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Popular summary in English

As we all know access to energy is an ever-increasing prerequisite for functioning of modern
societies. There are several essential aspects of this matter which are often discussed such
as old and new sources of energy, their sustainability as well as possible contribution to
pollution. An issue which has become more and more important is how to recover the
energy which is often wasted and dissipated and re-use it for useful applications.

One type of energy which we see being wasted everywhere in our daily life is heat. Accord-
ing to the second law of thermodynamic, nature does not allow us to convert 100 percent
of the heat energy to useful work. Nonetheless, we have realized that heat should be looked
upon as a new source of energy and useful work. Thermoelectric science and technology
studies, both theoretically and experimentally, have paved the way to harnessing this seem-
ingly wasted energy and thus contribute to the resources issue as well as protecting nature
by providing a clean energy source.

For converting heat to energy, electricity is produced between two reservoirs with different
temperatures. This procedure makes use of developments in nanoscience and nanotech-
nology where it was realized that in small scale systems which are confined in one or two
directions we see stronger effects of thermoelectricity. This is due to being able to filter out
the electrons based on their energies whereby only electrons with preselected amount of
energy are able to create electrical current.

In experiments, related to the work presented in this thesis, a major domain of research
has been devoted to developing and fabricating different materials in order to improve the
thermoelectric properties of the set ups in order to obtain reasonable amount of work for
specific temperature differences. However, from the theoretical point of view, the main
driving force has been to learn about new physical features of nano-scale and mesoscopic
scale systems and employ them for exactly the same reason as experimentalists do.

Another topic which also has been studied in mesoscopic systems is single-electron emis-
sion, a phenomenon which is important for development of modern electronic devices. In
general electrons can be emitted from the surface of a material if it is subject to various
external stimuli, such as heat, photons, ions, or other electrons, and large electric fields. In
this thesis we have used the latter source to stimulate the controlled emission of electrons
within a mesoscopic conductor, giving rise to an electrical current.

An anticipated application domain for single-electron source is quantum information tech-
nology, where in order to transfer the information accurately it is important to have full
control over the number of electrons which are supposed to responsible for this transport.

As we know physics is the science of what can be said about nature and tested by measure-
ments. As long as a hypothesis has not been checked experimentally it is no more than a

vi



speculation. This collaboration theory-experiment has been very fruitful in promotion and
understanding of our science. For example, in order to measure a physical quantity we have
to first define a universal unit for it which is accurate and accessible all around the world at
any time. It is rewarding to see that the single-electron sources were recently exploited to
define a universal unit for Ampere, the unit of electrical current.

vii






Part |

Background and Theory






Chapter 1

Introduction

The title of this thesis is Thermoelectric effects and single electron sources in mesoscopic
transport; a scattering approach. To provide an introduction to the thesis, it is natural to
describe the different terms of the title and explain why they brought together constitute
an interesting and timely topic for a doctoral thesis. However, the order or appearance of
the terms in the title does not provide the most clear and logical order for a presentation,
instead we first discuss mesoscopic transport, thereafter thermoelectric effects and single
electron sources and, as the last term, the scattering approach.

Mesoscopic describes something which is between macroscopic, or large, the world gov-
erned by the laws of classical, Newtonian mechanics, and microscopic, or small, goverened
by the laws of quantum mechanics. The field of mesoscopic physics [J], at the interface
between macro- and microscopic, combines concepts and ideas from both the large and the
small, classical statistical mechanics with quantum coherent phenomena, classical models of
transport with the wave-like nature of electrons. Mesoscopic physics emerged as a research
field in the 1980s, when experiments on sub-micrometer electronic structures at cryogenic
temperatures reached such a quality and level of control that the quantum nature of charge
carriers started to become relevant [2]. A number of novel, mesoscopic phenomena were
discovered and explored, such as weak localization [3], conductance quantization [4, 5] and
universal conductance fluctuations [, ]]. Following the early development, focusing on
electronic transport in semiconductor and normal metallic conductors, the field has expan-
ded to cover for example superconducting, ferromagnetic and topological systems.

One area of mesosocpic physics which has received increasing attention over the last dec-
ades is thermoelectric transport. The key idea of the broad field of thermoelectricity is
to convert heat to electrical work. One strong motivation is to develop novel technolo-
gies for recovering waste heat and provide solutions to the worlds energy challenges. In



mesoscopic thermoelectrics [B, 9], the scope is typically more modest, with a focus on fun-
damental physical effects in charge and energy transport. The aim with many investigations
is to propose, analyse and demonstrate novel mechanisms for energy harvesting, conver-
sion and transport, often via proof-of-concept models and experiments. Although this type
of basic science constitutes the first steps in the development of novel technology, to take
the novel concepts from cryogenic temperatures in a controlled laboratory environment to
useful devises in our everyday life is typically a daunting task.

Another recent area of mesoscopic physics which has a lot of potential for applications is
single or few-particle sources of charge carriers, that is, ways to time-control the emission
of individual electrons or holes, from a localized source out into a conductor, resulting
in an electrical current [id, [1]. One important example of applications of such sources
is metrology, the science of measuring, where the new definition of the Ampere in terms
of the elementary charge makes sources that can emit a given number of electrons in a
well defined time highly useful. Of more interest to fundamental transport experiments
are the types of on-demand sources that produce a noiseless stream of single electron or
hole excitations, at energies close to the Fermi energy [i2, I3]. These sources have been
used to perform electron quantum optics experiments, that is, experiments where electrons
propagate, scatter and collide in ballistic structures, electronic analogs of single photon,
quantum optics experiments.

A common denominator for these areas of mesoscopic physics is that the basic physical
phenomena can be described by a scattering approach to transport [I4]. Underpinning the
idea of describing electronic transport in terms of scattering is the insight of Landauer that
”conductance is transmission” [I§]. Building on this idea, the modern theory of scattering
for quantum transport was developed during the early days of mesoscopic physics. Of-
ten referred to as the Landauer-Biittiker approach [[6], it has due to the combination of
conceptual simplicity and wide applicability become one of the basic tools for describing
quantum transport in general. While originally developed to describe average currents, it
has also successfully been employed to explain noise and fluctuations in transport [17].

The work in this thesis concerns both thermoelectric phenomena and physics of single
electron sources, in mesoscopic systems. The main aim for the work has been to theoretic-
ally explore novel phenomena within these areas, both separately and by combining them.
As is typically the case for mesoscopic theory, a strong motivation has been to propose,
model and analyse experiments that could test or demonstrate the predicted phenomena.
To put the work in a proper context and to provide the necessary background, the rest of
the thesis has been organized as follows. In Chapter B we introduce scattering theory for
time-independent systems, discussing both average current and current correlations. In
Chapter 3, the scattering theory is extended to describe also time-dependent, periodically
driven systems. This Floquet scattering theory is of key importance to describe on-demand
electron sources. Chapter 4 is devoted to thermoelectricity. A scattering theory for both



charge and energy is presented and basic properties of thermoelectric heat engines are dis-
cussed. In Chapter 5 we discuss on-demand electron sources, focusing on the time-driven
mesoscopic capacitor[i2, I8]. Finally, in Chapter 6 we provide a brief description of the
content of the papers 1 to 1v.






Chapter 2

Time-independent scattering theory

The modern theory of scattering, often referred to as the Landauer-Biittiker scattering ap-
proach, provides a physically intuitive framework for describing quantum transport in
mesoscopic and nanoscale conductors. Scattering theory has over the last decades been
employed to describe a wide variety of transport phenomena, such as the flow of charge,
energy and spin, both average currents as well as noise and fluctuations[7]. Conductors
ranging from diffusive metals [Ig] to ballistic semiconductors [2], coupled to supercon-
ducting or ferromagnetic terminals [29], have successfully been characterized by scattering
approaches. Originally developed to describe time-independent steady-state transport in
phase coherent conductors in the linear response regime, scattering approaches have also
been employed to account for phase-breaking processes [21-24], non-linear effects [25, 2d]
and time-periodically driven systems [27]. In this chapter we review the basics of time-
independent scattering theory. We first present a more qualitative, single particle approach
and discuss some key transport concepts. Thereafter we provide a more thorough deriva-
tion, fully accounting for the fermionic nature of the electrons by employing the second
quantization formalism. This formalism properly captures the anti-symmetrization of the
many-particle wavefunction and allows for a calculation of fluctuations, or noise, of trans-
port properties. The time-independent scattering approach is used to derive the results in
papers I and 111, also of importance for the calculations in papers 1 and 1v.

