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Popular summary in English

Since the ancient times, humans have been interested in studying biological tissues,
their structures, and properties. In popular culture, an illustrious example of this thirst
for knowledge is Leonardo da Vinci. During many years of research, not only did
he meticulously investigate the architecture of the live human body, inventorying its
muscles, tendons and visible subcutaneous structure, but he also accurately dissected
the deceased human body to gain a deeper understanding of the skeleton and internal
organs. These invasive studies were, for the most part of human history, the only
opportunity for a systematic investigation of the internal tissues. The advent of mag-
netic resonance imaging (MRI) techniques in the 1970s has significantly contributed
to changing this paradigm.

Through a clever manipulation of magnetic field gradients and pulses, MRI allows hu-
mans to non-invasively visualize the internal organs of living beings with a millimetre
spatial resolution and without relying on ionizing radiation. Such technique could be
applied on healthy subjects and on patients for pathology diagnosis, guaranteeing pa-
tient comfort. However, the remarkable achievements of MRI did not extinguish our
scientific ambitions. Indeed, efforts were made to widen the range of biological length-
scales accessible via MRI, to explore not only the macroscopic structure of the tissues
under examination, but also their microstructure, i.e. the ensemble of properties char-
acterising the cells comprising the tissue itself. This objective was achieved by diffusion
MRI, which is able to capture the diffusion patterns of water molecules within cells.

However, the interpretation of the signals measured from diffusion NMR/MRI in
terms of microscopic structures has remained rather unreliable for the past 30 years.
This is due, on the one hand, to the many assumptions that are usually made to simplify
the link between the measured signal and the underlying microstructure and, on the
other hand, to the fact that complex information has to be extracted from few meas-
ured signals, especially when patient comfort imposes short MRI acquisition times.
Nonetheless, pushing our mastery of diffusion MRI is crucial to biomedicine, as the
subtlety and non-invasiveness of such technique are key to the proper understanding
and diagnosing of live tissues.

The work within this thesis has tackled the difficulties in interpreting diffusion MRI.
By drawing inspiration from magnetic resonance techniques designed to study ma-
terials such as polymers or rocks, we were able to devise new experimental strategies
that enhance the amount of information attainable with diffusion MRI. The boost in
information was then used to quantify new diffusion features that have an intuitive
relationship with the microstructure of living tissues
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1 Introduction

It is a well known fact that biological tissues naturally contain water molecules ran-
domly moving through their cellular landscape. This cellular landscape poses as a
hindrance to the translational motion of the molecules and thus the resulting diffu-
sion pattern is intimately linked to the micrometer-scale structure and organization of
the cell membranes. The close relationship between the diffusion pattern and the struc-
ture of the local tissue environment can be probed using diffusion magnetic resonance
imaging (MRI) techniques where magnetic field gradients are applied to measure the
mean squared displacement of the water molecules from which the diffusion can be
derived.

Parameters derived from diffusion MRI measurements have been successfully used to
quantify microstructural changes in both healthy and diseased tissues. However, des-
pite their usefulness, conventional diffusion MRI techniques yield ambiguous results
whenever the sample comprises multiple microscopic environments with distinct dif-
fusion properties. Such ambiguities stem from the fact that the majority of diffusion
measurements are performed with a set of gradients that are sensitive to an array of dis-
tinct properties such as local diffusivities, restrictions, anisotropy, flow, and ex- change.
The sensitivity to a wide range of properties complicates the task of assigning the ex-
perimental observations to a specific diffusion mechanism.

In this thesis, we address this problem by using novel diffusion MRI acquisition- and
analysis protocols to quantify the microscopic heterogeneity of the living human brain.
The diffusion MRI framework presented in this thesis is based on data acquisition
schemes from solid-state nuclear magnetic resonance (NMR) spectroscopy and Laplace
NMR protocols from the field of porous media. Signal is acquired in a multidimen-
sional space of experimental variables encoding for correlations between diffusivities,
anisotropy, and pore orientation, and is then inverted into non-parametric distribu-
tions of diffusion tensors. This approach is fundamentally different from the current
trend of microstructural in vivo MRI where sub-voxel composition is investigated by
devising signal models with increasingly complex priors and constraints. Instead, we
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add complexity to the signal acquisition stage in order to quantify intra-voxel hetero-
geneity with non-parametric distributions that are retrieved from the data with minimal
assumptions about the underlying tissue properties.



2 Diffusion

Within Physical Chemistry, the term diffusion can be used to designate two processes
of different physical origins: self- and mutual-diffusion. Self-diffusion refers to the
stochastic motion of thermally excited particles; this process occurs at dynamic equi-
librium and is driven by the internal kinetic energy of the system. In contrast, mu-
tual diffusion describes the net particle movement towards equilibrium resulting from
a chemical potential gradient. Diffusion magnetic resonance techniques measure the
self- or translational diffusion of an ensemble of spin-bearing molecules. For this reason
we focus on self-diffusion, which from this point onwards is merely referred to as dif-
fusion.

The typical diffusion MRI experiment targets water molecules diffusing in a microscop-
ically complex material such as biological tissue. The translational dynamics of water
molecules is used as a probe of local structure, whose organization is inferred from the
measured diffusion patterns. In this chapter we provide a basic conceptual description
of diffusion in a complex heterogeneous structure, and describe how to quantify the
diffusion process with distributions of diffusion tensors.

2.1 A simple picture of diffusion in complex media

The trajectory of a diffusing particle is defined by a series of inter-particle collisions.
These collisions effectively make the diffusive motion a random process (Brownian mo-
tion) wherein the position r(z) of the individual particles cannot be predicted by de-
terministic dynamics. It is then convenient to characterize the system by its ensemble
average properties. The fluctuations in r(#) can be quantified by the mean-square dis-
placement, given for unrestricted diffusion by [1-3]

(x(1) — £(0))*) = 2dDyr, (2.)

where d = 1, 2, 3 describes the dimensionality of the system. The scalar Dy is the free
diffusion coeflicient, a property specific to the medium through which the particles
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((r(D-r(0))2)

Figure 2.1: Brownian dynamics simulation of an ensemble of particles entrapped in an impermeable cyl-
inder. The simulation was carried out as described in Ref. [6], where particle movement is
reflected at the boundaries of the enclosing geometry. The top plot displays the mean-square
displacement {(x(#) — r(0))?) in directions parallel (axial direction) and perpendicular (radial dir-
ection) to the cylinder. The maximum displacement along the radial direction is limited by the
radius of the cylinder.

diffuse.

Particles diffusing within a complex medium are bound to encounter obstacles that
can either restrict or hinder their movement. The presence of these obstacles may not
alter the intrinsic diffusivity of the system, but will reduce the average displacement
registered for a given diffusion time. The extent to which the average displacement
is reduced will depend on the geometry of the obstacles, their permeability, and the
amount of time that particles are allowed to diffuse.

Hindrance and restriction effects can be quantified by solving Fick’s diffusion equation
with appropriate boundary conditions [4, 5]. However, such approach is beyond the
scope of this thesis and we instead discuss the effects of restrictions in a qualitative
fashion. An informative example is given in Figure 2.1, which displays an ensemble of
Brownian particles diffusing within an impermeable cylinder of radius « [6]. The mean-
square displacement along the cylinder (axial direction) is not affected by any obstacle
and follows the linear trend predicted by Eq. 2.1. A different behaviour is observed for
particle motion along the perpendicular (radial) direction. At very short diffusion times
(t < 4*/Dy) most particles have not interacted with the cylinder wall and diffusion
is essentially free. At longer times, the particles encounter the compartment boundary
and their mean-square displacement is reduced in comparison to the free diffusion case.
For sufficiently long times (# > 4*/Dy) the mean-square displacement plateaus at a
value on the order of 2%.
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The discussion in the previous paragraph shows that Eq. 2.1 is not formally applicable
in the presence of restrictions, and different displacements may be probed depending
on the time-scale of the measurement process [5, 7], ¢f Figure 2.1. The measured
diffusivities are thus unavoidably linked to the experimental design. This motivates the
definition of an apparent diffusion coeflicient Dy, [8, 9] that depends on both the
confining geometry and the complete set of relevant experimental parameters Q:

{([r(r0) — r(0)] - ua)*)

2d 176 ’

Dapp(tg) = (2.2)
where zq and ug are the effective time-scale and directionality defined by the experi-
mental setup, and (-) denotes an ensemble average. Different values of D,,, may be
measured along different directions, a feature that indicates an anisotropic structural
organization.

2.2 Diflusion tensors as probes of local structure

Water diffusion in tissues is typically an anisotropic process that can be approximated
by a symmetric second-order tensor [10, 11]. The diffusion tensor D is written as a
symmetric positive-semidefinite second-order tensor [10],

D, ny D,, Dy, ny D,,
D=|D, D, D.|=| - D, D.|. (2.3)
sz Dzy Dzz ' ' DZZ

Symmetry requires Dj; = Dj;, meaning that D is fully described by 6 independent para-
meters. The various parameters of the diffusion tensor are interpreted as apparent dif-
fusivities that reflect the restrictions and hindrances encountered by water molecules
along a particular direction (see Eq. 2.2). Each microscopic D is then directly related to
the geometry of the surrounding medium, and can be interpreted as a blurred represent-
ation of the local structure. The connection between the structure of the microscopic
environment and the local diffusion pattern is illustrated in Figure 2.2, where diffusion
tensors are visualized as superquadric tensor glyphs [12] with the lengths and directions
of the principal axes given by the tensor eigenvalues and corresponding eigenvectors,
respectively.
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Figure 2.2: Schematic illustration of the link between tissue structure, diffusion patterns, and diffusion
tensors. The underlying cellular architecture is observed to influence the size, shape, and ori-
entation of water diffusion patterns, here represented as "ink stains”. For example, densely
packed spherical cells are observed to yield a small isotropic diffusion pattern. The correspond-
ing diffusion tensors are depicted as superquadric tensor glyphs [12] with lengths and orient-
ations of the semi-axes given by the diffusion tensor eigenvalues and eigenvectors. Adapted
with permission from Ref.[13].

