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Abstract

Cloud applications are often subject to unexpected events like flashcrowds and hard-

ware failures. Users that expect a predictable behavior may abandon an unresponsive

application when these events occur. Researchers and engineers addressed this prob-

lem on two separate fronts: first, they introduced replicas – copies of the application

with the same functionality – for redundancy and scalability; second, they added a self-

adaptive feature called brownout inside cloud applications to bound response times by

modulating user experience. The presence of multiple replicas requires a dedicated

component to direct incoming traffic: a load-balancer.

Existing load-balancing strategies based on response times interfere with the re-

sponse time controller developed for brownout-compliant applications. In fact, the

brownout approach bounds response times using a control action. Hence, the response

time, that was used to aid load-balancing decision, is not a good indicator of how well

a replica is performing.
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To fix this issue, this paper reviews some proposal for brownout-aware load-balancing

and provides a comprehensive experimental evaluation that compares them. To provide

formal guarantees on the load-balancing performance, we use a randomized optimiza-

tion approach and apply the scenario theory. We perform an extensive set of experi-

ments on a real machine, extending the popular lighttpd web server and load-balancer,

and obtaining a production-ready implementation. Experimental results show an im-

provement of the user experience over Shortest Queue First (SQF) — believed to be

near-optimal in the non-adaptive case. The improved user experience is obtained pre-

serving the response time predictability.

Keywords: Load-balancing, randomized optimization, cloud control.

1. Introduction

Cloud computing has dramatically changed the management of computing infras-

tructures. On one hand, public infrastructure providers, such as Amazon EC2, allow

service providers, such as Dropbox and Netflix, to deploy their services on large infras-

tructures with no upfront cost [1], by simply leasing computing capacity in the form of5

Virtual Machines (VMs). On the other hand, the flexibility offered by cloud technolo-

gies, which allow VMs to be hosted by any Physical Machine (PM) (or server), favors

the adoption of private clouds [2]. Therefore, also self-hosting service providers are

converting their computing infrastructures into small clouds.

However, the scalability of these infrastructure is a serious concern and due to their10

ever-increasing complexity, and hardware failures are rather common. In fact, in cloud

computing infrastructures failures are the norm rather than an exception [3, 4]. This

is why internet-scale interactive applications, such as e-commerce websites, include

replication early in their design [5]. Replication improves scalability, i.e., more users

can be served by adding more replicas, but also makes the application more resilient to15

failures. In case a replica fails, other replicas can take over.

In a replicated setup, a load-balancer is responsible for monitoring replicas’ health and

directing requests as appropriate. Indeed, this practice is well established and using

it, applications can successfully deal with failures as long as the remaining computing
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capacity is sufficient [5].20

However, failures in cloud infrastructures are often correlated in time and space [6,

7]. Therefore, it may be economically inefficient for the service provider to provision

enough spare capacity for dealing with all failures in a satisfactory manner. In case

correlated failures occur, the service may saturate, i.e., it may no longer be able to

serve users in a timely manner. This in turn leads to dissatisfied users, that can abandon25

the service. Note that the saturated service causes infrastructure overload, which by

itself may trigger additional failures [8], aggravating the initial situation. This strongly

motivates the need for a solution to deal with rare, and cascading failures, that produce

temporary capacity shortages on the underlying architecture.

A promising self-adaptation technique that solves this problem is brownout [9, 10].30

In essence, a service is extended to serve requests in two modes: with mandatory con-

tent only, such as product description in an e-commerce website, and with both manda-

tory and optional content, such as the product information and recommendations of

similar sales. Serving more requests with optional content, increases the revenue of

the provider up to 50% [11], but also greatly affects the capacity requirements of the35

service. The tradeoff between the two is a matter of quality of service, and it has been

explored using control theory, where a controller was used to decide the percentage

of requests to be served with optional content enabled [9, 10], in order to keep the re-

sponse time below the user’s tolerable waiting time [12]. These studies were conducted

in a single replica case and subsequently extended to the multiple replica, by adding a40

load-balancer [13, 14].

Despite the fact that load-balancing techniques have been widely studied [3, 15, 16,

17, 18, 19, 20], state-of-the-art load-balancers forward requests based on metrics that

cannot discriminate between a replica that is avoiding overload by not executing the

optional code and a replica that is not subject to overload. This called for an analysis45

on the introduction of brownout-aware load-balancers [13]. The promising results of

the analysis encouraged the implementation of brownout-aware load-balancers [14].

The implementation was compared with the state-of-the-art load-balancing algorithm

that obtained the best performance in the simulation campaign, Shortest Queue First

(SQF) [21].50
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Despite obtaining promising simulation results [13] and good implementation per-

formance [14], the load-balancers were tested only in specific scenarios and no guar-

antees on the generality of the results were given. Moreover, since the events that

can happen at the data center level are unpredictable and unknown, it is impossible to

construct a set of scenarios that would make the validation extensive enough for a pro-55

duction environment. To address the problem of providing formal guarantees despite

unpredictability, this paper applies the scenario theory [22, 23, 24] to obtain formal

probabilistic guarantees about the behavior of the load-balancing strategies. The sce-

nario theory has been recently used in many different situations especially when deal-

ing with stochastic or uncertain systems [25, 26, 27], also in combination with robust60

optimization [28]. The application of the scenario theory allows one to extensively

evaluate the performance of different techniques, providing some formal guarantees

via the solution of a chance-constrained optimization problem.