2.1 Single particle description

To describe the basic concepts of time-independent scattering theory, we consider a gen-
eric, multi-terminal mesoscopic conductor, see Fig.p.J. The conductor consists of a phase
coherent scattering region connected to /V terminals via perfectly ballistic leads. All in-
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Figure 2.1: Schematic of a multi-terminal system consisting of a mesoscopic scatterer coupled via ballistic leads to NV electronic
reservoirs, kept at temperatures 7., and chemical potentials %, (o = 1,2, 3, ..., N). Annihilation operators z

refer to particles which are incident from the reservoir o towards the scatterer. Similarly b, 's refer to the particles
which are propagating away from the scatterer, towards reservoir «. The direction of propagation of the particles
is denoted with arrows.

formation about the scattering region is comprised in a scattering matrix S. Formally, the
scattering matrix is obtained from the solution of the Schrédinger equation in the scatter-
ing region, which for most conductors is a non-trivial task. Here we will however keep
maximum generality and present the discussion [I7] and the results directly in terms of
the elements of S. The /V terminals are electronic reservoirs at thermal equilibrium. Each
terminal @ = 1, ...., N is kept at an electro-chemical potential #, = eV + p,, with V,
the electrical potential, and a temperature 7. In the general case, each lead can support
My, conduction modes. The wave function 1, (£, r) for an electron of effective mass ,
at energy E'in lead o, is given by the general solution to the time-independent Schrédinger
equation. Far away from the scatterer, it can be written as

Pa; (Vas 2a) ko (E)xa — ke, (E)xar
Vo (Ery) = Zl: ]\/% [aaj(E)e 7 + bo,(E)e ™ , (2.1)

where ro = [Xa, Ja, Za] (using a local coordinate system) and ¢, (ya, 2a) is the transverse
component of the wavefunction of mode j in lead «, with eigenenergy E,,. The corres-

ponding wave number is ko, (E) = \/ 2m(E — Eo; — py)/I* and the velocity v, (E) =
hko,(E)/m. Inside the ballistic leads the electrons can move freely along the longitudinal

direction x,. The coefficients 45, and by, are the current amplitudes for waves propagating
towards and away from the scatterer, respectively.



To calculate the electrical current carried by an electron described by the wavefunction
o (E, Ty ), we insert the expression in Eq. k. into the quantum mechanical expression for
the current density. By further integrating the current density over the transverse coordin-
ates and over all energies we obtain the total current flowing through a cross-section of lead
o, given by

Mo
lo=7 /dE; (lay (B = [bay (E)I?) - (2.2)

The current amplitudes b,,, for particles propagating away from the conductor in lead o
and mode «, are related to the amplitudes 4g;, for a particle incident on the scatterer in
lead 3 and mode f3;, via the elements of the scattering matrix S of the conductor as

N Mg

bo;, = Z Z Soj, 8,45+ (2.3)

B=1 i=1

Say,8|*> yields the probability
for a particle to scatter from mode 7 in lead 3 to mode j in lead cv. The scattering matrix

The modulus squared of an element of the scattering matrix,

can conveniently be written on a matrix block form as

S S
S=1 Sa1 Sz -+ |, (2.4)

Here each matrix block S gf] contains all amplitudes to scatter from lead 3 to lead o. One
can thus write the block as

Son.pr Sau,fr
Saﬁ’: Sazﬁl Sazﬁz . (2.5)

We point out that the dimension of the scattering matrix is determined by the number
of modes and terminals. For example, for a system with two terminals and three transport
modes in each lead, S will be a 6 X 6 matrix. If we instead have a system with four terminals
coupled to the conductor via single mode leads S will be of dimension 4 x 4. In general the
dimension of the scattering matrix is M7 x My, where M7 =" M, the total number
of modes in all the leads.

Due to the requirement of current conservation for scattering at the conductor, the scat-
tering matrix is unitary, that is

Sst=stg=1. (2.6)

"Throughout this thesis we use boldface to denote the scattering matrix block in mode space.



Here the dagger { denotes a Hermitian conjugation, or a transpose of the matrix and a
complex conjugation of all elements. In terms of matrix blocks the unitarity implies that

N
tr [S15855] = dars (27)
B=1

for any «, 7. Note that throughout this chapter we denote SLB = [Sap]'

To calculate the current flowing in the leads of the conductor as a result of an applied elec-
trical and/or thermal bias at the terminals, we need to specify the boundary conditions for
the incoming amplitudes. Since the terminals are at thermal equilibrium, the occupation
probability at energy £ in terminal « is given by the Fermi-Dirac distribution,

1

JlB) = T Ty (2.8)

It can be shown that the occupation probability for particles emitted from terminal «v, incid-

ent on the conductor in any mode ; at energy E, is given by the Fermi-Dirac distribution
. . . 2 .

of the corresponding terminal. That is, we have |4, (E)|* = fi(E) for all ;.

Starting from the current expression in Eq. (g.2), writing the outgoing amplitudes 44, in
terms of the incoming ones, g,, and using that the terminal boundary conditions can be
written 4o, (E)aj; (E) = fo(E)dapdsj (to be motivated rigorously below) we arrive at

N
I = 2/45; i [sjlﬁsaﬁ] [ (E) — f3(E)], (2.9)

where the trace “tt” is taken over the modes and we have used the unitarity relation in Eq.

&D.

In particular, for a two terminal system, shown in Fig. p.1, we can write the current flowing
from terminal left L to right R as

I= Z/a’Etr [S;RSLR} [f2(E) — fr(E)]. (2.10)

Furthermore, considering the case where the scattering matrix elements are independent
on energy on the scale of the applied voltage V' and background temperature, we have

&
1=V SiSual . (2.10)

Hence, the electrical conductance G = dI/dV is given by

G =Gy [SSie| . Go= i

, (2.12)

I0



which is just the Landauer formula [[] for the conductance of a multi-mode conductor.
The quantity Gy is the (single spin) conductance quantum. For a single mode conductor,
2 wehave G = GyD, explicitly demon-

introducing the transmission probability D = |Szz
strating that conductance in mesoscopic conductors is all about transmission.

2.2 Second quantization description

Electrons are fermions, having a many-particle wave-function which is anti-symmetrized,
that is, it changes sign under the exchange of any two particles. As a consequence, electrons
obey the Pauli exclusion principle, prohibiting two identical particles to be at the same spa-
tial location. This has consequences for physical quantities that depend on the correlation
between electrons, such as the fluctuations, or noise, of transport properties. In order to
account for the fermionic nature of electrons, it is convenient to work in the second quant-
ization formalism. Below we provide a careful derivation of the key quantities needed for
a scattering theory of transport, formulated within second quantization. To simplify the
notation we in this section, and in the major part of the thesis, consider leads that only
support one conducting mode.

]

As a starting point we define 24 (E) (aq(E)) as an operator which creates (annihilates)
electrons with energy E'in the lead v, propagating towards the scatterer, see Fig. p.2. In the
same way, the creation bl, (E) and annihilation 4, (E) operators describe electrons which
get scattered from the conductor, propagating out towards terminal . The annihilation

operators 2, and /;g are related by the scattering matrix elements Sg, as
by(E) = Spa(E)aal(E). (213)
«

The fermionic nature of the electrons are accounted for by the anti-commutation relations
for the operators, as

{ZlTa (E)a ZZ,B (E)} :50465(E_ E)v (2-14)
{al (), aly(E')} =0,
{aa(E),ag(E)} =0,

and equivalently for bl(E), Zﬁ (E).

We can then define the electron creation field operator in a lead o as

NG (yee, 20) o (E) B0 4 b (B)ehaBa]  (3.15)

- dE
e = | G
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Here the transverse wavefunction ¢ (ya,za), the wavenumber k,(E) and the velocity
o (E) are defined in connection to the wave function in Eq.(g.1).

The current density operator j, (T, #) in lead o can be defined in terms of field operators

as
he

Jalta) = 5 [@Lv@a - (v@g)ia] . (2.16)

mi

Then the operator for the current flowing along the x,, direction in lead o will be defined
as an integral of the current density over the cross section of the lead, as

ja(xom t) = / j(r’ t) 3 (VAN (2.17)
Sa

where 1, is the cross section normal vector and §,, is its area.

To obtain an expression for the current operator we note that the velocity v, (E) does not
change significantly on the typical energy scales of the system (applied bias, temperature
etc), and is much smaller than the Fermi energy. That is, all net transport in mesoscopic
systems occurs close to Fermi energy. We can then substitute »(E) ~ v(p,) in the de-
nominator in Eq.(R.1). As a consequence the current operator integral in Eq.(2.17) can be
evaluated, giving

() = Z / / dEdEé#t{zL(E)za(E) —zzg(E)zza(E)}. (2.18)

This expression for the current operator serves as a starting point for the discussion of both
average current and noise, in the following.

2.2.1 Average current

The average, measured current is obtained by taking a quantum-statistical average, denoted
(..), of the current operator as I, = (I,). The average of the product of second quantization
operators for particles emitted from a reservoir « is, as discussed above, determined by the
properties of the reservoir and not affected by the scattering at the mesoscopic conductor.
It can be written

(@l (E)ag(E)) = dapd(E — E)fu(E), (2.19)

where the Fermi-Dirac distribution f, (E) is given in Eq.(£-§). However, for the particles
scattered back from the conductor, the same equilibrium condition does not hold. There-
fore, to calculate the average over the product of operators bt (E) Al (E'), we first need to
write them in terms of the operators # and 47, making use of the scattering matrix rela-
tion in Eq.(2.13). With this the average current flowing in the lead «, due to the electrical
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potential (or thermal) bias applied at the terminals can be written as,

/dE ””’) — fal )}, (2.20)

where the distribution function for the scattered electrons, going out from the conductor,
is given by

Ao (E Z 1S (E)|*f3(E (2.21)

One can thus understand the expression for fout) (E) as follows: electrons distributed ac-
cording to f3(E) are emitted from terminal 3 and scattered with probability [Sas(E)|* to
lead o, moving away from the scatterer towards terminal cv.

Putting this together and making use of the unitarity condition )4 Sag|*> = 1 we can
write the average current in lead o as

= [ Y I B E) - (8. e.22)
B

This expression for the average current will be used throughout the thesis. We stress that
in all discussion we consider the single-spin case, accounting for spin will only multiply all
derived quantities by a factor of two.