2.2.1 Tensor size and shape

In its principal axis system (PAS), a particular D can be represented by a diagonal matrix

Dxx 0 0
D=0 Dy 0 |, (2.4)
0 0 Dy

whose elements correspond to the eigenvalues of Eq. 2.3 ordered according to the stand-
ard convention | Dz — Tr(D)/3| > |Dxx — Tr(D)/3| > |Dyy — Tr(D) /3| [14]. The
three eigenvalues describe diffusion along the three orthogonal directions that define
the PAS, with Dy corresponding to eigenvalue furthest way from the isotropic av-
erage of D, and Dyy the closest eigenvalue. Imposing an axial symmetry constraint

(Dyy = Dxx), we can rewrite Eq. 2.4 as

D, 0 0
D=0 D, o], (2.5)
0 0 D

where D = Dzz and Dy = Dyy = Dxx are the axial and radial eigenvalues. The

radial and axial diffusivities can be combined to define an alternative parametrization

-1 0 0
D' =D, |I+Ds| 0 -1 0]], (2.6)
0 0 2
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Figure 2.3: Quantitative measures of diffusion tensor size Dis,, shape Da, and orientation (6, ¢). The Dis,
and D, parameters inform on the magnitude and anisotropy of the underlying diffusion process.
Prolate, isotropic, and oblate tensors are characterized by Dy > 0, Dy = 0, and Dy < 0,
respectively. The polar 6 and azimuthal ¢ parametrize the orientation of the diffusion tensor
relative to the laboratory frame of reference.

where I is the identity matrix and

Dy +2D
Dy, = L1+200) @7
3
1
Ds = 35— (Dy—Dy) €[-05,1]. (2.8)

The Djs, parameter corresponds to the average across eigenvalues and represents an
isotropic diffusivity while the Dp parameter informs on the anisotropy of the diffusion
process. Oblate, spherical, and prolate diffusion tensors yield Dy < 0, Dp = 0, and
Dp > 0, respectively.

2.2.2 ‘Tensor Orientation

The orientation of the PAS relative to the laboratory frame of reference can be expressed
as a product of consecutive rotations [15, 16]. Starting from an axisymmetric tensor
initially aligned with the laboratory frame, rotations along the y- and z- axes of the
laboratory frame

D = R.(¢) -R,(6) - D™ -R(6) - R}(¢) (2.9)
yield a non-diagonal tensor

D =Dy [I+Da| 3Lk 4*—1 3L , (2.10)
3LL 3L, L1
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whose orientation is defined in terms of azimuthal ¢ and polar 6 angles by a set of
direction cosines

b = cos¢psinf ,
L, = sinpsin0 | (2.11)
l, = cosf .

The set of (Diso, Da, 0, ¢) parameters provides a complete description of an axisymmet-
ric diffusion tensor with each parameter characterizing a separate aspect of the tensor
geometry; Djs, and Dp describe the size and shape of D, while the (6, ¢) angles de-
scribe its orientation. Figure 2.3 illustrates the parametrization of D according to the
various (Diso, Da, 0, ¢) measures.

2.3 Capturing heterogeneity with Diffusion Tensor Distribu-
tions

Biological tissues comprise different types of cells arranged in a wide array of struc-
tures. Given that the typical diffusion MRI experiment requires tens to hundreds of
milliseconds to encode the signal for diffusion and that the free diffusion coefficient of
water is on the order of Dy ~ 1072 m?s~! = 1 prnzrnf1 [17, 18], each water mo-
lecule has time to explore a micrometre-scale environment. Different sub-ensembles
of water molecules are thus expected to interact with distinct macromolecules and par-
tially permeable membranes, and to reside in intra- or extra-cellular environments of
varying geometry [19, 20]. This implies a complex diffusion process that reflects the
underlying tissue heterogeneity.

To model diffusion within tissues it is useful to picture the underlying structure as a
collection of independent microscopic environments. Each microenvironment is in-
terpreted as a segment of coherent tissue whose structure is characterized by a local D
(11, 21]. Within this approximation, the composition of a given voxel is captured as an
ensemble of microscopic diffusion tensors D, as illustrated in Figure 2.4, and quanti-
fied by a continuous diffusion tensor distribution (DTD) [11, 22]. The DTD provides
a simple, yet experimentally accessible, representation of the underlying heterogeneity
and allows the resolution of microscopic tissue environments with distinct structural
properties.

2.3.1 Distributions of axially symmetric tensors

For simplicity, we hereafter assume axial symmetry of the diffusing medium. This as-
sumption reduces the number of independent elements contained in each D from six
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Figure 2.4: Voxel content displayed as an ensemble of microscopic diffusion tensors. The diffusion tensor
glyphs are coloured according to: [R, G,B] = (1 + [Dal) - (2 [cos ¢ sin6,sin ¢ sinB, cos ] — 1).
Within a Neuroimaging setting, the voxel contents can be interpreted as representations of
aligned white matter (WM) (a), WM demyelination (b), WM inflammation (c), WM three-fibre
crossings (d), and tumour infiltration in WM (e).

to four (the four parameters of Section 2.2.2). As shown by Figure 2.3, it is intuitive
to parametrize the distribution of tensors with two parameters describing the size and
shape, as well as two parameters defining the orientation. The DTD can then be repor-
ted as a four- dimensional (4D) distribution of diffusion tensor sizes Dis,, shapes D,
and orientations (6, ¢), P(D) = P(Dis, Da, 0, ¢), normalized as

2
/ / / / P (Diso, D, ¢, 0) sin0dfdpdDpdD;so =1 . (2.12)
1/2

There are other options to quantify the shape of D [16]. Following Ref. [13], we re-
serve the Dy notation for equations and report the tensor shape as D||/D in graphs.
To map between the two representations one simply uses the relation Dy/D; =
(1 +2Da)/(1 — Da). The P(D) notation is used to denote the general DTD and,
whenever necessary, we explicitly write the arguments of the distribution to clarify the
parametrization in use.

2.3.2 Statistical descriptors of the distribution

One of the main goals of this thesis is to estimate the complete 4D DTD or a 2D size-
shape projection of it, P(Dis,, Da). However, as we shall see in the following sections,
the estimation of P(D) from a noisy dataset is a challenging task. This has inspired a
number of analysis protocols that target statistical descriptors of P(D) rather than the
full distribution itself.

Informative and accessible descriptors include the means
Bl = / «P(D)dD (2.13)

variances

Var[x] = E[x*] — E[x]?, (2.14)
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and covariances

Cov[x,y] = Elxy] — E[x]E[y] , (2.15)

of the various dimensions of the (Diso, Di) space [13]. The integration in Eq. 2.13
spans over the space of axisymmetric positive-semidefinite tensors. Measures such as
the mean isotropic diffusivity E[Ds,] and the mean squared diffusion anisotropy E[DA]
inform on the average diffusion tensor size and shape. E[Dj] is recognized as the
classical mean diffusivity [23, 24], while E[D3] provides similar information as other
anisotropy metrics such as the microscopic anisotropy index (MA)[25], the fractional
eccentricity (FE) [26], the microscopic fractional anisotropy (uFA)[27], the anisotropic
variance V) and anisotropic mean kurtosis (MKA) [21, 28, 29], and the microscopic
anisotropy C), [11]. Previous works have demonstrated a positive correlation between
E[Di] and the anisotropy of brain tumour cells [29]. Note that the mean squared aniso-
tropy metric probes the shape of the underlying DTD without the confounding effects
of orientation; this is in contrast with the widely-used fractional anisotropy (FA) met-
ric [23, 24], which convolves the effects of anisotropy and orientational order [30-32].
The variance measures, Var[Dy,] and Var[D4], capture the spread in diffusion tensor
sizes and shape, while Cov[Djs,, D3] carries information about correlations between
the isotropic and anisotropic dimensions. Var[Ds] in particular has been shown to
correlate with cell density heterogeneity in brain tumours [29], and similar metrics
have been introduced in the diffusion MRI literature: the isotropic second moment
;4i25° [27], the isotropic variance V] and isotropic mean kurtosis (MKI)[28, 29], and the
normalized isotropic variance Cyp [11].
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3 Diftusion Magnetic Resonance

Diffusion magnetic resonance experiments use magnetic field gradients to encode the
signal for information about the translational motion of a selected molecular species.
More importantly, different gradient designs can be used to target specific aspects of
the translational motion of diffusing molecules. According to Paul Callaghan, the chal-
lenge of the experimentalist is then “(...) to devise the gradient waveform best suited to
elucidating the structural and dynamical parameters of interest, and to choose the theoretical
[framework which most aptly describes that choice” [2]. This chapter focuses on such chal-
lenge. Following a brief introduction to the basic theory of magnetic resonance at the
microscopic scale, we show how diffusion Magnetic Resonance (MR) techniques can
be used to probe microscopic tissue structure, and elucidate the relationship between
the acquired signal and the diffusion tensor distribution approximation introduced in
Chapter 2. Special attention is given to experimental protocols that can separate and
correlate different properties of microscopic tissue heterogeneity, as approximated by a
distribution of MR observables such as nuclear relaxation rates or diffusion tensors.

3.1 Magnetic resonance at the microscopic scale

MR techniques measure the electromagnetic signal resulting from the interaction
between an external magnetic field and a sample containing an ensemble of spin-
bearing nuclei. The measured signal depends on interactions between the nuclei and
external magnetic fields, and local interactions involving magnetic and electric fields
originating from the sample’s nuclear environment. A quantum-mechanical treatment
is therefore needed in order to describe the MR signal in terms of intra- and inter-
molecular interactions such as chemical shifts, dipole-dipole couplings, and interac-
tions between nuclear quadrupole moments and local electric field gradients [33, 34].
While comprehensive, this quantum picture is not commensurate with the micrometre-
scale volume explored by the diffusing molecules throughout the MR experiment.
Consequently, we adopt a classical description in which the signal arises from a mag-
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netisation vector M(r, #) evolving under the influence of external magnetic fields and
locally varying MR observables. The Bloch-Torrey equation gives an accurate micro-
scopic description of the evolution of M(r, #) as a function of time # and position r

[35]:

agfx (1‘, t) :"Y(M X B)x - R2 Mx(ra t) + V-D- VMx(rv t) ) (31)
oM,
615)’ (r,2) =y(M x B), — Ry M,(r,2) + V - D - VM,(r,1), (3.2)
oM,

5 (r,2) =v(M X B), — Ry (My(r,2) — My(x)) + V - D - VM,(r,2), (3.3)
where  is the gyromagnetic ratio of the investigated nuclear species (typically 'H), V is
the gradient operator, M (r) is the initial magnetization set by the local nuclear density,
and - and x denote the scalar and cross products, respectively. The system of Bloch-
Torrey equations comprises contributions from three distinct physical mechanisms:

* The cross products describe a Larmor precession around an external magnetic
field B. The angular frequency of the precession movement is given by w = vB.

