Supporting information

Figure S1. Potential in center cross-section of a three-probe Hall NW device with $\alpha=180$ deg. $n=10^{18} \mathrm{~cm}^{-3}, w_{c}=50 \mathrm{~nm}, r=100 \mathrm{~nm}$. The magnetic field is parallel to y and the current is perpendicular to the plane of the figure. a) $\rho_{c}=10^{-5} \Omega \mathrm{~cm}^{2}$, b) $\rho_{c}=10^{-7} \Omega \mathrm{~cm}^{2}$, c) $\rho_{c}=10^{-9} \Omega \mathrm{~cm}^{2}$.

Figure S2. Hall mobility as function of charge carrier concentration measured with the threeprobe Hall method.

Growth details, thin Sn-doped InP nanowires

The growth substrate was prepared from a piece of a $\operatorname{InP}: \mathrm{Zn}$ (111)B wafer, on which 50 nm diameter gold particles at a density of $0.8 \mu \mathrm{~m}^{-2}$ were deposited by an aerosol method (ref S1). The growth substrate was inserted into a metal-organic vapor phase epitaxy system (Aixtron 200/4), using a working pressure of 100 mbar , a total gas flow of $13 \mathrm{~L} / \mathrm{min}$ and H_{2} as a carrier gas. The sample was heated to $550{ }^{\circ} \mathrm{C}$ under a $\mathrm{PH}_{3} / \mathrm{H}_{2}$ gas flow for a 10 minute annealing step to desorb surface oxides. Thereafter, the sample was cooled to the growth temperature of $420^{\circ} \mathrm{C}$ where growth was initiated. Growth precursors used were TMIn and PH_{3}, at constant molar fractions of $\chi_{\mathrm{TMIn}}=2.0 \times 10^{-5}$ and $\chi_{\mathrm{PH} 3}=6.9 \times 10^{-3}$. After 15 seconds, HCl was added to the precursor flow to impede radial growth (ref S2), at a molar fraction of $\chi_{\mathrm{HCl}}=4.6 \times 10^{-5}$. As a dopant precursor, TESn was turned on throughout the growth. For the first and last 2.5 minutes of growth, highly doped end-segments were grown to ensure good contacts, with a molar fraction of $\chi_{\text {TESn }}=1.3 \times 10^{-5}$. For the middle segment, which was probed by the threeprobe Hall measurement shown in fig. 6, a molar fraction of $\chi_{\mathrm{TESn}}=5.5 \times 10^{-6}$ was used. Total growth time was 19 minutes, after which TMIn and TESn was switched off, and the sample was cooled in a $\mathrm{PH}_{3} / \mathrm{H}_{2}$ atmosphere.
The as grown nanowires were about $4.2 \mu \mathrm{~m}$ in length, and had a diameter of about 65 nm (Figure S3).

Figure S3. Scanning electron microscopy images of as-grown Sn-doped InP nanowires, taken at 30° tilt.

Ref S1: DOI: 10.1016/S0965-9773(99)00063-X
Ref S2: DOI: 10.1007/s12274-010-1029-x