In the linear response regime in applied bias voltage, assuming the temperature of all ter-
minals to be the same, 7,, = 7, we can expand all Fermi distribution functions in Eq. (2.§)
as

_ df(E) _ 1
f(;l(E) _f(E) - evaﬁv ﬂE) - 1+ e(E*/lo)/(an’ (2.23)

where f{E) is the equilibrium distribution function. We can then write the average current

1, ZVg/dEdﬂE Sas( B . (2.24)

The conductance then becomes

dl, dj E
Gaﬁ &L’Vg - |: af — /dE ﬂ )|2 (2-25)
In the case with a two-terminal system, considering G = G2 = Gy, we recover the

Landauer result in Eq.(2.12), for single channel leads.
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2.2.2  Current noise

As pointed out above, the second quantization approach allows us to investigate electrical
current fluctuations, or noise, within the same framework. We first start with a formal
derivation of the noise expressions, largely following Biittiker [28§-5J]. Based on the derived
expressions we provide qualitative explanations for the different terms contributing to the
noise.

The starting point for the calculation is the expression for the (symmetrized) correlator of
current fluctuations at terminals v and 3,

1, - « o .
Pup(t—17) = §<A[a(t)A[5(t/) + Alg(F) AL (), (2.26)
where we define the fluctuation operator

Aja(t) = joz(t) - <j0¢>7 (2.27)

and note that in the steady state, without time-dependent system parameters, the correlator
P, only depends on time differences. The frequency dependent correlator is obtained by
a Fourier transformation as

Pag(w) = /Oo dr & ag(t). (2.28)

In this thesis we are only interested in the zero frequency correlator and will thus consider

[e.e]
Pog = Pop(0) = / dtPag (). (2.29)
—00
Noting that the current fluctuation correlator can be written

(Ma(DALs(7)) = (a(9Is(F)) = {La())Is(7)). (2:30)

We can then insert the expression for the current operator in Eq.(.18) into the equation for
the zero frequency correlator, Eq.(g.29). Following the same procedure as for the average
current, we express the Z—operators in terms of the z-operators and the scattering matrix ele-
ments. However, in addition to the average current calculations, for the term (I, (£)I5(#))
we now need to evaluate the quantum statistical average of four z-operators giving (using

Wick’s theorem) [B1]
(@l (E)ag(E")al (E")as(E")) = (&l (E)ag(E)) (&l (E")as (E"))

+ (b (E)as(E")) (ag(E')al (E"))
= Oapdys0(E— E)O(E" — E")fu(E)f (E")

+ Gas0py0(E— E")S(E — E"fu(E)[1 — £ (E")]. (2.31)
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Here in the middle step we have written out explicitly the two different possible pairings
of the creation and annihilation operators. The first, direct pairing term, will directly can-
cel the contribution coming from (Z,(#))(I5(#)) in the total correlator expression. The
second, exchange term, is thus what gives rise to the noise.

Making use of the expression in Eq.(2.31) in the evaluation of the noise, we arrive after some
calculations at

€2
Pag = 55 [ A5 = i Su8) B85 — 53
o7

x ARBN = HE)] + B - /(B (2.32)

where we note that the energy dependence of the scattering matrix elements is not expli-
citly written out. This expression is naturally understood as consisting of two qualitatively
different parts. First, by considering the equilibrium situation, where all distribution func-
tions are given by /o, (E) = fIE), with {E) the equilibrium distribution function, we get
the noise

_ 28ksT df ) )
Pas = =220 [ A (2805 05 = 1550l (2.3
where we made use of the relation f{E)[1 — fAE)] = —df(E)/dE and the unitary relation

in Eq.(2.7). By comparing to Eq.(.25) we see that we can write
Paﬁ = ZkBT(GQB + Gﬁa)- (2.34)

That is, the equilibrium noise can be written in terms of conductances of the system
only, something which also can be understood in terms of the fundamental fluctuation-
dissipation theorem [[7, B2]. As a consequence, the equilibrium noise, also called thermal
noise, does not provide any more information about the system beyond the average cur-
rent. In fact, the origin of the noise is the fluctuations of the occupation numbers in the
reservoirs due to finite temperature.

Second, by considering the case of zero temperature, 7" = 0, the Fermi functions are re-
duced to step-functions in energy and we can write

&
Paﬁ = }]Z/dES:V’ySOC(SSZ’(sSﬁ’Y
Y76

x ARE = AEB)] +H(E)1 = £(E)]}- (2.35)

This is the non-equilibrium, or shot-noise part. As is clear from the expression, this part of
the noise can not be written in terms of the average currents and thus contains information
about the scatterer beyond what can be inferred from current measurements only. The
origin of this noise term is the probabilistic, quantum nature of the scattering processes.
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We also note that correlations between currents in the same terminal, that is for « = £,
the noise Ppq in Eq.(R:32) is called the auto-correlator, while correlations between currents
in different terminals, v # 3, the noise Py is called the cross-correlator.

2.3 Two-terminal conductor; current, noise and Fano factor

Of special importance is the case with a two-terminal conductor, shown in Fig. p.2], labelling
the two terminals Z and R. The transmission probability is denoted, for brevity by, D(E) =
|Szr|> = |Sre|?. For the average electrical current / = I; = —I we have from Eq.(2-22)

— ¢ [ dep6) 5® - Al (2.36)

which in the linear response regime reduces to

dj E
_ / a5 1B f( ) (2:37)
as discussed above.
ﬁL a'R
7, — R
e Conductor .
EL ER

Figure 2.2: Schematic of mesoscopic conductor coupled to N = 2 terminals, left (L) and right (R). The quantities 7, Fos da
and b, with o = L, R are explained in Fig. ZZ1]

For the current correlations we have P = Ppp = Pr; = —Prp = —Ppz, given from

EQ() to be
) / dE fL(E)(L = fi(E)) + f(E)(1 — fr(E))] (2.38)
+D(E)[1 — D(E)][f(E) — ﬁe(E)]z}.

From this expression it is clear that at zero temperature, 7 = 0, the equilibrium part
of the noise, i.e. the term proportional to f7(E)[1 — f1.(E)] + fz(E)[1 — fz(E)], goes to
zero. The noise is then given by the second, shot noise, term proportional to [f7(£) —
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fz(E)]?. Considering for simplicity the case where the transmission probability D(E) ~ D,
is independent of energy on the scale of the applied voltage, the noise becomes

P= i|V|D(1 — D). (2.39)

This expression clearly shows the probabilistic, quantum scattering nature of the shot noise.
For D = 0, there is no current flowing and hence the noise is zero. For D = 1 there is a
filled stream of electrons flowing through the completely transparent contact, without any
scattering, and the noise is again zero. For D = 1/2, the probability to scatter is one half,
and the noise is maximized.

When discussing the two-terminal conductor it is also convenient to introduce the Fano

factor F, defined as

P

F=—.
el

(2.40)
A Fano factor F = 1 means that the noise P = el, which is known as Poisson noise,
with particles transmitting across the conductor is a completely uncorrelated fashion. A
Fano factor F < 1 implies a sub-Poissonian noise, and is a signature of anti-bunching of
the transmitted particles. If the Fano factor F > 1 the noise is super-Poissonian and the
particles tend to bunch.

The Fano factor is particularly relevant to consider for the shot noise, i.e. the zero temper-
ature limit. Inserting the expressions for the noise in Eq.(2:39) and the current in Eq.(£:37)
we have (for V' > 0)

F=1-D. (2.41)

Clearly, for a small transmission, D < 1, the Fano factor F = 1, i.e. we have uncorrelated,
Poissonian, electron transfer. For any larger D < 1, we have F < 1, that is, the electrons
tend to transmit across the conductor in an anti-bunched fashion, one by one after each
other. This is a direct consequence of the Pauli exclusion principle.

2.4 Nonlinear transport and Gauge invariance

An important aspect of quantum transport in mesoscopic systems that is sometimes over-
looked, is that the scattering matrix typically depends on the applied voltages and temper-
atures at the reservoirs, that is

S= S({Va}v {Ta})v (2.42)
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where {V,} = V1, V2, V3, ...and { T} = T1, T2, T3, .... The reason for this dependence
can be understood in the following way, using mean-field arguments: due to the applied
voltages and temperatures, excess electrons are injected into the conductor. This excess
charge is screened, by a change of the scattering potential in the conductor and by charges
accumulating at nearby metallic gates and terminals. As a consequence of the changed
scattering potential, the scattering matrix is changed, in a way which thus depends on
applied voltages and temperatures [33, B4].

This modification of the scattering matrix is not only a small effect that in most cases can
be neglected, on the contrary it is of fundamental nature, being a consequence of gauge
invariance. Gauge invariance in mesoscopic systems means that if all electric potentials at
the reservoirs and nearby metallic gates are simultaneously shifted by the same amount the
physics should remain the same, i.e. be invariant. Asa consequence, physical quantities like
the current or noise, can only depend on differences between voltages applied at different
reservoirs and gates.

In general, to calculate the scattering potentials induced by the applied voltages and tem-
peratures bias and from that new scattering potential calculate the new scattering matrix is
typically a very diflicult, if not impossible, task. In this thesis, in papers 111 and 1v, this is
only done by making simplifying assumptions about the conductor.