In essence, the contribution of this paper is to provide probabilistic guarantees on

the behavior of brownout-aware load-balancers and on the improvements they bring in65

comparison to brownout-unaware ones. The solution of this problem greatly extends

the contribution of [13], that was only proposing time-based algorithms and evaluting

them with a simulator, and of [14], that only used specific scenarios as case studies for

the evaluation, therefore not being able to derive any guarantee on the generic behavior

of the proposed load-balancers. Solving this problem required an extensive experimen-70

tal campaign – this paper considers about 800 experiments for each load-balancing

strategy against the 30 considered before. Also, the evaluation campaign conducted

for this extension considers a more realistic experimental setting – both the workload

characterization and the resource availability are here randomized. The adoption of

the scenario theory and the required additional data provide probabilistic guarantees75

on the worst-case obtainable performance – these guarantees can not be obtained with

the bare statistical analysis conducted in the past.

The solution proposed in this paper can be applied to a wider class of applications.

Indeed, in self-adaptive software systems, there is a strong need for a different type of

evaluation campaign, where all the sources or randomness in the execution are properly80

identified and all the possible configurations are potentially tested. This paper presents
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the first attempt of using the scenario theory to provide this analysis.

Results show that the cloud application can tolerate more replica failures and that

the novel load-balancing algorithms improve the number of requests served with op-

tional content, by up to 5%, the previous results of [14] on specific cases. In addition,85

the worst case scenario is improved by 15% with respect to SQF, with a very high

probability that is quantified through the application of the scenario theory. This result

is especially remarkable, since SQF is believed to be near-optimal, in the sense that it

minimizes the average response time for non-brownout-enabled replicas [21, 29].

The rest of the paper is organized as follows. Section 2 discusses the state of the art,90

while Section 3 describes in more detail the brownout framework, better highlighting

the contribution of this paper. Section 4 details the proposed control-theoretical load-

balancers and some of their implementation aspects. Section 5 introduces the scenario

theory and its application to test the different load-balancing strategies, highlighting the

obtainable formal guarantees. Section 6 presents an extensive set of experiments that95

are evaluated with the scenario theory, and compared with previous results. Section 7

concludes the paper and sketches possible future work.

To make our results reproducible and foster further research on improved resilience

through brownout, the source code for the load-balancer and to run the experiments has

been released online1.100

2. Related work

Load-balancers are standard components of internet-scale services [30], allowing

applications to achieve scalability and resilience [3, 5, 31, 32]. Many load-balancing

policies have been proposed, aiming at different optimizations, spanning from equaliz-

ing processor load [33] to managing memory pools [34, 35], to specific optimizations105

for iterative algorithms [36]. Typically, the load-balancer assumes the number of avail-

able resources to be constant since this aspect is managed at a larger time scale —

usually in the time scale of tens of minutes. On the other hand, the autoscaler is in

1https://github.com/cloud-control/brownout-lb-lighttpd
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charge of adapting the number of available resources according to the incoming work-

load [37]. The choice of the autoscaler is critical for many different reasons, and, in110

particular, for pricing issues, like for example, for the minimization of power consump-

tion in a data center [38, 37]. In the following, we assume that an autoscaler is in place,

and that the number of incoming requests is not changing the number of available re-

sources, therefore we focus only on the load-balancing algorithm.

Often load-balancing policies consider web server systems as a target [39, 40],115

where one of the most important goal is to bound the maximum response time that the

clients are exposed to [41]. Load-balancing strategies can be guided by many different

purposes, for example geographical [42, 43], driven by the electricity price to reduce

the datacenter operation cost [44], or specifically designed for cloud applications [3,

15, 16].120

Load-balancing solutions can be divided into two different types: static and dy-

namic. Static load-balancing refers to a fixed strategy to route traffic [45, 46]. The

most commonly used technique is based on selecting each replica in turn, called Round

Robin (RR). It can be either deterministic, storing the last selected replica, or proba-

bilistic, picking one at random. However, due to their static nature, such techniques125

would not have good performance when applied to brownout-compliant applications.

A static policy would not take into account the inherent fluctuations of a cloud en-

vironment, like bursty workloads, the sudden popularity of a page, a service or even

a whole application. Moreover, static techniques disregard the control strategy at the

replica level, which leads to changing capabilities of replicas [13]. Our contribution130

is designed to deal with failures reactively. Failure prediction [4], if accurate enough,

could be used to improve the control strategy, but it is usually difficult to achieve in a

real-time environment.

On the contrary, dynamic load-balancing is based on measurements of the current

system’s state. One popular option is to choose the replica which had the lowest re-135

sponse time in the past. We refer to this algorithm as Fastest Replica First (FRF) if the

choice is based on the last measured response time of each replica, and FRF-EWMA

if the choice is based on an Exponentially Weighted Moving Average over the past

response times of each replica. A variation of this algorithm is Two Random Choices
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(2RC) [47], that randomly chooses two replicas and assigns the request to the fastest140

one, i.e., the one with the lowest maximum response time. Through simulation results,

we were able to determine that FRF, FRF-EWMA and 2RC are unsuitable for brownout

applications [13].

Another adopted strategy is based on the pending request count and generally called

SQF, where the load-balancer tracks the pending requests and selects the replicas with145

the least number of requests waiting for completion. This strategy has proven to be

close to optimal for non-adaptive replicas [21, 29] and pays off especially in architec-

tures where the replicas have similar capacities and the requests are homogeneous. To

account for non-homogeneity, Pao and Chen proposed a load-balancing solution us-

ing the remaining capacity of the replicas to determine how the next request should150

be managed [48]. The capacity is determined through a combination of factors like

the remaining available CPU and memory, the network transmission and the current

pending request count. Other approaches have been proposed that base their decision

on remaining capacity. However, due to the fact that brownout applications indirectly

control CPU utilization, by adjusting the execution of optional content, so as to prepare155

for possible request bursts, deciding on remaining capacity alone is not an indicator of

how a brownout replica is performing.