* Relaxation towards an equilibrium state. For reasons that will be elaborated be-
low, we assume that the equilibrium state is defined by a bulk magnetization
along the z-axis Mcq(r) = (0,0,Mp(r)). The evolution towards equilibrium
is regulated by two relaxation rates; the transverse relaxation rate R, describes
the decay of magnetization components orthogonal to Mg (r), while the longit-
udinal rate R; reflects the relaxation mechanisms influencing the magnetisation
components parallel to Meq(r).

* Anisotropic diffusion of nuclei as described by a microscopic diffusion tensor D.

In the following sub-sections we explore the effects of each of those terms on the de-
tected magnetisation.

3.1.1 Magnetic field pulses and gradients

The B term in the Bloch-Torrey equations describes the various external magnetic field
that are used to both create and manipulate the magnetisation vector M. Typically,
this term comprises a linear combination of static magnetic fields, oscillating magnetic
fields in the radio-frequency range, and spatially varying magnetic field gradients.

The magnetisation is typically created by subjecting the sample to a static magnetic field
By throughout the entire experiment time. This field defines an equilibrium state in
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which the sample displays a bulk magnetisation Meq(r) along By. By convention, the
z-axis of the laboratory frame of reference is defined to point in the direction of By. The
resulting magnetisation is commonly manipulated through the application of oscillat-
ing magnetic field pulses By (w) with a frequency similar to the Larmor frequency of By
(w =~ wp = vBy). Because w is usually in the radio-frequency range, these magnetic
field pulses are referred to as RF pulses. The effects of RF pulses are more conveniently
analysed in a frame of reference that rotates around By with a frequency wy = 7By.
When working in the rotating frame, B; (w) appears stationary and the effect of an RF
pulse is then a simple rotation of M around B;(w). The RF pulses are traditionally
named after the rotation they produce; a 907 pulse denotes an RF pulse producing a
90° rotation along the (rotating frame) x-axis.

Spatially varying magnetic field gradients G(#) are an essential component of diffusion
and imaging MR experiments. The gradients are used to label the position of the
various nuclei by means of producing a spatially dependent precession frequency

w(r) =By +7G(z) - r. (3.4)

As already mentioned in the beginning of this chapter, the temporal profile of the
gradient waveforms G(#) can be tailored to encode the signal for information about
the underlying diffusion processes. Within an MRI setting, magnetic field gradients
are used to selectively excite the nuclei within a small region of the sample (voxel).
Typical voxel sizes range from millimetre in clinical scanners (e.g. 1 x 1 x 1 mm?) to
sub-millimetre in research micro-imaging systems.

3.1.2 Relaxation encoding

The 'H relaxation rates of water molecules are exquisitely sensitive to the molecular
composition and structural organization of the local tissue environment. The longit-
udinal relaxation rate R; is highly dependent on dipolar interactions and exchange
processes between water and other molecular species [36-38]; R; is thus determined
by water content, the concentration of other molecular constituents such as proteins
or lipids, and water binding [39]. The transverse relaxation rate R, is equally sensitive
to the local chemical compositions and additionally carries information about micro-
and meso-scale tissue structures [40, 41]. Motivated by these relationships, water re-
laxation rates have been widely used as quantitative markers of tissue composition and
structure. [42].

For the particular case of in vivo human brain, the measured 'H MRI signal includes
contributions from water molecules as well as macromolecules. The nonaqueous 'H
signals are observed to decay 100 times faster than the signal of water in tissue [43], and
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Figure 3.1: Different transverse relaxation R, components found in typical healthy brain tissues. The dis-
played values are based on the data from Refs. [43, 45]. The curly bracket identifies R, rates that
can be easily detected with MRI protocols allowing for both relaxation- and diffusion-encoding
(Paper V).

the measured signal will therefore comprise an insignificant contribution from the fast-
relaxing nonaqueous components. Owing to the heterogeneous nature of brain tissues,
we can detect microscopic environments with distinct water relaxation properties, see
Figure 3.1. Three microscopic components are typically observed in the healthy human
brain: a slow-relaxing component corresponding to cerebrospinal fluid, a component
with intermediate relaxation corresponding to water in intra- or extracellular environ-
ments, and a fast relaxing component attributed to water trapped within the myelin
bilayers [44, 45]. To account for tissue heterogeneity, the measured signal is typically
expressed in terms of a probability distribution of relaxation rates. MRI methods that
can quantify relaxation rate distributions have been classically used to map the volume
fraction of myelin water in both healthy [43—45] and diseased [46, 47] human brain,
providing estimates that correlate well with histopathology [47].

The scheme of most relaxation techniques can be decomposed into three simple steps: i)
create a perturbed state where M # M.y, ii) allow the magnetisation to evolve towards
equilibrium for a given time 7, iii) record the signal. The process is repeated at different
times 7 in order to record a series of M(7) values modulated by R; and/or R;. Below,
we present two basic relaxation measurement methods.

o Saturation recovery. This sequence comprises two 90° pulses separated by a time
delay 7r. The first 90° pulse brings the equilibrium magnetisation M, =
(0,0, M) down to the x-y (transverse) plane, from which it relaxes back to equi-
librium. Due to R, relaxation, the evolution towards equilibrium is character-
ized by a build-up of magnetisation along the z-axis (longitudinal direction). A
second 90° pulse is applied after a time 7R in order to flip the longitudinal com-
ponents to the transverse plane, where the signal is detected. The amplitude of

14



Chapter 3 - Diffusion Magnetic Resonance

the recorded magnetisation is determined as a solution of Eq. 3.3
M(1R) = My [1 — exp(—TrR1)] . (3.5)

The experiment is repeated for different values of 7R and R; is determined by
fitting Eq 3.5 to the measured data.

o Spin-echo. This sequence is based on two different RF pulses: a 90° and a 180°
pulses. The 90° pulse rotates the equilibrium magnetisation into the transverse
plane, where the signal is left to precess for a time 75 /2. Due to field inhomo-
geneities, nuclear populations in different parts of the sample may precess at
different speed. This introduces a dephasing that causes the signal to decay at
a faster rate than R,. The application of a 180° pulse inverts the magnetisation
and reserves the phase of the various precessing nuclei. If the nuclei are left to
precess under the same conditions as before the 180° pulse, the signal will be
refocused and an echo will be formed after a time 7g. Neglecting the effects of
diffusion, the amplitude of the transverse magnetisation at 7¢ is modulated by
Ry

M(TE) = M() CXp(—TERz) . (36)

M(7g) is measured as a function of 7¢ and R; is determined by comparing the

data to Eq. 3.6.

3.1.3 Diffusion encoding

In diffusion MR experiments magnetic field gradients are used to sensitize the trans-
verse magnetization to the diffusive motion of a selected nucleus. Due to the natural
abundance of water in biological tissues and its consequent easiness of detection, the
vast majority of iz vivo MRI literature concentrates on the 'H nuclei of water mo-
lecules. The dynamics of the transverse magnetization are well described by Egs. 3.1and
3.2, which can be written in the rotating frame of reference as a single compact equa-
tion by combining M, and M, into a single complex-valued variable 7, = M, + iM,
(3, 48]:

Omy(r, 1)

5 —Rym(r,t) — iy [G(¢) - t] m(r,2) + V - D - Vmn(r,2) . (3.7)

As discussed in Chapter 2, the translational motion of water molecules within tissues
is affected by a variety of semi-permeable membranes that form compartments with
barrier spacings ranging from nanometres to micrometres. The effects of interactions
with the various membranes on z,(r, #) can be explicitly modelled by incorporating
a series of appropriate boundary conditions into Eq. 3.7 [5, 48]. For simplicity, we
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instead choose to average these complex effects into a set of effective relaxation rates
and apparent diffusion tensors, and approximate the underlying diffusion process as
being Gaussian, i.e. the diffusion process is functionally equivalent to the one occurring
in an unrestricted medium and is described by a Gaussian distribution. Under these
assumptions we neglect the explicit effect of the additional boundary conditions and
obtain the following solution for Eq. 3.7 [2, 3]

gy (x, £) = mo(r) exp(—Rz t—iq(t) - r— /thT(t/) -D-q(?) dt’) , (3.8)

where my(r) is the initial magnetization, and q(#) is the dephasing vector defined as

q(t) = 'y/ G(7)d7 . (3.9)
0

It is important to recognize that Eq. 3.8 provides a coarse approximation that does
not explicitly account for the various complex interactions that shape the translational
motion of water inside biological tissues. However, this approximation holds for the
experimental timings of typical diffusion MRI studies [20], and, as we shall see in the
following sections, provides a useful point of departure for the analysis of data from
microscopically heterogeneous materials.

The typical diffusion MRI experiment measures the radio-frequency signal generated by
the precessing transverse magnetization at a time 7 where the echo condition q(7) = 0
is fulfilled, thus nulling the imaginary term of Eq. 3.8. The magnetization is measured
over a millimetre-scale volume and the resulting signal, S = |, m(r, )dr, is an average
of the contributions from multiple microscopic environments with potentially distinct
chemical and structural properties. For a sample comprising non-exchanging micro-
scopic environments with equivalent R, rates but distinct D, the macroscopic signal
can be written as an integral transformation of P(D) [22]

Saozier) = fop(~ ["a'0-D ) AD)OD, G0

where Sy is the signal obtained when G(#) = 0 throughout the time interval 0 < # < 7.
Introducing the diffusion-encoding tensor b [2, 3, 49],

b= [ a0)-q" (s G
0
and assuming that D is time-independent, we rewrite Eq. 3.10 as
Séb) = /exp(—b :D)P(D)dD. (3.12)
0
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where b : D symbolizes a generalized scalar product between two tensors (Frobenius
inner product), b : D = >~ 6;D;;. For homogeneous samples, the (D) translates
mathematically as a delta distribution and Eq. 3.12 yields a mono-exponential signal
decay. Conversely, heterogeneous samples exhibiting a dispersion of values along at
least one dimension of the DTD space are characterized by a multi-exponential signal
decay.

