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Travel by train has increased steadily for the last 30 years. In 
order to build trust in and shift even more traffic to railways, 
more trains must arrive on time. In practice, many train delays 
are caused by small disturbances at stations, which add up. One 
issue is that the scheduled dwell times are simply too short. 
Another is that punctuality falls quickly if it is either warm or 
cold. A third is that interactions between trains rarely go as 
planned. One suggestion for how to reduce delays is to paint 
markings that show where passengers should wait. Another 
is to remove switches, so that remaining ones can be better 
maintained. A third is to make railways more resilient to the 
weather variations of today, and to the climate changes of 
tomorrow. Cost-effective improvements can also be made with 
timetables. More of the planning can be automated, so that 
planners can focus more on setting appropriate dwell times and 
on improving the timetabling guidelines. This way, many more 
trains can be on time.
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Populärvetenskaplig sammanfattning 

Resandet med tåg har ökat stadigt i Sverige de senaste 30 åren. Takten har varit 
cirka två-tre procent per år, och vi nu har mer än dubbelt så många resenärer. Med 
ökat fokus på klimatfrågan stiger resandet nu ännu snabbare.  

Ett problem som drabbar både resenärer och företag i Sverige är tågförseningar. 
Ett sätt att beskriva dessa är den andel av alla tåg som kommer fram mer än fem 
minuter för sent. Räknar man så är ungefär 90 procent av alla tåg punktliga. Så har 
det varit i många år. Det är på ett sätt imponerande, med tanke på att det nu går 
många fler tåg. Tyvärr gör det också att allt fler resenärer drabbas. Detta leder till 
stor irritation, hotar den fortsatta överflyttningen av trafik till järnväg, och kostar 
mycket för samhället. Fler tåg behöver komma fram i tid.  

Min forskning visar att förseningarna mest beror på små störningar – upp till 
någon minut. Över långa resor samlas dessa små störningar ihop och gör att den 
totala förseningen kan bli stor. De här störningarna sker mest på stationer, där tågen 
ska stanna, men där de sedan inte klarar att köra vidare i tid. Det är svårt att säga 
exakt vad dessa störningar beror på, men den tiden tågen ska vara på stationen – 
uppehållstiden – är ofta för kort. Ett annat samband syns mellan förseningar och 
väder: om det är varmt eller kallt ökar förseningarna snabbt. Och trots att det varje 
år blir vinter och snö så leder det ändå till stora besvär.  

Jag ger en rad förslag för att minska förseningarna. Ett är markeringar på 
plattformen som visar var tågen ska stanna, var dörrarna kommer vara, och var 
resenärerna ska stå. Det är ett enkelt och billigt sätt att snabba på uppehållen, så att 
tågen kommer iväg i tid. En annan åtgärd är att ta bort växlar. Då finns det färre 
felkällor, och de som finns kvar kan skötas bättre. Ett tredje sätt är att anpassa 
järnvägen, så att den tål dagens vädervariationer och de klimatförändringar som är 
på väg. Något man gjort i andra länder är att skugga och ventilera elektronik och 
signaler längs med banan. Då blir de inte blir för varma, och tågen går oftare i tid.  

Med tidtabeller kan man också göra mycket för att fler tåg ska gå i tid, utan att 
det kostar mera. Mer av planeringen kan göras automatiskt. Då kan mer tid läggas 
på att ge tågen lagom långa uppehållstider. Trafikverket bör också göra mer för att 
följa upp och förbättra de regler och guider som finns för att planera. På så sätt kan 
vi få tidtabeller som blir bättre och bättre från år till år, med mindre och mindre 
förseningar som följd. Dessa förslag löser inte alla järnvägens problem, men de 
skulle leda till att många fler tåg kommer fram i tid. Då får vi plats för ännu fler tåg 
och resenärer på spåren. 
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Introduction 

This thesis analyses delays and timetabling for passenger railways. Railways are an 
important part of the transport system. After decades of decline, rail transportation 
in Sweden has been growing steadily by about 3% annually since the early 1990s 
(Trafikanalys 2018a), for both passenger and vehicle kilometres. The rise has been 
predominantly in passenger trains – mostly for local and regional journeys 
(Trafikanalys 2018a). In 2015 passenger trains made up 83% of all trains and 
contributed 10% of all motorised passenger kilometres, while freight trains were 
responsible for 19% of tonne kilometres (Trafikanalys 2018b). Investments in new 
infrastructure have not grown to the same extent (Trafikanalys 2018a), and a quarter 
of the metropolitan lines are now very heavily utilised, at levels associated with a 
high likelihood of delays, low average speeds and little time for infrastructure 
maintenance (Trafikverket 2017a).  

One of the key factors for the attractiveness and efficiency of the railway sector 
is on-time performance, of which punctuality is a commonly used indicator. In 
Stockholm, only 56% of commuters report being satisfied with the punctuality of 
commuter trains, which is the lowest across all public transport options and the 
single most important influencing factor for their overall satisfaction with the 
transportation mode (Stockholms läns landsting 2017). The level of punctuality on 
Swedish railways has been close to 90% for the last several years, with punctuality 
defined as a maximum delay of five minutes at the final stop (Trafikanalys 2016). 
This is considered too low by the industry, which has set a goal of 95% by 2020 
(Gummesson 2018). While this requires large and rapid investment, the benefits in 
increased attractiveness and ridership of trains would be considerable.  

Even small delays of only a few minutes cause considerable inconvenience to 
both passengers and operators. In our data of more than 200 million observations 
across some 7.5 million journeys on the Swedish rail network over the years 2011-
2017, delay events of three minutes or less make up 78% of delay time, while those 
of five minutes or less make up 85% of the delay hours. Small delays thus 
accumulate and are a very big part of the problem of unreliable railways. Especially 
so at stations, where 80% of the delay time is made up of delays up to three minutes 
in size. For passengers, even small delays can lead to missed connections, and to 
significantly larger total delays, and the punctuality for passengers is often 
significantly worse than for trains (Parbo, Nielsen & Prato 2016).  
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High quality timetable planning is one way to deal with small train delays. In 
most countries, timetables are revised at least once per year, and previous studies 
(e.g. Goverde 2005; Vromans 2005; Yuan & Hansen 2008) indicate that timetable 
properties can have a large impact on delays and punctuality. By scheduling the 
times that trains stop at stations (dwell times) and by adding margins (run time 
supplements) between stations, timetable planners can affect the risk of delays 
arising, and enable trains to make up for any delays that do occur, sometimes at the 
cost of longer travel times. By separating the trains from one another in time 
(increasing headway or buffer times) they can also reduce the risk of delays 
spreading from one train to another, this has a smaller effect on travel times, but 
consumes more capacity and reduces the number of trains that it is possible to run. 

Structure of thesis 

Following on from this short introductory chapter, the rest of the thesis is structured 
as follows. The second chapter further describes the Background, placing the thesis 
in a context and with overviews of earlier research on both train delays and timetable 
planning, and some theory on delays and punctuality. The chapter ends with two 
identified research gaps. Following on from the identified gaps, the third chapter 
describes the Aim of the thesis, its research questions, underlying hypotheses and 
delimitations. Next, the fourth chapter describes the Method and Data used in the 
thesis. Chapter Five describes the Research Process and Results, how the papers 
build on each other, an overview of the papers, and tying the findings back to the 
research questions. Chapter Six is a Concluding Discussion with recommendations 
and some reflections. Following a list of references is a list of the appended papers 
and my role in those publications, followed by the papers themselves. 
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Background 

Timetable planning 

Extensive research has been done on timetable planning in the past. In his overview 
of timetable research, Hansen (2009) identified some key differences between the 
state of the art and the state of practice: using precise and realistic estimates of dwell, 
run and blocking times, and reflecting the variations in behaviour of train crews. In 
this section a brief overview of the research on timetable planning is made. First, 
we consider some work with broad perspectives: (1) different ways to consider and 
assess timetable quality, (2) the strategic trade-off between precision and slack, and 
(3) some broader perspectives on timetable planning. Then we will discuss more 
narrow research dealing with the allocation of (4) run time margins, (5) dwell times, 
and (6) headways. This is followed with some more research and theory on delays 
and punctuality.   

Quality of timetables 

There are many different dimensions to the concept of timetable quality (see, for 
instance, Goverde & Hansen 2013 and Gestrelius, Peterson & Aronsson 2019). For 
passengers it is desirable to have short travel times, high reliability, high frequency 
in both peak and off-peak, easy and synchronised connections, and a timetable that 
is easy to learn (e.g. Parbo, Nielsen, & Prato 2016; Kottenhoff & Byström 2010; 
van Hagen & van Oort 2018). For drivers and other personnel, it is desirable to have 
good working hours and reliability, and to be able to start and finish the day in the 
same place; for operators, it is good to match supply to demand and to have a high 
resource utilisation (Ceder 2001). For the infrastructure manager it is also important 
to have time left in the timetable for maintenance (see, for instance, Lidén 2018). 
On a higher level, the infrastructure manager must also balance different aspects of 
capacity. A popular illustration of this is found in Figure 1, copied from the 
International Union of Railways (2004), with four dimensions: the number of trains, 
stability, heterogeneity and average speed.  
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Figure 1 
In timetable planning, this figure is a classic demonstration of the balance that must be struck between different 
dimensions of capacity: the number of trains, the stability, heterogeneity, and average speed. The figure illustrates 
schematically how mixed (or conventional) rail services compare to metro services, with higher speeds and more 
heterogeneity at the cost of fewer trains and less stability. Stability refers to reliability, robustness and related concepts, 
roughly understood as the absence of delays. Heterogneity refers to the variation in types of trains operated in the 
system. Figure from International Union of Railways (2004) 

The role of planners 

To an extent, timetable planners can and must balance these dimensions, but on the 
other hand, they are mostly bound by the requests made by the train operating 
companies. Each of these companies makes their own plans, making the trade-offs 
they prefer, and the overall timetable becomes a mix of all these different 
companies. The infrastructure manager can mainly influence this outcome by setting 
conditions in the Network Statement, and by providing rules, regulations and 
guidelines for how timetables are to be planned. Individual planners do not have 
much influence over the overall balance – their job is to follow the guidelines and 
to do their best to accommodate the requests of the operating companies. On the 
margin, however, they can and do sometimes use their discretion to balance the 
different parameters.  



21 

Robustness of timetables 

The most relevant dimensions for this thesis are reliability and robustness – avoiding 
and recovering from delays – or stability, as it is referred to in Figure 1. Even these 
have multiple aspects, however: (1) to avoid systematic delays by having 
appropriate and realistic run and dwell times (Hansen 2009), (2) to make up any 
delays that do occur by ensuring that there are margins both at and between stations 
(Cerreto et al. 2016), (3) to avoid delays spreading between trains by ensuring that 
there are sufficient headway and buffer times (i.e. Carey 1999; Khoshniyat & 
Peterson 2015), (4) to maintain options for dispatchers to reschedule and reroute 
trains, so that they can more easily reduce the impact and spread of delays 
(Gestrelius et al. 2012). 

Trains and passengers 

Passengers often place a higher value on travel time reliability than on the travel 
time itself. Both delays and punctuality are also often significantly worse when 
considered from the perspective of the passengers rather than the trains, partly due 
to variations in passenger demands and loads, and partly due to missed connections. 
In their review of the literature on railway timetable planning with a passenger 
perspective, Parbo, Nielsen and Prato (2016) stated that the difference in punctuality 
can be as high as 10%. Rietveld (2007) wrote more on how and why supply-oriented 
indicators systematically give a more favourable picture than demand-oriented ones 
that take the passengers into account.  

Passenger perspectives 

Some research that explicitly takes the passengers into account has been carried out 
by Dollevoet (2013), in a doctoral thesis on delay management and dispatching, 
which examines passengers and their rerouting choices. Another doctoral thesis was 
presented by van der Hurk (2015), on how information on and to passengers can be 
used to improve rail services when there are delays. Cheng and Tsai (2014) also 
focused on passengers, studying which factors affect the perceived waiting time for 
passengers during train delays – factors that can make this time more or less 
tolerable. A final example discussed here is by Batley, Dargay, and Wardman 
(2011) using econometric models on combined demand and delay data in the UK. 
They find that while delays are indeed given a high value relative to travel time – 
and annoy passengers – they have little effect on the travel demand, in either the 
short or long term.  

While the passenger perspective is thus important, this thesis is written from the 
perspective of the infrastructure manager. A precondition for any further 
optimisation efforts is that the timetable should routinely be executed as scheduled, 
or at least adhere closely to the plan. Delays ruin this by causing disruptions to 
passengers, train operating companies and maintenance works, and much more.  
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Timetable precision 

Olsson et al. (2015) identified two high-level strategies in railway operations and 
timetable planning, that aim to achieve robustness and reliability: precision and 
slack. A strategy based on precision contains, as Hansen (2009) indicated, both 
realistic and precise estimates of run times, dwell times and headway times. In this 
approach, considerable effort is put into identifying and allocating these times, while 
little would be added in ways of margins or buffers. This requires, in turn, that 
considerable attention is paid during maintenance and operations, so that neither the 
infrastructure nor the rolling stock malfunction, and in ensuring that dispatchers, 
train drivers and on-board staff, as well as passengers, all behave in a disciplined 
and timely manner. The timetable and operations are streamlined to be efficient 
during normal operations, but they have less flexibility during major disruptions. 
The Japanese railways are prime examples of this strategy (e.g. Yabuki et al. 2018). 

Timetable slack 

The other high-level strategy Olsson et al. (2015) identified is slack. This approach 
is based on the notion that things inevitably go wrong, and that it is best to be 
prepared for when they do. In timetables this is achieved by ensuring that trains have 
large margins – with which to make up delays – and that there are sizeable buffer 
times scheduled between trains to limit the spread of delays between them. In 
operations it is achieved by ensuring that there is a reserve capacity of both rolling 
stock and train crews, and in infrastructure by creating many possibilities for 
rerouting, both at stations and across the network. The drawback of this approach is 
that it is costly to maintain the reserve capacity, and that travel times are extended 
– which is costly for both passengers and operators. Carey (1998) made a related
point: as more time is allowed for an activity, there is a behavioural response to
make the activity take a longer time. By extending the time to accommodate for the
variation, the variation is also increased. This effect can reduce, and potentially
eliminate, the increase in reliability from added slack.

Heterogeneity in timetables 

Another important dimension in railway timetables and operations is heterogeneity 
(International Union of Railways 2004), see Figure 1. This expresses the variation 
in services run, often regarding the speeds or headways. A metro line where all trains 
run in the same way and stop at the same stations, and with equal headways, is a 
very homogeneous system. The Swedish conventional railway network where high 
speed, regional and local passenger trains all mix together with freight trains, and 
there are extra services during rush hours, is a very heterogeneous system.  
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Implications of heterogeneity  

Different indicators and implications of this heterogeneity can be found in at least 
two other recent doctoral theses. Vromans (2005) dedicated a chapter to the issue 
and introduced a family of indicators centred on the Sum of Shortest Headway 
Reciprocals (SSHR), which has since become popular in the literature. He also listed 
five different ways to reduce the heterogeneity, focusing on the option to equalise 
the number of stops among train services. Lindfeldt (2015) instead evaluated 
performance using empirical data, much like we do in this thesis, using the ratio 
between the 95th and 10th percentiles of speeds used across the network as an 
indicator of heterogeneity. Both authors found, broadly speaking, that delays and 
heterogeneity are correlated, as delays spread more easily between trains in a 
heterogeneous system.  

Planning and learning 

While they did not write about timetable planning, Argyris and Schön (1996) 
presented an interesting concept. They considered learning as a process of 
understanding and eliminating the gap between the expected result and the actual 
result of an action. The gap can be eliminated by taking corrective measures within 
the existing values and norms – which they call single-loop learning. It can also be 
closed by changing the existing values and norms – double-loop learning. This 
perspective can be applied to timetable planning: single-loop learning means finding 
ways to apply the current rules, guidelines and policies, while double-loop learning 
implies choosing better rules, guidelines and policies. In a sense, this thesis is an 
attempt to achieve and support double-loop learning.  

Planning in a wider context 

Timetable planning fits into a broader context in several ways. Writing about public 
transportation more generally, Ceder (2001) described the planning process in four 
steps: network route design, timetable planning, vehicle planning, and crew 
planning. In his thesis, Watson (2008) instead considered the contrasting needs and 
preferences of timetable planners and their managers in an organisational context. 
He found that the privatisation of British Rail had a negative effect on the 
timetabling process, due to a poor planning and rushed implementation of the new 
structure. Avelino, te Brömmelstroet & Hulster (2006) compared the politics of 
timetable planning in the Dutch and Swiss contexts and concluded that “timetable 
planning is not merely an operational process to be left to engineers or economists” 
(pp. 20).  
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Capacity allocation 

Timetable planning is one part of a larger process to allocate capacity on the 
railways. The process in Sweden is described in the Network Statement 
(Trafikverket 2015a). From this we have adapted Figure 2, which illustrates the 
process – with seven main steps. The train operating companies (1) begin by 
submitting requests for the timetable slots they want for the next year. The timetable 
planners at the Transport Administration (2) combine these requests into a draft 
timetable that contains all the trains for the whole year. If there are any conflicts 
between the requests, there is first (3) a process where the parties are encouraged to 
coordinate amongst themselves. If they are unable to do so, the Transport 
Administration (4) tries to settle the dispute in dialogue with the parties. If these 
attempts are also unsuccessful, the relevant parts of the network are (5) declared to 
be saturated, and (6) a set of prioritisation criteria is used to determine which 
requests have priority. The timetable is then (7) finalised and published. Not 
pictured is the option for dissatisfied train operating companies to appeal the 
decision to an administrative court. The court cannot change the timetable but may 
impose sanctions which lead to a change in practice for future years. This process 
is largely the same in most European countries, following EU regulations (e.g. DB 
Netz 2017, ProRail 2016, Ali & Eliasson 2019). 