Importantly, when the transport is in the linear response regime, with small applied voltages
and temperatures, one can neglect the voltage and temperature dependence of the scatter-
ing matrix and the gauge invariance is always fulfilled. Formally, this is a consequence
of that one expands the transport quantities to first order (linear response) in voltage and
temperature bias and hence considers the scattering matrix at equilibrium. However, in
the non-linear transport regime, the bias dependence of the scattering matrix becomes im-
portant and one must always assure that gauge invariance holds.
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Chapter 3

Time-dependent scattering theory,
Floquet approach

In the previous chapter we presented the scattering theory for time-independent meso-
scopic conductors. Here we will extend this theory to describe situations where the central
conductor in Fig. p.1 is subjected to a time dependent modulation, giving rise to a periodic-
in-time modulation of the scattering potential. Such a time-periodic drive is the central
ingredient in a number of important physical phenomena in mesoscopic conductors, such
as photon-assisted tunnelling [39, 36], adiabatic quantum pumping [27, 57, B8] and peri-
odic on-demand emission from single particle sources [id, [f]. The latter case is the topic

of Chapter f.

We will base our approach on the Floquet scattering theory, following largely the works
in Refs. [27, Bg]. Quite generally, Floquet theory is an approach to treat certain problems
with a periodic time-dependence of some parameter. It is often discussed as a time domain
analog of Bloch’s theorem in solid state physics. Floquet scattering theory for quantum
transport provides a natural extension of the time-independent scattering theory discussed
in the previous chapter. This is the case since the time-dependent scattering potential not
only leads to transmission and reflection of electrons between different leads of the multi-
terminal conductor, but also absorption and emission of one or more quanta of energy 2Q
by the scatterer, where Q is the frequency of the drive. Hence, while the time-independent
scattering is elastic, i.e. energy conserving, scattering from a time-dependent potential is
inelastic, i.e. energy is not conserved. This inelastic scattering is illustrated in Fig. p.J.

19



Sp1(En E) S (En E)

E, = E + nhQ

Figure 3.1: Figure showing scattering in real and energy space from a mesoscopic conductor subjected to a time-dependent
potential V(#) with a drive frequency Q. An electron at energy E, incident on the scatterer from left, has an
amplitude Sy (E,, E) to be reflected (red arrows) and an amplitude Sg.(E,, E) to be transmitted (blue arrows) to an
energy E, = nhQ. For n > 0 (n < 0) the electron thus absorbs (emits) » quanta AQ at the scattering.

Another important aspect is that a dynamic scatterer not only generates currents with an
alternating component, that is AC-currents, but under some conditions can generate a DC-
current. This is the case for adiabatic quantum pumps, where a DC-current is generated
by (at least) two, slow, out-of-phase driving potentials, in the absence of any bias applied
between the reservoirs. In a Floquet picture, the origin of this pumping effect is that the
probability for particles scattering from one reservoir to another, between two energies, is
different from the probability for the time-reversed process. For the time independent case,
there is no corresponding phenomenon.

3.1 Floquet scattering matrix

The central quantity of the scattering theory is the Floquet scattering matrix Sx. In corres-
pondence to the time independent case, the matrix Sz is formally obtained by solving the
time-dependent Schrodinger equation for the scattering region, which typically is highly
non-trivial. Here we will however express all studied transport quantities in terms of ele-
ments of Sp; only in a few cases an explicit expression of the full Floquet scattering matrix
will be presented. To simplify our discussion we will consider a multi-terminal conductor
with all leads supporting only a single mode.

Proceeding along the same lines as for the time-independent case, the starting point of the
calculation of the transport quantities is the field operator for an electron in lead «, given
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Figure 3.2: Schematic of time driven mesoscopic scatterer coupled to two terminals, left (L) and right (R). The setup, except
the drive, is the same as in the time-independent case in Fig. I-4

by Eq. (B.14). From the field operator, we hence again get the electrical current operator in
Eq. (:19), expressed in terms of operators for the outgoing, bL(E), ba(E), and incoming,
ab (E), aq(E), particles. However, in contrast to the time-independent case, the operators
for out- and ingoing particles are now related via the elements of the Floquet scattering

matrix as

Zoz (En) = Z Z SF,aB (Em Em)ZZﬁ (Em)a (3-1)

where we have introduced the notation £, = E + nhQ. The Floquet scattering matrix
element Sz og(E,, E,) thus gives the amplitude to scatter from an energy E,, in lead 3 to
an energy E,, in lead «, see Fig. B.2 for a two-terminal set-up.

In contrast to the scattering matrix S for time-independent systems, the Floquet scattering
matrix is infinite dimensional, due to the possibility to scatter from, in principle, one energy
to any other energy differing by (» — m)hQ. However, in practice, the probability to
absorb or emit a large number of quanta, that is |7 — 7| > 1 is small. This is typically
used to introduce a maximum number of quanta, 7., absorbed or emitted, than one
needs to account for. The number 7, depends on the specific properties of the scattering
potential and drive. However, the infinite dimensionality of S is thus normally not a
practical problem in numerical implementations.

Importantly, as a consequence of particle current conservation during scattering, the Flo-
p Y; q p g g
quet scattering matrix is unitary [39, d], that is

ShSp = Spsh = 1. (3.2)

On the level of the elements, one can write this as

S SrapEm En) S (B ) = Syibary (3.3)
n B

used at several places in the discussion below.

21



3.1.1 Scattering matrix representations

The Floquet scattering matrix, giving the current amplitudes for scattering between dif-
ferent reservoirs and energies, is only one way to represent the scattering from a time-
dependent potential. The three other ways, used at various places in the litterature, are the
time, S,3(# 7), and mixed time-energy representations Sp3(%, Ey), Sag(Ey, ¢). The four
different forms are related to each other via Fourier transforms, as for instance

St (Ens Em) / dt ™S, / dt &Y Sop(E, ), (3.4)

where 7 = 27 /Q is the period of the time-dependent potential applied to the conductor.
The notation convention for the mixed energy-time representation is that S, (% E,,) gives
the amplitude for a particle incident at energy £, from terminal /3, to be scattered out
at time £ to terminal a. The opposite then holds for Sy5(E,,, £). As is discussed further
below, the mixed forms are convenient in particular for discussions in the adiabatic limit,
as is the case in paper 11.

3.1.2  Electrical current

Proceeding in the same way as for the time-independent case to evaluate the (quantum
statistical) average (/,(2)) of the electrical current in a lead v, we make use of the pairing
relations in Eq. (2.1¢)). This directly gives the average current

(L) = Y &I, G.5)

n=—0o0o

a sum of the DC-term ]( ) and the AC-terms ]( , n # 0, given by the general expression
= /dEZZ 8(E, En)SEas(Bn En) [fs(En) — fa(B)]. (5.6)

We note that /) = [[(=")]*, guaranteeing that the current (Z,(#)) is a real quantity. Fo-
cusing on the DC-current, we have, explicitly

o= / dgz§ 1Sras (B En)l? [f3(En) — fa(B)]. 6.7)

Clearly, in the absence of time-dependent drive no energy quanta can be absorbed or emit-
ted and the Floquet scattering matrix element S o g(E, Eyn) = Sag(E)dmo, with Sog(E) the
time-independent scattering amplitude. As a consequence, the current in Eq. (.7) reduces

22



to the time-independent expression in Eq. (.22)). The current expression in Eq. (5.7) also
demonstrates that for Sgn3(E,, E) # Srag(E, E,), a DC-current will be generated even
if all terminals are kept at the same potential, that is £, (E) = AE) for all o, as discussed
above. The DC-current expression in Eq. (§.7) is used at various places in papers 11 and 1v.

3.2 Adiabatic regime

A particularly interesting case of time-dependent scattering is when the drive is very slow,
called the adiabatic regime. In the adiabatic regime it is possible to relate the Floquet scat-
tering matrix elements to the corresponding time-independent scattering matrix elements,
with the scattering potential evaluated at a given, fixed, time # (time thus entering only
as a parameter). This scattering matrix is known as the frozen scattering matrix, denoted
SO)(E, £). This relation constitutes a considerable simplification of calculating the Floquet
scattering matrix, which in the general case has to be obtained from the solution of the
time-dependent Schrédinger equation, as discussed above.

One definition of the adiabatic regime is when the energy related to the driving frequency,
h€, is much smaller than the typical energy scale AE over which the frozen scattering mat-
rix of varies (for all times #). Appealing to the relation between the scattering dwell time and
the energy variation of the scattering matrix, one can describe the adiabatic regime as fol-
lows: during the time the electron spends inside the scattering region, the time-dependent
drive potential does not change appreciably, that is, the electron sees a practically frozen
scattering potential. This enables one to write the frozen scattering matrix elements in
terms of the elements of the mixed energy-time representations of the scattering matrix
introduced above, as

SO E) = Sup(t. E) = Sap(E. 1), (5.8)

Here, the first equality tells that the frozen scattering matrix is equal to the scattering matrix
describing particles injected at energy £ and emitted at time # taken in the adiabatic regime.
The second equality tells that, in the adiabatic regime, this is the same as the scattering
matrix describing particles injected at time # and emitted with an energy E, consistent with
the discussion above. A formal derivation of this can be found in Ref. [5g].

From Eq. (B.§) and the general relation between the Floquet matrix elements and the mixed
time-energy representation matrix in Eq. (.4), we can then write

L )
Srap(En, E) = = dt e, 5(2, E). (3.9)
T Jo

We note that the Floquet scattering amplitude in the adiabatic regime, in line with the
discussion above, only depends on the energy £ and the number of quanta 7 emitted or
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absorbed, and thus not on the incoming and outgoing energies separately. We will present
examples of this in Chapter |, where the Floquet scattering approach is applied to the time-
driven mesoscopic capacitor.