3.2 Multidimensional diffusion encoding

There exists a large number of MR pulse sequences that have been developed to study
diffusion in anisotropic systems. A very popular experiment is the pulsed gradient spin-
echo (PGSE) sequence displayed in Figure 3.2(a), which was originally introduced by
Stejskal and Tanner in 1965 [50]. In such sequence, the signal is encoded for diffu-
sion by a pair of collinear magnetic field gradient pulses that are applied along a single
direction. Sequences based on the PGSE design have been the working horse of i
vivo diffusion MRI studies that have provided valuable contributions to our under-
standing of the living human brain [32, 51-54]. However, despite its usefulness, the
PGSE experiment is known to suffer from poor specificity as the acquired data contains
information about an array of distinct structural properties such as restrictions [8], an-
isotropy [55], and heterogeneity [56]. A particularly relevant limitation of the Stejskal-
Tanner experiment is the fact that diffusion encoding along a single direction entangles
the contributions from compartment size, anisotropy, and orientation [57, 58], thus
preventing the unambiguous quantification of microscopic environments within bio-
logical tissues. In this thesis, we use the term conventional to refer to protocols where
diffusion encoding is exclusively performed by a set of collinear gradients applied over
any given single direction.

Several works have demonstrated that the specificity of diffusion MR experiments can
be boosted by using more complex schemes where the magnitude and orientation of
the magnetic field gradients are varied within a single encoding block [57, 58, 60-64].
Multidimensional diffusion MRI methods [59] in particular, design gradient wave-
forms that allow for signal acquisition in a multidimensional space of 4-tensors with
arbitrary shapes in order to isolate or remove specific measures of the underlying DTD
(11, 16, 59]. Such methodology bears great resemblance with multidimensional solid-
state NMR techniques [65] relying on sample reorientation [66-69] to target partic-
ular tensorial aspects of the relevant interaction (e.g. chemical shift, dipolar coupling,
quadrupolar coupling). An example of a pulse sequence for multidimensional diffu-
sion encoding is presented in Figure 3.2(b); notice that both the conventional and the
multidimensional sequences are based on the same spin-echo skeleton, the distinctive
trait between the two sequences lies in the design of the gradient waveforms.
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(a) conventional diffusion encoding (b) multidimensional diffusion encoding

90° 180° 90° 180°
/ \ detection ﬂ M M detection

el 2 ®/2 w®/2 /2

Figure 3.2: MRI sequences for conventional (a) and multidimensional (b) diffusion encoding. The pair of
slice-selective 90° and 180° radio-frequency pulses produce a spin-echo that is detected by
an image read-out block. The 180° pulse is bracketed by a pair of gradient waveforms (red,
green, and blue lines) encoding the signal for information about the translation motion of
water molecules. The gradients in (b) are designed to allow a separate control over the trace b,
normalized anisotropy b,, and orientation (©, ®) of the diffusion-encoding tensor (b-tensor)
[59]. The measured signal can be additionally encoded for transverse relaxation R, by varying
the 7¢ delay.

While multidimensional diffusion encoding schemes can be used to generate symmetric
second-order &-tensors with six arbitrary independent elements, only axially-symmetric
diffusion-encoding tensors are considered in this thesis. Using a similar convention as
that introduced in Chapter 2, we parametrize a given b-tensor by its trace (4), normal-
ized anisotropy (ba), and orientation (O, @) [58]

5 L>—1 3L, 3L
b= [T+0a| 3bk L} =1 34 ||, (3.13)
3LL 3LL,  LP—1

where the various /; are defined by Eq. 2.11, with the (0, ¢) variables replaced by
(0, ®). The bp parameter distinguishes between conventional and multidimensional
diffusion schemes; protocols relying on collinear gradient waveforms are limited to a
single b-tensor shape (b5 = 1), while multidimensional diffusion protocols can sample
b-tensors with arbitrary shapes.

The relationship between the b-tensor and D is made more explicit by expanding the
product b : D in terms of individual tensor parameters

b: D = bDi[1 + 2bpDpP2(cos B)], (3.14)

where P,(x) = (3x* — 1)/2 denotes the second Legendre polynomial, and 3 is the
arc-angle between the major symmetry axes of b and D given by

cos 3 = cos ) cos O + sin 0 sin © cos(p — D). (3.15)
As clarified by Eq. 3.14, diffusion encoding with 65, = 0 is able to select the effects of

Dis, on the acquired signal. An entirely different outcome is attained with conventional
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Figure 3.3: Contrast between signals acquired with different b-tensor shapes. The two boxes represent
heterogeneous voxels comprising a mixture of randomly oriented identical prolate tensors (a),
and a mixutre of two isotropic diffusion tensors of different size (b). The red and blue curves
display in silico signal data S(b, ba)/So acquired with linear (bo = 1) and spherical (bp = 0)
b-tensors, respectively. Despite their obvious structural differences, both voxels yield indis-
tinguishable linearly encoded data. Consequently, both voxels cannot be teased apart when
using conventional diffusion encoding schemes. Non-overlapping linearly and spherically en-
coded signals are observed for the anisotropic system, voxel (a); conversely, the anisotropy of
the b-tensor seems to have no effect in the isotropic system, voxel (b).

diffusion encoding (6o = 1), where the effects of Dp and orientation are convolved
within a single scalar Dg [58]. This shows that &, is a separate experimental dimension
that regulates the influence of diffusion anisotropy on the acquired signal.

For completeness, we combine Egs. 3.14 and Eq. 3.12:

S(b, éA7 @7 (I)) /-271 /71 /1 /Jroo
_ = —bDio[1 + 2bADAP:
S A exp( [ ADpPs(cos B)]) (3.16)

% P(Diso, Da, 0, $)dDiso dDy sin 6 df de .

The above equation clarifies that the various dimensions of the acquisition space
(b, 65,0, P) match those of the sought-for distributions P(Diso, Da, 0, ¢). Con-
sequently, acquiring data at various combinations of (4, 65, ©, ®) facilitates the in-
spection of specific features of the underlying DTD.

3.2.1 Inferring composition from diffusion-weighted signal patterns

To better understand the advantages of multidimensional diffusion encoding, let us
consider the two heterogeneous voxels displayed in Figure 3.3. Despite possessing dif-
ferent microscopic structures, the two voxels yield virtually indistinguishable linearly
encoded (bp = 1) signals [57]. However, clearly distinct signals are observed when
the effects of diffusion tensor anisotropy and orientation are removed from the data by
using a spherical (6p = 0) encoding scheme. Since the left-side voxel does not exhibit
a dispersion in Dj, its spherical encoded signal will exhibit the mono-exponential be-
haviour characteristic of homogeneous samples; in contrast, the right-side voxel com-
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Figure 3.4: In silico signal patterns from four voxels with different microscopic compositions. The top boxes
display the contents of the various voxels: orientationally ordered anisotropic D (a), orientation-
ally disordered D (b), mixture of two isotropic D with different sizes (c), mixture of orientationally
disordered anisotropic D with isotropic D of larger size (d). The simulated acquisition protocol
(black points) and corresponding normalized signal data S(b)/Sq (grey circles) are displayed be-
low. The acquired b-tensor magnitudes b and normalized anisotropy values b, are displayed as
a function of the acquisition point index. The S(b)/Sy data is displayed on the same horizontal
axis as the acquisition scheme. Notice that clearly distinct signal patterns are observed for the
different voxels.

prises isotropic domains characterized by different values of Djs,, and is consequently
characterized by a multi-exponential spherically encoded signal curve.

Additional insight on the connection between multidimensional diffusion-weighted
data and sample structure can be attained from the inspection of Figure 3.4. There,
we display the signal patterns simulated for a set of voxels with varying degrees of dif-
fusion anisotropy, orientational order, and Dj, heterogeneity. The displayed data was
simulated using linear (6 = 1) and spherical (bp = 0) &-tensors of different sizes &
and orientations (0O, ®). Whenever diffusion anisotropy is present — voxels (a), (b),
and (d) — the signal patterns are observed to be sensitive to &5. Signal sensitivity to
is thus interpreted as the hallmark of diffusion anisotropy. The linearly encoded data
of voxel (a) exhibits a sharp “peak pattern” that is modulated by the acquired (O, ®)
values. For the orientationally disordered voxels (b) and (d), the signal sensitivity to
(0, @) is reduced and the “peak pattern” observed for voxel (a) is highly attenuated.
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The signal sensitivity to -tensor orientation thus informs on the orientational order of
the underlying structure. Notice that voxels (a) and (b) yield the same (65 = 0) signal
pattern, which indicates that they comprise an array of D with similar isotropic diffus-
ivity (Tr(D)/3) but different orientations. As voxels (b) and (d) both comprise aniso-
tropic domains with similar degrees of orientational order, their respective (bp = 1)
signals exhibit a similar pattern. The most noticeable difference between the two voxels
is the more rapid signal decay registered for voxel (d), consistent with the presence of
fast-diffusing isotropic components in voxel (d).

The various patterns observed in Figure 3.4 showcase the specificity of multidimen-
sional diffusion datasets to the sample’s structure. The observation of distinctive signal
decay curves, specific to the underlying DTD, is crucial to both resolve and quantify
microscopic heterogeneity.

3.2.2 Powder-averaging

The dimensionality of Eq. 3.16 can be reduced by rendering the acquired signal insens-
itive to the details of sample orientation. A practical way to achieve this is to take the
arithmetic average of data acquired at a comprehensive set of b orientations [26, 27, 70]

2 V4
S(6, bA):;ﬂ/o /05(57 bs,©, ) 5in© dO d. (3.17)

This technique has been independently introduced in the field of diffusion MRI as
“powder-averaging” [26, 27] and “spherical mean” [71, 72]. In this work we opt for
the “powder-averaging” terminology in order to highlight the analogy with solid-state
NMR techniques for calculating the spectroscopic line shapes of samples comprising a
large number of randomly oriented crystallites (powder samples) [73]. To assure that
the powder-averaged signal is indeed rotationally invariant one must probe a sufficient
number of uniformly distributed &-tensor orientations. The minimum number of re-
quired orientations depends on both the anisotropy of the sample, the anisotropy of b,
and the magnitude of the encoding tensor [74].