Prioritisation 

The main differences across European countries occur when the voluntary 
coordination process fails, step (6) above, which happens several times every year. 
When requesting capacity in Sweden, each train must be classified into one of about 

Figure 2  
Capacity allocation process in Sweden. Adapted from Trafikverket (2015) 
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30 categories, based on the expected number and types of passengers (local or 
regional, business or leisure, etc.) or freight. These categories, as well as 
associations between trains, are given different social cost estimates, based on the 
methodology in Trafikverket (2018a). The solution which minimises the social 
welfare costs is then accepted for the final timetable. This approach has some issues, 
both in accurately estimating the social welfare costs, and in combining publicly 
subsidised commuter services with commercial long distance services (see Ali, 
Warg & Eliasson 2019).  

Other countries have chosen alternative approaches. The United Kingdom has a 
more qualitative process with an overarching objective and a list of twelve 
evaluation criteria (Network Rail 2018). In Germany (DB Netz 2017), priority is 
first given to regular-interval or integrated network services, cross-border trains, and 
train paths for freight trains. In remaining conflicts, priority is given to the trains 
that would pay more in track charges. In the Netherlands (ProRail 2016), a cyclic 
hourly pattern is prioritised, and further conflicts are settled by increasing the track 
charges to the point that only one actor remains interested – a form of auction.  

Ad hoc process 

The process of timetable planning itself is thus mainly performed in stage (2), with 
final touches in (7). Once the annual timetable has been published, train operating 
companies can and do make requests for changes in the so-called ad hoc process. 
These are mostly for freight trains, where the demand for transportation often 
fluctuates to a greater extent (Trafikanalys 2018a). For passenger trains, many of 
the adjustments are in response to maintenance works on the railway that only apply 
for part of the year and are often announced at later stages. During a year there can 
be over 80,000 such changes, which are performed on a first come first served basis 
(Trafikverket 2019).  

Dispatching 

After planning, dispatching takes over as the very important activity of managing 
the actual operations of trains and maintenance works on a day-to-day basis, at 
3.00pm every day. Dispatchers control the signals and switches, coordinate with 
train drivers and working crews via radio, and ensure that the operations are safe 
and on time. The topic of dispatching is very large, with a rich research literature of 
its own. See Lamorgese et al. (2018) for a recent overview. Some further, recent 
examples are Andreasson, Jansson and Lindblom (2018) on the complex 
collaboration between drivers and dispatchers, Sandblad, Andersson and Tschirner 
(2015) on the use of support systems, and Gholami and Törnquist Krasemann (2018) 
for a heuristic mathematical approach to solving rescheduling problems in real time. 
Finally, consider Ghaemi et al. (2018), studying the impacts of rescheduling on 
passenger delays. This literature is, however, largely beyond the scope of this thesis. 
As is that on the operation of the trains themselves. 
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Robust timetable planning 

This section describes three commonly used ways to ensure that a timetable is robust 
enough to cope with delays: run time supplements (often referred to simply as 
margins), dwell times, and headway or buffer times. These three concepts are 
illustrated, together with run times, in a graphical timetable in Figure 3. The Swedish 
norms are summarised in Table 1.  

Figure 3 
An illustration of run times, dwell times, headways, buffers and margins in a graphical timetable Each of the sub-
sections reviews some relevant literature and presents the current norms and regulations used in Swedish timetable 
planning. These guidelines are summarised in Table 1. 

Table 1 
Timetable planning standards for passenger trains in Sweden 

Robustness indicator Norm in the Swedish regulations 

Run time supplement  + 3% across the board, included in run time calculation (Banverket 2000) 

Node supplement  3 - 4 minutes run time supplements to be added per pair of nodes 
passed, 2 minutes if partial. 2 - 4 nodes exist per railway line 
(Trafikverket 2015b) 

Dwell time at stations  2 minutes standard, 1 minute if the number of passengers is small 
(Banverket 2000) 

Headway At least 2 - 7 minutes, most commonly 3 - 5 minutes (Trafikverket 2017b) 
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Run time supplements 

Size of margins 

One of the most common and important ways to make a timetable robust as regards 
delays is to include margins in the form of run time supplements. These supplements 
are added to the calculated minimum run times (see Pachl 2002) to create flexibility 
which can be used either by the driver or dispatcher to reduce delays and maintain 
connections between trains. To an extent, these supplements are mandated by the 
International Union of Railways (2000): three to seven percent added to the 
minimum running time, plus an additional one and one and a half minutes for every 
100 km. These levels are common in Europe, while six to eight percent are common 
in North America (Pachl 2002). In Sweden we use a base level of three percent while 
both the Dutch (Goverde 2005) and Swiss (Vromans 2005) automatically add 
margins of seven percent.  

Node supplements 

In Sweden (Trafikverket 2015b) and Switzerland (Vromans 2005), planners also 
add supplements at or between a set of strategically important locations – so-called 
nodes. This is one way to distribute the 90 seconds per 100 km suggested by the 
UIC. In Sweden, every railway line has about two to four of these nodes, and the 
timetable planner must allocate three or four minutes between each pair of adjacent 
nodes, depending on the type of train (Trafikverket 2015b). If the train only travels 
part of the distance between two nodes, the supplement should still be at least two 
minutes. In the United Kingdom, run times are based on previous performance 
rather than on calculations, and the supplements are thus harder to define (Rudolph 
2003).  

Discretion in planning 

In addition to these two methods, timetable planners in Sweden use their discretion 
when assigning time supplements. One common practice is to add seconds so that 
the arrival times at stations where the train stops occur at whole minutes. For 
instance, if a train is meant to arrive at 12:44:27, the planner might add 33 seconds, 
so that the arrival instead occurs at 12:45:00. Over long journeys, these can add up. 
Supplements are also sometimes given for trains that are scheduled to stop at a 
platform which is not on the main track, because this takes slightly longer to get to, 
and because engineering works are being done on the track, requiring lower speeds 
for part of the journey (Banverket 2000). These are meant to correct cases where the 
run time calculation is known to be wrong, and they are not considered as margins 
in this thesis.  
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Allocation of margins 

The efficiency of margins can be improved by distributing them in a good way. This 
has been studied by a number of authors, using different methodological 
approaches. For instance, Cerreto et al. (2016) presented an empirical study on the 
quality of run time supplement allocation in timetables, with regard to how trains 
make up or increase delays during journeys. To help quantify the distribution of 
margins along a journey, Vromans (2005) introduced the Weighted Average 
Distance (WAD). He also attempted to find the optimal distribution, using 
optimisation methods on both hypothetical and real cases, drawing the conclusion 
that a slight shift towards the beginning was best. Using similar methods, Vekas, 
van der Vlerk, and Haneveld (2012) also found that it was best for delay recovery 
not to use a uniform distribution, given some assumptions of the delay distributions.  

Solinen, Nicholson, and Peterson (2017) used a combination of empirical, 
simulation and optimisation methods to introduce and consider a more detailed 
indicator, based on critical points – points in a timetable when one train enters after 
a preceding train, or when one train overtakes another. These points are very 
sensitive to delays, both because existing delays tend to increase in these cases, and 
because any delays here easily spread to other trains. By ensuring that there are 
enough margins at these points, the allocation of time supplements can be very 
effective.   

Dwell times 

One of the key issues brought up by Hansen (2009) was to use realistic and precise 
estimates of dwell times, and that this is often not done – either in practice or 
research. Peterson (2012) found evidence of this for train services in Sweden – that 
the dwell times were usually underestimated, without being sufficiently 
compensated by margins on the line. One good example of how both precise and 
realistic dwell times can be estimated was provided by Buchmueller, Weidmann and 
Nash (2008) who modelled actual dwell times in Switzerland, breaking them down 
into five sub-processes: (1) unlocking doors, (2) opening doors, (3) boarding and 
alighting, (4) closing doors, and (5) train dispatching. They then used over three 
million observations for calibration, to ensure that the estimates were realistic. 
D’Acierno et al. (2017) focused their modelling on (3) boarding and alighting, and 
on how this depended on the congestion and flows of passengers.  

Some earlier studies 

Along similar lines, there have been many publications that deal with simulations 
of passengers moving between the train and the platform to study various kinds of 
passenger management strategies (e.g. Heinz (2003) in a Swedish context, and Baee 
et al. (2012), Kamizuru, Noguchi & Tomii (2015), Seriani & Fernandez (2015), 
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Zhang, Han & Li (2008) for some international examples). Focusing more on 
realism than on the precise breakdown of sub-processes, Pedersen, Nygreen and 
Lindfeldt (2018) studied how actual dwell times vary over time and running 
direction in Norway. Li, Daamen and Goverde (2015) did something similar with 
track occupancy data from short intermediate stops in the Netherlands and 
separating between peak and off-peak hours. Other examples are provided from 
Italy by Longo and Medeossi (2012), who focused on simulation, and again from 
the Netherlands by Kecman and Goverde (2015), who were interested in real time 
prediction of both dwell and run times.  

Swedish guidelines 

The Swedish guidelines (Banverket 2000) state that dwell times for passenger trains 
should, in general, be scheduled to be two minutes long. Sometimes longer 
scheduled times are required, and other times, if the number of passengers is small 
and the train and station are prepared for a speedier boarding process, one minute 
can be used instead. If the number of passengers is very small, the guidelines state 
that it is possible to schedule a stop without dwell time, merely slowing the train 
down to a stop and then starting again immediately, but if this is done the run time 
on the next line section should be extended, and if passenger numbers increase, the 
timetable should be redrawn and longer dwell times set. In general, however, it is 
often difficult to know precisely how much time is required for stops at stations – 
and as a consequence, margins are not discussed or defined as explicitly for dwell 
times as they are for run times.  

Headway times 

The last aspect of detailed timetable planning that we will consider in this overview 
is headways, although they have not been studied explicitly in the thesis. Headways 
are the times that separate trains using the same infrastructure, and they are mostly 
relevant on double track lines. Sometimes there is a distinction between headway 
times, as the minimum time that is technically possible, and buffer times, which 
make up any additional buffers separating the trains from one another, see Figure 3. 
This is not done consistently, however, and in practice it is often difficult to separate 
the two.  

Knock-on delays 

In a paper on ways to measure timetable reliability, Carey (1999) paid special 
attention to so-called knock-on delays. If trains are very close to one another in time, 
delays to one will quickly spread to any following, connecting or meeting trains, 
and these delays are sometimes called knock-on (secondary) delays. By increasing 
the separation between trains, a buffer is created so that delays do not spread as 
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easily, and Carey (1999) proposed that a number of indicators describing the 
distribution of headways in a timetable could be used to estimate the reliability of a 
given timetable. Yuan and Hansen (2008) found that as the scheduled buffer time 
between trains decreased, the knock-on delays increased exponentially.  

Improving robustness 

Also arguing for an increase in scheduled headway or buffer times, Nelldal, 
Lindfeldt and Lindfeldt (2009) performed simulation experiments on existing high 
speed (200 km/h) trains in Sweden. They found that the punctuality for these trains 
would improve by 5-10 percent if the minimum headways were increased to at least 
five minutes. Similarly, Dewilde et al. (2013) introduced a method to increase 
timetable robustness in complex stations by maximising the minimum headway 
time between a given set of trains – one of the heuristics proposed by Carey (1999). 
They found that this approach improved the robustness in the station zone of 
Brussels by eight percent and reduced knock-on delays in the area by half. In 
Sweden, minimum headways vary from two to seven minutes, depending on the 
location, but are most usually between three and five minutes (Trafikverket 2017b). 



31 

Train delays and punctuality 

This section describes how delays can be defined, counted and deconstructed before 
turning to some earlier research on delays and punctuality.  

Delay definitions 

Delays can be considered and measured in a number of ways. The most common is 
arrival delay, which is defined as the difference between a train’s realised and 
scheduled arrival time at a certain station. Closely related is the departure delay, the 
difference between the realised and scheduled departure times. Both arrival and 
departure delays can be either positive or negative, indicating early arrivals or 
departures, respectively. Let 𝑡௦and 𝑡௥denote the scheduled and realised times, and 
𝑑 the delay:  

𝑑 ൌ 𝑡௥ െ 𝑡௦ (1) 

Another way to consider delays is to recognise that the delay upon arrival and 
departure are the result of delayed processes: either the run time between stations, 
or the dwell time at stations (or in some cases the depot).  

The run time is the time it takes to run between two adjacent stations, A and B, 
and can be calculated as the difference between the arrival time (arr) at station B 
and the departure time (dep) at station A. This can be calculated both for the realised 
and scheduled times.  

𝑡௥௨௡,஺஻ ൌ 𝑡௔௥௥,஻ െ 𝑡ௗ௘௣,஺ (2) 

The run time delay is then the difference between the realised and scheduled run 
times, which is equivalent to the difference between the arrival delay at B and the 
departure delay at A.  

𝑑௥௨௡,஺஻ ൌ 𝑡௥௨௡,஺஻
௥ െ 𝑡௥௨௡,஺஻

௦ ൌ 𝑑௔௥௥,஻ െ 𝑑ௗ௘௣,஺ ൌ 𝑡௔௥௥,஻
௥ െ 𝑡ௗ௘௣,஺

௥ െ 𝑡௔௥௥,஻
௦ ൅ 𝑡ௗ௘௣,஺

௦

 (3) 

The dwell time is the time that a train spends at a station other than the first or final 
station. It is the difference between the arrival and departure times.  

𝑡ௗ௪௘௟௟ ൌ 𝑡ௗ௘௣ െ 𝑡௔௥௥  (4) 

As with run times, the dwell time can be calculated both for realised and scheduled 
times, and the dwell time delay is the difference between these two times. 
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Equivalently, it can be specified as the difference between the arrival and departure 
delays at the given station. 

𝑑ௗ௪௘௟௟ ൌ 𝑡ௗ௪௘௟௟
௥ െ 𝑡ௗ௪௘௟௟

௦ ൌ 𝑑ௗ௘௣ െ 𝑑௔௥௥ ൌ 𝑡ௗ௘௣
௥ െ 𝑡௔௥௥

௥ െ 𝑡ௗ௘௣
௦ ൅ 𝑡௔௥௥

௦  (5) 

These times, delays and equations are illustrated and exemplified in Figure 4. 

Figure 4 
An illustration of arrival, departure, run and dwell times, and the associated delays. The diagonal lines represent the 
train paths, with the dotted line denoting the the scheduled path, and the bold line the realised path. Scheduled and 
realised arrival and departure times are denoted by the vertical lines, while run times, dwell times and delays are 
illustrated by the horisontal arrows. The scheduled run and dwell times have been pictured twice, to help illustrate the 
size of the run and dwell time delays.  

Early arrivals 

A possible objection to the definition above is that that passenger trains are often 
not allowed to depart early from scheduled stops. Thus, a train that arrives ahead of 
schedule must wait for longer, so that the following dwell time is necessarily 
extended, without the train necessarily departing with a delay. In some cases, this 
might be considered as less problematic, and not considered as a delay, but rather 
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as some different category of time. The same could be said for run times that are 
extended for trains that run ahead of schedule. From the producer and timetable 
planning perspectives taken in this thesis, however, even these deviations from the 
timetable are considered problematic – because the trains are consuming capacity 
(occupying tracks and platforms) where and when they should not be.  

Other perspectives 

For transportation that does not follow timetables, delays are instead often discussed 
in the frame of travel time variability (i.e. Noland & Polak 2002; Rietveld, Bruinsma 
& Van Vuuren 2001). This is commonly the case for road-based transportation. The 
baseline can then be the time required in free-flowing traffic during good conditions, 
while factors like congestion and poor weather lead to longer travel times, which 
can be considered as a form of delay. When there is no timetable with which to 
compare, this is often the only alternative. Freight trains in the USA are traditionally 
run without timetables (Gorman 2009), and American conceptions of train delays 
are thus often quite distinct from those in Eurasian contexts. The realised run time 
is instead compared against the baseline of a free-flowing run time, without any 
stops or delays.  

Earlier research on delays 

Punctuality is one of the most important factors for a railway system (Gummesson 
2018) and its passengers (i.e. Stockholms läns landsting, 2017) and it directly affects 
the competitiveness against other transport modes (Nyström 2008). This section 
briefly highlights some earlier research on train delays and punctuality, from a few 
different perspectives relevant to this thesis.  

Data and delays 

With increasing access to large volumes of data, researchers can study delays and 
their causes on a relatively detailed level. One overview of the many IT systems, 
sub-systems and databases in the Swedish railway industry was provided by 
Thaduri, Galar and Kumar (2015). They called for more researchers and 
practitioners to apply big data analytics to make use and sense of these large troves 
of data. Several different approaches have been applied successfully. In the USA, 
Gorman (2009) applied econometric models on freight train data with the aim of 
predicting delays due to congestion. Wallander and Mäkitalo (2012) used a data-
mining approach to analyse train delays more generally. Another approach made by 
Marković et al. (2015), was to analyse the relation between train delays and various 
characteristics of the railway system using machine learning models.  
  



34 

Figure 5 
Delay hours by a number of causes. Adapted from (Trafikverket 2018c) 

Delay cause coding 

In practice, delays have often been studied using manually reported delay causes, 
see for instance Veiseth, Olsson and Saetermo (2007) and Trafikverket (2018b). 
Figure 5 illustrates data from the latter on the eight biggest causes of delays that are 
monitored and targeted by the main railway actors in Sweden, as they are currently 
categorised in the industry. However, manual attribution of delays is prone to errors 
and often quite inconsistent (Nyström 2008), with an estimated reliability around 
80% (Nilsson et al. 2015). Importantly, only delays that are three minutes long, or 
more, are coded – smaller delays are not included in these statistics or datasets.  

Weather and delays 

Changing perspectives, the influence of weather and climate change on train delays 
and punctuality has received increasing attention in the literature. Some ten years 
ago, Koetse and Rietveld (2009) found that “studies that investigate the effects of 
weather or climate change on rail transport and infrastructure are scarce” (pp. 212), 
but they cite two studies suggesting that weather was behind about 10% of failures 
and accidents. Since then, however, more studies have been published.  