3.3 Low frequency noise

Just as for the time-dependent scattering theory, it is interesting to analyze not only the
average current but also the noise in the case with periodic driving. The starting point is
very similar to Eq. (g.28) for the correlation function of the current, with the difference
that the correlation function now depends on two times, that is, we can write

Pos(t,f) = [;(Afa(t)Aiﬁ(t’) + Alg(1) AL (7)) ] - (3.10)

As for the time-independent case, we are mainly interested in the zero frequency noise,

which is defined as

Pop(T) = / dl’”Paﬁ(T +7'/2,7—1)2), (3.11)

where 7 = %

and the integration is performed over the time difference # — 7 = #'.
Similar to the average, time-dependent current, we can write the average, time-dependent,

zero frequency noise as
o0

Pop(T) = Z ei”QtP&”g, (3.12)
n=—00
a sum of a DC noise term ng and AC noise terms P((Xng,, n # 0. To be explicit, the DC

term, which is the one we will discuss further here, is often written as the period averaged

noise, -
Pos EP((XOﬁ) = i 6;7: 03(T). (3.13)

The general expression for the zero frequency, period averaged noise is quite lengthy and
here we only discuss the case where all terminals are kept at the same electrical potential.
The noise is then given by

€2

Pay == / 4E [Ph(E) + Py ()] G.14)
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where P‘(ilﬁ (E) and Pfi‘ﬂ (E) are the spectral thermal noise and shot noise contributions
respectively, defined as,

o0

PUo(E) AE) L= AE)) (0 + Y [das D ISran(BnE)P (319)
Y

n=—0oo

~ ISk (B E)* = [Srsa (B B )
and

pn=Y 3y 3 MG 610

7,8 n=—00 m=—00 p=—00

X‘Sv}i",a'y (E7 EW)SF,IX(S(E? EW)S;,Bé (Epv Em)SF,ﬁ’y (Ep7 En)'

For the thermal part, we see that it goes to zero when the temperature goes to zero, due
to the term fAE)[1 — AE)] = —kpTdf(E)/dE. Moreover, in the absence of the time-
dependent drive, when Sgog(E, E,) = Sag(E)dm0, with Sog(E) the time-independent
scattering amplitude, we recover the expression in Eq. (£:33), i.e., the thermal noise for the
time-independent case.

As seen from Eq. (§.1d) the shot noise has the same structure, with a product of four
scattering amplitudes, as the time independent shot noise in Eq. (2.39). Consequently, the
origin of the noise is the same, namely the probabilistic scattering of particles. However, in
the absence of a time-dependent drive, the shot noise term vanishes, which is to be expected
since neither a periodic drive nor a potential bias is applied.

3.3.1 Noise in the adiabatic regime

In the adiabatic regime, the connection between the noise in the time dependent and time
independent cases becomes even more explicit. Focusing on the thermal noise term, we

can make use of the relation in Eq. (B.9) and write the expression in Eq. (§.1) as

0
2(8) =T~ g2 ) [2001 - BoaBF. ~S®F) . G0
where we have introduced
— T dr
Sss (B = | ZI1sOE 9, (3.18)
SulBF = [ ZIsE)

the time average of the modulus square of the frozen scattering matrix element. This form is
just the same as in Eq. (2.33), with the only difference that the modulus square of the time-
independent scattering matrix element is replaced by the time integral over the modulus
square of the frozen scattering matrix element.
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Chapter 4

Thermoelectric effects and heat
engines, a scattering approach

To achieve a sustainable energy production, conversion, transportation and storage is argu-
ably one of the biggest challenges for the society in the twenty-first century. Another grand
energy challenge is to evacuate heat produced in electronic devices, a problem increasing
with the ongoing miniaturization and close-packing of electronic components. One part
of the solution to both these challenges might be thermoelectric systems, where waste heat
is converted to useful electric energy. Thermoelectric solid-state systems have been invest-
igated since the nineteenth century, with varying intensity and progress. From the early
1990’s a large effort has been made in investigating thermoelectric effects in nanoscale sys-
tems [41—43]. Here the hope has been to benefit from typical nanophysics properties, such
as low-dimensionality of systems and sharply energy dependent transport properties. Des-
pite large progress during the last decades it is fair to say that there is still a broad scope for
fundamental investigations of proof-of-principle nanoscale thermoelectric systems. This
has motivated a large part of the work in this thesis.

In recent years there has also been an increasing interest in investigating the possibilities for
using fundamental quantum mechanical properties, such as coherence and entanglement
in thermoelectric systems and devices, to achieve an advantage over their classical coun-
terparts [9, 44]. These efforts combine knowledge and theoretical tools from the fields of
quantum thermodynamics and quantum technology and are largely focused on identifying
fundamental physics mechanisms as well as proposing and performing proof-of-concept ex-
periments. The work presented in this thesis is in this spirit, we investigate combined energy
and charge transport in quantum coherent, mesoscopic systems with thermoelectric prop-
erties, with the main aim to identify and analysis novel mechanisms for heat-to-electrical
work conversion, as presented in papers I and 11, or to explore novel phenomena arising
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when combining driven and thermoelectric quantum systems, as in paper 1v.

4.1 Thermoelectric laws and concepts

The field of Thermoelectrics has a long history, with important contributions already in the
19th century. For the understanding of nanoscale and quantum thermoelectric phenom-
ena, it is helpful to first review some central, classical thermoelectric concepts. The most
basic thermoelectric phenomena are the Seebeck and Peltier effects, which can be seen as
each others reciprocals [l45]. Using a language in line with our global, scattering approach
taken in the thesis, the Seebeck effect describes an electrical voltage appearing across a con-
ductor as a result of a temperature difference applied between the ends of the conductor
while the Peltier effect describes the heat current flow through a conductor as a result of an
electrical current sent through the conductor. The underlying property of the conductor,
causing both effects, is that the transport is dependent on energy, on the scale of the applied
temperature or voltage difference.

Qualitatively, discussing here the linear transport regime for a two-terminal conductor
(providing more formal definitions below), the Seebeck effect leads to a relation between
the applied temperature difference A7 and the induced potential V'as

V= —8AT, (4.1)

where S is the Seebeck coefficient, also called the thermopower. In conductors where the
energy dependence of the transport properties is weak around Fermi energy p, as is typically
the case in metals, the Seebeck coefficient is given by Motts’s law

B In G(p) B (nkp)?
S— eETddﬂ L= (4.2)

where G is the electrical conductance of the conductor and £ the so-called Lorenz number.
The Peltier effect leads to a relation between the electrical current 7 and heat current J as

J= 1l (4.3)

where II is the Peltier coeflicient. In the absence of a magnetic field, the relation IT = 7§
holds, where 7is the system temperature, as discussed further below.

In addition to the thermoelectric Seebeck and Peltier effects, to get a complete picture of
the coupled charge and energy transport, we also need to consider the electric and thermal
conductances. The electrical conductance G was discussed in Chapter pJ. The thermal con-
ductance x is defined analogously to the electrical conductance; it relates the heat current
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flowing through the conductor, as a result of a temperature difference between the two
ends of the conductor, that is

J = kAT, (4-4)

In conductors with weakly energy dependent transport properties the thermal and electrical
conductances are directly related as

k= LTG, (4-5)
known as the Wiedemann-Franz law.

A convenient and general formulation, capturing all linear response relations between charge,
I, and heat, /, currents and the applied voltage V and temperature difference A7, is given

I\ [ G GS 1 v
7 )=\ 106G x+cGlus AT ) 4

The formal definitions of the transport coefficients are

n=/
7

in the matrix form

__
AT:()7 AT

J
G= — , K= —
AT=0 AT

v (4.7)

R .
=0 =0

We note that the coeflicient matrix in Eq. (.d) is very similar to the Onsager matrix
[46], where 7and / instead are related to V/ T'and A7/ 7*. Fundamental arguments shows
that, in the absence of a magnetic field the Onsager matrix is symmetric, directly giv-
ing the relation § = II/7. However in the presence of a magnetic field B, it holds as
S(B) = II(—B)/T. Moreover in the nonlinear transport regime the Onsager relations are
not expected to hold anymore. For our purposes in this thesis, however, the matrix for-
mulation in Eq. (4.g) is more useful than the Onsager matrix formulation. We note that
various aspects of the breakdown of Onsagers relations in mesoscopic thermoelectrics have
been investigated in a number of recent theory works [24, 47-49].

4.2 Charge and energy currents in the scattering approach

In this thesis we discuss the thermoelectric transport phenomena within a scattering picture.
We follow largely the steps of Butcher [5d], who provided a thorough extension of the
scattering theory for charge transport (presented in Chapter ) to also comprise energy
and heat currents. First, a general, multi-terminal description is given, thereafter a more
detailed discussion is presented, focusing on the conceptually simpler two-terminal case.
The two-terminal case also allows for a direct comparison to the results presented in the
previous section. For simplicity we assume single mode leads, an extension to multi-mode
leads can be done along the same lines as for the charge current.
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The quantum mechanical expression for the energy current can formally be derived along
the same line as the charge current, following similar steps as in Chapter pl. Here we,
however, present only the final expression in terms of scattering matrix amplitudes and
reservoirs Fermi distribution functions. We consider the multi-terminal conductor in Fig.
k-] and recall that the electrochemical potential and temperature of reservoir « are given by
#o = p+eVoand T, = T+ AT, respectively. For clarity, we write both the charge, 7,
and energy, /%, currents in the same equation, as

I = 5 [ 1Sa(BP () - B,
B

o= [EEY ISR E) - (5.
B

(4.8)

From the energy and charge currents, the heat current flowing into/out from reservoir « is
given by
E
Jo =1 —uI,. (4.9)

We note that the heat current, outside linear response, is typically not conserved in the
system, in contrast to the charge and energy currents. These current equations form the
basis for the calculations and discussions presented in the rest of the chapter.