A merge of the fastest replica and the pending request count approach was imple-

mented in the BIG-IP Local Traffic Manager [49], where the replicas are ranked based

on a linear combination of response times and number of routed requests. Since the160

exact specification of this algorithm is not open, we tried to mimic this behavior in

simulation [13], according to the description provided in [49]. One of the solutions

proposed in this paper extends the idea of looking at the difference between the past

behavior and the current one, although the metric observed by our solution is the ra-

tio of optional content served, which is used to decide how to route traffic so as to165

maximize optional content served.

Dynamic solutions can be control-theoretical [50, 51] and also account for the cost

of applying the control action [52] or for the load trend [53]. This is especially neces-

sary when the load-balancer also acts as a resource allocator deciding not only where

to route the current request but also how much resources it would have to allocate to170
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a replica, like in [54]. In these cases, the induced sudden lack of resources can re-

sult in poor performance. However, we focus only on load-balancing solutions, since

brownout applications are already taking care of the potential lack of resources [9].

The following section reviews the necessary background about brownout appli-

cations and SQF, which is used as a comparison point. Our previous simulation re-175

sults [13] show that SQF is the only non-brownout-aware load-balancing algorithm

obtaining a competitive performance in terms of optional content served, and it is there-

fore the only one used in the following experimental evaluation, as a comparison point.

3. Background and Motivation

3.1. Single Replica Brownout Services180

To provide predictable performance in cloud services, the brownout paradigm [9,

10] relies on a few, minimally intrusive code changes and a control strategy for the

response time of a single-replica based service. The service programmer builds a

brownout-compliant cloud service breaking the service code into two distinct subsets:

Some functions are marked as mandatory, while others as optional. For example, in185

an e-commerce website, retrieving the characteristics of a product from the database

can be seen as mandatory – a user would not consider the response useful without this

information – while obtaining reviews and recommendations of similar products can

be seen as optional – this information enhances the quality of experience of the user,

but the response is useful also without them. In the following we consider the incom-190

ing requests to be homogeneous, i.e., the type of requests is the same, as in the case of

an e-commerce website like Amazon. The case of heterogeneous requests is left as a

future work.

For a brownout-compliant service, whenever a request is received, the mandatory

part of the response is always computed, whereas the optional part of the response is195

produced only with a certain probability given by a control variable, called the dimmer

value. Not executing the optional code reduces the computing capacity requirements

of the service, but also degrades user experience. Clearly, the user would have more

information by seeing optional content, such as related products and comments from
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other users. However, in case of overload and transient failure conditions, it is better to200

obtain partial information than to have increased response times or no response, due to

insufficient capacity.

Keeping the service responsive is done by adjusting the probability of executing

the optional components [9]. Specifically, a controller monitors response times and ad-

justs the dimmer value to keep the 95th percentile response time observed by the users205

around a certain setpoint. Focusing on the 95th percentile instead of the average value,

allows more users to receive a timely response, hence improve their satisfaction [55]. A

setpoint of one second was used, to leave a safety margin to the user’s tolerable waiting

time, estimated to be around four seconds [12]. While the initial purpose of brownout

was to enhance the service’s tolerance to a sudden increase of the workload, it also210

significantly improves responsiveness during infrastructure overload phases, when the

service is not allocated enough capacity to manage the amount of incoming requests

without degrading the user experience. However, the brownout approach was used only

in services composed of a single replica, thus the service could not tolerate hardware

failures.215

The control design for the single replica in [9] is based on the linear model:

τ(k + 1) = α · Θ(k), (1)

where τ(·) is the predicted 95th percentile of the response time empirical distribution,

Θ(k) is the last dimmer value, while α ∈ R is a parameter that is in general unknown.

Admittedly, the model is very simplistic, but one of the main difficulties in the comput-

ing systems domain is that there is no physics that helps one to design equation-based

models. Therefore, in [9] the fixed-structure model (1) is assumed, and an estimate α̂

of the parameter α is identified online through a Recursive Least Square (RLS) filter

with a forgetting factor f ∈ (0, 1] [10]. Then, an adaptive PI (Proportional Integral) is

designed as:

Θ(k + 1) = Θ(k) +
1 − p

α̂(k)
· (τ◦(k) − τ(k)) , (2)

where p is the only design parameter that is tuned empirically [10], τ◦(k) and τ(k) are

the setpoint and measured value of the 95th percentile of the response time empirical

9
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Figure 1: Architecture of a brownout cloud service featuring multiple replicas.

distribution. For these parameters, we set τ◦(k) = 1s, f = 0.95 and p = 0.9.

3.2. Multiple Replica Brownout-Compliant Services

For fault tolerance and scalability reasons, cloud services should feature multi-220

ple replicas. Fig. 1 illustrates the software architecture that is deployed to execute a

brownout-compliant service composed of multiple replicas. Besides the addition of

replica controllers to make it brownout-compliant, the architecture is widely accepted

as the reference one for replicated cloud services [3].