One good example is by Xia et al. (2013), who estimated how wind, temperature 
and rain cause delays in the Dutch railways, mainly by damaging the infrastructure. 
Similar work has been done by Nagy and Csiszár (2015), who highlighted the effects 
of weather conditions on the punctuality of Hungarian passenger trains, and by Xu, 
Corman and Peng (2016) who analysed the disruptions in the Chinese high-speed 
railway and found that almost 90% of these were due to bad weather.  
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Some authors focus on more specific conditions, such as Ferranti et al. (2016), 
who studied how heat causes failures in the railroad infrastructure in England, 
particularly in the signalling systems. In a similar paper, Ferranti et al. (2018) found 
that a short heatwave in the UK led to more than a doubling of delays, due in a large 
part to speed restrictions, and they caution that such events will become more 
common. Another example of the opposite scenario is by Zakeri and Olsson (2017), 
who investigated the impact of weather on the punctuality of local trains in the Oslo 
area. They found strong correlations between punctuality and temperatures below 
minus 7℃ and snowfall of at least 15 cm.  

Also relevant for winter conditions Palin et al. (2016) described how seasonal 
forecasts of the North Atlantic Oscillation, a pressure differential related to either 
cold and calm or mild and stormy winters, can help predict the scope of disruptions 
to both railways and other transport modes in the UK, months in advance. 
Continuing on the use of weather forecasts, in his doctoral thesis Wang (2018), 
proposed methods to incorporate these into dispatching, estimating with the help of 
simulations that this could reduce train delays in the UK by about 20%.  

Liu et al. (2018) instead wrote on the susceptibility to heavy rain and related 
hazards of Chinese railways. Frauenfelder et al. (2017) evaluated the vulnerability 
of Norwegian roads and railways to extreme weather events, also focusing on heavy 
rainfall and debris flows such as rock falls and avalanches, both now and in the 
future. Similarly, Sa’adin, Kaewunruen, and Jaroszweski (2016) evaluated the 
weather and climate risks facing a planned high-speed rail connection between 
Malaysia and Singapore, concluding that heavy precipitation – along with 
associated debris flows – is the biggest risk factor.   

Infrastructure and delays 

Another frequent and related cause of delays is infrastructure failure. Veiseth et al. 
(2007) linked infrastructure data with delay and punctuality data to study the 
infrastructure’s influence on rail punctuality. They reported that some 30% of delay 
hours in Norway were caused by infrastructure failures and suggested that the 
quality of punctuality data could be improved by connecting it with infrastructure 
and operational databases. Stenström et al. (2015) developed a composite indicator 
for benchmarking and monitoring of rail infrastructure, considering four factors: 
failure frequency, train delays, logistic time and repair time.  

Also in a Swedish context, Wiklund (2006) studied the relationship between 
preventative maintenance of the infrastructure and severe disruptions and delays for 
trains – identifying that the overhead line is the most vulnerable and critical 
component, but also that this is difficult to make more robust using only increased 
maintenance. Mattsson and Jenelius (2015) provided an overview and a discussion 
of the research on vulnerability and resiliency in transportation networks more 
generally. Ferranti et al. (2016) studied heat-related infrastructure failures in 
Southeast England, while Hawchar et al. (2018) discussed the vulnerability of 



36 

critical infrastructure with regard to climate change, and Dobney et al. (2009) 
discussed the delays caused by rail buckling, to name but a few.  

Trains and delays 

Traffic density can also be correlated with delays, as trains interfere with one 
another and can cause delays to spread between trains. For instance, Olsson and 
Haugland (2004) found that the management of train crossings is a key success 
factor on single track lines. The previously mentioned study by Gorman (2009) also 
showed that the number of crossings, passes and overtakes consistently had high 
impacts on delays for freight trains in the USA, although delays are measured 
differently on the American freight railways. The International Union of Railways 
(2004) has developed a method to calculate the capacity utilisation across railway 
networks. This method has been adapted by the Swedish Transport Administration 
for use on its network (Trafikverket 2017a), and it shows that many lines are very 
highly utilised, with severe congestion as a consequence.  

Station stops and delays 

The last perspective we will cover is delays occurring at stations. For instance, 
Wiggenraad (2001) studied seven Dutch train stations in detail and found that the 
realised dwell times were longer than scheduled, that the scheduled dwell times 
were the same at both peak and off-peak times, and that passengers concentrated 
around platform access points. Yuan and Hansen (2002) also studied delays at Dutch 
stations and found that the mean excess dwell time was around 30 seconds. 
Sometimes this was due to the train having arrived early and not being permitted to 
depart before the schedule, but at other times it was due to a lack of discipline among 
train drivers and conductors.  

Yet another study around Dutch stations, by Nie and Hansen (2005), found that 
trains there operated at lower than designed speeds, and that realised dwell times at 
platforms were systematically extended beyond what was scheduled, both because 
of other trains blocking their routes, and because of the behaviour of train personnel. 
Similar findings have been made elsewhere in the world. For instance, Harris, 
Mjøsund and Haugland (2013) studied delays at stations in the Oslo area and 
claimed that these delays were often small, poorly recorded, and not well 
understood. On the opposite side of the world, in New Zealand, Ceder and Hassold 
(2015) also found that one of the main delay mechanisms was increased actual dwell 
times, caused by heavy passenger loads that were not sufficiently compensated by 
increasing the scheduled dwell times.  
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Research gaps 

In the background, we have gone through some of the work that has been done on 
train delays and timetable planning. This overview reveals two gaps, which this 
thesis aims to fill.  

The first is that there are few empirical studies describing multiple causes of small 
delays, especially in Sweden. While there has recently been an increase in the 
amount of railway operations research in Sweden, much of it is focused in one way 
or another on simulation or optimisation. Empirical elements have been quite rare 
and rather limited in scope. In the international literature, the volume of empirical 
research is larger and increasing, however, it is typically either focused on a narrow 
range of factors correlated to delays, such as high temperatures, storms, or 
congestion. Studies that do consider multiple types of factors are usually based on 
manually reported causes of delay, which is problematic because of human error, 
and the omission of small delays. There is thus a need for more broad, empirical 
studies on delays that do not rely on manually reported causes.  

The second gap is that there are relatively few studies that evaluate the effects of 
timetable planning in practice. There is certainly a sizeable literature on timetable 
planning, with a large segment of it building on an operations research framework 
with mathematical modelling and optimisation, and another big part that is based on 
computer simulations. Fewer authors have been concerned with evaluating the 
effects of the timetable planning that is done in practice. Some qualitative work has 
been done about the situation of planners, but quantitative and empirical work 
identifying the different strategies, policies and decisions made by planners is rare. 
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Aim 

The overarching aim of the thesis is to: increase the understanding of delays that 
occur for passenger trains in Sweden, in order to reduce delays, primarily through 
improved timetable planning. This can be conceptualised as an instance of double-
loop learning in timetable planning, as illustrated in Figure 9 on page 83. To break 
the aim down into more manageable pieces, we have created five research 
questions which mirror the research gaps identified in the previous section.  

Research questions 

RQ1. How are the delays distributed, in a broad sense of the word? 

RQ2. What factors correlate with delays, and to what extent? 

RQ3. How can the allocation of run time margins be improved? 

RQ4. How can the allocation of dwell times be improved? 

RQ5. How can the practice of timetable planning be improved? 
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Delimitations  

Infrastructure manager’s perspective 

This thesis is primarily written from the point of view of an infrastructure manager 
responsible for coordinating and scheduling railway services. The perspectives of 
passengers and operators are important and have a lot to offer, but they are not the 
focus of this thesis. This means that we do not, for instance, delve into the issues of 
generalised travel time, giving delays different weights based on their lengths, or 
consider the extent to which passengers adapt to delays that occur, or to their 
justified demands for information during disruptions. Instead, the focus is on being 
able to schedule and manage traffic in an efficient and reliable way. The benefits for 
the passengers follow naturally: if the trains are on time, the passengers will be as 
well. Similarly, the perspective is pragmatic and empirical, rather than focusing on 
achieving mathematically optimal solutions. Being able to create realistic timetables 
that the trains can reliably stick to is a precondition for later optimisation.  

Conventional passenger trains 

The thesis is focused on trains with passengers, not freight. There are vast 
differences in both the timetabling and delays for these two types of transport, and 
we have chosen to focus on passenger trains. The demand for transportation of 
freight is much more variable than for passengers, and timetables for these trains 
are often created or adjusted at a much later stage. Even then, there are often large 
deviations between how long and heavy a train is scheduled to be, and what is 
actually used This makes the timetable unrealistic, and large deviations from it are 
frequent. This results in a split, with many freight trains having very large delays, 
while many others depart and arrive long before they are scheduled. The focus is on 
conventional passenger railways, with varying degrees of heterogeneity, not on 
metro, light rail or tramways. 

Focus within train paths 

In relation to timetable planning, the thesis is focused on dwell times and margins 
within each train path, not on aspects such as headways, buffer times and 
heterogeneity. These are also important, as they affect the spread of delays between 
trains, but they are beyond the scope of this thesis.  

Other delimitations 

The work also does not consider explicitly the influence of dispatching, 
maintenance, or the physical design of the railway on delays. These are all important 
fields, which do relate to delays, but they are also beyond the scope of this thesis. 
We are ambivalent as to whether timetables should be cyclic or not, although the 
thesis should be relevant even for such cases.  
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Method and Data 

Quantitative, qualitative and mixed methods 

This thesis includes both quantitative and qualitative methods, and this section 
describes some of the benefits of each approach and of combining them as we have 
done. The emphasis has been on quantitative methods, used in Papers 1, 2 and 5. 
Purely qualitative methods were used in Paper 4, while Paper 3 was written using 
mixed methods. This is illustrated in Table 2. 

Table 2 
Methodological approach across the five papers  

Methodological approach Paper 1 Paper 2 Paper 3 Paper 4 Paper 5 

Quantitative X X X  X 

Qualitative   X X  

 

Quantitative methods allow us to describe what happened. In the research field of 
railway timetabling and operations, quantitative methods have historically tended to 
fall into one of three main approaches: optimisation, simulation, and empirical. 
Many examples of these have been described in the chapter Background.  

With qualitative methods such as interviews, it is possible to gain insight into the 
values, priorities, perspectives and perceptions of relevant people and actors. In this 
thesis, timetable planning plays a key part, and so interviewing timetable planners 
is a natural and important part of the process. The qualitative work included in this 
thesis draws mostly on the qualitative research interview approach of Kvale (1997). 

Mixing both methods provides the best of both worlds: the quantitative data 
informs and reinforces the qualitative aspects, and vice versa (Johnson and 
Onwuegbuzie 2007). For instance, when studying timetable planning, the 
quantitative methods also allow us to see what decisions planners have made, which 
is a good complement to what is written in the guidelines or stated by the planners 
in interviews. Connecting this to the large sets of train movements enables us to see 
the consequences of their decisions, and to evaluate which of their strategies and 
decisions work well in practice, and which ones do not, in a form of triangulation 
(Fellows and Liu 2015). 
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Working with delays and punctuality 

This section describes the different ways that delays and punctuality have been 
considered and measured throughout the papers included in this thesis. A brief 
summary is presented in Table 3, with Paper 1 considering both run and dwell times, 
Paper 2 considering punctuality measured at all scheduled stops, Paper 3 measuring 
punctuality at the final stop, and Paper 5 returning to dwell time delays. As Paper 4 
used purely qualitative methods, it is not included in this section. Considering a 
range of different approaches in this way provides a more holistic description of the 
issues of delays and punctuality and helps to ensure that the findings are not 
sensitive to the exact specification of the specific indicator. 

Table 3 
Different indicators of delays and punctuality used in the papers 

Indicator of delays Paper 1 Paper 2 Paper 3 Paper 5 

Run time delays X 

Dwell time delays X X 

Punctuality at final destination X 

Punctuality at all scheduled stops X 

Measuring and observing delays 

The analyses in Papers 1 and 5 are based on run time delays and dwell time delays. 
These are the differences between the actual and scheduled process times, be they 
movements along line sections or station stops. Please refer to Train delays and 
punctuality for more detailed definitions and discussions on delays.  

Relative and absolute effects 

In Paper 1 we use the terms average delay and relative risk, with the latter indicating 
how much a factor increases or decreases the average delay in relative terms. This 
was done to normalise as regards the duration of activities (run or dwell time), as 
delays associated with bad weather, insufficient margins, or reduced traction power, 
for instance, might be expected to have relative rather than absolute effects. Other 
delays, perhaps due to a faulty signal or switch, might be better modelled as having 
absolute impacts, but this was left for subsequent papers. The relative risk of a delay 
is calculated as the average delay conditional on some value of an explanatory value, 
divided by the average delay across all station stops or line sections. This makes it 
easier to discern the effect of factors (e.g. the level of run time supplements, the 
scheduled dwell time, or the amount of precipitation) where the values or 
differences are small in absolute terms. The analysis of this paper also mentions 
delay contribution. Here we multiplied the average delay by the number of 
observations and compared this to the total amount of delays.  
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Issues with manual coding 

We do not use manually reported causes of delays in any of the papers, for a number 
of reasons described in the section Train delays. Most of the delays considered in 
the papers are also small, up to one or two minutes, whereas the causes are only 
reported for bigger delays of at least three minutes in size. In the data from the 
Swedish Transport Administration, 55% of all delay time is too small to be 
categorised, and in Paper 5 this figure was even higher.  

Whether to normalise or not 

To ease comparisons between the differing lengths of line sections, between the 
speeds of trains, and so on, in Paper 1 we chose to use ratios instead of absolute time 
units. Throughout we chose to use the scheduled duration as the denominator. If the 
scheduled duration is 120 seconds and the total margin for that activity is 12 
seconds, we registered that as a margin of 10%. In the train movement data, times 
are only given in whole minutes, which we simply converted to 60 seconds – the 
margins in the timetable were, however, presented in seconds. For durations, of run 
times or dwell times, we normalised with the average duration for the respective 
activity. In the sampled data those averages were approximately 100 seconds for 
station stops and 197 seconds for run times on line sections. A scheduled stop of 
two minutes was thus translated to a duration of 1.20 while a scheduled movement 
along a line section of two minutes would translate to 0.61. These ratios were then 
rounded to limit the number of distinct values, and to ensure that there were enough 
observations in each bin for the average delays to be reasonably stable. In Paper 5, 
which focused on dwell time delays, there was much less variation in the scheduled 
dwell times, so this normalisation was not required. 

Varying punctuality definitions 

The need for aggregation 

The data volumes across networks are often very large, which makes computations 
across individual delay observations quite demanding and difficult to perform. 
Considering individual delays also makes it difficult to follow trains during their 
journeys, and to gain a holistic picture of what happens during these journeys. For 
these reasons, it can be useful to study punctuality. This is an aggregate indicator, 
useful for providing an overview of delays across entire journeys, many trains, and 
entire networks. It is easier to work with than delays: the number of observations is 
much lower. It is also a well-known metric to both passengers and practitioners. 
However, it can be defined in different ways.  
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Delay thresholds 

In Sweden the convention is to use a threshold of five minutes, so that trains with a 
delay of up to and including five minutes is considered punctual, but those with 
delays of six or more minutes are considered unpunctual (Trafikanalys 2019). In 
other countries, the threshold can be on different levels, e.g. one or three minutes 
(SBB 2018).  

Measurement locations 

Where punctuality is measured can also vary. The traditional method in Sweden has 
been to use the final stop, which we did in Paper 3. This was considered quite 
relevant for long-distance trains mostly serving the end-markets, but less so for 
regional and especially local trains, which can have many important stops and 
passengers who only travel part of the journey, and where the most important 
stations are often in the middle of the journey, although this varies from region to 
region. To address this, organisations like Trafikverket, Skånetrafiken and SJ have 
shifted to measuring punctuality at a wider range of stations. The most inclusive 
version of this is to include all stops, which we did in Paper 2, while more restrictive 
versions only include major hubs.  

Mathematical notation 

In mathematical terms, the punctuality of train 𝑖’s arrival at station 𝑗 is a function of 
its arrival delay 𝑑௜,௝ and the punctuality threshold 𝑘 such that: 

𝑝௜,௝,௞ ൌ  𝑓൫𝑑௜,௝,௞, 𝑡൯ ൌ ൜
1, 𝑑௜,௝,௞ ൑ 𝑡
0, 𝑑௜,௝,௞ ൐ 𝑡 (6) 

Punctuality 𝑃௝,௞ at station 𝑗 in the time period 𝑘 is then calculated as the weighted 
average of the punctuality 𝑝௜,௝,௞ of 𝑛 arrivals of train 𝑖 during period 𝑘 (which can 
be any given day, week, month, or year), and the weights 𝑤௜ (usually set to 1).  

𝑃௝,௞ ൌ
∑ ሺ௣೔,ೕ,ೖ∗௪೔ሻ೙

೔సబ

∑ ௪೔
೙
೔సబ

(7) 

The inclusivity of the punctuality indicator depends primarily on the setting of 𝑗: 
this can be a specific station, the final stop for each train 𝑖 (Paper 3), all stations 
where the train 𝑖 has scheduled stops (Paper 2), or all points where arrivals are 
registered.  

Channel precision 

This last option, to include stations or control points where the trains do not stop at 
all, is less relevant to passengers, because they are not affected by this. From a 
traffic-management perspective, however, there might be some benefits in 
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measuring how well the trains stick to their paths even barring any stops, but then 
even early arrivals should be identified. In Sweden such an indicator is sometimes 
used and discussed, called kanalprecision, or channel precision. The exact definition 
is that the train is allowed to be at most three minutes late, and at most two minutes 
early, to be considered as being inside the channel. The trains can then be measured 
continually, as often as the signal system allows, and an aggregate indicator can be 
calculated for a whole train journey, a part of the network, or a period of time.  

Weighted punctuality 

Of course, it is also possible to consider different trains, so that 𝑖 only covers 
passenger trains and not freight trains, or only commuter trains, or trains from a 
specific company. The weights are rarely used, so that by default 𝑤௜ equals one. If 
passenger data is available, however, it is possible to set the weights based on the 
number of passengers getting on or off, so that trains and stations with more 
passengers are given higher weight.  