4.2.1 Linear response, two terminal case

In order to acquire a deeper understanding of the above results, we focus on a two-terminal
system, &« = L, R, as shown in Fig. p.2. We consider the energy and charge currents in
the linear response regime and also define the charge current / = Iz = —/; and the heat
current / = Jp = —J, conserved in the linear response regime.

Formally, in the linear response regime we expand the Fermi distribution functions to first
order in applied voltage V,, and temperature AT, as

o (E) o (E)

W(E) = AE)+ Va + AT, ,
s A Vo v atay=0 T |1y, a7,3=0
_ 4E) AT )
= fE) — eV, i (E ) Tt (4.10)

We chose, without loss of generality, to define V = Vg — Vy and AT = AT, AT = 0.
Moreover, for a two-terminal conductor the only property of the scattering matrix that
enters the current expressions is the transmission probability D(E) = |Sir(E)|>. With
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these specifications we can write the electrical and heat currents in Egs. (4.§) and (4.9), in

G):(z\ié)(;f) (4.10)

where we have the transport coefhicients

a matrix form as

& M e 5
G= ZIO, L= T = ZkBIh Z(k ) Ly, (4.12)

7, = /_Z dED(E) </efT>n< - 8??) (4.13)

Here G is the electrical conductance, discussed above. Moreover, from these expressions we

with the integrals

can directly relate the linear response coefficients L, M and K'to the thermoelectric transport
coefhicients in Eq. (4.4) as

L=5G, M=1G, K=&+ GIIS. (4.14)

For the case of a weak energy dependence on the scale of applied potentials and temper-
atures, we can expand the transmission probability to first order in energy around Fermi
energy as

dD(E)

D(E) = D+ (E— p) G|
=

(4.15)
Inserting this expansion into the expressions for the transport coefficients and keeping only
leading order terms, we arrive at both the Mott’s law in Eq. (f.2) and Wiedemann-Franz
law in Eq. (4.9). This illustrates that the scattering theory of thermoelectric transport is
consistent with existing, more macroscopic formulations.

4.3 Charge and energy current noise

In Chapter [, not only the electrical current but also the associated noise was discussed.
In the same way, when discussing the thermoelectric properties and coupled electric and
energy (or heat) currents, an extension to the noise is interesting [[7]. In addition to the
correlator of energy currents, we also need to consider the mixed correlators, of charge and
energy currents [51, 52]. Focusing on the zero frequency correlators between currents at
terminals v and 3, we are thus interested in the in total four combinations

7= 5 [ar{en@aner o) +anernanm}. G
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where x, y can denote either charge or energy. The correlators can be calculated following
the same recipe as for the charge current correlators in Chapter fl. We then find, on a
common form, an extension of Eq. (2.32) as

Ty
1)2/5 = 67 Z / dEE‘@iUXy) (601756!5 - 524750!5)(56'Y565 B 525557)
)

x ARE =B+ B[ - /(B (4.17)

where 0,, = 0 for energy-energy, 1 for energy-charge, and 2 for charge-charge current
correlators. In our works, the various types of current correlators are discussed in paper 11.

4.4 Heat engines in mesoscopic systems

Besides the fundamental transport properties of thermoelectric systems, in this thesis we
also investigate the possibilities to design heat engines, that is, heat to electric work conver-
sion, based on mesoscopic conductors. In fact, both papers 1 and 11 are focused on using
and tailoring the energy dependence of the transmission probability D(E) to create, ideally,
efficient and powerful heat engines that display as small fluctuations as possible. As dis-
cussed further below, it has in fact been shown very recently [53] that these three desirable
properties of a heat engine can not be all achieved at the same time.

We start by a short background on heat engines, focusing on mesoscopic and nanoscale
systems, of central importance to the thesis. We however note that also aspects of thermo-
electric systems are interesting, as e.g. refrigeration, but they are not discussed in the thesis.
The discussion below follows to a considerable extent Ref. [45].

A two-terminal mesosocopic thermoelectric heat engine uses the temperature difference
between the two terminals to push an electrical current /7 against a voltage Vapplied across
the conductor, thus producing electrical power

P =1V. (4.18)

In many situations, a large given output power P is desirable. It was shown by Whitney
(54, 55l that for a single mode conductor, there is a maximal power that can be produced,
given by 0.32(kgAT)?/b. This maximum power is obtained for a transmission probability
with the shape of a step function in energy.

Another key performance criterium for the engine is how efficient the conversion is, with

the efficiency 7 defined by

n= (4.19)

] Y
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where /is the heat current flowing out of the hot terminal. Fundamental principles, holding
for any heat engine, require that the efficiency is limited by the Carnot efficiency ¢, given

by
T

CTHAT
where T'and 7'+ 6 T are the temperature of the cold and hot reservoir respectively. Making

nc =1 (4.20)

use of the linear response expressions for the charge and heat currents in Eq. (4.11), we can
write the efficiency as

_(GV+IAT)V _ (GV+ GSAT)V
MV KAT TGV (k + GIIS)AT

(4.21)

where we in the last step used the relations in Eq. (f.14). Maximizing the efficiency with
respect to the voltage, also using M = LT and II = ST gives

VZT+1-1 ’T GS*T (422)
max — y——— = = . 22
Tmax =€ 71+ 1 GK—I2T/G) & 4

Here we have introduced ZT, which is known as the figure of merit of the heat engine. As s
clear from Eq. (§.22)), a large ZT is desirable since it gives a large efficiency. A large amount
of work has gone into finding materials and structures where ZT is large [41, 5G], but to
date few cases with a ZT above one have been demonstrated. An important reason for this
is the unavoidable heat conduction via phonons, not discussed in this thesis, suppresses ZT

(45].

In some situations, the desired property of the engine to be as efficient as possible, under
the condition that the heat engine is operating at the maximally achievable power. It can
the be shown that in the linear response the efficiency at maximum power is bound by

_ nc
1+ (1+AT/T)=1/2

nca (4.23)

typically referred to as the Curzon-Ahlborn efficiency [57-59].

4.4.1 Thermodynamic uncertainty relations

The fact that ca < 7c shows that maximizing the power typically does not allow one to
reach the theoretically maximal, Carnot, efficiency. Moreover, a heat engine operating at
Carnot efliciency produces zero power. These observations show that there is clearly a trade-
off between large efficiency and large power production. Very recently it was demonstrated
theoretically that for a large class of thermoelectric heat engines, the trade-off includes not
only power and efficiency, but also the fluctuations of the power output [6d, 61]. In fact, the
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power, efficiency and fluctuations are subjected to a joint bound, a so called thermodynamic
uncertainty relation, given by [62]

T 1
n_ < < -

nc—nhp = 2

(4.24)

Here Ap are the zero frequency power fluctuations, which can be found from our analysis
of electrical current noise P (discussed in Chapter P and above) as

Ap = / dr(AP()AP(t+ 7)) = V2 / dr{M(H)AI(z+ 7)) = V2P, (4.25)

This result shows that a heat engine in an eflicient way produces a stable and large amount
of power, is not even theoretically possible.

We note that the relation in Eq. (j.24) is formally derived for systems described by Markovian
master equations, which is not the case for the systems investigated in this thesis, which
instead are described by scattering theory. In fact, for systems described by scattering the-
ory, Eq. (4.24) has been shown to break down away from linear response [63]. We also
emphasize that very recently it was shown that for every system described by a thermo-
dynamic fluctuation relation, there is a corresponding uncertainty relation [64-67]. This
promises to make thermodynamic uncertainty relations an important topic of research dur-
ing the coming years. In paper 11, the thermodynamic uncertainty relation is analyzed for
a quantum point contact heat engine.

4.5 Examples of energy dependent transmission

As is clear from the discussion above in this chapter, in the scattering description, thermo-
electric effects and heat engines rely on energy dependence of the transmission probability
D(E) (for two-terminal systems). We now explore two systems where the transmission
probability is energy dependent, a Quantum Point Contact (QPC) [68, 69], discussed in
the thesis mainly in papers 11 and 1v, and a mesoscopic capacitor [70-72] in an interfero-
metric setup, discussed in paper I.