In the given cloud service architecture, the client requests are assumed to arrive225

according to a Poisson process with intensity λ, which is unknown, and possibly time-

varying. Each client request is received by the load-balancer, that forwards it to one

of the n replicas. Each replica independently decides if the request should be served

with or without the optional part. The chosen replica produces the response and sends

it back to the load-balancer, which forwards it to the original client. Since all responses230

of the replicas go through the load-balancer, it is possible to piggy-back replica status

information to aid balancing decisions. For the purpose of this paper, we assume that

each replica i piggy-backs the current value of the dimmer Θi through the response,

so that this value is known by the load-balancer. However, to keep the system as

decoupled as possible, the load-balancer does not have any knowledge on how each235

replica controller adjusts Θi. This decoupling opens up the path to making the load-

balancer itself replicated, which is left for future work.

In the end, each replica i receives a fraction λi of the incoming traffic and serves

requests with a 95th percentile response time around the same setpoint of 1 second.

Each replica i chooses a dimmerΘi that depends on the amount of traffic it receives and240
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the computing capacity available to it. Directing too many requests to a certain replica,

the load-balancer may indirectly decrease the amount of optional requests served by

that replica.

Preliminary simulation results [13] compared different load-balancing algorithms

for this architecture. The main result of this comparison is that load-balancing algo-245

rithms that are based on measurements of the response times of the single replicas are

not suited to be used with brownout-compliant services, since the replica controllers

already keep the response times close to the setpoint. The only existing algorithm

that proved to work adequately with brownout-compliant services is Shortest Queue

First (SQF). It works by tracking the number of queued requests qi on each replica and250

directing the next request to the replica with the lowest qi.

3.3. Resilience without and with Brownout

Before delving into the load-balancing strategies development, we show through

experiments how brownout can increase resilience, even when used with a brownout-

unaware load-balancing algorithm, such as SQF. To this end, we expose both a non-255

brownout and a brownout service to cascading failures and their recovery. The in-

frastructure of this experiment starts with 5 replicas of a web application, each being

allocated 4 cores, i.e., the service is allocated a total computing capacity of 20 cores.

Every 100 seconds a replica crashes until only a single one is active. Then, every 100

seconds a replica is restored. To focus on the behavior of the service due to failure, we260

kept the request-rate constant at 200 requests per second. Note that, each replica was

configured with enough soft resources (file descriptors, sockets, etc.) to deal with 2500

simultaneous requests. The user requests are timed out if the service is not provided

within the tolerable waiting time of 4 seconds [12].

Fig. 2 shows the amount of requests per second that have been timed out and the265

optional content ratio served.

The non-brownout service performs well even with 2 failed replicas, from 0 to 300

seconds. Indeed, there are no timeouts and all requests are served with optional content.

The web server that we used in the experiments is lighttpd, which already includes

code to retry a failing request on a different replica, hence hiding the failure from the270
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Figure 2: Experimental results comparing resilience without and with brownout. Configuration: 5 replicas,

each having 4 cores.

user. During the time interval from 0 to 300 seconds, the brownout service performs

almost identically, except negligible reductions in optional content ratio at start-up and

when a replica fails, until the replica controller adapts to the new conditions. However,

starting at time 300, when the third replica fails, the non-brownout service behaves

poorly. The remaining computing capacity is insufficient to serve the incoming requests275

fast enough and response time starts increasing. A few seconds later the service is

saturated and almost all incoming requests time out. When enough replicas are restored

to make capacity sufficient, the non-brownout service still does not recover. It recovers

only when all the replicas are restored.

On the other hand, the brownout service performs well even with few active repli-280

cas. At time 300, when the third replica fails leading the service into capacity insuf-

ficiency, the replica controllers detect the increase in response time and quickly reacts

by reducing the optional content ratio to around 55%. As a results, the service does not

saturate and users can continue enjoying a responsive service. At time 400 when the

fourth replica fails, capacity available to the service is barely sufficient to serve any re-285
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quests, even with zero optional content ratio. However, even in this case, the brownout

service significantly reduces the number of timeouts by keeping the optional content

ratio low, around 10%. Finally, when replicas are restored, the service recovers fairly

quickly. Thanks to the action of the replica controllers, the database servers do not fill

up with “rotten” requests.290

Noteworthy, qualitatively identical results can be obtained with experiments in differ-

ent conditions (number of allocated cores, different realizations of the workloads, etc.).

See for example the ones included in [14].

In summary, adding brownout to a replicated service improves its resilience, even

when using a brownout-unaware load-balancing algorithm. The increase in resilience295

that can be obtained is specific to each service. In the following, we are interested in

the improvements that can be obtained with load-balancers specifically designed for

(brownout-aware) applications.

4. Design and Implementation

This section presents two brownout-aware load-balancing algorithms and their production-300

ready implementations.

4.1. Brownout-Compliant Load-Balancing Algorithms

Here we discuss two brownout-compliant control-based load-balancing algorithms.

The algorithms are based on the ideas presented in [13, 14], with two major modifica-

tions. First, all the techniques strive to maximize the optional content served by acting305

on the fraction of incoming traffic sent to a specific replica, while here the algorithms

are acting in an SQF-like way but with queue-offsets that are dynamically changed in

time. The queue-offsets ui take into account the measured performance of each replica

i in terms of its dimmer value, and are subtracted from the actual value of the queue

length qi so as to send the request to the replica with the lowest qi(k) − ui(k).310

Second, in previous contributions, all the algorithms run periodically, indepen-

dently of the incoming traffic, while in this paper we are considering algorithms that are

fully event-driven, updating the queue-offsets and taking a decision for each request.

13



These two modifications improve the achieved performance, both in terms of op-

tional content served and response time, rendering the service more reactive to sudden315

capacity changes, as in the case with failures. We now present two control laws for

computing the queue-offsets ui.

