8) (table 1). Following this approach, we constrain all the Co sites to have an identical
amplitude ofmagneticmoment, while their orientations are decided by symmetry [21]. Initially, we included all
the basis functions ofΓ5 in the refinement. The coefficients for the ones contributing to afinitemoment in the ab
plane (highlighted in grey in table 1)were found to be tooweak to be resolved fromour data, butwe cannot
exclude their existence. This agrees well with the Ising-like anisotropy revealed in themagnetization and

Figure 1. (a)–(c)Open symbols: hkl-scans performed atT=50 mKandμ0H=0 T. The red lines are numerical fits using aGaussian
function. (d)Temperature dependence of the peak intensity of the (2, 3, 0) reflection atμ0H=0 T.

Table 1.Basis functionsΨn (n=1, ..., 12) of Co for the irreducible representationΓ5. The basis functions contributing to afinitemoment in
the ab plane are highlighted in grey. The atomic sites are labelled as Co1: (x, y, z), Co2: (−x+1,−y+1, z), Co3: (−y+1, x+1/2, z+
1/4), Co4: (y,−x+1/2, z+1/4), Co5: (−x+1, y, z+1/2), Co6: (x,−y+1, z+1/2), Co7: (y+1/2, x, z+1/4), andCo8: (−y+1/2,
−x+1, z+1/4).

Site label Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9 Ψ10 Ψ11 Ψ12

Co1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

Co2 1 0 0 0 1 0 0 0−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0−1

Co3 0 1 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 0 1 0 0 0 0−1

Co4 0 1 0 −1 0 0 0 0−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 0 1 0 0 0 0 1

Co5 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 1 −1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

Co6 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0−1 −1 0 0 0 1 0 0 0−1 0 0 0 0 0 0 0 0 0

Co7 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0−1 0 −1 0 0 0 0−1 0 0 0 0 0 0 0 0 0

Co8 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0−1 0−1 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
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neutron powder diffraction studies [11, 14].Moreover, we could not detect any contribution fromΨ6 andΨ12

within the resolution. As a result, onlyΨ3 andΨ9 were adopted in ourfinal refinement; this fits the description of
theNéel order predicted by equation (1), wherein the spins are antiferromagnetically coupled along the chain
(figures 2(a) and (b)). As shown infigure 2(c), the two-domain solution reproduces the experimental
observationswell. The domain populations in our sample are 42(3)%and 58(3)%forDomain#1 andDomain
#2 (figures 2(a) and (b)), respectively. The refinedmoment along the c axis is 1.81(4)μB perCo.Wenote that
this value is lower than the 2.1–2.3μB per Co at 1.5 K reported in the powder study [14], whichmay be due to
variation in the sample quality.

Our single crystal data allows us to test a single-domain solution inwhich the aforementionedmoment
constraint for theCo sites is released [21].We obtained 2.6(1) and−0.20(9)μB for theCon (n=1–4) andCon
(n=5–8) sites (table 1), respectively. Since the single-domain refinement also reproduces the experimental
observationswell (RF=7.85%,RF2w=14.6%), we cannot rule out this possibility. Local probes, such asNMR
[28], are needed to further clarify themagnetic structure in this compound in the future.

While applying amagnetic field (HPc axis), magnetization and heat capacitymeasurements suggest that
SrCo2V2O8 undergoes afield-induced order-disorder transition betweenTN and 2.0 K [11].We studied the
magnetic field dependence of the (2, 3, 0) reflection using the PSDonRITA-II. A typical diffraction pattern
measured at 4.0 K and 0.5 T is shown infigure 3(a).We then studied themagnetic field dependence of this
reflection at several temperatures between 2.0 and 4.5 K. These observations are summarized infigure 3(b). A
field-induced order-disorder transition, which has been observed in the sister compoundBaCo2V2O8

[21, 29, 30], is also clearly present in SrCo2V2O8.Wenote that we could not detect any field-induced change in
themagneticmodulation vector at all temperatures and fields discussed in this section.

Figure 2. (a)–(b)Magnetic structure of SrCo2V2O8 in the twomagnetic domains of theNéel phase. The screw chains formed byCon
(n=1–4) andCon (n=5–8) sites aremarked in red and black, respectively. (c)Magnetic structure refinement in theNéel phase at
T=50mK andμ0H = 0 T. The R-factors (RF, RF w2 )which characterise the quality of our refinement are also listed.