4.5.1  Quantum point contact

The QPC is a basic building block in many mesoscopic systems. A schematic of a two-
terminal QPC structure in a two-dimensional electron gas, implemented with electrostatic
split gates, is shown in Fig. 4.1 (a) The QPC is typically described by a saddle point po-
tential forming due to the bias applied at the split gates [69]. A detailed discussion of the
QPC potential and how the scattering properties are derived is given in paper 1v. Here,
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Figure 4.1: (a) Schematic of two-terminal conductor with energy dependent QPD transmission probability D(E). (b) The
transmission probability as a function of step energy E, for different smoothness ~. The smoothness is zero for
the dashed red line which gives a sharp step-function transmission. By increasing ~ the sharp step starts to get
smoothened (blue line).

to illustrate the energy dependence of the scattering, we just give the transmission prob-
ability at the onset of the first propagating mode. As shown in several works [68, 69], the

probability is given by the Fermi-function like expression

D(E) = 1

= . (4.26)
1 +exp ( _E+E°)

==
A plot of the D(E) is given in Fig. .1 (b). The energy scale Ej sets the position of the step
in transmission from 0 to 1, with D(Ej) = 1/2. The energy 7y gives the width in energy
of the step. The step energy £y, and to some extent also 7, are tunable via the split gate

potentials. The thermoelectric and heat engine properties of the QPC is discussed in detail
in paper 111.

In the ideal case, to obtain maximal power, one would like to have a v — 0. However, this
is difficult from an experimental point of view. Instead, in many situations the energy scale
7y is so large that for all practical purposes one can neglect the energy dependence of D(E)
and just put D(0), that is, the transmission probability at Fermi energy. This is the case in
the next sub-section.

4.5.2  Mesoscopic capacitor in interferometer

A more elaborate scheme, built on achieving a sharp step in energy by quantum interfer-
ence, is the topic of paper 1. It is however helpful for the discussion in this section and
the next chapter to describe the scheme in some detail. The scheme consist of two build-
ing blocks, a mesoscopic capacitor which is then inserted in an electronic Mach-Zehnder
interferometer.

The mesoscopic capacitor is shown schematically in Fig. [.7. It is implemented in a two-
dimensional electron gas in the quantum Hall regime, where the transport takes place along
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(a)

capacitor

— ac

Figure 4.2: Mesoscopic capacitor and scattering amplitudes. Left panel: Schematic top-view of capacitor defined in a
two-dimensional electron gas, with QPC top-gate electrodes in grey. Right panel: Scattering paths and
corresponding amplitudes ¢, 7, r, # at QPC shown. For details of capacitor properties, see text.

chiral edge states. The capacitor consists of a dot, with a circumference of length Z, coupled
via a QPC with energy independent transmission probability Dc,p, to an edge state. An
electron at energy E, with wave number 4, propagating along the edge has the amplitude #
to pass the capacitor without entering, the amplitude 7¢*2# to scatter into the capacitor, go
one lap around and then out again continuing along the edge, etc... . The total amplitude
for the electron to pass the capacitor, summing up the amplitudes for all possible paths, is
thus
r L

1—Ze*
Importantly, after the scattering at the capacitor the electron will eventually continue its
propagation along the edge, so the probability to transmit is unity, |fo[* = 1. It is thus
possible to write fo, = ¢*(£), where a(E) is an energy dependent phase. This can be

tor = £+ re* 4 ® L P 4= (4-27)

seen by rewriting #,, making use of the unitarity of the QPC scattering matrix, (up to an
unimportant phase factor)

— /1 = D¢ ikL+0)
b= 1 1 Dcape — = eia(E), (4.28)
1 — /1 = Deype

where ¢ is a scattering phase picked up by the electron when reflecting from the QPC while
circulating in the capacitor. From Eq. (j.29) the phase o(E) is given by

\/1 = Deyp sin(kL + ¢)
1 — /T = Deypcos(kL +¢) ) (4.29)

The energy dependence of «(E) is discussed in detail in paper 1.

a(E) = 2 arctan

The second component is the electronic Mach-Zehnder interferometer[73-76]. The clas-
sical, optical Mach-Zehnder interferometer [77] is a well know system, shown schematically
in Fig. [.3 (a). A beam oflight is split into two by a semi-transparent beam splitter. The two
partial beams travel along different paths (typically reflected by mirrors at some point) and
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are then recombined, from different directions, on a second beam splitter. After the second
beam splitter, the intensity of the light is measured in a detector. The measured intensity
depends on the optical path length difference for the two partial beams, a result of interfer-
ence. The interferometry can be performed also with individual quanta of light, photons,

[a]
(a) . E (b) .

Figure 4.3: (a) Schematic of optical Mach-Zehnder interferometer with a source (sun), two semi-transparent beam splitters
(speckled rectangles), two mirrors (filled rectangles), two arms and two detectors, A and B. (b) Topologically
equivalent system to (a), emphasizing the two-path aspect of the interferometer. For details, see the text.

and then the Mach-Zehnder interferometer acts as a which-path (or a double-slit) interfero-
meter for the photons. For the electronic Mach-Zehnder interferometer, the single photon
interferometer is the most clear analogy. The electronic interferometers realized experi-
mentally [73-76] are constructed in two dimensional conductors in the the quantum Hall
regime, just as for the mesoscopic capacitor. In the interferometer, the electrons propagate
along an edge state and scatter at two QPCs acting as beam splitters, see Fig. [4.3 (b). As
dictated by quantum mechanics the total amplitude for the electron to scatter from one
source terminal to a detector terminal is the sum of the amplitues for the two paths. For
semi transparent QPC beam splitters, Dopc = 1/2, the amplitude can be written (up to
an unimportant phase factor)

iy = 1 iy n 1 ko . (4.30)
2 2

where LU and Lp are the lengths of the upper (U) and lower (D) paths in the figure. The

only qualitative difference to an optical interferometer is the additional Aharonov-Bohm

phase 6, proportional to magnetic flux enclosed by the two interferometer arms. Such a

phase is absent for the optical interferometer since photons, in contrast to electrons, do not

couple to the vector potential.

From the amplitude we have the probability

1 + cos(k(Lp — Ly) + 0)
2 )

Imz)? = (4.31)

of the typical interference form, with a phase dependent on both the path length difference
Ly — Lp, the phase 6 and the energy E, via the wave number 4(E).
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Combining the two components, by coupling a mesoscopic capacitor to the upper arm of
the Mach-Zehnder interferometer, we get a total transmission amplitude

1€MU n %ei/eLD +a®)] (4.32)

IMZ,tor = E

and hence the probability

1 + coslk(Lp — Ly) + 0 + a(E)] '

5 (4.33)

|tMZ,t0t |2 -

This shows that the effect of the mesoscopic capacitor is to modify the energy dependence
of the interference. As is shown in paper 1, this can be used to create a very sharp-in-
energy step in the total transmission and hence a heat engine producing power close to the
maximum for a single mode engine.
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Chapter s

Single electron sources

In quantum optics, fast, accurate and reliable single photon sources [78, 79]are both import-
ant tools for testing fundamental properties of quantum mechanics and also key building
blocks in a number of applications within quantum technology. In quantum electronics,
their counterparts single electron sources, have been investigated in a number of different
contexts. First, within the field of metrology, since the 1990’s, single electron sources have
been designed and analysed with the purpose of creating accurate standards of charge cur-
rents [Iif, Bd]. These efforts recently contributed to the redefinition of the Ampere in the
SI-system.

Second, of interest to the work in this thesis, is the creation of well controlled sources of
electrons, and sometimes holes, emitted in mesoscopic conductors at energies close to the
Fermi energy. The two experimentally realized sources are the driven mesoscopic capa-
citor, realized by Feve and coworkers in 2007 [I2], and the Leviton source, realized by the
team of Glattli in 2013 [[3]. These sources have not been used for metrological purposes,
but rather to perform fundamental experiments with electrons, both mimicking quantum
optics experiments but also to propose and perform experiments with no optical counter-
parts. Among the electron quantum optics experiments one can mention for example the
Hong-Ou-Mandel interferometer [B1, B2] and the tomographic reconstruction of a single
electron wave function [B3]. The experimental development of the single electron sources
have also spurred a lot of theory work [84-87].

In this thesis, we compare the properties of the Leviton source and the driven mesoscopic
capacitor in paper II and combine a driven mesoscopic capacitor with a thermoelectric
scatterer, a QPC with energy dependent scattering, in paper 1v. The focus of this chapter is
to provide a detailed description of the mesoscopic capacitor, based on the time dependent,
Floquet, scattering theory, outlined in Chapter 3.
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s.1 Time driven mesoscopic capacitor

The mesoscopic capacitor was described in detail in Chapter |y, in the case where the scatter-
ing is time independent. Here we discuss the same structure, implemented in a conductor
in the quantum Hall regime, but now coupled to an additional gate that controls the po-
tential of the capacitor, see Fig. f.1a). By driving the potential of the capacitor periodically
in time, with period 7, electrons and holes will be emitted from the capacitor into the

propagating edge states. This is illustrated in Fig. f.1b).

V(t)
(a) —QO—n (b)

T Electron emission Hole emission

'
Deap

H—

L D R - Y -
| e
opc V() ? V() CP

Figure 5.1: (a) Two terminal conductor in the quantum Hall regime, with a mesocopic capacitor (see Fig. 4.2.) single electron
source and a QPC. The electronic reservoirs are kept at ground (no applied electric bias). Transport takes place
along edge states (yellow lines). The capacitor, coupled to the edge state via a QPC with transparency Dcsp, has its
potential modulated periodically in time by an applied voltage V(#), giving rise to an alternating emission of
electrons and holes. The electrons and holes emitted from the capacitor scatter at the QPC, with transparency D.
(b) The electron and hole emission from the capacitor, hosting a number of discrete states, is shown.

In the ideal case, considered throughout the thesis, exactly one electron and one hole will
be emitted per period.