Even though the proposed algorithms are based on the fact that brownout-applications

are running, they can be used also with non-brownout-enabled applications, just by

considering Θi(k) = 1, ∀k, i. This allows also for having hybrid environment with both320

brownout- and non-brownout-enabled applications.

4.1.1. PI-Based Heuristic (PIBH)

The first controller is based on a variant of the PI (Proportional and Integral) con-

troller in velocity form. In principle, the PI control action in velocity form is based

both on the variation of the dimmers value (which is related to the proportional part),325

and their actual values (which is related to the integral part).

As presented above, the values of the queue offsets ui are updated every time a

new request is received by the service, according to the last values of the dimmers Θi,

piggy-backed by each replica i through a previous response, and on the queue lengths

qi, using the formula

ui(k + 1) = (1 − γ)
[

ui(k) + γPh∆Θi(k) + γIhΘi(k)
]

+ γhqi(k), (3)

where γ ∈ (0, 1) is a filtering constant, γP and γI are constant gains related to the

proportional and integral action of the classical PI controller, and h is the time elapsed

from the last control intervention, i.e., from the last request. Of course, h is saturated

in such a way that 1 − γh ≥ 0, i.e., h ≤ 1/γ. Notice that h has the same probability330

distribution as the incoming traffic.

We selected γ = 0.01 and γP = 1.0 based on empirical tuning. Once γ and γP are

fixed to a selected value, increasing the integral gain γI calls for a stronger action on

the load-balancing side, which means that the load-balancer would take decisions very

much influenced by the current values of Θi, therefore greatly improving performance335

at the cost of a more aggressive control action. On the contrary, decreasing γI would

smoothen the control action, possibly resulting in performance loss due to a slower
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reaction time. The choice of the integral gain allows to exploit the trade-off between

performance and robustness. For the experiments we set γI = 0.5.

4.1.2. Equality Principle-Based Heuristic (EPBH)340

The second algorithm is based on the heuristic that the system will perform well in

a situation when all replicas have the same dimmer value. By comparing Θi for each

replica i with the average dimmer of all replicas, the designed update rule can deduce

which replica should receive more load, in order to drive all dimmer to be equal. The

queue offsets can thus be updated as

ui(k + 1) = ui(k) + γeh























Θi(k) −
1

n

n
∑

j=1

Θ j(k)























, (4)

where γe is a constant gain and h is the time elapsed from the last control intervention.

The gain decides how fast the controller should act. Based on empirical tuning we set

γe = 0.1.

4.2. Implementation

In order to show the practical applicability of the two controllers and evaluate their345

performance, we decided to implement them in an existing load-balancing software.

We chose lighttpd2, a popular open-source web server and load-balancing software,

that features good scalability, thanks to an event-driven design. lighttpd already

included all necessary prerequisites, such as HTTP request forwarding, HTTP response

header parsing, replica failure detection and the state-of-the-art queue-length-based350

SQF algorithm. HTTP response header parsing allowed us to easily implement dimmer

piggy-backing through the custom X-Dimmer HTTP response header, adding only 20

bytes of overhead. In the end, we obtained a production-ready brownout-aware load-

balancer implementation featuring the two algorithms, with less than 180 source lines

of C code3.355

2http://www.lighttpd.net/
3https://github.com/cloud-control/brownout-lb-lighttpd
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5. Scenario Theory: A Randomized Method for Performance Evaluation

The evaluation of the presented techniques is a non-trivial task, due to the differ-

ent sources of randomness that arise in a cloud environment, ranging from hardware

failures to flash crowd events. It is thus necessary to specifically design a performance

evaluation technique that is able to cope with such a stochastic behavior of the infras-360

tructure.

In this section, a randomized method is described for evaluating the performance

of different load-balancing policies, when the incoming traffic rate λ is stochastic and

the goal is to maximize the optional content served over a finite number of requests R.

The main contribution of this paper is the formulation of the performance evaluation365

methodology as a chance-constrained optimization problem.

The proposed method feeds the different load-balancing policies with a number of

realizations of the stochastic input. We consider two different types of events that may

occur in the system, i.e., the arrival rate of requests λ into the system, and the possible

failures of the replicas over time.370

Our goal is to introduce a method for evaluating performance of the proposed

methodologies with probabilistic guarantees. The aim of the performance evaluation is

to evaluate how much optional content the system is able to serve, and how much the

response time τ ∈ R+ of a request exceeds the prescribed setpoint τ◦ ∈ R+. Using the

index k to count the requests, we denote:

τexc := max {τ(k) − τ◦, 0} .

Therefore, it is possible to define the output of the system as:

y(k) =
[

OC(k) τexc(k)
]

(5)

with OC(k) ∈ {0, 1} being the binary variable that says if the k-th request was served

or not with optional content. The desired (ideal) behavior of the system – which is not

necessarily always achievable – is then y◦(k) = [1 0], i.e., when the optional content

is always served – since it maximizes the revenues for the service provider – and that

the response time per request never exceeds the setpoint. Solutions that serve the same375
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amount of optional content, with a response time that never exceeds the setpoint are

therefore equivalent for this study.

In order to appropriately evaluate the performance of a policy, we define a distance

dR(·, ·) that maps each pair of trajectories y(k), and y◦(k), k ∈ [1, 2, . . . ,R], into a pos-

itive real number dR(y, y◦) that represents the extent to which the output y is far from380

the optimal behavior y◦ along a finite number of R incoming requests.

Note that dR(y, y◦) is a random quantity since it depends on the realization of the

stochastic workload w(k) and the stochastic realization of the mentioned quantities in

the system.