Figure 3. (a)The diffraction pattern of the (2, 3, 0) reflection recorded using a PSD [26] at 4.0 K and 0.5 T. The streak-like nature is an
artifact of the vertically focusingmonochromator. (b)The summed intensity of (2, 3, 0) between 2.0 and 4.5 K as a function of
magnetic field.
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4.Magnetic-field-induced phase transitions below 2.0K

Wenow study themagnetic field response of theC-AFMorder at temperatures down to 50 mK. Figure 4 shows
the (2, 3, l) reflection at 75 mKmeasured between 3.2 and 5.95 T onTriCS. Below 3.9 T, this reflection hardly
changes and is centred at l=0 (figure 4(a)). The average FWHMof the peaks in this region is 0.098r.l.u.; it is
equal to the instrumental resolutionwithin the errors (see section 3). At 3.9 T, the intensity weakens
(figure 4(a)). At higherfields, we clearly see two peaksmodulated by kIC=(0, 0, 1± δl), featuring an IC-AFM
phase (figure 4(c)).Whilemagnetic refinement is needed to properly determine the nature of this IC-AFM
order, one plausible scenario, based on the splitting of themagnetic reflection along c , is LSDWorder, as
demonstrated in the related compoundBaCo2V2O8 [20, 21].

We have fitted themagnetic reflection at 3.9 T using threemodels (figure 4(b)). In thefirstmodel, we apply a
single Gaussian function centred at l=0 to this profile,meaning that the system is still in theC-AFM state.We
obtain a broadened reflectionwith FWHM=0.105(2)r.l.u. (figure 4(b)). In the secondmodel, we apply two
Gaussian functions centred at l=±δl. Thismodel, which produces a FWHMof 0.09(1) r.l.u., corresponds to a
single IC-AFMphase (figure 4(b)). The thirdmodel, inwhichwe assume the coexistence of theC-AFMand
IC-AFM reflections, gives a FWHMof 0.07(1)r.l.u. This value ismuch smaller than the instrumental resolution
0.098(1)r.l.u. (section 3); we therefore rule out the thirdmodel.While the secondmodel fits the observations in
BaCo2V2O8 [20, 23], we cannot rule out the presence of a short-range orderedC-AFMphase at 3.9 Twithin the
experimental resolution.

We could only resolve the two IC reflections when m0H4.0 T, based onwhichwe conclude that the
IC-AFM state sets in around 3.9 T in SrCo2V2O8. The IC peak is resolution limited in an l-scan at allmagnetic
fieldsmeasured, indicating long-range spin correlation along the c-axis. This is consistent with the observations
of the LSDWorder in BaCo2V2O8 [20, 21]. The IC reflection could be detected up to the highest fieldmeasured
onTriCS (5.95 T).We also tracked the temperature dependence of this phase. These results are summarized in
themagneticfield versus temperature phase diagramdisplayed infigure 8 later in the paper.

To explore the evolution of the IC-AFMorder above 5.95 T in SrCo2V2O8, we performed further
measurements onRITA-II using a 15 T vertical cryomagnet. Neither the cryomagnet nor detector could be
tilted,meaning that the neutron scattering intensity from the IC-AFM structurewill beweakened by the Lorentz
factor.However, by taking advantage of the PSD,wewere still able to resolve a partial IC diffraction spot, and
thus track its evolution.

Based on the data fromTriCS, the diffraction spot of the (2, 3, 0) reflection in the PSD is expected to split
vertically, i.e. along c , as themagnetic field is driven across theC-AFM to IC-AFMphase boundary. At 6.0T,
while the−δl satellite peak goes out of the detection range of the PSD, the+δl satellite peak can be clearly
observed (figure 5(a)). The split can be resolved up to 6.5T. Interestingly, the (2, 3, 0) reflection is recovered
above 7.0T (figure 5(a)). Due to the geometry limitation of the 15 T cryomagnet, we could not check the
scattering signal in an extensive reciprocal space region. As a result, amulti-kmodulation cannot be ruled out for
the highfield emergent phase. However, similar reentrant behaviour has been observed in BaCo2V2O8 andwas
interpreted as a sign of the LSDW to transverse AFMorder crossover [24].We plot the summed intensity versus
magnetic field curve infigure 5(b), inwhich the drastic drop above 4.0Tfits the C-AFM to IC-AFMorder
transition illustrated infigure 4.We note that the rate of this drop is overestimated due to the fact that only the
partial double peak profiles could be resolved above 5.0 T (figure 5(a)). The intensity reaches itsminimumat
7.0 T, after which it increasesmonotonously with themagnetic field until 12.5 T. The reemergence of the