General analytical expressions of the powder-averaged signal have been derived recently
[75]. For axially symmetric b and D, we can write (Paper I)

S(b, ba) ool
e = / / K(b7 bAa Disoa DA)P(Disoa DA) dDA dDiso s (318)
So o J-1)2

where P(Dis, Da) is a joint distribution of isotropic and anisotropic diffusivities and
the inversion kernel is given by [58]

K(b, by, Dy, D) = V= A3 DsoDn) oy 11 4uDy]) (319)

2 V 3ébADisoDA
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with erf( - ) denoting the error function. The (D, Da) basis provides a sparse repres-
entation of the data wherein each distinct diffusion tensor component gives rise to a
2D delta function that simultaneously describes its size and shape.

The powder-averaged signal measured at a specific 45 coordinate can be expressed as
the Laplace transform of a 1D distribution of effective diffusion coefficients P(D)]b,)

+oo
3(6) = So / P(D|w) exp(—bD) dD. (3.20)
0
The functional form of P(D|b,) is defined as [58]
_ 1
P(D|bp) = (3.21)

24/3DisobaDA[D — Diso(1 — baDy)]

in the range

D> min[Diso(l — bADA),DiSO(l + ZbADA)] ,

3.22
D < max[Diso(l — bADA), Diso(l + ZbADA)] , ( )

and P(D|bp) = 0 otherwise. According to Eq. 3.21, a single anisotropic component
gives rise to a broad P(D|6,) distribution of complex shape whenever data is acquired
with a linear &-tensor (bp = 1) [28, 58, 76]. This broadening is a consequence of
the entanglement between diffusion tensor anisotropy and orientation expressed by

Eq. 3.14.

3.3 Multidimensional relaxation and diffusion correlation MR

Within the field of NMR of porous media, microscopically heterogeneous materials
such as food products [77], colloidal systems [78], or porous rocks [79] are typically
investigated with multidimensional techniques that combine multiple relaxation- and
diffusion-encoding blocks. The acquisition principles of multidimensional correlation
experiments are analogous to those of multidimensional NMR spectroscopy methods
in which signal data is recorded as a function of different evolution time periods [80].
As illustrated in Figure 3.5, the overall strategy is to apply a sequence of different encod-
ing blocks between magnetization excitation and signal detection in order to establish
correlations between different MR observables. The acquired signal data is approx-
imated as a multidimensional integral transform of joint distributions of relaxation
rates and/or diffusivities [81], which can then be estimated from the data using non-
parametric Laplace inversion techniques [82, 83].

Different number and combinations of encoding blocks can be used depending on
which MR observables provide a more detailed characterization of the investigated ma-

terial, e.g. R1-Ry [84], R,-D [85, 86], or D-D [61, 87]. A survey of multidimensional
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Figure 3.5: Schematic diagram of a multidimensional correlation MR experiment. A variety of relaxation
and/or diffusion weighting blocks is applied between an excitation and a signal detection block
in order to establish correlations between different MR observables.

Laplace experiments can be found in the reviews by Galvosas and Callaghan [88], and

Gladden and Mitchell [89].

To this date, Laplace correlation studies have relied on the Stejskal-Tanner experiment
[50] to encode for diffusion. For materials comprising anisotropic domains with mul-
tiple orientations, diffusion-encoding along a single direction gives rise to broad dis-
tributions of effective diffusivities (see Eq. 3.21), which are not only challenging to
retrieve with nonparametric Laplace inversion but also impossible to differentiate from
a dispersion in isotropic diffusivities [57]. Consequently, the inherent limitations of
the Stejskal-Tanner experiment prevent the discrimination between isotropic and an-
isotropic contributions to the underlying DTD, as well as the resolution of microscopic
environments within heterogeneous anisotropic materials such as biological tissues.

3.3.1 Diffusion tensor correlations

To overcome the difficulties described above, one needs to progress beyond the tradi-
tional Stejskal-Tanner design and devise experimental protocols that can disentangle
the effects of diffusion tensor size, anisotropy, and orientation. Only by achieving this
can one unambiguously resolve and quantify isotropic and anisotropic environments
within orientationally dispersed materials.

Previous contributions have shown that the field of multidimensional solid-state NMR
spectroscopy is a fertile source of inspiration for the design of diffusion MR methods
for investigations of microscopically anisotropic materials [27, 28, 58, 63]. Building
upon that line of work, we translated solid-state NMR techniques for correlating iso-
tropic and anisotropic molecular sites [67, 69] into the field of diffusion MR, and de-
vised a family of protocol that quantify microscopic heterogeneity with nonparametric
distributions wherein different microscopic environments are resolved based on their
respective (Diso, Da, 0, ¢) properties. The key insight from solid-state methodology
is that isotropic and anisotropic diffusion contributions can be resolved by selectively
controlling the influence of diffusion anisotropy and orientation on the acquired signal.
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Figure 3.6: Diffusion NMR protocol for establishing correlations between diffusion tensor eigenvalues. (a)
Spectroscopic NMR pulse sequence for multidimensional diffusion encoding. The thin vertical
lines denote 905 radio-frequency pulses while the thick vertical lines represent 180 pulses. The
dashed box shows a magnification of the first bipolar gradient pulse. The gradient amplitude
G and the A, 4, 7, and € timings define the magnitude of the b-tensor through Eq. 3.23.
The bottom panel illustrates the unit vectors (n1, ny, n3) of the three sets of gradient pulses
allowing for diffusion encoding with variable b-tensor anisotropy (b,). The anisotropy of the b-
tensor is tuned by changing the angle ¢ between the n; vectors and the z-axis of the laboratory
frame (see Eq. 3.24). (b) Data acquisition protocol for 2D correlations between the size and
shape of microscopic diffusion tensors. 2D space spanned by combinations of linear (b = 1)
and spherical (b = 0) b-tensors. Adapted with permission from Ref. [90] (Paper I).

The proposed protocols rely on signal acquisition in a multidimensional (&, ba, ©, ®)
space encoding for correlations between the size, shape, and orientation of the under-
lying D. The resulting information-rich datasets can be converted to DTDs without
relying on a priori assumptions on the number or properties of the individual micro-
scopic components.

In Paper I, we implemented a spectroscopic version of a diffusion tensor correlation
protocol using the triple-stimulated echo sequence introduced in Ref. [91] and dis-
played in Figure 3.6(a). Diffusion encoding was performed by a sequence of bipolar
gradient pulses oriented along three distinct directions ny, ny, n3, defined by three azi-
muthal angles consecutively rotated by 27/3 radians and a constant polar angle . The
magnitude of the b-tensor is given by [91]:

b=3(vGS)X(A—6/3—71/2—¢/2— /65 + € /1552) (3.23)

where G is the gradient amplitude, and A, §, 7, and € are the timing variables defined
in Figure 3.6(a). The angle ¢ defines the normalized anisotropy of b

bn = Py(cos (), (3.24)

and assumes a similar role to that of the angle between the main magnetic field and
the rotor spinning axis in variable angle spinning techniques [69]. A set of spherical
and prolate 4-tensors was sampled by varying the gradient amplitude and ¢ from { =
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Figure 3.7: 2D size-shape diffusion tensor distribution estimated for a three-component colloidal sample.
The sample was assembled by placing a 5 millimetre NMR tube containing a liquid crystal inside
a 10 millimetre tube filled with a yeast cell suspension. The two boxes illustrate the anisotropic
structure of a single microdomain in the liquid crystal and the microscopic structure of the yeast
suspension. The spherical shells represent the cell membranes separating between the intra-
and the extra-cellular environments. Diffusion NMR data was acquired from the sample, and
then transformed into a 2D distribution of diffusion tensor sizes and shapes (see text for further
details). The resulting distribution is displayed as a contour plot of isotropic diffusivities D;s,, and
axial-radial diffusivity ratios D /D . The lines above and to the left of the contour plot represent
the 1D projections of P(Dis,, Da) onto the respective axis. The coloured crosses identify the
three microscopic water environments found in the composite sample: anisotropic liquid crystal
(red), intracellular yeast (green), and extracellular yeast (blue). Adapted with permission from
Ref. [90] (Paper I).

arccos(1/31/2) ~ 54.74° (bp = 0) to ¢ = 0° (bp = 1). The resulting (4, b5 ) grid (see
Figure 3.6(b)) allowed for correlations between the size D5, and shape Dp dimensions
of the underlying DTD.

Experimental validation was conducted on a colloidal sample where a central core filled
with a liquid crystal in the reverse hexagonal phase [92] is surrounded by a yeast suspen-
sion with two isotropic diffusion components (see Figure 3.7). The sample was con-
structed to mimic the nerve tissue model proposed by Stanisz ez a/. [93]; the liquid crys-
talline and intracellular yeast components resemble water within axons and glial cells re-
spectively, while the extracellular environment of the yeast suspension replicates the dif-
fusion properties of the extracellular tissue environment. To verify that the protocol can
indeed resolve isotropic and anisotropic components even in the presence of orienta-
tional disorder, an isotropic orientation distribution was enforced by powder-averaging
data collected over multiple (6, ®) orientations. This resulted in a 2D S(4, b5) data-
set that is related to the 2D size-shape P(Djso, Da) distributions via Eq. 3.18. Non-
parametric inversion of the data and subsequent estimation of P(Djs,, Da) was achieved
using the numerical approaches discussed in Chapter 4. The resulting distribution is
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Figure 3.8: Spectroscopic NMR pulse sequence allowing for 6D relaxation- and diffusion-encoding. The se-
quence consists of an extension of the triple stimulated-echo sequence displayed in Figure 3.6,
and follows the same diffusion-encoding strategy. The radio-frequency pulses, gradients, and
(n1, N2, n3) unit vectors follow the same labelling of Figure 3.6. Longitudinal Ry and transverse
R, relaxation encoding is performed by varying the 7z and 7¢ delays, respectively. The signal is
further affected by Ry and R, during the constant 7, and 7y delays, respectively. Taken with
permission from Ref. [98] (Paper II).

shown in Figure 3.7. The inspection of the contour maps reveal that the proposed cor-
relation protocol can indeed resolve and characterize the three components that com-
prise the composite sample: two isotropic ones at log, (Diso/m?*s ™) ~ —9 and —11,
corresponding to the extra- and intracellular yeast water, as well as an anisotropic com-
ponent with log,(Diso/m?*s™!) & —9.5 and log,,(D/D1) ~ 2 originating from
the liquid crystal.