We now discuss in some detail how this qualitative picture arises from Floquet picture
calculations. The starting point is the scattering amplitude for the capacitor in the mixed

energy-time representation, given by [88]
1 2
ﬁ diU(?), (5.1)

t—qT

o
Scap(ta E) — 4+ 7’7', Z t/q—leiqu—ld)q(l‘)’ ¢q(t) —
q=1

where £ is incident energy of the electron and ¢ is the time at which the electron leaves
the capacitor. We recall from Chapter 4 that 7,7/, #, 7 are the scattering amplitudes of the
QPC defining the capacitor. In Eq. (53) ¢,(#) is the dynamical phase picked up during
g round trips of the capacitor, with U(z) the time-dependent electrical potential energy at
the capacitor. Also, 7 = L/vr is the time it takes for the electron to encircle the capacitor
once, with vz the velocity at Fermi energy.
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In the adiabatic regime, as discussed in chapter 2, the electron sees an essentially frozen
scattering potential during the time it dwells in the capacitor. Formally, the adiabaticity
criterion is

QT < Degp- (5.2)

This corresponds to a potential (energy) U(#) that is essentially constant in the time interval
[# — g7, 4] and hence, we can write the phase ¢,(#) = ¢q7U(#)/h. Inserting this into Eq.
(5.1) we can perform the sum and arrive at, making use of the unitarity of the scattering
matrix of the QPC (up to a constant phase factor),

= Dy — 00

1 — /1T = Dt +0()

where 0(¢) = 7U(z) /h+ ¢, with ¢ a constant scattering phase of the QPC. By comparing
Eq. (53) to Eq. ({:28) we see that Sc,p (2, E) is indeed the frozen scattering amplitude of

the capacitor.

(5-3)

Seap(t, E) =

As a next step we consider a harmonic drive potential U(z) = U~ 6 Usin(Qr), where Q is
the drive frequency. Moreover, linearizing the electron spectrum around Fermi energy we
can write #(E) = kg + E7/h. Putting this into the frozen scattering matrix we have

/1= Deap — FOHE) Er 10Usin(Q¢)
Sap(t:B) = T A= pgatn OB = e

where all constant phases are collected into ¢y.

(5.4)

s..1  Full Floquet expression

To write the corresponding scattering matrix elements in energy representation, S ©) (En, E)
i.e. the Floquet matrix, we need to perform a Fourier transform of Eq. (5.4), see Chapter

3, Eq. (6.9). The transform is conveniently performed by turning it into a contour integral
in the complex plane by a change of variables as z = ¢*

. This gives

T
5©) (Es, E) = — j{dzz”_le ol (5.5)

27i . 1\’
" 1 — ze® exp [g <z— )]
2

where we introduced oo = ¢ + E7/h and 8 = §Ur /h. The integral is then given by the
sum of the residues over the poles inside the complex unit circle. For #» > 1, the poles are
found from the roots of the denominator, and are given by

2y = Ky — /1 + 527 Ky = _[i(a + 27/;13) + ln(t)] ) (5.6)
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Calculating the residues then gives for the scattering matrix elements,

Dup =~ %
SO, B = 2 Dew ? (5.7)

CSUr N —Duyp S 1+ /2

The amplitude for » < 1 is found similarly and the term for » = 0 can then be found
from unitarity of the scattering matrix. In many situations of relevance the terms in the
sum in Eq. (5.7) decay rapidly with increasing p, which makes the expression in Eq. (5.7)
convenient for a numerical investigation of the scattering properties of the capacitor, for
arbitrary magnitude of the QPC transmission probability De,p.

s.1.2  QPC tunneling regime

In this thesis we are focusing on the case where the capacitor QPC is in the tunnelling
regime, that is De,, < 1. This regime can be investigated by taking the tunneling limit
of the expression in Eq. (5.7). It is however more physically transparent to take this limit
already for the frozen scattering amplitude in Eq. (5-4). By choosing U and § U such that
there is only one electron and one hole emitted per period [i8], at times £°) (E) and #%) (E)
espectively, well separated in time, we can write the frozen scattering amplitude as a sum
over amplitudes at times close to #9 (E) and A?) (E) as

+—£) (E)+io

00— & <I<%
SO (e, B) = (5:9)
— D (E)—i 3
i—i(;’)(E)—‘riZ <<,
with, keeping only lowest order in energy,
E T E hD,
@O(py = = Mgy =L L = . )
CE=ma TP 50a 77 aheun (5:9)

'This result implies that there are two emission events at (energy dependent) times £ (E)
and #) (E), of temporal width o, separated approximately halfa period. Note that 0 < T,
guaranteeing that the pulses are well separated.

It is instructive to reformulate the expression for the scattering amplitude in Eq. (5.8) as

E-EO(+iT)2 E-EV()—iT)2

SO (1 F) = .
B =y e@w —2 T E— e 12 (5.10)
where D
EV =6UQr, EV(r) =6UQ <”2r — t) S (5.11)
T
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This equivalent way of writing the scattering amplitude shows an emission of an electron
and a hole, at energies £() (£) and £ (¢) respectively, with spectral width T'/2.

From Eq. (.§) one can now calculate the Floquet matrix elements by Fourier transforming,.
We then get

_290_677100'61’;19[@ (E) n>0,
s©) (E, E) = 1 n=020, (5.12)

—2Qo "0 O E) < 0.

This is the expression which is used in papers 11 and 1v.
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Chapter 6

Summary and outlook

In this thesis two topics within mesoscopic physics have been addressed, thermoelectric
transport and single electron sources. We perform a theoretical analysis of both of them
individually as well as their interplay. The analysis is performed within the framework of
scattering theory, which due to its conceptual simplicity allows for physically clear and com-
pelling interpretations of the different phenomena encountered. The thermoelectric trans-
port investigations are focused on fundamental quantum properties and proof-of-principle
heat engines proposals. For the single electron sources we investigate different types of
sources which emit single electrons or holes close to Fermi energy. Here we focus on the
charge and energy currents and their correlators. We also analyse single electron sources op-
erating in thermoelectrical conductors. These combined investigations reveal a number of
interesting, novel phenomena and motivate both experimental as well as further theoretical
studies.

In Paper 1 we show theoretically that a thermoelectric heat engine, with operation based
only on quantum-mechanical interference, can reach optimal performance in the linear re-
sponse regime. As a concrete experimental proposal, we consider a two-terminal conductor
in the quantum Hall regime, where transport takes place along chiral edge states. Itis shown
that implementation of a close-to-optimal heat engine is possible in an electronic Mach-
Zehnder interferometer with a mesoscopic capacitor coupled to one arm. We demonstrate
that the maximum power and corresponding efficiency can reach 90% and 83%, respect-
ively, of the theoretical maximum. The proposed heat engine can be realized with existing
experimental techniques and has a performance robust against moderate dephasing.

In Paper 11 we analyze different types of time-dependently driven single-particle sources
whose common feature is that they produce pulses of integer charge on top of the Fermi
sea. These sources are: a slowly driven mesoscopic capacitor in the quantum Hall regime,
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a Lorentzian-shaped time-dependent bias voltage, and a local gate-voltage modulation of a
ballistic channel. The first two types of sources have been realized experimentally and are
frequently used as building blocks in electron quantum optics experiments. We explore if
and how the basic differences of the three sources impact transport properties. Specifically,
we address time- and energy-resolved charge and energy currents as well as the correspond-
ing zero-frequency current correlators. In particular, we identify differences in the impact
temperature has on the observables for sources with and without energy-dependent scat-
tering properties.

In Paper 111 we analyze the trade-off between large power output, high efhciency and small
fluctuations in the steady state operation of a thermoelectric heat engine. We provide a
concrete illustration of the trade-off by theoretically investigating a quantum point contact
with an energy-dependent transmission function. To analyse different operation regimes,
we allow for arbitrary smoothness of the transmission probability of the point contact,
which exhibits a close to step-like dependence in energy. In particular, we consider both
the linear and the non-linear regime of operation. It is found that for a broad range of
parameters, the power production reaches nearly its theoretical maximum value, with ef-
ficiencies more than half of the Carnot efficiency and at the same time with rather small
fluctuations. Moreover, we show that by demanding a non-zero power production, in
the linear regime a thermodynamic uncertainty relation can be formulated in terms of the
thermoelectric figure of merit.

In paper 1v we investigate a thermoelectric mesoscopic conductor, which is voltage- and
temperature-biased and additionally fed by a time-dependently driven single-particle source.
The conductor is a quantum point contact with an energy dependent transmission. The fo-
cus of the investigation is the interplay between stationary biases and time-dependent driv-
ing, which results in quantum screening effects at the point contact. The effects are visible in
the linear thermoelectric response coeffcients and can be tuned by the time-dependent driv-
ing. This opens up for the investigation of unexplored quantum screening effects, which in
other types of devices are obscured by geometric capacitive effects. Moreover, the screening
effects are related to the energetic properties of the single particle source.

Based on the performed investigations and obtained results, we see several interesting ex-
tensions. A further search for experimentally realistic thermoelectric heat engines operating
in the non-linear regime and combining to largest possible extent large power, high efh-
ciency and small output fluctuations is clearly desirable. Moreover, a broad investigation
of novel, fundamental effects occurring when combining single electron sources and ther-
moelectric transport is also motivated by the findings of Paper 1v. Finally, taking a longer
time perspective, it would be interesting to analyse to what extent single electron sources
or thermoelectric effects could be used as building blocks for quantum technology applic-
ations.
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