Figure 4.Magnetic field dependence of the (2, 3, l) reflection (l-scan) at 75 mK and (a) 3.2 Tμ0H 3.8 T, (b)μ0H=3.9 T, and
(c)μ0H=4.0 and 5.95 T. The shaded area in (a) denotes thefit to the data at 3.9 T for comparison. The curves displayed in (b) have
been shifted vertically. The solid lines in (b) and (c) are numerical fits (see themain text). The counting time for each 103 neutron
monitor is about 0.34 s.
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scattering intensity above 7.0 T (figure 5(b)) is also consistent with the transverse AFMorder observed in
BaCo2V2O8 [24]. At 7.0 T, we performed two additionalmeasurements with amuch longer counting time.We
could resolve a signal at 100 mK,which fades away at 750 mK.However, this signal is tooweak to check the
coexistence of the IC-AFMand emergent AFMorder reported in BaCo2V2O8 [24]. The emergent AFMorder in
SrCo2V2O8 is fully stabilized at 12.5T and above; the intensity remains unchanged up to the highest field probed
(14.9 T, see figure 5(c)).

5.Discussion

In the IC-AFM state, increasing themagnetic field pulls the two IC peaks further apart (figure 4(c)). It has been
proposed that the IC-AFMorder results from the condensation of the longitudinal spinfluctuation of a TLL,
meaning that its incommensurability δl should exactly follow equation (2) [20–23]; this has been verified in
BaCo2V2O8 [20, 21]. To check this scenario in SrCo2V2O8, we compare ourfitted δl at 75 mKwith the values
predicted by equation (2) (figure 6(a)). In this plot, the Landé g-tensor along the c axis (gc=6.1), VanVleck
paramagnetism correction factor (0.014 μB/T) and longitudinal uniformmagnetizationMzmeasured between
1.3 and 1.9 Kwere used to produce the theoretical δl; these values have been reported in [31]. In sharp contrast to
the goodmatch between the experiment and theory in BaCo2V2O8 [20, 21], all the observed δl in SrCo2V2O8 are
much lower than the predicted values (figure 6(a)). This discrepancy casts some doubt on the applicability of the
TLL theory in interpreting the IC-AFMorder in this case. However, the low-energy fractionalmagnetic
excitations in this compound, e.g. spinons, (anti)psinons andBethe strings, have been proven to bewell

Figure 5. (a)The (2, 3, 0) reflection at selectivemagnetic fields. A scale factor of 1/100 has been applied to the data at 3.5 T.
(b)Magnetic field dependence of the summed intensity. (b)Rocking curves of the (2, 3, 0) reflection forμ0H 12.0 T. All the data
were collected at 120mK.

Figure 6. (a)Magneticfield dependence of the incommensurate propagation vector δl at 75 mK. Thefilled circles are the experimental
observations, and the red line is the theoretical values deduced from equation (2) and [31]. (b) h- and (c) k-scans of the (2, 3, δl)
reflection atμ0H=5.0 T andT=150 mK. The black lines are Gaussianfits. The red bars are the instrumental resolution determined
at zero field (see section 3).
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described by equation (1) [5, 7, 12].Moreover, theNéel ordering temperature of SrCo2V2O8 (TN=5.0K) is
lower than that of BaCo2V2O8 (TN=5.5 K) [21], supporting the stronger 1D character in the former. Based on
these facts, it is less likely that the TLL theory fails in SrCo2V2O8.We therefore propose another possible
explanation here. Themagnetizationmeasurements for obtaining gc andMz were performed between 1.3 and
1.9 K [31]. To studyMz at lower temperatures, wemeasured the nuclear reflections (2, 0, 0) and (4, 0, 0). At high
fields, additional neutron counts can be resolved on top of (2, 0, 0), while (4, 0, 0) is not affected up to 14.9 T (not
shownhere). This indicates the ferromagnetic origin of theweak field-induced intensity at (2, 0, 0) [21, 24]; the
non-resolvable change at (4, 0, 0) is presumably due to the reduction of themagnetic form factor. Interestingly,
ourmeasurements on the (2, 0, 0) reflection at 7.5 T clearly reveal an intensity drop below∼0.3 K (figure 7(b)).
This suppression is independent of the emergent AFMorder, as the latter sets in at 0.6 K. Althoughwe did not
measure the temperature dependence of this reflection at lowerfields due to themuchweaker signal
(0.1–0.2 μB/Co [31]), we believe that the suppressedMzmight persist in the IC-AFM region, and be responsible
for the discrepancy shown infigure 6(a).