Treatment of cancellations 

In both Papers 2 and 3, we considered cancellations as unpunctual. The alternative 
with cancelled trains is to exclude them entirely from the calculation and to instead 
present them separately in an indicator known as regularity (considering only the 
proportion of trains that complete their entire journey, without taking delays into 
account). In the data used for this thesis, about one percent of trains are cancelled, 
and excluding them from the punctuality figure would thus give an apparent 
improvement in punctuality of about one percentage point. By counting cancelled 
trains as unpunctual, the impact of any adverse weather conditions, for instance, 
should be captured in the analysis. Overall, however, this has made little difference 
to the results.  

Summary 

Thus, while the exact definitions can and do vary depending on who is counting and 
why, punctuality is thus a convenient and commonly used way to aggregate delay 
data to present a much simpler and more holistic figure, which can be easily 
discussed and evaluated over time.  

Many other indicators exist – such as the maximum deviation, the time to recover, 
and the deviation area (Nicholson et al. 2015) – and can be found throughout the 
literature, but punctuality is certainly one of the most common.  
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Quantitative data used 

This section describes the five sets and sources of quantitative data which were 
combined and used in Papers 1, 2, 3 and 5. Table 3 summarises which datasets were 
used in each paper.  

Table 3  
Overview of quantitative data used in the papers 

Quantitative data Paper 1 Paper 2 Paper 3 Paper 5 

Train movements X X X X 

Timetables X X X X 

Weather X X

Infrastructure X 

Passengers X 

Capacity utilisation X 

Train movement data 

Scope of data 

Papers 1-3 contain Swedish data for the year of 2015. As a pilot study, the first paper 
only used data on one regional line, with about 363,000 train movements. The later 
Papers 2 and 3 instead consider all – approximately 32.4 million – movements in 
the national network. Paper 5 draws partly from the same data source, for the period 
of 2011-2017, but only covering the commuter trains in and around Stockholm, 
approximately 16.6 million movements. The paper also includes corresponding data 
from a commuter railway company in Tokyo from 2013-2018, with about 63.7 
million train movements. These figures are summarised in Table 4.  

Table 4 
Overview of train movement data used for the papers 

Paper Underlying train movements Years Comment 

1 363k  2015 Regional line in Sweden (Skånebanan) 

2 32.4M 2015 Sweden, nationwide 

3 32.4M 2015 Sweden, nationwide 

5 16.6M, 63.7M 2011-2017, 2013-2018 Stockholm, Tokyo 

Structure of data 

In Sweden, this data is structured so that one row covers the departure from one 
station (A) and the arrival at the next station (B), with both scheduled and realised 
times for each. Both Norwegian and Japanese train movement data are instead 
structured so that one row covers both the arrival and departure at one station (A). 
Yet another structure is found in Danish data: one row there covers only the arrival, 
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departure, or passing time at a given station (A). There are thus several different 
ways to specify this kind of data, although they are functionally equivalent: from all 
of them it is possible to restructure the data and to calculate the arrival and departure 
delays. It is also possible to calculate the scheduled and actual durations of both 
dwell times at stations and the runtimes between them. The stations are not 
necessarily stations where the train stops – in Swedish the term is instead driftplatser 
– but also include old stations that are no longer serviced, technical stations where 
trains can meet, and such. The distance between these stations varies across the 
country. Good maps of the lines and stations can be found at Trafikverket (2018d). 

Precision of data 

The core of the data in this thesis is made up of train movements registered by the 
signalling system. The system includes track circuits that detect the presence of 
trains and sends a message when a train enters or exits the circuits. These messages 
are very precise, of the order of milliseconds, and include both the scheduled and 
observed times. However, the signals and track circuits that send timestamps are 
usually located at the edges of the station areas, rather than at the middle of the 
platform, where the train stops. To adjust for this, an automatic adjustment is made 
within the signalling system, to account for the time that it takes for a train to move 
from the signal to the middle of the station, or vice versa, usually of the order of 10-
20 seconds. In Sweden, this adjustment does not differentiate between trains with 
different characteristics, and the size of the adjustment is not routinely recalibrated.  

Truncation of data 

This causes some imprecision in the timing of train movements. For historical 
reasons, and partly to cover for this imprecision, the data layer Lupp (Trafikverket, 
n.d., 2018b) that receives the messages from the signals (sent via UTIN) truncates 
the data to the minute level. Thus, while the messages have a precision of 
milliseconds, the data stored only contain minutes. This complicates the processing 
and interpretation of the data. For one, it is difficult to study activities which take a 
short amount of time, as well as small delays. One must also be very cautious when 
studying small samples or individual observations and be aware that a deviation of 
±1 minute can be caused by fluctuations of ±1 second, and that errors of ±30 seconds 
are to be expected.  

Usefulness of data 

With large enough samples and systematic effects, however, even small variations 
can be captured using these data. Consider that something systematically causes a 
delay of ten seconds, then about one sixth of the trains will register as having been 
delayed by one minute, while five sixths will appear to not be delayed at all. Looking 
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at the individual trains, this would be misleading, but averaging across the sample, 
the average will be a delay of ten seconds.   

Interpretation of data 

In summary, this imprecision and truncation leads to some difficulties in 
interpreting the train movement data. The data are thus not suitable for precise 
studies of individual trains with small numbers of observations. However, the errors 
are reduced when considering the duration of activities – be they run or dwell times 
– rather than arrivals or departures, and they tend to cancel our over-large numbers
of observations. And when considering large samples, even small effects on the
level of seconds can, if they are systematic, be captured.

Operational variables 

The first three papers also contain what we call operational variables. These include 
the distance travelled, the number of movements for each train set, the number of 
days a certain train service is run, the number of trains running, and train 
movements, a certain day, the number of interactions between trains at and between 
stations, the number of trains arriving at a certain station within a given hour, and 
other estimates of capacity utilisation at stations. One of these variables is the 
number of interactions between trains, defined as instances when more than one 
train is present at one station, or moving along the same line section, in the same 
direction, at the same time. These operational variables have all been derived from 
the train movement data described above and provide additional information.  

Dwell times and passenger counts  

Alternative datasets were used to conduct more detailed studies of dwell times in 
Paper 5, from commuter trains in Stockholm and Tokyo. Both these alternative 
datasets enabled more precise dwell time studies, with a connection to the passenger 
flows and without the issues of truncation or adjustment to timing points. Such data 
are quite rare, and often considered a trade secret. Cross-referencing against train 
movement data improves the reliability of the observations. By further limiting 
Swedish data to the same time periods as in the Japanese, the analysis was 
performed over very comparable sets of high-quality data.   

Swedish data 

About an eighth of the trains in Stockholm are equipped with an automatic 
passenger counting system, with sensors in the doors to detect the boarding and 
alighting of passengers at stations. This system also logs arrival, departure and dwell 
times with a precision of seconds. The data used in the paper span 5.5 million 
observations over the years 2013-2017, where one observation represents one door 
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at one station stop. While this does not cover all doors of all trains at all stations, 
over time it gives a good picture of the passenger flows and dwell times. The sensors 
need to be calibrated from time to time, and they are not very precise for large flows 
of passengers – these large flows are relatively rare, however.  

Japanese data 

For the trains in Tokyo, the paper utilised a dataset of manual dwell time and 
passenger count observations. At least twice a year the railway company manually 
counts passengers on trains at stations, to estimate the level of on-train congestion. 
This is mandated by the Japanese government, as a way to monitor the peak 
congestion of trains – a matter of considerable public interest. As such, the 
observations are centred on the biggest stations, during the busiest times, where the 
levels of congestion are the highest. From about 6:30am to 9:00am, staff at a number 
of stations (eight of which are done regularly, the others sporadically) observe all 
trains that stop or pass by, making note of exact arrival and departure times, the train 
number and the number of cars, as well as the estimated congestion rate on the train. 
Approximately 50 trains are observed in this manner, per station, and over the years 
2013-2018, more than 4,000 observations were made.  

Connecting the Swedish data 

On a practical level, there is no explicit way to connect the Swedish data with the 
train movements: there is no train identification number in the detailed observations. 
As the timestamps are based on the doors opening and closing, rather than entering 
or exiting the station area, they are also different between the two datasets. Instead, 
we created an algorithm which matched the two datasets together, based on the 
origins and destinations, locations and timestamps of the observed trains. Because 
these trains run with high frequencies, we had to be conservative in the matching 
process, and overlook trains which deviated from the timetable by more than two 
minutes. In this way, we could be confident that the datasets were matched together 
correctly. The cost was a reduction in the number of observations included, but the 
resulting number was still in the thousands, high enough for the needs of the 
analysis.   

Connecting the Japanese data 

As the measurements in Tokyo are made manually, some errors can occur. 
Fortunately, these data did allow for an explicit connection to the train movement 
data. By cross-referencing these two datasets, it was possible to identify and exclude 
suspicious observations, where either the signalling system or the human observer 
could be at fault, again to ensure that only reliable observations were considered in 
the analysis. 
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Timetable data 

The main purpose in using these detailed timetables was to calculate how much of 
a margin has been added, and where it was placed. The size of the margins can be 
expressed in two ways: as a percentage of the scheduled run time without margins, 
and as seconds per kilometre, the first one being more common.  

Scope of the data 

Timetables for trains in Sweden are created and stored by the Swedish Transport 
Administration in the tool TrainPlan. We have received data dumps from this system 
by the Swedish Transport Administration spanning 2011-2018, and in Papers 2 and 
3 we use data from 2015, covering almost 46,000 distinct timetable versions and 
over 1.1 million train journeys totalling about 32.4 million train movements. To give 
an overview: 83% of these were for passenger trains, 14% freight trains, and 3% 
service trains. Forty-three percent of journeys were longer than 100 km, 31% shorter 
than 50, and 25% between 50 and 100. These data include roughly 80,000 changes 
that have been made to the timetables during the ad hoc-process (Trafikverket 
2019).  

Structure of the data 

Each timetable variant comes with a calendar reference, a long string which 
specifies on which days during the timetable year it applies. These long strings can 
be translated into dates, which can then be matched to the train movement data.  

In addition to the calendars, information is given on the level of trains, train arcs, 
and link usage. Link usage roughly corresponds to train movements, although the 
infrastructure is slightly more detailed. Train arcs are series of links which have 
some common properties, such as top speed, train length, and train type. For 
instance, a train might change configuration during its journey, and the displayed 
train number identifier might also change during the journey.  

The infrastructure model also deviates somewhat from that in the train movement 
database. Many stations exist in both datasets, but the timetable data have some 
additional detail, with more timing points. These must be aggregated, so that all 
margins are counted.  

Contents of the data 

The time stamps in the timetable are specified in seconds, both for arrival, departure 
and dwell times. Time supplements are listed explicitly, broken down across a few 
categories: mainly for performance, adjustments, maintenance works and phasing 
against other trains. Time supplements for maintenance works were not considered 
as margins, as they compensate for longer run times, but the three other types have 
been included and aggregated as margins. Performance and adjustment supplements 
are the most common by far, phasing supplements are uncommon.  
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Unfortunately, there is no explicit difference made between dwell times that are 
required for a stop, and those that are intended to act as margins. Similarly, while it 
is possible to calculate the headways between trains using the timetables, there is no 
explicit way of separating between what is the technical minimum, and what is the 
additional buffer time.  

Processing the data 

To measure the distribution of margins within a timetable, we use the indicator of 
Weighted Average Distance (WAD) described in Vromans (2005). This is used to 
describe how the various time supplements in a timetable are balanced, being more 
towards the beginning or end of the journey, or in between. It is expressed as a value 
between 0 and 1, with lower values expressing a shift towards the beginning and 
higher values a shift towards the end of the journey.  

In many timetables, there are instances of negative margins: cases where the 
scheduled time has been manually set to be shorter than the technical minimum, the 
effects of this have been studied in Papers 2 and 3. Finally, variables such as the 
travel time without margins, the average speed of the trains, and the average distance 
between stops, can be derived from the timetable data and add further information. 

Weather data  

Papers 1 and 2 used weather data from the Swedish Meteorological and 
Hydrological Agency (SMHI). From their website we were able to download all 
historical observations of snow depth, temperature, wind strength, precipitation in 
Sweden, which we then used to estimate the weather conditions in which the trains 
operated.  

Scope of the data 

There are more weather stations in the southern and more populated parts of the 
country, so that the distance between train stations and meteorological stations 
differs from place to place. The average and maximum distances for each type of 
observation are summarised in Table 5. While the stations are by no means perfectly 
matched in geography, the weather is often quite similar on the scale of 10-20 km, 
which is the typical range. As with the train movement data, however, the data are 
better suited for analyses across large samples, rather than individual observations, 
where the imprecisions in the data can cause problems.  

Table 5 
Distance between train station and meteorological station across the country 

Distance to station Precipitation Snow depth Temperature Wind speed 

Average (km) 10  19 16 21 

Maximum (km) 44  97 50 91 
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Processing the data 

The weather data in these papers were linked to the punctuality of trains, which is 
an aggregate indicator for trains that often travel long distances, through varying 
weather conditions. There are several ways in which to convert these different 
values to one single variable.  

With wind, we were interested in the highest speeds and chose to take the 
maximum. With temperature, we tried both the average, the minimum and the 
maximum. We ended up choosing the minimum temperature for cold weather, and 
the maximum temperature for hot weather, arguing that we are most interested in 
the extremes, but the choice made little difference in the analysis. For precipitation 
and snow depth, we considered the average, maximum and sum of the measured 
variables. In the end, we found that the sum best explains the effect of precipitation 
on punctuality, while for snow depth, we found the average to work very well. These 
steps were not necessary in Paper 1, where we studied delays and could simply use 
the closest observations in both time and space, without aggregation.   

Temperature is measured about 18.7 times per day and station, on average. The 
average of these was taken to get a daily temperature value for each station. Wind 
strength was measured at fewer stations, with an average of 23 observations per day. 
To convert to a daily wind value for each station, we took the maximum value for 
each day, because we are mainly interested in stronger winds. Snow depth and 
precipitation is measured daily, but with data missing on average 9% and 0.5 % of 
the days, respectively.  

Connecting the data 

To match the datasets, we first had to link the train stations to the nearest 
meteorological stations, for each of the four types of data, transforming the GPS 
coordinates of the meteorological data to the SWEREF99 coordinates used for the 
railway stations. The matching was done separately for each weather variable, 
because not all meteorological stations observe the same variables. As some stations 
lack observations on some days, the algorithm was set to match the two station sets 
for each day, to ensure that an observation could always be given.  

Infrastructure data 

From the Swedish rail asset management database, BIS, we have information on the 
type and location of eight categories of infrastructure elements. These are signals, 
switches, bridges, tunnels, level crossings, cuttings, embankments and fences, all in 
all 82,700 elements. As a pilot study in investigating this data, all but 1,500 of the 
elements could be matched to the railway stations and links found in the train 
movement data. While there are some issues with the reliability and updating of the 
data, knowing the number of switches or signals, for instance, that trains pass by 
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can help explain part of their delays, and to explain part of the phenomenon that 
trains travelling longer distances often tend to have more delays. And while the 
exact locations of the elements may not be easy to map to the train movement data, 
the data can be used to describe the varying complexity of infrastructure across 
different parts of the network. In the future, information might be added to the 
infrastructure data based on the age or condition of the elements, and this could then 
be used to further help explain delays that occur.  
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Analytical methods used 

This section describes how the data have been pre-processed, and the different 
analytical methods we have used. An overview of the different categories and 
variables is presented in Table 6, along with their units, and in which papers they 
have been included.  

Table 6  
Overview of influencing, or explanatory, variables studied in the papers, and their units.  

Category Variable Unit Papers 

Weather Precipitation Millimetres 1, 2 

Snow depth Centimetres 1, 2 

Temperature Degrees Celsius 1, 2 

Wind speed Metres per second 2 

Timetable Average speed Kilometres per hour 2 

Distribution of margins Percentage 2, 3 

Dwell time Percentage, seconds 1, 5 

Negative margins Binary 2, 3 

Number of stops Count 2 

Run time Percentage 1 

Size of margins Percentage 1, 2, 3 

Supplements following stops Seconds 3 

Travel time Hours 2 

Operational Capacity utilisation Percentage 1 

Number of days operated Count 2 

Distance travelled Kilometres 2 

Earlier delay Seconds 1, 5 

Line interactions Count 2, 3 

Month Count 1 

Movements per day Count 2 

Movements per vehicle Count 2 

Passenger count Count 5 

Station interactions Count 2, 3 

Trains per station and hour Count 2 

Weekday  Count 1 

Infrastructure Bridges Count 2 

Cuttings Count 2 

Embankments Count 2 

Fences Count 2 

Level crossings Count 2 

Signals Count 2 

Switches Count 2 

Tunnels Count 2 
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The basic approach 

Throughout Papers 1-3 & 5, the basic approach has been to identify and quantify 
the link, or correlation, between various delay-variables and other explanatory 
variables. An important distinction here relates to the terms of correlation, 
covariation and causation. In these papers, we do not put forward causal 
mechanisms, or attempt to describe the course of events leading up to a particular 
delay for a given train. It is not feasible to do this with such large numbers of 
observations. It is difficult, even when considering individual cases, to disentangle 
various causes and events from one another. A faulty switch might lead to delays, 
but the fault might be because of poor maintenance, because of bad weather, because 
of a flaw in the design or manufacturing process, because of a train passing through 
it at too high speeds, or with wheel defects, or because of a combination of any or 
all of these and more.  

Causation and correlation 

Rather than trying to sort out what, precisely, was the cause of events in cases like 
these, we have stuck to the level of correlation and covariation. While we cannot 
say what, precisely, caused the delay described above, we might, by using many 
observations, conclude that delays are more likely when trains pass by many 
switches, when the weather is bad, when the maintenance of either the infrastructure 
or the vehicles is not up to par, and when the drivers do not respect the speed limits, 
for instance. The variables we consider are thus in many cases proxy-variables for 
what is happening on the ground. While this is not perfect, and it can sometimes be 
difficult to disentangle the effects of some variables from one another – such as the 
effect of travelling long distances from the effect of passing many signals – 
following this approach can point us in the direction of problematic areas, and 
sometimes suggest mechanisms that lead to delays and possible measures that can 
be taken to reduce them. A schematic view of this be seen in Figure 6.   