3.3.2 Relaxation and diffusion tensor correlations

In deriving Eq. 3.12 we assumed a constant transverse relaxation rate throughout the in-
vestigated sample volume. Whenever this assumption does not hold and R, differences
can be observed between different microscopic environments, the estimated DTD will
be biased towards slow-relaxing populations. This issue is particularly relevant for bio-
logical samples, as they are known to comprise microscopic tissue environments with
distinct R, rates [41, 43, 45]. Consequently, one should account for and quantify R,
heterogeneity in order to estimate accurate component fractions. Moreover, nuclear
relaxation rates are known to be exquisitely sensitive to the local chemical composition
of tissue [44, 45, 94, 95] and can provide complementary information to diffusion MR
experiments [96, 97].

Motivated by the reasons outlined in the previous paragraph, we have extended our
DTD correlation approach to a 6D dimensional (Ry, Ry, Diso, Da, 0, ¢) space (Pa-
per II). To allow for correlations between relaxation rates and diffusion tensors, the
pulse sequence introduced in Ref. [91] and used in Paper I was augmented with time
periods encoding for transverse and longitudinal relaxation (see Figure 3.8). Diffusion
encoding was performed as explained in Section 3.3.1, while R; - and R,-weighting was
enforced by varying the 7 and 7g delays, respectively. Within the DTD approxima-
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Figure 3.9: 6D relaxation-diffusion distribution P(R1,R,,D) estimated for a three-component colloidal
sample. The side boxes display the structure of the liquid crystalline solution and the yeast
suspension that compose the sample, and are explained in detail in Figure 3.7. The set of 4x4
contour maps displays projections of the full P(R1, Ry, D) distribution onto 2D subsets of the
space defined by longitudinal relaxations R, transverse relaxations R,, isotropic diffusivities
Diso. and axial-radial diffusivity ratios Dy /D, . The black lines on the top and left side of the set
display 1D projections of the various distributions P(Ry, R, Diso, D) /D1 ). As in Figure 3.7, the
coloured crosses establish the correspondence between sample and distributions components.
Adapted with permission from Ref. [98] (Paper II).

tion, the resulting 6D signal writes as

///l—exp (—TrR1)] exp(—TeR;) exp(—b : D)
XPRl,Rz, )deddeD

S(TRy TE)
(3.25)

where P(Ry, Ry, D) is the joint probability distribution that captures the underlying
Ry, Ry, and D heterogeneity.

The proof-of-principle experiments were carried out on the colloidal phantom dis-
played in Figure 3.7. Spectroscopic NMR data was collected for an exhaustive set
of (Tr, T, b, ba, ©, ) parameters, and subsequently inverted using a non-parametric
Monte Carlo inversion algorithm (see Chapter 4 for further details). Figure 3.9 displays
the resulting 6D P(Ry, R,, D) distribution as a set of 2D contour plots. The three com-
ponents resolved in Figure 3.7 can be also observed in Figure 3.9. The separation and
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correlation of the various (Diso, Da, 0, ¢) dimensions facilitate the resolution of mi-
croscopic environments with relaxation rates too similar to be resolved with standard
relaxation Laplace protocols. For example, the two yeast components are character-
ized by similar R, rates and thus could not be separated in conventional 1D relaxation
measurements [45, 82]. Moreover, the intracellular yeast environments was found to
be characterized by a slightly higher R, rate when compared to the extracellular envir-
onment; this observation indicates an excellent component resolution and is consistent
with previous studies relying on constrained fitting approaches to analyse R, yeast data

[99].

28



4 From the signal to diffusion

tensor distributions

The diffusion-encoded MR signal of a heterogeneous material can be written as an
integral transform of a continuous DTD

S(b) = / (b, D)P(D)dD . @1

The distribution is mapped into the signal by a generalized kernel X(b, D) whose func-
tional form is determined by the experimental design and the working approximation.
Typically, the kernel is set as K(b,D) = exp(—b : D). In Chapter 3 we discussed
multidimensional encoding strategies that render the acquired S(b) specific to differ-
ent features of the sought-for DTD. The boost in data specificity was shown to facilitate
the quantification of microscopic heterogeneity with P(D) distributions, but the details
of the data inversion process were left unclear. Here, we discuss the inverse problem of
retrieving microstructural information from a diffusion-encoded signal, describing the
most commonly used analysis strategies and limitations inherent to the various inver-
sion methods. The focus is on non-parametric techniques that can either retrieve the
full DTD or infer relevant statistical descriptors from i.

4.1 Non-parametric estimation of diffusion distributions

For analysis purposes, it is convenient to approximate the underlying distribution as
a sum of /V delta functions with unknown “area” w,. This allows the discretization of
Equation 4.1 as

N
S, = Z w, exp(—=b,, : D,), (4.2)
n=1

where S, is the m-th signal amplitude measured with the encoding tensor b,,, and w,
is the weight of the #-th microscopic diffusion tensor D,,. When dealing with real data,
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each measurement S, comprises a finite amount of noise €,,. To explicitly account for
this fact, Eq. 4.2 is rewritten
s=K-w+e, (4.3)

where w denotes the Vx 1 sought-for probability vector, s is the column vector contain-
ing the M signal amplitude measurements, and K is the A/ x N kernel matrix whose
elements are defined by the exponential term in Eq. 4.2. The vector € describes the
experimental noise from each of the A/ measured datapoints.

The presence of noise advises against attempts to search for the exact solution of Eq. 4.2.
Instead, a proposed solution should misfit the primary data by an amount consistent
with the noise, i.e. we seek for a solution w such that ||s — K- w||2 < o, where
|| - ||2 is the Euclidean norm and o is the standard deviation of the noise [79, 83, 100].
Unfortunately, the inversion of Eq. 4.3 is an infamous ill-conditioned problem where
a small error in s introduces a large error in the solution w. This means that the same
primary noisy dataset accommodates a large number of different solutions within the
same noise statistics.

4.1.1 Regularized approaches

The conditioning of the inverse problem can be improved through the incorporation
of constraints. A natural and widely used constraint is to restrict the solution space
to real and positive w, weights; this is consistent with the interpretation of w as a
discrete probability density. The estimation of w is then cast as a non-negative linear
least squares (NNLS) problem

w = argmin ||s — K- w]|2, (4.4)
w>0

The problem stated by Eq. 4.4 can be efficiently solved with classical NNLS algorithms
(101]. Distributions estimated from these algorithms will generally comprise a sparse
set of delta functions at various D,, points, and may constitute a reasonable solution
provided that the true P(D) is itself composed of a few isolated peaks and that the
experimental signal-to-noise ratio (SNR) is sufficiently high [102, 103]. However, the
amplitudes and positions of the various peaks are observed to be rather sensitive to
noise, and significantly different solutions are typically estimated over different noise
realizations. This indicates that a positivity constraint is not by itself a sufficiently strong
constraint, and it may be necessary to further reduce the space of possible distributions
in order to improve the inversion stability.

A common approach in the analysis of multi-exponential diffusion and relaxation data
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is to incorporate a regularization term W(w) into the optimization problem

w = argmin [ ||s — K- w|2 + a¥(w)] . (4.5)
w>0

The regularization term constrains the solution space and its functional form is defined

to favour distributions with a pre-defined set of properties; typically, ¥ (w) is defined to

promote smoothness [84, 104-106], sparsity [102, 107, 108], or to select the w solution

yielding the maximum information entropy [109, 110]. Comprehensive reviews on the

various regularization strategies used in the MR literature can be found in [82, 83, 111].

It is important to recognize that the regularization term stabilizes the solution but it
also increases the residual error of w

Xx=|ls—K-w|. (4.6)

The balance between the least squares misfit and the regularization term is determined
by the parameter .. For o = 0, Eq. 4.5 is reduced to a standard NNLS problem, and
the attained solution will be unstable to noise but also exhibit the maximum accordance
to the acquired data. Conversely, a high o parameter results in a stable solution that
yields a significantly higher residual error [112]. The selection of an optimal o parameter
is then crucial to assure a good trade-off between data consistency and stability.

Although capable of mitigating the influence of noise or reducing over-fitting, reg-
ularization strategies yield well-known artefacts that affect the shape of the retrieved
distribution [2, 83]. As an example, let us consider the popular ¢, regularization
strategy, W(w) = ||w||2. This regularization strategy has been observed to yield an
oversmoothed solution whenever the true P(D) distribution is sparse [102, 107], or
split intrinsically broad distributions into a series of narrow peaks (the so-called “pearl-
ing” artefact) [106]. These artefacts, along with the ill-conditioned nature of Eq. 4.3,
should always be kept in mind when attempting to extract relaxation or diffusion dis-
tributions form multi-exponential magnetic resonance data.

4.1.2 Monte Carlo approaches

As highlighted in the previous section, conventional regularized approaches estimate a
single solution that is selected based on an ad-hoc mathematical criterion. However,
the estimated solution is just one among the collection of w solutions that are consist-
ent with the experimental data. By focusing on a single solution, regularized inversion
methods ignore a vast range of plausible w and are thus not suitable to assess the un-
certainty of the estimated distributions.

The variability between solutions can be explored through a statistical procedure
wherein distributions are randomly sampled and compared against the data on the basis
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N
Discretization 1 S, = yw,exp(-b,:D,) (s=K-w)
n=1
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2.2 Obtain w via NNLS fit
2.3 Save D, with w,>0
Proliferation 3.1 Generate random temporary set {D}1<nsnin
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3.3 Obtain w via NNLS fit times
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Figure 4.1: Schematic illustration of the Monte Carlo inversion algorithm developed within this thesis.
The top panel lists the main steps of the algorithm. The bottom panel shows a practical ex-
ample of the inversion algorithm for a voxel containing one anisotropic component and two
isotropic components with distinct diffusivities. The solutions obtained in different steps of
the algorithm are shown as 2D logarithmic scatter plots of isotropic diffusivities D, and axial-
radial diffusivity ratios Dy /D_.. Colour-coding informs on diffusion tensor orientation (8, ¢)
(R, G,B] [cos ¢ sin6,sin ¢ sin@, cos O] - |D) — D1 |/max(Dy, D)) and circle area is pro-
portional to the weight of the corresponding component. The black contour lines show the
ground-truth DTD.

of their residual errors. Distributions yielding a residual compatible with the experi-
mental noise are interpreted as plausible solutions. Sampling and collecting a sufhicient
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Figure 4.2: Ensemble of DTD solutions estimated for a single in silico dataset. Each column displays a
Monte Carlo solution obtained with the algorithm schematized in Figure 4.1. The top panel
shows the simulated (grey circles) and fitted (black points) normalized signal profiles S(b)/Sq.
The bottom panel displays the estimated DTD as logarithmic scatter plots similar to the ones
introduced in Figure 4.1. Noticeably different solutions are estimated without a marked effect
on the fit quality. This evidences the non-unique nature of the inverse problem.

number of plausible distributions generates an ensemble of solutions that reflects the
statistical properties of the entire solution space.