The performance can be evaluated in a “worst-case” fashion, by solving the follow-

ing Chance-Constrained optimization Problem (CCP):

CCP : min
ρ
ρ (6)

subject to: P{dR(y, y◦) ≤ ρ} ≥ 1 − ǫ.

In this case, we choose the distance metric

dR(y, y◦) =
1
R
‖y◦ − y‖2 =

1
R

∥

∥

∥

∥

∥

[

1 − OC 0 − τexc

]

∥

∥

∥

∥

∥

2

=
1
R

∥

∥

∥

∥

∥

[

1 − OC 0 −max {τ − τ◦, 0}
]

∥

∥

∥

∥

∥

2

=
1
R

∥

∥

∥

∥

∥

[

1 − OC min {τ◦ − τ, 0}
]

∥

∥

∥

∥

∥

2

(7)

where R is the number of requests considered in the experiment, and ‖X‖2 is the squared385

2-norm of the matrix X. In other words, we are penalizing those policies that are

serving very few optional content, and that exceed the upper bound of response time

given by the setpoint τ◦. Notice that methods that are serving the same amount of

optional content always keeping the response time lower than the setpoint have the

same distance.390

Irrespectively of the choice for dR(y, y◦), finding the solution ρ⋆ of the CCP (6) is

known to be an NP-hard problem [24, 56], since it involves determining, among all sets

of realizations of the stochastic input and initial state that have a probability 1 − ǫ, the

one that provides the best (lowest) value for dR(y, y◦). We then head for an approximate

solution where instead of considering all the possible realizations for the stochastic395
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uncertainty, we consider only a finite number N of them called scenarios, randomly

extracted according to their probability distribution, and treat them as if they were

the only admissible uncertainty instances. The number N of scenarios corresponds to

the number of experiments with different inputs to be performed for the solution of

the CCP. This leads to the formulation of Algorithm 1, where the chance-constrained400

solution is determined using some empirical violation parameter η ∈ (0, ǫ).

Algorithm 1 Randomized solution

1: extract N realizations of the stochastic input u(i)(k), k = 1, 2, . . . ,R, i =

1, 2, . . . ,N, and let κ = ⌊ηN⌋, with η ∈ (0, ǫ);

2: determine the N realizations of the output signals y(i)(k) k ∈ R, i = 1, 2, . . . ,N,

when the policy to be evaluated is fed by the extracted uncertainty instances;

3: compute

ρ̂(i) := dR(y(i), y◦), i = 1, 2, . . . ,N;

4: determine the indices {h1, h2, . . . hκ} ⊂ {1, 2, . . . ,N} of the κ largest values of

{ρ̂(i), i = 1, 2, . . . ,N}

5: set

ρ̂⋆ = max
i∈{1,2,...,N}\{h1,h2,...,hκ}

ρ̂(i).

Notably, if the number N of extractions is appropriately chosen, the obtained es-

timate of ρ⋆ is chance-constrained feasible, with a-priori specified (high) probability.

This result is based on the scenario theory [26], which was first introduced for solv-

ing uncertain convex programs via randomization [22] and then extended to chance-405

constrained optimization problems [23].

Proposition 5.1. Select a confidence parameter β ∈ (0, 1) and an empirical violation

parameter η ∈ (0, ǫ). If N is such that

⌊ηN⌋
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i ≤ β, (8)

18



then, the solution ρ̂⋆, to Algorithm 1 satisfies

P{dR(y, y◦) ≤ ρ̂⋆} ≥ 1 − ǫ, (9)

with probability at least 1 − β.

If we discard the confidence parameter β for a moment, this proposition states that

the randomized solution ρ̂⋆ obtained through Algorithm 1 is feasible for the CCP (6).

As η tends to ǫ, ρ̂⋆ approaches the desired optimal chance constrained solution ρ⋆. In410

turn, the computational effort grows unbounded since N scales as 1/(ǫ − η) [23], there-

fore, the value for η depends in practice on the time available to perform experiments.

As for the confidence parameter β, one should note that ρ̂⋆ is a random quantity

that depends on the randomly extracted input realizations and initial conditions. It may

happen that the extracted samples are not representative enough, in which case the415

size of the violation set will be larger than ǫ. Parameter β controls the probability that

this happens and the final result holds with probability 1 − β. N satisfying (8) depend

logarithmically on 1/β, [23], so that β can be chosen as small as 10−10 (yielding 1 − β

be practically 1) without growing N significantly.

Notice that the guarantees provided by Proposition 5.1 are valid irrespectively of420

the underlying probability distribution of the input, which may even be not known

explicitly, e.g., when feeding Algorithm 1 with historical time series as realizations of

the stochastic input u.

The validity of Proposition 5.1 is particularly important in domains like cloud com-

puting. Indeed, in cloud computing it is hard to model the probability distribution of425

possible failures, due to the complexity of the underlying system. It is therefore more

convenient to use an approach like the one presented herein that is valid independently

of the underlying probability distribution.

In the next presented experiments we chose ǫ = 0.1, η = 0.05, and β = 10−7,

corresponding to N = 798 scenarios (experiments) of which κ = 41 can be discarded430

according to Algorithm 1.
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6. Empirical Evaluation

In this section we evaluate the proposed brownout-aware load-balancing algorithms

through N experiments on a small-scale cloud infrastructure using the scenario theory.

First, we describe our experimental setup. Next, we show the improvements that can435

be achieved by using our brownout-specific load-balancing algorithms.