 

 

Figure 6 
By linking observed deviations, such as delays and recovery, to data covering weather, timetable planning, 
operational factors, infrastructure and passengers (and more), we can identify some patterns. From these patterns we 
can hypothesise about the underlying mechanisms, which lead to the delays. These hypotheses can be investigated 
and tested more thoroughly, and if they are found to be believable, we can then propose measures which address the 
mechanisms and should lead to a reduction in delays.  
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Pre-processing the data 

Data quality can be an important issue for quantitative methods – especially with 
empirical data. Missing, faulty or outlying observations might influence the results 
so that they are not representative. There are several approaches to deal with this, 
and which have been used in the making of this thesis.  

Large datasets 

The quantitative work in this thesis has covered large samples of trains and train 
movements. The analysis in Paper 1 spanned 561,000 observations of run and dwell 
times, Paper 2 analysed the punctuality of over 883,000 trains, Paper 3 was more 
restrictive with 470,000 trains. Paper 5 had the smallest samples of the quantitative 
papers, with the analysis covering about 6,000 dwell times. Especially for Papers 1-
3, this suggests that the effects of the odd error or outlier would be to a large extent 
diluted. 

Aggregation 

With such large numbers of observations, it can often be useful to aggregate 
observations. The underlying dataset used for Papers 2 and 3, for instance, covered 
about 32.4 million train movements – aggregated to about 1.1 million train journeys, 
which were then filtered out further in pre-processing, to the 883,000 and 470,000 
observations mentioned in the previous paragraph. Aggregating from observing 
individual run and dwell time delays to the punctuality of train journeys meant that 
the variation was reduced, and the impact of faulty, missing or outlying observations 
reduced: as the punctuality for a given train at a given station is binary, either 0 or 
1, even an outlying observation with a very large deviation from the timetable is 
reduced to the same scale as all the others.  

Interpolation 

In Paper 2 we were interested in calculating punctuality across all intermediate 
stops, not only the last one. This introduced some difficulty, as there are some 
observations that are missing from the data. These are points where the train was 
not cancelled but there was no record of the train arriving or departing, while there 
were records of it arriving at surrounding stations. Some of these missing 
observations are seemingly random, others are more frequent at stations like 
Arlanda Södra, which are only a few hundred metres from another station, Arlanda 
Norra. Here we used a process of iteratively interpolating the missing observations 
from surrounding and existing ones. The details are described in depth in the paper, 
but we were able to go from 7.5% to 0.1% missing observations. We did not perform 
this process for the other papers because: (1) when we study the delays explicitly as 
in Paper 1 and 5, we want to focus on real observations and (2) when we only 
consider punctuality at the final stop, it is not possible to interpolate the relevant 
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missing observations or to be sure that the train did not stop and turn around at an 
earlier stop. While the interpolation may introduce some small inaccuracies, these 
are less important when the data are transformed into an aggregate indicator like 
punctuality.  

Normalisation  

In Paper 1 we remained on the level of run and dwell times. As it was still relevant 
to compare across differing lengths of line sections and speeds of trains, we 
normalised all durations, delays and margins – to use ratios instead of absolute time 
units, with the scheduled duration as the denominator. This transformation of the 
variables made it easier to compare the figures with each other, and to identify those 
that were outside the normal variation. In Paper 5, where we also remained on the 
level of dwell times, the variation in scheduled times was much narrower to begin 
with, and this step of normalisation was not required.  

Unfiltered delays 

In neither of these papers, dealing explicitly with delays, did we distinguish between 
primary or secondary delays, or filter the delays based on size (although for 
technical reasons, larger delays could not be considered for the commuter trains in 
Stockholm). While filtering based on size can make sense in some circumstances – 
larger delays causing disproportionate displeasure among passengers (Börjesson 
and Eliasson 2011), and smaller delays being easier to deal with using timetables – 
the scope of this thesis is broader, and seeks to give a better understanding of delays 
in general. Since small delays are so much more common, however, filtering out the 
larger delays (with a threshold of say 15 or 20 minutes) would have relatively little 
impact on the averages that we have considered. The standard deviations would be 
more affected by such a filter, but we have not focused on these in this thesis, and 
in any case, the effect would be to make the indicators less representative.   

Cross-referencing  

Yet another approach is to use alternative data-sources to cross-reference and 
validate observations. This was used for both cities studied in Paper 5 and is 
described in the section Dwell times and passenger counts. In the case of Tokyo in 
particular we were able to use the automatically registered data to identify errors in 
the manual observations, and vice versa. In Stockholm, the restrictive set of 
assumptions used to combine the two datasets also limited the variation in the data, 
filtering out any large deviations between the two. This approach is not always 
feasible, and it can be quite restrictive, but it can be a good way to ensure that any 
remaining observations are reliable.   
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Visual analysis and Welch’s t-test 

In all the quantitative papers we used visual analysis of the data, both in tables and 
in plots, to identify the normal range as well as any outlying or abnormal 
observations. This was primarily relevant for the variables used to explain the 
variation in delays or punctuality in Papers 1-3. With such large numbers of 
observations, the visualisation had to be performed after a process of further 
aggregation – it is not feasible to plot hundreds of thousands of observations. In 
Papers 1-3 we performed this aggregation in essentially the same way, grouping 
observations by the value of the studied variables.  

Variation across papers 

In Paper 3 we varied this approach slightly, to see if the results were sensitive to the 
exact grouping. Instead of grouping together trains that exceed a certain threshold, 
Paper 3 rounded the variables and considered the punctuality for trains within these 
groups. The groups could not overlap, which they did in Paper 2. How the results 
vary in detail across the two approaches can be seen in the section Overview of 
papers and findings and in the appended papers, but overall the differences were 
minor.  

Welch’s t-test 

In Papers 1-3 we used a statistical test known as Welch’s t-test, partially to aid in 
the visual analysis – ensuring that we only plotted values where the difference in 
punctuality was statistically significant. This is a variation on the commonly known 
Student’s t-test, which allows for comparisons between samples with unequal size 
and variance (Welch 1947). If 𝑋ത is the sample mean, 𝑁 the sample size and 𝑠ଶ the 
sample variance, the t-statistic 𝑡 and the degrees of freedom 𝑣 are defined as: 
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These statistics were then compared to a two-tailed t-distribution, to see if the 
difference in sample means was statistically significant or not. In Paper 1 this test 
was used twice per studied variable: once to see if it had an influence on run time 
delays, and once for dwell time delays. In Papers 2 and 3 it was used to ensure that 
we did not include values which covered so few observations that we could not be 
sure of their effects. A threshold of 0.01 was set, but in many cases the p-values 
were much lower, frequently approaching 0. In other cases, however, the differences 
were not significant. Examples for this are when wind speeds were studied in Paper 
2: only once the wind speed reached 5 m/s did the punctuality begin to be affected, 
speeds of up to 4 m/s had no statistically significant impact.  
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Curve fitting 

For each plot in Papers 2 and 3, we were interested in describing the shape of the 
relationship and thus tried to fit various functions to the scatter diagrams – choosing 
that which provided the best fit. As this was done on aggregated data, the plotted 
observations each had different weights – sometimes differing by multiples of 
several hundred. In Paper 2 we relied on the t-tests and did not use these weights 
when fitting the trendlines, rather assigning equal weight to every (aggregated) 
observation and fitting according to the Ordinary (unweighted) Least Squares. In 
Paper 3 we instead used Weighted Least Squares, with the number of observations 
per group used as weights. Overall, this choice made little difference to the results.  

Ordinary Least Squares Regression 

Papers 1, 2 and 5 also used ordinary least squares regression to varying extents. In 
Papers 1 and 3 this was mostly to see which factors had statistically significant 
impacts, and which did not. In Papers 2 and 5, regression analysis was also used to 
see to which extent the explanatory variables could explain the variation in 
punctuality or dwell time delays, respectively. One estimate of this is the coefficient 
of determination, the R2 or adjusted R2, of the regression model. Paper 5 included a 
separate set of regressions for this express purpose, including both squared variables 
and interaction terms, intended to catch non-linear and interaction effects in the data. 
Such a model is, however, too complicated use in practice. A second set of models 
was estimated with only linear effects, and no interactions, to provide at least a 
rough model for how to adapt the scheduled dwell times to the flow of passengers 
at a given station. In this case, the coefficient estimates were more important. Thus, 
the regressions were used to (1) check the statistical significance of any effects, (2) 
check the predictive power of the data, and (3) provide useful coefficient estimates.  

Predictive power 

The predictive power of these regression models has varied substantially – from 
about 4% in Paper 2, to 40% in Paper 5. There are several reasons for this difference. 
For one, the scope is more well-defined, with only commuter trains in either 
Stockholm or Tokyo, in the morning rush hours of weekdays in April or November 
– compared to all passenger trains in the Sweden for one full year. The variation 
was thus much smaller to begin with. Second, is that punctuality, studied in Paper 
2, is an aggregate indicator which is less granular and detailed than the dwell time 
delays studied in Paper 5. The cause of events is much more complex for the former. 
Third, the models in Paper 2 did not include squared or interacting variables – in 
Paper 5 this inclusion approximately doubled the coefficient of determination. This 
simply suggests that the problem studied in Paper 2 is more complex, and less well-
suited for predictions – not that the regressions there are any worse or less valid.  
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Interviews with timetable planners 

To produce the material for Paper 4 (and parts of Paper 3), we carried out semi-
structured interviews with timetable planners working at the Swedish 
Transportation Administration’s office in Malmö. Each interview was 
approximately an hour long, recorded, and transcribed in full, which resulted in 
written material of around 50 pages. The results were analysed by manual 
categorisation and concentration of meaning.  

The interviewees 

The Swedish Transport Administration employs about 20 long-term timetable 
planners, who work chiefly in the annual timetabling process. In addition to these, 
there are short-term timetable planners who work in the ad hoc-process. The 
Swedish railway is divided into eight regions, and the southernmost region is 
planned from the office in Malmö by four timetable planners, all of whom we 
interviewed. Two of the planners were men and two women. All of them have 
worked in the industry for many years, at least since 2003 and going back as far as 
1985, and with timetables for nine or more years. The region they plan for is a sort 
of microcosm of the railway network in Sweden, and it contains a very diverse mix 
of railway lines, train traffic and capacity utilisation.  

Motivation 

We used a qualitative method because this allowed us to effectively study the values 
and priorities of those involved. In this choice of method, we thus applied a 
qualitative approach on a topic that is typically studied using quantitative methods. 
We prepared an interview guide based on four areas which were identified before 
the interviews: (1) guidelines and support, (2) rules of thumb, (3) feedback loops, 
(4) trade-offs, with a handful of guiding questions in each area.

Processing 

The process of analysing the transcribed material was carried out in sequence. The 
first step was to sort the different interviewer-interviewee exchanges by area, rather 
than chronologically – what is often called categorisation. The second step was to 
concentrate the meaning of the answers by cutting superfluous words and sometimes 
reformulating entire paragraphs into a few sentences. This process reduced the 
volume of text from 24,500 words to 4,500 and enabled a better overview of what 
was said. After the interview answers were concentrated, they were sorted into 16 
new sub-areas, and the contents then summarised further, reducing the volume from 
4,500 to 500 words. This made obtaining an overview of the contents manageable.  
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Alternative reading 

The analysis in Paper 4 is based on an alternate reading of the interview responses: 
instances where the planners described feedback from dispatchers about errors in 
the timetable. Several of their statements could explain why timetabling errors 
sometimes happen; these were condensed into a list of eleven reasons. At this point, 
we looked for different ways to group and categorise the answers, looking for 
themes on a higher analytical level, and came up with the three following categories, 
which we use in the analysis: (1) “missing tools and support”, (2) “role conflict”, 
and (3) “single-loop learning” (see Argyris & Schön, 1996). These three categories 
are used to explain and discuss the reasons behind the errors more deeply.  
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Research Process and Results 

This section briefly describes each of the five papers: how they are structured, how 
they lead into one another, and how they fit together. The connections are illustrated 
in Figure 7.  

The papers follow the basic format of describing the situation, analysing it, and 
presenting recommendations for how to improve the situation. Describing the 
situation entails collecting, processing and summarising the data. In Papers 1 and 5 
this is about the distribution of delays, in Papers 2 and 3 about the level of 
punctuality and how this varies over time and for different types of trains, and in 
Paper 4 about describing the situation of the timetable planners and the different 
errors that they sometimes make. Analysing the situation consists of linking 
different types of data together, running regressions, performing t-tests and creating 
plots, in the quantitative papers. In Paper 4 we analysed the transcripts more closely 
to find the reasons that errors are sometimes made, and to categorise them into 
themes.  

Finally, based on the analysis, all the included papers propose practical measures 
that can be taken to improve the situation and reduce delays. Most of these measures 
relate to timetable planning, as such changes are quite inexpensive and quick to 
carry out, while, as we show in the papers, they would have real effects on delays 
and punctuality. Others focus on physical changes to the infrastructure, or on 
changing some operational aspects. These recommendations have been collected in 
a separate section.  
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How the papers build on each other 

This section briefly describes how the pilot study in Paper 1 set the stage for the 
following papers, and how these flowed from and built upon one another. This is 
illustrated schematically in Figure 7.  

Figure 7 
A schematic illustration of how the five papers are connected. Paper 1 is the pilot study, and both its findings and 
basic methods lead directly to Papers 2 and 3. The finding that most delays occur at stations, rather than between 
them, is also the basis of Paper 5. Paper 2 extends the approach from Paper 1 to more data and more factors, but still 
shows a big role for timetable planning, which inspires Papers 3 and 4. Paper 3 uses the same approach as Papers 1 
and 2, but focuses on timetable planning. It includes some interviews with timetable planners, the analyses of which 
are expanded greatly upon in Paper 4. These interviews also shed light upon the scheduling of dwell times, which 
combined with the findings in Paper 1, lead well into Paper 5, which is focused on dwell times and dwell time delays.    
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The pilot study 

Paper 1 is based on a pilot study, intended to test the basic approach and data to be 
used in the research, and to help direct the topic of the research. We limited the 
geography to Skånebanan, a regional railway line in Southern Sweden, and used 
one full year of observations, 2015.  

The basic approach 

The basic approach was to link train movement data with other relevant datasets that 
might help both explain the delays that occur and provide ways to reduce them. In 
this paper we also had access to timetable data showing the level and distribution of 
margins, to weather data including temperature, wind, precipitation and snow depth, 
and to data on theoretically estimated capacity utilisation.  

Run and dwell time delays 

One of the innovations in this first paper was to consider run and dwell time delays 
separately, to identify more clearly when and where the delays occurred. This led to 
the result that the risk of being delayed was a great deal higher at stations, where as 
many as 40% of dwell times took at least one minute longer than scheduled. This 
was one of the key drivers behind later performing the study described in Paper 5, 
focusing more on one aspect of what happens at stations, namely the exchange of 
passengers.  

Other findings 

The other main findings, to be followed up in later papers, were that the details of a 
timetable were strongly associated with the risk of delays, that weather had 
important but somewhat complicated impacts, and that theoretically derived 
indicators of capacity utilisation were not so strongly linked to delays. These 
findings, and the success of the basic method, led on to Papers 2 and 3.   

The subsequent papers 

Extending and broadening 

Paper 2 is basically an extension of Paper 1, both in that it considers the national 
railway network instead of a single line, and in that the number of influencing 
factors considered is greatly increased. Beyond some refinements and new variables 
from the previous datasets, a dataset of infrastructure components such as switches, 
signals, tunnels, bridges and more was added. The idea is that breakdowns in 
infrastructure sometime cause delays, and that trains passing by many components 
are exposed to a higher risk of such delays. To deal with the vastly increased number 
of observations, we shifted from studying individual delays to the punctuality of 
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trains. The findings basically validated those from Paper 1, and as it is difficult to 
do much about the weather, and adaptations in the infrastructure can be quite 
expensive and take a long time to perform, while timetables are redone every year 
at very little cost, we chose to look more closely at the role of timetable planning in 
Papers 3 and 4.  

Focusing on the timetables 

In Paper 3 we used the same train movement and timetable data as in Paper 2. 
However, the aim was much more focused on describing the process and strategies 
in timetable planning - particularly around the issue of allocating various kinds of 
run time margins - and evaluating the effects of these strategies. Based on literature 
and interviews with planners, we identified a few different ways to think about when 
to allocate margins and how to distribute them. We then used the actual timetable 
data to see to what extent they were used, and empirical data on train movements to 
identify the real effects on punctuality.  

Focusing on the planners 

Paper 4 is focused on the timetabling process, extending the analysis of the 
interviews with planners, and their situation, from Paper 3. As previous papers had 
illustrated that even seemingly small decisions in timetables impact punctuality, it 
seemed prudent to interview the planners who make the decisions. The interviews 
were centred on four topics: feedback loops, support and guidelines, trade-offs, and 
rules of thumb. In the analysis we then returned to the transcribed material with the 
aim of finding out what errors are made in timetable planning, and what the 
consequences and causes of these errors are. The results align well with the finding 
in Paper 1, that most delays happen at stations. This combination of results leads 
into Paper 5, where we focused explicitly on dwell time delays.   

Focusing on the dwell times 

In Paper 5 we looked closely at dwell times and dwell time delays, following up on 
findings from Papers 1 and 4. The former identifying that most delays occur at 
stations, rather than between them; the latter identifying both that dwell times are 
often scheduled unrealistically, and that these outcomes are not evaluated by 
planners. It is also a complement to the focus on run time margins found in Paper 3. 
The paper is also the result of gaining access to new datasets, from commuter trains 
in both Stockholm and Tokyo, containing observations of dwell times and passenger 
counts, along with the train movements. These data enabled much more detailed 
study of the delays that happen at stations, and into one of the key causes of such 
delays – the exchange of passengers.  
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Overview of papers and findings 

This section briefly summarises the aims, analyses and findings of the five included 
papers. This is summarised in Table 7. 