We investigated the transverse spin correlation as a function ofmagnetic field (figures 6(b) and (c)measured
onTriCS andfigure 7(a)measured onRITA-II). Unlike the three-dimensional long-range LSDWorder in
BaCo2V2O8 [20], the (2, 3,±δl) peak is not resolution limited along both the h- and k-directions in SrCo2V2O8,
which suggests short-range spin correlation in the ab plane. Interestingly, the transverse long-range spin
correlation is recovered in the emergent AFM state (figure 7(a)). The suppressed longitudinal uniform
magnetizationMz and transverse short-range spin correlation indicate that the IC-AFMorder in SrCo2V2O8 is
distinct from the perfect LSDWorder observed in BaCo2V2O8.

In a TLLwith Ising-like anisotropy, the criticalmagnetic field (Hc) at which the crossover between the
longitudinal and transverse spin fluctuations occurs scales linearly with the intrachain exchange strength (J in
equation (1)) [22]. The LSDWorder in an Ising-like quasi 1D quantummagnet results from the condensation of
the longitudinalmodewhile the interactions between the chains become energetically relevant. An important
conclusion revealed by themean-field theory is that the collapse of the LSDWorder does not coincide withHc,
but shifts to a higher value [22]. Therefore, the LSDWorder is expected to bemore robust in a systemwith a
larger J. Based on the high fieldmagnetization and inelastic neutron scattering investigations, J is larger in
SrCo2V2O8 than that in BaCo2V2O8 [14, 31–34]. However, the IC-AFMorder in SrCo2V2O8 turns out to be
more fragile (figure 5(b)).We note that the experimental critical field for the LSDW to transverse AFMorder
transition in BaCo2V2O8 [24] already deviates from themean-field prediction in [22]. The evenmore significant
deviation in SrCo2V2O8 revealed in our study further stresses the inadequacy of the interchainmean-field theory
in addressing the complexmagnetism in these systems.

6. Summary

In conclusion,wehave employed single-crystal neutrondiffraction tomapout themagnetic phase diagramof
SrCo2V2O8up to 14.9 T anddown to 50mK.As shown infigure 8, our results are in excellent agreementwith the
previousmagnetization andheat capacity investigationon the same crystal [11]. The deviation from the thermal
expansion andmagnetostriction study, inwhich the single-crystalwas grownby a differentmethod [35], could come
from the variation in samplequality. This system is composedofweakly coupled S=1/2XXZ spin chainswith
Ising-like anisotropy. Like its related counterpart BaCo2V2O8, SrCo2V2O8 showsmultiplemagnetic-field-driven

Figure 7. (a)Magneticfield dependence of the FWHMof the (2, 3, 0) reflection at 120 mKmeasured in a h-scan onRITA-II. The green
shaded areamarks the LSDWregion. (b)Temperature dependence of the (2, 0, 0) and (2, 3, 0) reflections at 7.5 T. A scale factor of 40
has been applied to the (2, 3, 0) reflection. The green arrowsmark the transition temperatures described in themain text.
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phase transitions that reflect the quantumcritical nature of the spins in aTLL state. In addition to the similarity, we
have identified several unique signatures for the spin states in SrCo2V2O8, including the fragility of IC-AFMorder,
loss of three-dimensional long-range spin correlation in the IC-AFMregion and suppressionof uniform
magnetization along the c axis at low temperatures.

Our observations highlight the complexmagnetic properties in these systems and evidence the inadequacy
of the interchainmean-field theory. Further investigations, e.g.magnetic refinement, density functional theory
calculations and inelastic neutron spectroscopymeasurements, are in high demand to shedmore lights on the
magnetic structures in theC-AFM, IC-AFM, and emergent AFM states, as well as the interchain couplings in
SrCo2V2O8.
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