6.1. Experimental Setup

Experiments were conducted on a single physical machine equipped with two AMD

OpteronTM 6272 processors4 and 56 GB of memory. To simulate a typical cloud envi-

ronment and allow us to easily fail and restart replicas, we use the Xen hypervisor [57].440

Each replica is deployed with all its tiers – web server and database server – inside its

own VM, as is commonly done in practice [58], e.g., using a LAMP stack [59]. Each

VM was configured with a static amount of memory, 6 GB, enough to hold all pro-

cesses and the database in-memory. We deployed a total of 6 replicas, whose number

of cores is 1, 1, 2, 3, 5, 8, respectively. Such a heterogeneous allocation may occur due445

to past service provisioning decisions, whether manual or automated [60].

Inside the replicas we deployed identical copies of RUBiS [61], an eBay-like e-

commerce prototype, that is widely-used for cloud benchmarking [62, 63, 64, 65, 66,

67, 68]. RUBiS can be made brownout-compliant [9], and we added the code for

piggy-backing of the dimmer value5. The replica controllers are equally configured,450

with a target 95th percentile response time of 1 second. To avoid having to deal with

synchronization or consistency issues, we only used a read-only workload. However,

adding consistency to replicated services is well-understood [69, 70, 71] and, in case

of RUBiS, would only require an engineering effort. The load-balancer, i.e., lighttpd

extended with our brownout-aware algorithms, was deployed inside the privileged VM455

in Xen, i.e., Dom0, pinned to a dedicated core.

We had three options for workload generation: open, closed or partly-open [72].

In an open system model, typically modeled as a Poisson process, requests are issued

42100 MHz, 16 cores per processor, no hyper-threading.
5https://github.com/cloud-control/brownout-rubis
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with an exponentially-random inter-arrival time, characterized by a single parameter

called the arrival rate, without waiting for requests to actually complete. In contrast,460

in a closed system model, a number of users access the service, each executing the

following loop: issue a request, wait for the request to complete, “think” for a random

time interval, repeat. The resulting average request inter-arrival time is the sum of the

average think-time and the average response time of the service, hence dependent on

the performance of the evaluated service. A partly-open system model is a mixture465

between the two: Users arrive according to a Poisson process and leave after some

time, but behave closed while in the system. As with the closed model, the inter-arrival

time depends on the performance of the evaluated system.

We chose to use an open system model workload generator. Since its behavior does

not depend on the performance of the service, this allows us to obtain a more objective470

evaluation of the methods. We extended this model to include timeouts, as required to

emulate users’ tolerable waiting time of 4 seconds [12].

Given our chosen model and the need to measure brownout-specific behavior, the

workload generator provided with RUBiS was insufficient for three reasons. First,

RUBiS’s workload generator uses a closed system model, without timeouts. Second,475

it only reports statistics for the whole experiment and does not export individual data

for each request, preventing us from computing the distance as per Eq. (7). Finally,

the tool cannot report whether a request has been served with or without optional con-

tent, which represents the quality of the user-experience and the revenue of the service

provider. Therefore, we extended the workload generator, httpmon6, to provide the480

needed functionalities.

We made sure that the results are reliable are little influenced by side effects as

follows:

• replicas were warmed up before each experiment, i.e., all virtual disk content

was cached in the VM’s kernel;485

• replicas were isolated performance-wise by pinning each virtual core to its own

6https://github.com/cloud-control/httpmon
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physical core;

• experiments were terminated after the workload generator issued the same num-

ber of requests;

• httpmon and the lighttpdwere each executed on a dedicated core;490

• no non-essential processes nor cron scripts were running at the time of the ex-

periments.

• httpmon generated the same arrival times for requests, each time it was ex-

ecuted, i.e., its pseudo-random number generator used to emulate the Poisson

arrival process was seeded with a constant.495

We generated N = 798 scenarios as follows. Each scenario executes for 500 sec-

onds, which are divided in 5 equal time interval of 100 seconds. At the beginning of

each time interval, one or more parameters are changed:

• With probability 50%, a new arrival rate is extracted uniform randomly in [1, 500].

• With probability 50%, a uniform randomly extracted replica is either failed or500

restored.

As a result, the random variable constituting a scenario is composed of a tuple of 5

integer values for arrival rates, one for each time interval, and 30 boolean values for

replica state (up or down), one for each replica and time interval. The execution of all

798 scenarios for three load-balancing algorithms took around two full weeks.505

6.2. SQF vs. Brownout-Aware Load-Balancers

Fig. 3 shows the ρ̂⋆ computed for the three load-balancing algorithms. According

to the scenario theory, the two control-theoretical techniques perform better than SQF,

and PIBH is the best solution. Indeed, they provide lower values for the distance from

the ideal behavior. This means that the probability that the distance (7) between the510

actual behavior and the ideal one is less than the estimated ρ̂⋆ is greater than or equal

to 1 − ǫ.

22



SQF EPBH PIBH
0

0.5

1

1.5

1.15
1.08

1

ρ̂
⋆

Figure 3: Results for the scenario theory.

Table 1: Statistical values for the three load-balancing algorithms.

SQF EPBH PIBH

Average distance 0.5759 0.5526 0.4892

Std. Dev. distance 0.2696 0.2602 0.2533

Average % OC 44.7% 46.7% 50.1%

Average τexc [ms] 112.9 115.3 81.3
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Table 2: Results of the Welch two-sample t-test.