Table 7  
Overview of papers with aim, dataset, analysis and delay indicator used  

Paper  Aim Dataset Analysis Delay indicator 

1 Improve knowledge on delays and 
the methods to study them  

One regional 
line, 1 year 

Regressions + t-tests + 
plots 

Run & dwell time 
delay 

2 Identify and quantify the impact of 
several weather, timetable, 
operational and infrastructure 
variables on punctuality 

Sweden, 1 
year 

Regressions + t-tests + 
plots 

Punctuality at all 
stops 

3 Study the punctuality effects of 
strategies for allocating margins 

Sweden, 1 
year 

Regressions + t-tests + 
plots 

Punctuality at final 
stop 

4 Describe the situation for 
timetable planners in Sweden. 
Identify common errors in 
timetables, as well as the reasons 
behind them. 

Four 
planners 

Qualitative based on 
interviews 

Errors in timetable 
planning 

5 To study dwell time delays and to 
see how much they can be 
explained using passenger data. 

Stockholm + 
Tokyo, 
several 
years 

Regressions  Dwell time delay 

Paper 1. The pilot study 

The main aim of this paper is to learn more about how delays are distributed and 
about how they are associated with various weather, timetable and operational 
variables. As a pilot study intended to test the approach and methods for future 
papers, the analysis is based on one year (2015) of data from one regional single-
track line in Sweden. 

Method 

In order to analyse the link between the studied variables and the delays we make 
use of three basic steps. The first is to determine if the studied variables had a 
statistically significant impact on the delays, using Welch’s t-test. For example, we 
looked at temperatures below zero and temperatures above zero and used Welch’s 
t-test to test whether the average delays for these two samples are significantly 
different from each other. The second step is to perform linear regressions for delays 
at station stops and line sections respectively, in order to give an overview of the 
trend of each studied variable. The third step of the analysis includes a set of plots, 
each emphasising different aspects of the data. These plots together give a more 
nuanced picture than either the t-tests or the regressions, and visual inspection can 
reveal if the studied variables vary along with delays in any recognisable pattern.  
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Findings 

We find that the delays mostly occur at stations – both the frequency and severity 
are much higher there than on the line sections between stations, where the average 
delay is very close to zero. At stations, the scheduled dwell time explains more of 
the delays than any other factor we consider in the paper. The average delay is 
significant if the scheduled dwell time is lower than 160 seconds, while the greatest 
delay reduction occurs at dwell times of 210 seconds, beyond that the average delays 
increase. On the line sections, the single most important factor is the level of 
margins: most of these delays are caused when trains have no margins, although 
negative margins do occur and contribute to a small degree.  

We find that there are clearly diminishing marginal returns, and that the most 
effective level for delay reduction is around 10%. Both temperature and snow had 
small but statistically significant impacts on delays, and similarly there were small 
but statistically significant differences in average delays across weekdays, which 
can be explained by the variation in the number of trains run. Finally, small arrival 
delays to stations tended to speed up the stops, while early or on-time arrivals are 
on average delayed by around 30 seconds when departing the station. Larger arrival 
delays are associated with even larger dwell time delays.  

Paper 2. Four types of factors 

The purpose of this paper was to identify and quantify the link between several 
weather, timetable, operational and infrastructure variables and the punctuality of 
passenger trains in Sweden. We use data on all passenger trains in Sweden during 
the year of 2015. The method is similar to Paper 1, a major difference being that we 
study punctuality (across all scheduled stops and with a delay threshold of five 
minutes), rather than run and dwell time deviations. This greatly reduces the number 
of observations and the computational load compared to studying delays directly, 
and facilitates the larger study area, while giving a more holistic picture than only 
considering punctuality at the final destination.  

Weather factors 

The results indicate that punctuality is clearly correlated with weather. The 
relationship with temperature is exponential, for both low and high temperatures. 
Compared to the average, punctuality drops by 50% at -30 ℃, and by 26% at 27 ℃. 
Strong winds also lower punctuality: when they exceed 23 m/s, it is about 9% lower 
than average, following a power curve. Precipitation lowers punctuality moderately, 
in a linear fashion, as it is accumulated throughout the journey. And while less than 
6% of the observations in our dataset have average snow depths larger than 1 cm, 
the effect is quite large: at an average of 5 cm the drop in punctuality is about 17.5%-
points, following a logarithmic curve.  
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Timetable factors 

The results regarding timetable variables suggest that margins are correlated to 
punctuality up to a point of around 12 s/km, or 25-30% of the minimum run time. 
Then it is around 2% higher than average, at even higher levels the correlation turns 
negative. Similarly, the weighted average distance (WAD) of margins is correlated 
to punctuality up to a point of about 0.60, where it is about 1% higher than average, 
before the correlation switches sign. When they exist, negative margins are linked 
to, on average, 2.8% lower punctuality.  

Operational factors 

We also consider a range of operational factors. The single best indicator for 
punctuality is the distance travelled by a train, with about 3% per 100 km – the 
correlation coefficient of -0.20 is the highest in our findings. Highly correlated to 
this is the duration in time, where every hour is linked to a decrease in punctuality 
of about 1.6%. Still, increasing average speeds of trains is linked with decreasing 
punctuality, with the airport trains being an exception. This suggests that the ability 
to accommodate heterogeneous traffic, with widely varying speeds on the same line, 
has been overestimated.  

The average distance between stops also appears to be linked to lower punctuality 
in a mostly linear fashion, by about 1.3% for every 10 km. The link between 
punctuality and the number of trains is best described using a quadratic function, 
but the effect is relatively small – the highest punctuality drop we see is 1.2%.  

At stations, the number of trains that arrive per hour is instead linked to 
punctuality in a linear and positive manner: at volumes of at least 20 trains per 
station and hour, the punctuality is about 2.5% higher than average – though this 
may be explained by a high proportion of short-distance commuter trains, with 
higher punctuality. We also see that interactions between trains – instances where 
trains are at the same place at the same time – are associated with lower punctuality: 
by about 1% and 2.2% for interactions at and between stations, respectively.  

Infrastructure factors 

Turning finally towards infrastructure, plotting the number of switches, tunnels and 
fences against punctuality, we find that they fit best to quadratic functions. The 
mechanisms behind these negative synergies are not clear, and should be studied 
further, but we can perhaps speculate that it has to do with difficulties of 
maintenance and complex environments with more trains, people and animals in the 
vicinity that can cause problems. Bridges, signals, level crossings, and cuttings show 
linear relationships to punctuality. Signals have the largest effects in terms of 
magnitude, being associated with punctuality drops of around 22% at the most, 
although this is highly correlated to the distance travelled.  
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Paper 3. Margins and interactions 

The purpose of this paper was to study the effects on punctuality of some strategies 
for allocation of margins in timetables for passenger trains by analysing empirical 
data. The analysis focuses on aspects that relate to the planning of a timetable, i.e. 
the size and distribution of margins, and on margins “within” train paths rather than 
those “between” them. As such, this study does not address headway or buffer times. 

The method and data are similar to Papers 1 and 2, with all passenger trains in 
Sweden during 2015. As we are interested in how margins are distributed along the 
journey and timetable, it is important to consider an aggregated indicator like 
punctuality, rather than looking at each delay directly. Here we use the conventional 
Swedish definition of punctuality: considering the final destination and a delay 
threshold of five minutes. This enables comparisons against Paper 2, and for us to 
see the difference between using different punctuality definitions. Another 
difference is that we use weighted least squares and the bi-square method to help 
produce more robust estimates.  

Interactions between trains 

The results indicate a negative association between interactions and punctuality, by 
about 1.2 and 3.9% each at and between stations, respectively. There is a wide 
variation in the number of interactions at stations: the mode is 1, the mean 2.89 and 
the 95th percentile 8. Interactions between stations are uncommon, occurring only 
for 2-3% of trains.  

Size of margins 

The results on margins indicate a positive correlation, but the slope is shallow at 
about 1/8: to achieve an improvement in punctuality by five percentage points, 
margins of the order of 40% of the minimum run time must be added. However, we 
estimate that when negative margins exist in a train’s timetable, its punctuality is on 
average 4.1% lower.  

Distribution of margins 

The distribution of margins is also of interest. We found that the average WAD of 
margins was 0.56, and that the slope as regards punctuality is about 0.11. 
Supplements are also frequent directly following scheduled stops. They cluster 
around the “round” numbers of 30, 60, 90 and 120 seconds, although not having any 
supplements was the most common. We found that larger supplements, of at least 
60 seconds, were associated with higher punctuality, while it was worse to have 
small supplements than to have none. These findings are statistically significant. We 
hypothesise that there is a tension between the added time supplements and the 
drivers’ behaviour, such that drivers sometimes overcompensate when given small 
supplements, believing their effects to be larger than they really are.  
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Paper 4. Problems in planning practice 

The paper is based on interviews with experienced timetable planners in southern 
Sweden and gives a description of their current situation. It identifies common errors 
in timetables, which influence the punctuality, as well as the reasons behind them. 

Responsibilities 

The planners stated that they have a large individual responsibility in learning what 
is necessary and in performing quality control, and that there is not enough time for 
either. They described receiving frequent comments from dispatchers, centred on 
four areas: (a) crossing train paths at stations, (b) wrong track allocation of trains at 
stations, especially long trains, (c) insufficient dwell and meet times at stations and 
(d) insufficient headways leading to delays spreading. Yet, there is no established 
system or routine to keep track of or utilise comments from dispatchers. The 
planners also feel that important conditions change from year to year, making it 
difficult to draw direct comparisons and learn over time.  

Difficulties 

The planning method has been largely the same for the last 20 years or so, but the 
work is becoming more difficult due to the increasing number of trains and 
engineering works. Problems increasingly occur at the stations, where there is 
insufficient capacity. This is exacerbated by ad hoc planners bending the rules to fit 
in more trains. Trainplan is the main tool used at the Swedish Transport 
Administration and it does not handle track allocation, conflict management, or 
provide topographical information. The more experienced planners work based 
more on discussions with the train operating companies than on a strict application 
of the guidelines. The guidelines were mentioned by all the interviewees, but they 
are interpreted liberally and were not described as helpful.  

Margins 

All four planners use different methods to assign margins. Another common 
practice is to adjust arrival and departure times at stations to occur at whole minutes: 
usually adding, but sometimes subtracting, seconds up to the whole minute. 
Negative margins are often used for local trains on single-tracks at the request of 
train operating companies. The explanations for this vary from person to person, but 
they say that: “it has always been like this”. Only the most experienced planner adds 
a minute after a scheduled stop, although others were aware of the practice.  
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Dwell times 

The planner only deviates from requests when necessary, and this is done in 
dialogue with the applicant. The latter sets the dwell times. The planners say that 
the standard is two minutes, but they give the impression that shorter times 
dominate. Local trains are often given the same arrival and departure times, with no 
scheduled dwell time, to avoid waiting unnecessarily in case the train is delayed or 
the number of passengers is small. Dwell times in excess of two minutes are 
primarily for connections and phasing reasons, and in some cases during winter 
breaks.  

Paper 5. Passengers and dwell times 

The aim of this paper is to study the dwell time delays that occur for commuter trains 
in Stockholm and Tokyo, and to see how many of them can be explained using 
passenger data. Different timetabling policies are discussed, with the intent of 
improving timetable planning and punctuality, and to reduce delays in both cities.  

Method 

In the analysis we used passenger counts to explain the variation in dwell time 
delays. We also had information of the arrival delay to the station. The effects are 
studied using regression analysis, with two purposes: (1) to estimate the degree to 
which we can explain the variation in the dwell time delays, using passenger data, 
and (2) to estimate the impact of passenger volumes on the dwell time delays, in a 
comprehensible way. The first point relates to the coefficient of determination, the 
adjusted R2, while the second has to do with coefficient estimates. To fulfil the first 
purpose, it is relevant to include both squared variables, as well as variable 
interactions, as these may well, in fact, have impacts on the delays and add to the 
share which we can explain. The second purpose, however, is better served by 
keeping the models simple and straightforward, sacrificing explanatory power for 
interpretability.  

Delay distribution 

In Stockholm and Tokyo, minor delays of at most five minutes make up 96 and 97% 
of delay hours respectively. In both cities, the delays mostly occur at stations in the 
form of dwell time delays. In Stockholm, 91% of the total delay time is generated 
at stations, while the corresponding figure in Tokyo is 88%. Thus, small dwell time 
delays make up a clear majority of all delays.  
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Scheduled dwell times 

The railway companies in the two cities have different policies on scheduling dwell 
times. The default in Stockholm is to use 42 seconds regardless of day, time or 
station, with a few exceptions. In Tokyo, the dwell times are adjusted to a much 
greater extent. The range is quite similar to that found in Stockholm, but the 
variation is greater: the 5th, 25th, 50th, 75th and 95th percentile values are 40, 45, 
50, 60 and 115 seconds, respectively. Almost across the board, the dwell times in 
Tokyo are also longer than the 42 seconds used in Stockholm, and adjustments are 
made in five-second intervals, across different train services, stations, and hours.  

Dwell time delays 

Dwell time delays are similar across the two combined datasets. In Stockholm the 
median delay is 6 seconds, compared to 5 in Tokyo, and the 95th percentile values 
are 34 and 30 seconds respectively. About the same proportion of trains make up 
time during the stops, in the two cities, but in Tokyo the ones that do make up 
slightly more time, with the fifth percentile being 21 seconds early there, compared 
to 8 seconds in Stockholm. The range of dwell time delays, from the 5th to the 95th 
percentiles, are quite small and comparable: 42 seconds in Stockholm and 51 
seconds in Tokyo. As these are commuter trains, however, stops are frequent, and 
the seconds add up.  

Explaining the variation 

In both cases, about 40% of the variation is explained using the full models, with 
squares and interactions, and about half as much by the simple linear models. In 
Tokyo, we find that a rise in the congestion rate of 10% corresponds to an increased 
dwell time delay of about one second. For arrival delay and scheduled dwell time, 
we find small negative effects – this implies that trains that arrive late have slightly 
shorter dwell times than otherwise, and that the influence of the personnel and driver 
are somewhat successful in reducing delays. Longer scheduled dwell times see 
slightly less delays, indicating that they include some margins, not just the minimum 
required time for the increased congestion rates. In Stockholm, the estimates are 
about 0.4 seconds per person and car, in either direction. We also see a slight effect 
from congestion, as the number of passing travellers further increases the delays. 
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Results 

In this section we link the results from each of the papers to the overarching aim and 
research questions of the thesis, summarise them, and discuss our findings in 
relation to the research literature. In this way we work towards the overarching aim: 
to better understand the smaller delays that occur for passenger trains in Sweden, in 
order to improve timetable planning so that the delays are reduced. Schematically, 
the process of moving from observed deviations through influencing factors on to 
proposed measures can be illustrated as in Figure 8.   

Figure 8 
By linking observed deviations, such as delays and recovery, to data covering weather, timetable planning, 
operational factors, infrastructure and passengers (and more), we can identify some patterns. From these patterns we 
can hypothesise about the underlying mechanisms, which lead to the delays. These hypotheses can be investigated 
and tested more thoroughly, and if they are found to be believable, we can then propose measures which address the 
mechanisms and should lead to a reduction in delays.  

Linking the papers to the research questions  

A brief summary of how the papers link to the research questions is shown in Table 
8. The links are then discussed in turn, before we turn to the results.

Table 8  
Connection between papers and research questions 

Research Question Paper 1 Paper 2 Paper 3 Paper 4 Paper 5 

RQ1. How are the delays distributed? X X 

RQ2. What factors affect delays, and to what 
extent? 

X X X 

RQ3. How can the allocation of run time 
margins be improved? 

X X X 

RQ4. How can the allocation of dwell times 
be improved? 

X X X 

RQ5. How can the practice of timetable 
planning be improved? 

X X

RQ1. How are the delays distributed, in a broad sense of the word? 

To understand and analyse the delays, we first need to know how they are 
distributed. The distribution can be considered along many dimensions, such as: 
among trains, in time, in space, and by size. The question is primarily addressed in 
Papers 1 and 5, which both consider delays explicitly, without using the aggregated 
indicator of punctuality. Paper 1 makes the distinction between dwell and run time 
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delays – happening at or between stations. It also describes how delays vary with 
weekdays and the months of the year, while Paper 5 describes the distribution by 
size, with over 95% of all delay time being made up of delays smaller than six 
minutes for commuter trains. 

RQ2. What factors correlate with delays, and to what extent? 

Beyond understanding their distribution, we are interested in quantifying the link 
between delays and certain influencing factors, ranging from weather factors, 
timetable factors, operational factors, infrastructure factors and passenger factors. 
Papers 1 and 2 both consider the weather variables temperature, precipitation and 
snow depth, along with various timetable and operational factors, such as various 
indicators of capacity utilisation. Paper 2 also considers wind speed, more 
operational factors, and the complexity of the infrastructure while using a much 
larger dataset. Paper 5 considers the influence of passengers, using more detailed 
data.  

RQ3. How can the allocation of run time margins be improved? 

One common way of reducing delays is to allocate run time margins in timetables, 
so that the train can run faster than scheduled and catch up to the timetable. How 
this allocation can be improved is addressed in Papers 1, 2 and 3. Paper 1 considers 
the size of margin, section by section. Papers 2 and 3 instead consider the whole 
journey, with the total size of margins, the distribution of these margins across the 
journey, the occurrence of negative margins, and, in Paper 3, margins directly 
following station stops.  

RQ4. How can the allocation of dwell times be improved? 

Another way to make a timetable robust as regards delays is to schedule dwell times 
that are longer than necessary, so that any delays are reduced once the train reaches 
the station. These dwell times are considered explicitly in Papers 1 and 5, both of 
which present recommendations. Paper 1 considers the length of dwell times, and 
Paper 5 focuses on shorter stops, particularly for commuter trains. Paper 3 considers 
run time supplements directly following scheduled stops, intended to make up for 
delays that occur when dwell times are insufficient.  

RQ5. How can the practice of timetable planning be improved? 