Monte Carlo inversion algorithms build on the ideas presented in the previous para-
graph in order to quantify the ensemble of solutions that can fit a single noisy dataset.
Pioneered by Prange and Song [113, 114], these algorithms were initially developed for
the analysis of 1D multi-exponential R, relaxation data. An efficient Gibbs sampler
was used to generate an ensemble of solutions that was subsequently converted into
an ensemble of scalar properties and used to estimate uncertainty metrics. Unfortu-
nately, the proposed sampler has yet to be extended to higher dimensional problems.
A practical Monte Carlo approach has been more recently proposed for the analysis of
D-T, correlated data [115]. Bootstrap data resampling was combined with a standard
Laplace inversion algorithm [105] in order to estimate an ensemble of distributions and
derive confidence intervals. While individual bootstrapped solutions were observed to
comprise several spurious peaks, averaging the distinct solutions allowed the estimation
of a smooth distribution with no discernible artefacts. Moreover, bootstrapping was
shown to provide an effective method of stabilizing the inversion.

In this thesis, we extend the Monte Carlo analysis to up to six-dimensional correlation
spaces. Papers II and IV provide a detailed description of a Monte Carlo algorithm
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that was specially designed for the analysis of high-dimensional relaxation-diffusion
correlated datasets. As a non-limiting example, let us consider an implementation of
the algorithm for 4D diffusion tensor correlated data; this particular example is schem-
atized in Figure 4.1. The continuous DTD is approximated as a set of /V discrete con-
figurations {D, }1<,<y and their respective weights {w, }1<,<x. A plausible solution
{wn, Dy }1<n<n is estimated using a stochastic iterative procedure in which config-
urations are continuously sampled in a random fashion, fitted to the data using the
classical active-set method described by Lawson and Hanson in [101], and compared
with previously generated configurations on a basis of lowest residual sums of squares.
Ensembles of plausible discrete distributions are subsequently generated by simply re-
peating the stochastic inversion procedure (Papers III and V) or using bootstrap with
replacement (Papers I, I, IV, and VI).

Figure 4.2 displays individual Monte Carlo solutions estimated with the proposed al-
gorithm. Owing to the non-unique character of Eq. 4.3, noticeably different solutions
are obtained without a clear effect on the fitting quality. The individual Monte Carlo
solutions are also characterized by the presence of spurious components that disappear
upon computing the average of the various bootstraps. This behaviour is in agreement
with the results of de Kort ez a/. [115].

4.1.3 Ensembles of statistical descriptors

The multiplicity of Monte Carlo solutions characterizes the uncertainty of the inverse
problem. However, it may prove challenging to either capture or visualize the wealth of
information contained within the ensembles of distributions, a problem that is accen-
tuated in high-dimensional correlation spaces. A practical solution to this problem was
suggested in [113], where functionals were used to map each Monte Carlo distribution
into scalar quantities. Ensembles of physically relevant quantities such as porosity or
fraction of bound fluid were shown to provide useful insight into the statistical prop-
erties of the ensemble of distributions.

Here, we follow a similar approach to the one explained in the previous paragraph,
and convert each Monte Carlo solution to a set of statistical descriptors quantifying
the means E|x], variances Var[x], and covariances Covlx, y] of the various dimensions
of the distribution space. This procedure is illustrated in Figure 4.3, where the E[Djs,),
E[D3], Var[Dis|, Var[D3], and Cov|[Di, D%] descriptors are computed from an en-
semble of DTD solutions. The ensembles of statistical descriptors are compactly visu-
alized as a set of histograms. Inspection of the width of the histogram distributions
reveals that different descriptors carry different uncertainties; in particular, it is ob-
served that Var[D3] and Cov[Dis, D3] have a higher uncertainty when compared to
the remaining parameters. This observation is in agreement with previous studies [13],
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Figure 4.3: Ensembles of statistical descriptors estimated from the ensembles of DTD solutions. Each Monte
Carlo DTD is converted to a set of statistical descriptors such as the mean E[x], variance Var(x],
and covariance Cov[x,y] of isotropic diffusivities Do and squared normalized diffusion aniso-
tropy Di. The ensembles of statistical descriptors can be compactly displayed as histograms.
For the purpose of calculating parameter maps, it is convenient to reduce the ensembles of stat-
istical descriptors to a single average measure (as estimated from the median). The black dots
under the histograms indicate the median of the corresponding statistical descriptor ensemble.

and suggests that different descriptors require different SNR ratios in order to be accur-
ately quantified, 7.c., we expect that a higher amount of noise will have a more adverse

effect on Var[D3] and Cov[Djs,, D3] than on E[Di), E[D3], and Var[Dis,).

4.2 Avoiding the ill-conditioned inverse problem: the cumu-
lant expansion

The challenges posed by the inversion of Eq. 4.3 have motivated the development of
signal inversion techniques that obviate the need to estimate the full underlying dis-
tribution. It turns out that a rather straightforward alternative — the method of cu-
mulants — is based on one of the most basic and overused elements of any physicist’s
toolkit: the Taylor expansion. The method of cumulants expands the logarithm of the
signal in powers of the relevant experimental variable and relates different elements of
the series to specific features of the underlying distribution [116-118]. To understand
this approach, it is instructive to consider the cumulant expansion of Eq. 3.20 [21, 27]

S\ =, 1, 13
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The parameters D, p,, and 3 correspond to the mean, variance, and skewness, respect-

ively, of P(D|ba) and are defined by

“+oo
D= DP(D|by)dD, (4.8)
0

and

+o0
un,= / (D—D)"P(D|bpy)dD forn € {2,3}. (4.9)
0

Eq. 4.7 clearly shows that different cumulants affect the signal over different ranges of
b. At low b-values, the first cumulant dominates and In(S/Sy) is well captured by a
straight line whose slope is equal to —D. At higher &, the width and then the asymmetry
of P(D|ba) become more relevant due to the 4% and & terms, respectively.

The various terms of the cumulant expansion can be estimated by regressing Eq. 4.7
onto the acquired data. Since different cumulants provide quantitative measures of
different aspects of the underlying distribution, this approach allows us to quantify mi-
croscopic heterogeneity without having to explicitly address an ill-conditioned inverse
problem.

4.2.1 The two-term cumulant expansion and the gamma distribution ap-
proximation

In practice, the cumulant expansion is truncated at a given term before being fit to
the signal. As different cumulants describe different features of the distribution, the
truncation process defines which subset of the information contained within the full
distribution is carried to the analysis process. The question then arises of where to
truncate Eq. 4.7.

A two-term expansion provides the simplest cumulant-based model capable of quanti-
fying the non-monoexponential signal decay curves measured for heterogeneous media
[119, 120]. The first cumulant captures the initial slope of In S(4) /Sy and is identified
as the mean isotropic diffusivity introduced in section 2.3

D = E[Dy,] . (4.10)

For the powder-averaged distribution defined in Eq. 3.21, the second cumulant reports
on the curvature of the corresponding signal curve and can be written as [16, 121]

)
#y, = Var[Djso| + ﬂ [D2

S aniso

where Daniso = DisoDa- Eq. 4.11 shows that the initial deviation from monoexponen-

l, (4.11)

tiality can be related to well-defined statistical measures that inform on the spread of
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sizes and the mean shape of the microscopic diffusion tensor components. As shown in
[27], acquiring data at two different values of &5 allows to tease apart the contributions
from Var[Dj,] and E[D?

aniso] .

To terminate the cumulant approximation at the second term is equivalent to con-
sidering a normal distribution of diffusivities. Such a distribution yields a non-
monotonically decreasing signal curve and comprises negative diffusivities, implying
that non-physical negative statistical descriptors might be estimated from a two-term
cumulant expansion. To address these undesirable features, it might prove valuable
to consider an alternative functional form of P(D|6a). A viable distribution should
promote an analytical signal model that is described by a minimal number of para-
meters [19] and should constrain the solution space to positive diffusivities [118]. The
gamma distribution fulfils those requirements and has been shown to provide a suitable
alternative to the two-term cumulant approach [122, 123]. Approximating P(D|b,) as
a gamma distribution provides a simple signal model [27]

— =2
5(4) ﬂ2>’3 /12
5 < + s ; (4.12)

that can be used to estimate the relevant terms D and p,. It should be noted that the
main objective of the Gamma distribution is to provide a practical way to extract phys-
ical parameters by means of devising a representation that does not predict increasing
signals at high é-values and that can be used to represent a wide range of diffusion
distributions with just two degrees of freedom [123].

Figure 4.4 illustrates some of the limitations of the gamma approach. The gamma
approximation can only capture the first two cumulants of In(S(4)/Sy), which is but
a small fraction of the information contained in the original ﬁ(D]bA). Whenever the
contribution from higher-order terms is non-negligible, systematic deviations are found
between the predicted and the measured signal. The differences indicate that the simu-
lated system contains more information than that captured by the first two cumulants.
The inability to accurately model the powder-averaged signal introduces significant bi-
ases in the estimation of z, and, consequently, on the estimation of Var[Dj,] and
E[D?

aniso] .