Algorithms (OC [%]) Statistical Conclusion

SQF (44.7%) vs PIBH (50.1%) PIBH significantly better (p < 10−4)

SQF (44.7%) vs EPBH (46.7%) EPBH significantly better (p < 0.05)

Algorithms (Avg. τexc [ms]) Statistical Conclusion

SQF (112.9 ms) vs PIBH (81.3 ms) PIBH significantly better (p < 10−2)

SQF (112.9 ms) vs EPBH (115.3 ms) SQF similar to EPBH (p = 0.4204)

To better evaluate the performance of the three algorithms, and complementing the

randomized solution of the CCP (6), Table 1 shows additional statistics. Also from

this perspective PIBH exhibits the better average and the lower standard deviation of515

the computed distance (7). On the other hand, if we consider the average percentage

of optional content, PIBH is still the algorithm with the better performance. Although

PIBH is serving on average more optional content, the average τexc of its response time

is better than the other two methods.

A Welch two-sample t-test, similar to the one presented in [14] confirmed that PIBH520

and EPBH outperform SQF in terms of optional content served, while PIBH is the only

one that is significantly better than SQF with respect to τexc (see Table 2).

A further analysis on the obtained results is presented in Fig. 4, that shows, in

the left plot, the boxplot of the average optional content for all the experiments; in

the central plot, the boxplot of the average τexc, and in the right plot, the boxplot of525

the computed distance for all the experiments. This analysis breaks down the two

dimensions included in the distance, showing that even in terms of optional content

and of τexc separately, PIBH exhibits better performance than the other methods, while

EPBH is behaving better than SQF only in terms of optional content served.
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Figure 4: Boxplot for the average optional content, τexc and distance for all the performed experiments.

6.3. Discussion530

The results highlight the tradeoff between the average response time and the aver-

age amount of optional content served. Indeed, EPBH is able to serve more optional

content at the cost of a slight increase of the response time. However, this is not true

for PIBH, which is able to serve even more optional content, while reducing τexc.

From a practical viewpoint, we could say that the improvement in terms of response535

time is less important than the one related to the optional content. Indeed, all the

policies are able to keep τ fairly close to the setpoint, hence far from the tolerable

waiting time of 4 seconds.

On the other hand, the brownout-aware load-balancing algorithms outperform the

state-of-the-art by up to 5% in terms of optional content served, providing also an540

improvement in terms of distance (7) of about 15%. The result holds with the prob-

abilistic guarantees provided by the scenario theory, which is something that can be

used for defining proper Service Level Agreements (SLAs).

In practice, this improvement translates into better quality of experience for users

and increased revenue for the service provider. Hence, our contribution helps cloud545

services to better cope with failure, flash crowds, and unexpected behaviors leading to

capacity shortages. In other words, cloud applications become more resilient.

Noteworthy is that the competitor, SQF has been found to be near-optimal with

respect to response time for non-adaptive services [21, 29]. Thus, besides improving

resilience of cloud services, our contribution may be of interest to other communities,550
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Figure 5: Experimental results comparing resilience with brownout but with different load balancers: SQF

and PIBH. Configuration: 5 replicas, each having 4 cores.

to discover the limits of SQF, and sketch a possible way to design new dynamic load-

balancing algorithms.

Finally, it is worth analyzing how PIBH behaves in presence of multiple failures,

as we did with SQF in Section 3.3. Fig. 5 shows the same scenario used for testing

SQF with and without brownout. For convenience, the top graphs reports the behavior555

of SQF with brownout reported in Fig. 2. The qualitative result is similar to the one

obtained with SQF, but PIBH is able to serve even in this scenario 1.54% more requests

with optional content, but with 65.19% less timed out requests. As a result, we can also

conclude that PIBH is able to improve the reliability of the system.

7. Conclusion and Future Work560

We analyzed a novel approach for improving resilience, and the ability to hide

failures, in cloud services using a combination of brownout and load-balancing algo-

rithms. The adoption of the brownout paradigm allows the service to autonomously

reduce computing capacity requirements by degrading user experience in order to
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guarantee that response times are bounded. Thus, it provides a natural candidate for565

resilience improvement when failures lead to capacity shortages. However, state-of-

the-art load-balancers are generally not designed for self-adaptive cloud services. The

self-adaptivity embedded in the brownout service interferes with the actions of load-

balancers that route requests based on measurements of the response times of the repli-

cas.570

In order to investigate how brownout can be used for improving resilience, we ex-

tended the popular lighttpdweb server with two new brownout-aware load-balancers.

A first set of experiments showed that brownout provides substantial advantages in

terms of resilience to cascading failures, even when employing SQF, a state-of-the-art,

yet brownout-unaware, load-balancer. A second extensive set of experiments com-575

pared SQF to the brownout-aware load-balancers, specifically designed to act on a

per-request basis. The performance evaluation was translated into a CCP which was

solved by means of the scenario theory, thus providing probabilistic guarantees on the

obtained result. The obtained results were also compared with a classical t-test analy-

sis, over the large collected data-set.580

The evaluation shows that with high statistical significance, the proposed solutions

consistently outperform the current standards: They reduce the user experience degra-

dation, thus perform better at hiding failures. While designed with brownout in mind,

PIBH and EPBH may be useful to load-balance other self-adaptive cloud services,

whose performance is not reflected in the response time or queue length.585

In the future, we would like to continue with the load-balancing development,

considering architectures where the load-balancer itself is replicated for better fault-

tolerance. Also, we would like to react faster when events are happening at the replica

level. This requires redesigning the local replica controller computing the dimmer to

be event-based instead of periodic [73]. Another future research direction is the de-590

sign of a holistic approach to replica control and load-balancing, extending the current

replica controllers with auto-scaling features [74], that would allow the system to au-

tonomously manage the number of replicas, together with the traffic routing, to obtain

a cloud service that is both resilient and cost-effective.
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