The process of timetable planning itself can both introduce delays and help reduce 
them. Paper 4 discusses at length how aspects of the timetabling process can be 
improved in this regard, with recommendations about both tools and support, 
routines for systematically evaluating outcomes, and clarifying the role of planners 
at different organisations. Paper 5 also touches upon the timetable planning process, 
focusing on the allocation and evaluation of dwell times.  
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RQ1. How are the delays distributed? 

At stations, not between them 

In Paper 1 we found that the average delay for a train on a line section between two 
stations is very close to zero, while at stations almost half of all stops take longer 
than scheduled, and the delays that do occur also tend to be greater at station stops 
than on line sections. This pattern was found again in Paper 5, where more than 90% 
of all delay time occurred at stations.  

Most are small 

In Paper 5 we found that in both Stockholm and Tokyo, minor delays of at most five 
minutes make up more than 95% of delay hours for commuter trains. For passenger 
trains in Sweden overall, the corresponding figure is about 85%.  

In time 

There are small variations between months, with slightly fewer delays during spring 
and autumn. We also saw small but statistically significant differences in average 
delays across weekdays – although these were almost entirely explained by how 
many trains run each day. Traffic volume does not appear to be a major concern 
however: variations due to a higher number of trains per day are small, and in Paper 
2 we found that punctuality is marginally higher at more busy stations and times.  

Long distances 

Another way to consider how delays are distributed, is that they are larger and more 
frequent for trains travelling long distances. In Paper 2, the single best indicator for 
punctuality we find is the distance travelled by a train, with about -3% per 100 km. 
Closely related to this is the travel time of the journey, where the slope is about 
-1.6% of punctuality per hour. These are well in line with estimates in the literature
showing that distance covered was statistically significant in determining
punctuality.

RQ2. What factors correlate with delays, and to what extent? 

Weather factors 

Both high and low temperatures are associated with large problems in operations, 
and we have identified exponential relationships between how more extreme 
temperatures lead to increasing drops in punctuality. In the extremes, with 
temperatures of positive or negative 30˚C, punctuality can drop by 50 percentage 
points or more, with an almost total collapse of operations. In the face of increasing 
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temperatures and more frequent heat waves, this suggests that more ought to be done 
to increase the railway systems’ resilience to high temperatures.  

Snow also has a clear effect on punctuality. Even with as little as five centimetres 
of snow, average punctuality was 17.5% lower than normal. These effects are 
substantially larger than we have found in the literature, as is the case for cold 
temperatures. The relation appears to be logarithmic, however, so while increasing 
amounts of snow does lead to more problems, the rate is diminishing. This may 
suggest an increased preparedness and ability to deal with snow in the regions where 
large snow depths are often found.  

When it comes to wind, delays appear to increase with increasing wind speeds: 
at ten metres per second punctuality is 2% lower than normal, and when we 
approach storm-level wind speeds of 23 metres per second, the punctuality drop is 
9%. Again, this is a larger effect than we have found in comparable studies from 
other countries.  

Finally, we saw that the more precipitation a train is exposed to, the lower the 
punctuality. The figures are more modest, however, and the variation is only of the 
order of a couple of percentage points.  

In summary, weather can cause considerable delays, and the problems often begin 
even during seemingly normal conditions.  

Timetable factors 

These are discussed under RQ.3-5.  

Operational factors 

Punctuality is negatively correlated with the length of the journey, on average 
dropping by about 3% per 100 km, with the length between stops, and with the 
maximum speed of the trains. These patterns are likely due to problems stemming 
from heterogeneous speed profiles – long-distance and high-speed trains traversing 
multiple shorter distance and lower speed commuter train systems. This hypothesis 
is supported by repeated findings that interactions between trains, especially 
between stations, are associated with lower punctuality (by about 1% and 2-4% 
each, at and between stations, respectively). This issue appears to be more severe 
than the volume of traffic, per se, which only has a small impact.  

Infrastructure factors 

The overall picture is that a simple infrastructure with less components performs 
better. We found a quadratic, negative relationship between punctuality and the 
number of switches. This suggests a potential of gaining disproportionately large 
punctuality benefits by limiting their number, particularly in large stations, where 
the numbers are high and even small gains in punctuality are very valuable. With 
signals, the relationship is linear, and more clearly related to the distance traversed.   
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Passenger factors 

The data on passengers we used in Paper 5 could explain approximately 40% of the 
variation in dwell time delays in rush hours for commuter trains. While by no means 
perfect, this is high compared to other studies attempting to explain delays or 
punctuality with empirical data. It is also a reasonable number, considering the range 
of other factors which affect delays. 

Comparing Stockholm to Tokyo, we find that the latter has about 60% less delays 
per degree of passenger congestion – they are much more efficient at reliably 
boarding and alighting. About half of this effect is due to Tokyo’s trains having 
twice as many doors – the other half can be explained by a combination of more 
appropriate scheduled dwell times, markings on the platforms, platform screen 
doors, more staff, and more discipline among both staff and passengers.  

RQ3. How can the allocation of run time margins be improved? 

Size of margins 

We find that levels of around 10% are the most efficient and effective, this is where 
the big gains are made, and that the benefits diminish at higher levels. This means 
that run time margins for Swedish trains are, in general, sufficiently large, and that 
they could in many cases be reduced somewhat, without major consequences for the 
punctuality of operations. Conversely, it would be quite costly to make major 
improvements in punctuality using only increased margins: to improve punctuality 
by five percentage points, journey times need to be extended by approximately 40%. 
This is not acceptable in most cases. One possible way of explaining the diminishing 
returns of margins is a behavioural response of the driver and other personnel.  

No negative margins 

It is also important to avoid allocating any negative margins. We have seen that in 
2015 about 40% of passenger trains had negative margins on at least one section, 
and that this was associated with a punctuality drop of 3-4%, depending on the 
definition of punctuality. In a time when the punctuality of the railways is about 5% 
lower than the stated goal of the industry, this is a very big and clear effect. 
Arguments about how the negative margins are compensated by positive ones on 
the next sections thus do not seem to hold in practice. 

Distribution of margins 

How the margins are distributed can make a big difference. The important thing is 
that there are margins everywhere – not only for each train, but on every part of the 
journey. Otherwise the risk of delays increases dramatically. Beyond this, we have 
found that punctuality is highest when the centre of gravity of margins is about 0.6-
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0.7. That is, close to the middle, but shifted a little towards the end. While there are 
large variations between trains, the average in Sweden is about 0.56, and could thus 
be shifted slightly to the second half of the journey.  

Margins after stops 

Margins can also be placed directly after station stops – as stops are known to 
generate delays, which can then be recovered directly by a strategically placed time 
supplement. It is important that these margins are large enough – at least one minute 
per stop. If they are smaller than that, delays instead tend to increase.  

One possible explanation for this is a behavioural response: by allowing more 
time exiting stations, the train crew takes more time in executing that activity. In 
this case, they overcompensate. It is possible that this is made worse by the 
truncation of seconds in some sub-systems in the Swedish railway, so that the driver 
believes that the supplements given are larger than they really are.  

These problems disappear if the dwell time is long enough to begin with, without 
compensation from run time margins, and in these cases, punctuality is on average 
about three percentage points higher. The results are slightly better still if the 
compensation is large enough, and with a supplement of at least one minute after 
the stop, the punctuality is yet another percentage point higher.  

RQ4. How can the allocation of dwell times be improved? 

Reallocating time 

In Paper 1 we drew attention to the importance of dwell times. We saw a clear 
relation between the scheduled dwell time and the risk of delays for passenger trains 
on the studied regional line, Skånebanan. In the paper we presented an example of 
how dwell times could be re-allocated to reduce the delays. By setting 80% of dwell 
times to a relatively short 50 seconds, and 20% to 210 seconds, which was the level 
most effective at reducing delays, we estimated that delays on the line could be 
reduced by about 80%, without any increase in travel times.  

The importance of passengers 

Towards the end of the research we returned to the topic of dwell times. Paper 5 in 
particular deals to a large extent with how they can be adapted to the number of 
passengers, with case studies from both Stockholm and Tokyo. In the first case, 
dwell times for commuter trains are generally not adapted to passenger volumes, 
while such adjustments are very common and important in Tokyo. This helps to 
keep their punctuality higher than in Stockholm, despite having many more trains, 
and many more passengers.  
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Often overlooked 

We have also found that dwell times are often overlooked in Swedish timetable 
planning. This is seen in the interviews in Papers 3 and 4, where timetable planners 
describe that they often receive feedback from dispatchers about how dwell times 
are insufficient, while there is no discussion or thought about how to adjust and 
improve these dwell times.  

This is also seen in Paper 5, where the difference in approach and object of focus 
between planners in Sweden and Japan becomes evident. While planners in Japan 
work in a very conscious and dedicated way to fine tune dwell times, planners in 
Sweden have long used the same template, with only a few exceptions. Both Papers 
1 and 5 describe how most delays in Sweden arise at stations, indicating that the 
dwell times are not as robust, and do not contain the same level of margins, as the 
sections between stations.  

Old strategy 

We suggest that timetable planners in Sweden focus more on allocating appropriate 
dwell times. For too long, dwell times have been treated like some sort of residual, 
been scheduled with a rough template that has been applied too liberally, or 
knowingly been given too little time. There has been a strategy that delays can arise 
at stations, to be recovered on the line, where there are margins.  

While this strategy could work, in principle, we have not found evidence that it 
is successful. While there are often large margins on the line sections between 
stations, they do not make up for the delays that occur at stations. Instead, it leads 
to systematic delays at stations, which introduces instability in the timetable, 
disrupts the scheduled interactions between trains, and largely leaves the operations 
to dispatchers rather than planners. Regardless of whether this strategy has been 
successful in the past, it does not work with today’s complex and dense traffic.  

New strategy 

The baseline must be to allocate realistic dwell times, to allocate the time that it 
takes to complete a stop. Not the least amount of time that is possible, or a time that 
is sufficient for half of all trains, but the time that it should take for the given train 
at the respective station and time. This implies a move from rough rules of thumb, 
and that dwell times may well vary from hour to hour, station to station, and 
potentially from train to train. It may well be permissible to schedule longer dwell 
times than necessary, and to use them as a type of margin to absorb delays, but not 
to deliberately create delays to artificially speed up station stops. 

Of course, it will not be possible to entirely avoid dwell time delays, just as it is 
unrealistic to allocate run times that are never exceeded. But the current state is 
shifted heavily towards too short dwell times, and to dwell time delays being much 
more common than run time delays.  
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RQ5. How can the practice of timetable planning be improved? 

Improved planning software  

For Papers 3 and 4 we interviewed timetable planners and found several weaknesses 
in the process for timetable planning. Based on the interviews, we found that the 
main planning software, Trainplan, supports neither conflict detection nor track 
allocation at stations. Both of these lead to recurring mistakes in planning, to delays, 
and to problems for dispatchers. The software was introduced around the new 
millennium, and has thus been used for almost two decades, without fixes to these 
issues.  

While a new tool (TPOS) is currently under development, which is intended to 
address these issues and modernise the planning process, the project is delayed, and 
it is unclear whether all the features will be implemented. This is reminiscent of the 
introduction of Trainplan, and it is thus important to emphasise these issues and to 
ensure that they are addressed by the new tools, and that these are implemented.  

Improved documentation 

There are also deficiencies in the documentation, in a broader perspective. 
Timetable planners describe how important information about which interlocking 
systems are in use at various stations, how they work and how they must be handled 
from a planning perspective, is primarily documented in binders which the planners 
themselves must navigate, interpret and memorise. This is difficult and leads to 
mistakes being made. The guidelines used for planning have also remained in use 
for many years without major revisions, despite not giving much support in the 
issues which planners describe struggling with, and they are interpreted very 
liberally.  

More systematic evaluation 

Connected to the lacking documentation, we see in Papers 3 and 4 that there is no 
systematic evaluation of timetable planning. It is up to each planner to find out what 
works well, and what should be improved. There are no tools to help with this, no 
detailed statistics, and far too little time. They also describe how important 
preconditions in the requests for train paths change from year to year, so that the 
problems and complaints that have arisen throughout one year cannot so easily be 
applied to the next year. This makes it very difficult to achieve a systematic 
evaluation, and evolution, of the timetable quality.  
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Clarified roles and responsibilities 

We see in Papers 3 and 4 that there is a lack of clarity and a role conflict in the role 
of timetable planner at the infrastructure manager – the Swedish Transport 
Administration.  

On the one hand, they are responsible for making sure that the timetable comes 
together, is feasible, and maintains a high quality. On the other hand, they are in 
close contact with timetable planners at the train operating companies. These 
companies run the trains, are closest to the customers, and ought to know best how 
they want to their timetables to be planned. Sometimes this leads to conflicts and 
situations where the train operating company would rather that the timetable 
planners at the infrastructure manager be less stringent with the guidelines and what 
would make for a robust timetable, to be able to run more trains.  

At the infrastructure manager the planners also appear to interpret the timetable 
requests as well motivated and thought through. They strive to make as few 
deviations from these as possible. The picture at the train operating companies can 
be quite different: that they do not have the same resources for timetable planning, 
that they usually stick to what they did last year, or to commercial demands, trusting 
that the infrastructure manager will ensure that the timetables maintain a high level 
of quality. Of course, this situation can lead to a gap, and to the quality suffering, as 
both parties assume that the other one has the responsibility.  

Improved feedback loops 

The results presented in Paper 4 suggest that both researchers and practitioners 
should focus more on identifying and improving the relevant feedback-loops, to 
achieve a higher level of learning among those involved.  

Single-loop learning is both a technical and organisational issue. Since the tools 
are lacking, planners are hard-pressed just to finish their work. There is simply not 
sufficient time to perform quality control. Because there is no systematic review of 
the quality and outcome, there is no way to begin to improve the rules and 
guidelines, or to create a better timetable. As the tools do not provide enough 
assistance, the focus is, and must be, on creating a timetable before creating a better 
timetable.  

Creating a better timetable is what we imagine the timetable planners of the future 
will be tasked with doing, when more of the work has been automated and the 
software tools provide far more assistance. Rather than trying to manually execute 
all the details, they will choose which heuristics, goal-functions and constraints to 
apply in different scenarios, to achieve the best overall results. An illustration of this 
wider feedback-loop, or double-loop learning, is found in Figure 9.  
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Figure 9 
A schematic illustration of the timetable planning process with single- and double-loop learning. In the case of single-
loop learning, the timetable planner uses comparison between scheduled and realised time to inform their own 
discretion. In double-loop learning, the comparison is used to inform the understanding of various factors relating to 
weather, timetables, the infrastructure, passengers, and operational concerns, and this improved understanding is 
used to improve the requests, run time calculation, and timetable planning guidelines. The outcome is then less 
dependent on the discretion of individual planners, and the planners can focus more on improving the run time 
calculations and guidelines, as well as potentially helping the train operating companies make more informed 
requests, than on remembering countless details, tweaks and exceptions to the guidelines. 

International relevance 

This study focuses on Sweden. In the literature, we have seen large similarities with 
the United Kingdom, which uses the same tools, and has a similarly deregulated 
market. The new tools that are currently being implemented in Sweden have 
recently been implemented, by the same supplier, in both Norway and Denmark. 
Experts from the infrastructure manager and largest train operator in the Netherlands 
(Olink and Scheepmaker 2017) describe similar issues with errors causing delays 
and infeasibility there.  

We believe that the planning process is largely similar across most European 
countries, although the level of deregulation and competition between train 
operating companies for capacity may vary, as will the tools and contexts.  
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Concluding Discussion  

Recommendations 

This section describes our recommendations about what to do, in practice, based on 
the results and conclusions. Of course, there is some overlap between this and the 
conclusions themselves. The recommendations are placed in four clusters: 
allocating margins, scheduling dwell times, timetabling process, and physical 
changes. All of them are intended to reduce delays and improve punctuality, while 
being highly cost-efficient. In practice, these can be considered for implementation 
by the Swedish Transport Administration in their new planning tool TPOS, and by 
other infrastructure managers and railway operators.  

Size and allocation of margins 

Margins – or run time supplements – clearly play an important part in timetables. 
However, the process for allocating them currently takes too long, and is too 
arbitrary, and it both could and should be automated to a greater extent, so that 
planners can spend more time and energy on more difficult and important issues.   

New baseline 

When timetables are created, one of the first steps is to calculate run times. 
Currently, these calculations assume that trains run 3% slower than possible, 
essentially adding an automatic level of margins of 3%, in excess of the levels we 
have discussed in the thesis.  

We recommend that the procedure is changed, to instead automatically add 
margins of 10% to all run times. This is a good base level and compromise, higher 
than what is common internationally, but lower than what is currently added 
manually, and it is very simple to do. This automatic addition should replace the 
current practice of node supplements, which is confusing, time-consuming and 
highly arbitrary. Ideally, the margins should be made explicit and displayed so that 
both timetable planners and train drivers can easily see them.  
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Automatic distribution 

Taking this a step further, the computer could be instructed to add margins in such 
a way that the weighted average distance comes in at around 0.67, while keeping 
the margins as evenly distributed as possible. This is a slightly more complicated 
adjustment, but it can be performed automatically either ahead of time, or on the fly, 
and it should improve punctuality by about one half of a percentage point.  

In parts of the network that are not so highly congested, it might also be worth 
adding a time supplement of 60 seconds directly following a scheduled stop, to 
further absorb delays that often happen there. While this slows down the flow of 
trains leaving the station and reduces the capacity, making it infeasible in some 
cases, in many cases this is not a problem, and the punctuality of the affected trains 
would likely improve by about one percentage point. 

No manual rounding 

Planners should be instructed not to concern themselves with adding or subtracting 
seconds so that the trains arrive to and depart from stations at whole minutes. These 
adjustments take a lot of time to do while they neither improve the quality of the 
timetable, nor are necessary for the technical systems, passengers, or train drivers. 
In the rare cases that the systems do require times on whole minutes, these 
adjustments can and should be made automatically by the computer. Timetable 
planners should not spend any time on this.   

No negative margins 

Negative margins should neither be tolerated nor possible to add in the timetabling 
software. With an increase in the automatic, base-line margins, it is conceivable that 
manual subtractions of a few seconds would still leave a positive level of margins, 
but it should never be possible to reduce margins to below a level of about 5%. If 
the trains do not fit in the timetable, they should not be run.  

Role for manual additions 

Manually adding to the margins should still be allowed, but with the purpose of 
coordinating train paths, rather than absorbing delays. Another permissible case is 
when maintenance works are being carried out and margins are needed to 
compensate for reduced speeds, although properly recalculating the run times and 
rescheduling meetings and overtakes is much better than simply adding margins, 
this may not be realistic in the short term. 
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Summary 

If all these recommendations were implemented, the size of margins would decrease 
somewhat for most trains. On average, the difference may be of the order of about 
five percentage points of the run time. Because there are diminishing marginal 
returns, this reduction will not have a significant impact on punctuality, likely of the 
order of five tenths of a percentage point, and it will be more than made up for by 
the improved efficiency of the allocation, and the reduction in mistakes. The time is 
better spent on increasing dwell times, which are systematically too short.  

Scheduling dwell times 

Bigger role in planning 

Instead of focusing so much on margins, which can easily be automated, this thesis 
suggests that more time and attention should be spent on dwell times. This includes 
the efforts of the planners who schedule the times, the dispatchers and train crews 
that are engaged in operations, and for managers, analysts, planners and others who 
evaluate the outcomes. The ambition should be to use realistic dwell times, so that 
the stops routinely take the amount of time that they are supposed to. Again, it is 
illustrative to compare against run times, as in Paper 1: the probability of delay is 
three times higher for dwell times. If dwell times were scheduled realistically, 
instead of optimistically, the frequency and magnitude of these delays would decline 
rapidly, and a large portion of all delays would be eliminated. While the scheduled 
travel times would increase somewhat, which could be compensated by reduced 
margins between stations, adjusting for systematic delays does not increase the total 
realised travel times.  

Higher precision in planning 

Our recommendation is to vary the dwell times by train type and station, in intervals 
of 5-10 seconds, depending on what is most practical from a technical standpoint. 
In principle, the times should also be varied over time, so that they are shorter in 
off-peak hours, at weekends and other times when the flows of passengers are lower. 
Practically speaking, however, this step is difficult to implement right away, and 
there are benefits to having the same timetable all day and every day, even though 
there are some losses in efficiency. In this case, it is much better to plan for the high 
flows during peak hours, when dwell times are longer and the risk of delays is 
higher, and to accept slightly longer times in the off-peak periods, than to be 
efficient while off-peak and constantly struggle with delays when the flows of trains 
and passengers are the highest. The arrival and departure times should be displayed 
to the drivers and dispatchers, but not necessarily to the passengers, with a precision 
of seconds. 
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Periodic delay recovery 

To further improve punctuality, a good strategy can be to make about one in five 
stops significantly longer than the others, of the order of 3-4 minutes. This has a 
stabilising effect on the traffic and helps to return trains to their scheduled paths. It 
is more relevant to use for trains that travel long distances, and where the stops are 
less frequent. The punctuality is much lower for these trains, and the extensions to 
travel time are not so big across the whole journey. For local trains that make many 
stops, the increases to travel time would be considerable, while the punctuality is 
already quite good.  

Systematic evaluation and adjustment 

Finally, it is important to evaluate the outcomes of the dwell times, and to adjust 
them going forward, at least once per year. These evaluations should be done by 
station and train type, and the lessons are easy to apply in practice. In order to do 
this in a rational way, the infrastructure manager should systematically collect data 
on actual dwell times – on the level of seconds – from on-board systems, or at least 
require that the operators report the distributions of dwell times by train type and 
station, as a part of the information required to allocate capacity. These data are 
much more direct and useful for timetable planning than aggregate indicators such 
as punctuality and are in fact a precondition for proper scheduling.  

The practice of timetabling  

Clarify roles and responsibilities 

The Swedish Transport Administration should assume clear responsibility in 
ensuring that timetables maintain a high quality. Currently, there is some uncertainty 
if they should do so, or if that should be the domain of the train operating companies. 
As this requires some highly specialised expertise and resources, which not all 
companies possess, the baseline must however be that the infrastructure manager 
performs this role until the companies clearly express the interest and display the 
ability to do so. The infrastructure manager is also the only actor that can properly 
coordinate both traffic and maintenance projects from a multitude of companies. If 
some companies later decide that timetable planning is a core function for them, and 
invest in this capability, this responsibility can perhaps be shifted. As it stands, 
however, the only feasible solution is that the infrastructure manager assumes the 
responsibility.  
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Improve the tools 

To enable the timetable planners to fulfil this responsibility, better tools are required. 
These tools should, among other things, be able to: (1) automate the allocation of 
margins, (2) solve the issues of rounding to whole minutes, (3) eliminate the practice 
of negative margins, (4) detect conflicting train movements, (5) display the 
topography, (6) suggest reasonable dwell times, (7) support track allocation at 
stations and (8) keep track of feedback from dispatchers. In order to make the 
feedback loops shorter and address small mistakes, it should also be possible to 
make minor changes to timetables during the year, without having to create entirely 
new train identification numbers. Either on a continual basis, or on one or two 
occasions during the year, before the next annual timetable takes effect. While each 
change might only affect one or two trains, and only marginally affect punctuality, 
it promotes a culture of constant, gradual improvements and fine-tuning, which is 
very important in the long term.  

Systematic evaluation and improvement 

Equally important is to make the evaluation of previous timetables and outcomes a 
routine part of the process and job description of timetable planners, and to allocate 
enough time for this. Many of the other recommendations we make regarding 
timetable planning free up time, which can then be used for these purposes. In line 
with shifting more attention towards evaluation, one key step is to improve the 
documentation of policies, strategies, guidelines and analyses, so that these things 
are clearly written down. Another part of this is to organise joint conferences and 
seminars where timetable planners can meet across regions, organisations, and 
sometimes countries, to share experiences, discuss policies, communicate with one 
another, and learn from research.  

Seconds, not minutes 

Finally, some of the problems we have identified in timetables and timetable 
planning occur because planning, operation and evaluation is done on the level of 
minutes, rather than seconds. That dwell times are considered as residuals is often 
due to planners wanting to have departure times at whole minutes. The same holds 
for many both positive and negative margins, caused by a belief that some scheduled 
times need to occur at whole minutes. The first leads to waste and the other causes 
delays, and in either case the timetable planners spend time and mental capacity on 
matters that do not create value, rather than spending time on creating a high-quality 
timetable. Using minutes rather than seconds also makes it more difficult for train 
drivers and dispatchers to operate in a good way, because they receive feedback 
about being ahead of or behind schedule only when the deviation has reached one 
or more minutes.  
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Some physical changes 

Markings on platforms 

Finally, we can recommend some physical changes in the infrastructure that would 
likely reduce delays. The first is to make physical markings on platforms where the 
trains and doors will stop. If train drivers stick consistently to these, it will become 
clear to the waiting passengers where they should stand. This makes the process of 
boarding and alighting faster and more reliable, both because it distributes 
passengers more evenly along the platform, and because those waiting to board are 
not standing in the way of those getting off the train. For trains with seat 
reservations, the benefits are even greater, as passengers who know where to board 
will do so more quickly, without having to move along the platform once the train 
has arrived. As small delays at stations are a very big part of the problem in Swedish 
railways, addressing the root cause in this way is an important step towards 
increasing overall punctuality.  

Reduce the number of switches 

Another measure that can be taken, is to gradually begin removing non-critical 
switches that are rarely used. They are statistically disproportionately connected to 
decreased punctuality, introduce more complexity, risk breaking down, and need to 
be maintained. This maintenance diverts resources from more useful infrastructure, 
which in turn breaks down more frequently than would otherwise be the case. By 
getting rid of these rarely used switches, there will be fewer elements that can break 
down, and more time and money left to maintain those that remain, in a virtuous 
circle, with less delays and higher punctuality as a result. 

Improve the resiliency  

Finally, a programme should be initiated to improve the resiliency of infrastructure 
with regard to weather and climate, particularly temperature and snow. The Swedish 
railways are currently very vulnerable to adverse weather, which will only become 
more frequent and extreme as a result of climate change. Types of measures include 
shielding signals and other electronics from direct sunlight, which can lead to 
overheating even during moderate air temperatures, limiting the number of switches 
so that snow and ice cause less problems and are easier to deal with, and making 
sure that the drainage is sufficient, to avoid flooding.  
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Some Reflections 

Further research 

More on dwell times 

One of the contributions of this thesis is to show the importance of dwell times – a 
large part of all delays occur at station stops. Meanwhile, one of the key differences 
when interviewing timetable planners in Sweden and Japan is precisely the 
awareness of dwell times. Put together, this suggests that dwell times should receive 
considerably more attention in research as well as practice. This should cover the 
scheduling of appropriate dwell times, better understanding the different 
mechanisms that lead to delays at stations, coming up with measures to address these 
mechanisms and delays, and testing the effectiveness of these methods both in 
simulations and in practice.  

Interactions and dispatching decisions 

Interactions between trains is one of the factors most clearly linked to decreased 
punctuality in this thesis. Many of these interactions are due to some kind of 
dispatching decisions – holding a train back, shifting a train meeting from one 
station to another, etc. These interactions and decisions can be identified and 
evaluated using historical data such as that used in this thesis. This can even open a 
window into understanding dispatching strategies used in practice – an 
understanding which could improve the quality of dispatching and the punctuality 
of operations. The same methods can also inform simulation models about how 
dispatching is performed in practice, and thus help to further calibrate and validate 
dispatching modules.  

Climate adaptation pathways 

We have shown that the Swedish railways are not robust when it comes to variations 
in weather and are particularly vulnerable to high temperatures and extreme weather 
conditions. With climate change, these conditions will become increasingly 
prevalent, and the railways must adapt. There is a large body of research around this 
subject in other sectors, partially under the label of adaptation pathways, and there 
is a lot more to be done to this end in railway research. Understanding more 
precisely which components break down, how these breakdowns can be avoided, 
where the problems are the largest and where they are expected to increase the most, 
when measures can and must be taken, and how to avoid investing in the wrong 
things, are just some of the questions that can and must be addressed.  
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Reflections on methodology 

The basic approach 

The large amount of data used in this thesis provided a good opportunity for 
quantitative methods. With such large datasets they are able to detect and quantify 
even subtle influences on delays and punctuality and – with the help of visualisation 
– to describe the approximate shapes of these effects. Another strength of a
quantitative and empirical approach is that it is possible to detect and evaluate both
interactions of trains, and the various choices and strategies used by timetable
planners. There are some difficulties, however. Visualising data, for instance,
becomes difficult – on a practical level – when the number of observations range
from hundreds of thousands to tens of millions.

In some of the papers where we studied a wide range of factors, it can also be 
difficult to disentangle the effects of one influence from another. While methods 
like regression help with this – and are to some extent made for this – the results can 
be difficult to visualise and interpret when the number of factors is large. It can also 
be quite difficult to establish precise mechanisms of causation or chains of events 
that are easy to explain to practitioners, using large amounts of data. It is one thing 
to establish that there is a statistically significant link between high temperatures 
and decreased punctuality, for instance, and quite another to explain why a certain 
train that ran on a given day was delayed to the extent that it was.  

Truncation 

One issue with train movement data in Sweden is that it is truncated to the level of 
minutes, such that the seconds are lost. This, in combination with the fact that the 
data are based on the occupation of signal blocks rather than the arrival to and 
departure from the platform, causes imprecision in the data. When run and dwell 
times are calculated from this data, however, these errors will tend to cancel out 
over large enough samples. One should take care when considering individual 
observations, however, as these imprecisions could mean that random variations of 
a few seconds give observations that vary by up to two minutes in length. These 
errors are not systematic, however, and with large enough samples, the estimates 
should not be biased to any real extent. The issues around truncation also become 
much less relevant when dealing with punctuality, than with individual 
observations.  
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Aggregation and punctuality 

An additional benefit of working with punctuality rather than series of individual 
run and dwell time observations is that it dramatically reduces the number of 
observations – often by a factor of one hundred or more. This means that any 
calculations are much easier to perform. As the computational power increases, 
however, this aggregation into punctuality becomes less relevant, and it is preferable 
to work with more direct observations of delays. Partly because the increased 
number of observations makes it easier to determine whether effects are statistically 
significant or not, and partly because delays are a more precise and direct indicator 
of what is going on. This can result in a greater explanatory power of the estimated 
models.  

The interviews 

Interviewing planners was very rewarding. They were very frank and forthcoming, 
and provided good leads and new information that would not be possible to acquire 
in other ways. Transcribing the material was very time consuming, but being able 
to cross-examine the transcribed material, and return to it with new sets of questions, 
was very interesting and fruitful. A potential drawback with the approach is that it 
is based on the subjective and not necessarily accurate descriptions of the 
interviewees. Being able to check these against the actual data is very valuable. For 
instance, according to the planners themselves, the practice of giving trains negative 
margins on some line sections should not be very problematic at all, since they are 
compensated by positive margins on the next sections – but in practice, the data 
show that the compensation is not successful, and that the delays remain.  

The interviewees 

The question of who is interviewed is also very important, and interviewing planners 
at train operating companies, or dispatchers, would certainly result in a different 
description of the issues at hand. Naturally, the subjectivity of the interviewer and 
interpreter of the transcribed material are also involved, and to some extent this is 
unavoidable. This is the case with quantitative work as well, however, and in both 
cases, there is often quite a long process going from raw data to a finished analysis 
and a set of conclusions. On a personal level, I found that the qualitative approach 
gave quite a lot of interesting insights, and I believe that there is a lot more such 
work to be done in the railway sector.   
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Alternative methods 

Moving on to alternative methods, simulation and optimisation are other commonly 
used approaches for research on timetable planning. They rely, however, on good 
delay data and descriptions of planning strategies. Knowledge and data on the 
sources or distributions of delays cannot be generated with these approaches 
themselves. Instead, it is useful to have a dialogue between the different approaches, 
where empirical work – such as that found in this thesis – can inform the more 
theoretical work on simulation and optimisation, and vice versa. 

Delay cause data 

On the empirical side of research, the main alternative is to base the research on so-
called delay cause data. The benefit, compared to what has been presented in this 
thesis, is that the explicit causes of the delays are known – and coded in the data. 
There is thus less reliance on statistical relations, and on collecting and combining 
multiple datasets and sources. One drawback is that the delay cause data omits small 
delays – the exact threshold varies by country, but in Sweden delays smaller than 
three minutes in size are not coded. As has been shown in this thesis, small delays 
make up over half of all delay time – it is not prudent to simply omit them.  

Other drawbacks are that the data on delay causes is already well known and 
utilised in the industry, and that there are well documented errors (of the order of 
20%) in the coding of delays, as well as more philosophical criticism of how feasible 
it really is to determine one “cause” for a specific delay. A more fruitful approach 
might be to combine the two approaches – using alternative datasets and statistical 
tools to validate the delay cause data, and vice versa. Once this has been done, it 
might be possible use machine learning approaches to find patterns and classify even 
the small delays. 

Qualitative methods 

Another approach would be to perform more qualitative work. Timetable planning, 
and the railway sector in general, has rich processes and traditions to study using 
qualitative approaches with interviews, document studies, anthropological methods, 
and others. There are very important interfaces to study, between timetable planning 
and dispatching, drivers, maintenance, and more. These are quite difficult to 
approach from a quantitative perspective, and qualitative methods are thus the only 
real alternative. A risk with relying too heavily on interviews and such, however, is 
that the research and findings might be limited to what practitioners already know 
and consider to be problems. It is also difficult to quantify the scope of problems, 
without using quantitative methods.  
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Contributions of the thesis 

The contribution to research 

The contribution of this thesis to research has mainly been to present new empirical 
studies that: (1) describe and quantify how a range of factors are associated with 
delays, (2) evaluate the effects of timetable planning practice on train delays and 
punctuality, and (3) the overarching method and conceptual figures used to gather, 
connect, process and analyse vast amounts of data from different sources. The thesis 
is written in a time when big data is discussed and used seemingly everywhere, and 
my work has been a step in bringing this approach to railways and timetable 
planning.   

The contribution to practitioners 

To practitioners, the most significant contribution of the work has been to 
demonstrate the central importance of small dwell time delays – smaller than three 
minutes. In Sweden, these are often overlooked, partly because of a conscious but 
misguided strategy, partly due to lacking tools and routines. We have shown that, in 
practice, most delays are small and occur at stations. If punctuality is to improve 
noticeably, these delays must be addressed. The other contribution to practitioners 
is to show that a great deal can be done with timetable planning. Partly by reducing 
mistakes, both conscious and inadvertent, that systematically cause delays. Partly 
by further improving the capacity of timetables to absorb delays. We have shown 
that the distribution of margins is often more important than their overall size, and 
that the returns from increasing them quickly diminish, suggesting a possibility of 
reducing margins and travel times without the risk of delays increasing. The thesis 
also contains a few other suggested measures around stations that would help to 
reduce delays in a very cost-effective manner.  

The contribution to the public 

The main contribution to society at large is the increased knowledge about and 
attention to train delays – a problem which affects the daily lives of millions of 
people. If the recommendations in this thesis are implemented, the problem of 
delays should diminish significantly. Trains would not systematically be delayed at 
stations, and neither the summers nor the winters would cause nearly as much 
disruptions. The timetable would continue to get better year by year, without 
necessarily extending travel times, and punctuality would climb steadily. Perhaps 
not quite to the level achieved in countries like Japan, but the industry target of 95% 
is certainly within reach. This would be a great service to the public. It would raise 
the level of trust and confidence in the railway and serve to further increase the 
number and share of journeys made by train. It would also do a lot to reduce the 
annoyance and frustration that many people who already travel by train.  
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question, processing and analysing the data, as well as writing the paper. The co-
authors provided access to, and explained, the Japanese data. They also helped to 
find literature on Japanese railways, explained the policies and practices of Japanese 
railway companies, and assisted in fact-checking the manuscript. 
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