4.2.2 Covariance tensor approximation

The covariance tensor approximation provides a tensor-based generalization of the two-
term cumulant expansion [11]

S(b) 1
In| —= ~ —b:(D —p®2. C 4.1
Il( So > b:(D)—0 < > + 2 ’ (413)
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Figure 4.4: Performance of the gamma distribution fitting (orange) and the covariance tensor approxima-
tion (green) in capturing the signals/statistical descriptors (black) obtained for a heterogeneous
voxel containing both orientationally disordered anisotropic D and fast-diffusing isotropic D.
The performance was assessed for both the forward (top panel) and inverse (bottom panel)
problems, using an in silico dataset with infinite SNR. The simulated voxel content is equivalent
to that shown in Figure 3.4(d). In the signal S(b)/Sy panels, the coloured lines denote the
signal decays estimated from the various methods and the coloured dashed lines correspond
to their initial slopes, S(b)/So = exp(—b E[Diso]) With E[Dis] denoting the mean isotropic dif-
fusivity. The different solid lines indicate data simulated with b-tensors of varying anisotropy;
from top to bottom: by = 0, 0.5 and 1. In the square DTD panels, coloured points represent
the logarithms of E[Diso] and (1-2v/X)/(1-v/X), where X = E[D2 . ]/E[Dis]?, and the horizontal
lines inform on the standard deviation of isotropic diffusivities. The grey contour lines show the
ground-truth distribution.

where (D) is the ensemble-averaged diffusion tensor, ® denotes the tensor outer
product (b¥2 = b ® b), and C is the fourth-order covariance tensor C = (D®?) —
(D)®2. The various covariance tensor elements Cj; 4; quantify the correlations between
the Djj and Dy elements of the microscopic D. While individual elements of C are
challenging to interpret in terms of microscopic structural properties, familiar statistical
measures can be obtained through combinations of the elements of (D) and C

E[Di,] = Tr[(D)] /3, (4.14)

1
Var[Diso] = §(Cxx,xx + ny,yy + sz,zz + 2Cxx,}/y + 2Cxx,zz + 2ny,zz) ) (415)
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E[Dgniso] = %[(Cxx,xx + <Dxx>2) + (C}’]JJ/ + <DJ’]>2) + (CZZ»ZZ + <DZZ>2>

- (Cxxvy)’ + <Dxx> <D)' >) - (CXX,ZZ + <Dxx> <DZZ>) - (Q’%Zz + <DJ/]> <DZZ>>

+3(Cay + (D)) + 3(Coee + (D)) + 3(Gae + (D))

(4.16)
where (Djj) is the 7j element of (D). The listed statistical descriptors can be estim-
ated by rearranging Eq. 4.13 as a linear equation system and solving for 28 unknown
elements corresponding to the initial signal amplitude Sy (1 element), (D) (6 independ-
ent elements) and C (21 independent elements) [11]. The elevated number of unknown
parameters requires data to be acquired over a wide range of b sizes, shapes, and ori-
entations in order to reliably estimate (D) and C from S(b) [11]. Notice that Eq. 4.13
can be recast as a linear system whose least-squares solution can be quickly computed
through a matrix pseudoinversion [11].

When using the covariance approximation it is important to consider that a two-term
expansion is only valid in the b: (D) — 0 limit. As shown in Figure 4.4, the covari-
ance tensor approximation provides a rather poor prediction of the measured signal at
higher -values, where clear discrepancies can be observed between the measured and
predicted signals. This mismatch between the data and the forward model introduces
biases in the quantification of the desired microstructural information (see lower panel
of Figure 4.4). Consequently, care has to be taken to exclude data points wherein the
covariance approximation no longer holds. Another limitation of the covariance tensor
approximation is that it cannot describe systems where higher-than-second-order cu-
mulants are significant, such as anisotropic systems with low orientational order.

4.3 Inversion of noisy datasets

In practical applications, the analysis of the experimental data will be challenged by a
finite SNR and a limited number of acquisition points. To acquire an intuitive un-
derstanding on the limitations imposed by the experimental noise, let us consider Fig-
ure 4.5. There, we display a set of in silico datasets at both infinite and finite SNRs. The
noise-free dataset was initially simulated (grey circles), and Gaussian distributed noise
with an amplitude of /SNR (SNR = 30) was subsequently added to generate the noisy
dataset (red points). The noise is observed to conceal the overall signal pattern and to
consequently hinder the visual inspection of the trends discussed in Section 3.2.1. The
effects of noise are most visible in voxel (c), where the small random fluctuations des-
troy the insensitivity to & that characterizes the signal patterns of isotropic samples.
As differences between data acquired at different 65 are interpreted as an indication
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Figure 4.5: In silico noisy signal patterns from four voxels with different microscopic compositions. The
boxes in the top panel display the diffusion tensor distributions originally shown in Figure 22.
Signal data S(b)/Sg with both infinite (grey circles) and finite (red points) SNR was generated
using an acquisition protocol comprising 100 b-tensors with 4 different traces b, and two dis-
tinct values of normalized anisotropy (b = 0 and 1). The noisy dataset was created by adding
Gaussian distributed noise with an amplitude of 1/SNR = 1/30 to the noise-free data.

of anisotropy, the noise-induced fluctuations are thus expected to introduce a bias to-
wards anisotropic solutions. This effect is similar to the “eigenvalue repulsion” artefact
in conventional Diffusion Tensor Imaging (DTI), where experimental noise introduces
a discrepancy in the eigenvalues of the voxel-averaged diffusion tensor that gives rise to
a positive bias in FA [124].

Multi-exponential signal inversion approaches are widely recognized as being partic-
ularly sensitive to both the experimental noise and the sampling density. The already
mentioned variability of the solution space is known to increase when either the experi-
mental SNR or the number of acquired data points decrease [113, 125, 126]. Theoretical
studies have additionally shown that the ability to resolve different microscopic com-
ponents is intrinsically linked to the experimental noise [81], and limited SNR values
are known to preclude the resolution of microscopic tissue environments with similar
MR properties [43, 125]. Within MRI, these observations imply that low spatial res-
olution and/or long scan times are required in order to retrieve a stable and accurate
solution. Consequently, multi-exponential analysis approaches are traditionally con-
sidered impractical within a clinical setting.
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To assess the performance of our Monte Carlo algorithms within a clinical setting,
we investigated the accuracy and precision of their estimations of different statistical
descriptors (Paper III). The assessment was performed using a variety of iz silico datasets
probed with a clinically feasible acquisition protocol at both finite (SNR = 30) and
infinite SNR levels. The performance of the non-parametric Monte Carlo (MC4D) in-
version was compared to that of a gamma distribution approximation (Gamma) and of
a covariance tensor approximation (Cov). As expected, the more constrained methods
(Gamma and Cov) were observed to be more robust to experimental noise. However,
unlike the MC4D approach, they exhibited biases at infinite SNR levels; the Gamma
approach was observed to be unsuited to describe systems exhibiting either high aniso-
tropy or high isotropic heterogeneity, and Cov exhibited a particularly poor perform-
ance in anisotropic systems with low orientational order. For datasets with limited
SNR, MC4D was found to result in significant biases with a clear tendency to over-
estimate the underlying anisotropy. The finite-SNR biases of MC4D advise against a
quantitative interpretation of its derived metrics whenever the primary experimental
data is characterized by a low SNR. Despite the finite-SNR biases, MC4D was ob-
served to preserve a good contrast between systems with distinct microstructure and to
accurately detect a variation in any of the estimated descriptors. Consequently, MC4D
seems to be a feasible choice for comparative clinical studies of tissue microstructure.
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5 In vivo multidimensional cor-

relation MRI

Papers I and II introduced signal encoding and data inversion strategies to quantify
microscopic heterogeneity with non-parametric relaxation and diffusion tensor distri-
butions. Proof-of-principle experiments were carried out on specially tailored colloidal
samples using spectroscopic experiments that did not provide spatially resolved inform-
ation. These works were translated into an iz vive imaging setting by redesigning the
experimental implementation using smooth gradient waveforms for multidimensional
diffusion encoding [15, 127] and single-shot MRI techniques for the signal read-out.
This chapter focuses on the results from two experiments designed to resolve sub-voxel
environments in living brain tissues: a 4D DTD imaging protocol and a 5D R,-D
protocol. The diffusion tensor imaging protocol was implemented on a preclinical an-
imal system and used to study the 7 vivo mouse brain. The joint relaxation-diffusion
protocol was employed to investigate the sub-voxel composition of living human brain
using a standard whole-body clinical scanner.

5.1 Diffusion tensor distribution imaging

In Paper IV, we combined multidimensional diffusion encoding with a spatiotemporal
encoding (SPEN) imaging sequence [128-130] to probe the microscopic heterogeneity
of in vivo brain tissues at sub-millimetre spatial resolution. Data was acquired using
b-tensors of varying size b, shape b, and orientation (©, ®), and then converted into
spatially-resolved DTDs using the Monte Carlo algorithm detailed in Section 4.1.2.
The proposed acquisition and analysis pipelines were first validated on a set of comple-
mentary synthetic samples and then tested on living mouse specimens. In this section
we briefly review and discuss the main findings of that work.
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5.1.1 Phantom validation

When designing novel MR methods, the use of a standard sample during pulse se-
quence validation, scanner implementation, and data analysis strategy development is
absolutely crucial. Thus, a wide array of samples with stable and well-defined diffusion
properties have been engineered to test the precision and accuracy of diffusion MRI
protocols [131]. Known in the MRI lingo as “phantoms”, these samples can be manu-
factured from a wide range of materials, assembled to exhibit distinct properties such
as a single well-calibrated diffusion coefficient [18, 132], a dispersion of isotropic dif-
fusivities [133-135], or to mimic diffusion in fibrous tissues with both high [136, 137]
and low [92, 138-140] orientational order. Anisotropic surfactant solutions in partic-
ular have been instrumental in the early development of multidimensional diffusion
MR protocols for quantifying the anisotropy of microscopically heterogeneous tissues

(27, 58, 63].

To implement and validate the diffusion tensor distribution imaging protocol reported
in Paper IV, we used three synthetic phantoms mimicking the diffusion properties of
healthy white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). Pure
water and neat liquid hydrocarbon dodecane [18] were used to mimic the fast isotropic
diffusion of CSF and slow isotropic diffusion in GM tissues, respectively. Anisotropic
water diffusion within WM was emulated by a liquid crystal phantom prepared ac-
cording to the protocol in [92]. The liquid crystal is nicknamed “hex” due to its reverse
hexagonal phase structure wherein water is confined to nanometre-diameter channels
in a matrix of detergent and oil.

Figure 5.1 shows the diffusion-encoded SPEN data from four voxels containing hex
(two voxels), dodecane, or water. Distinct signal patterns are observed for the different
voxels. The signal from the hex voxels is observed to vary significantly with both the
anisotropy b and orientation (O, ®) of the b-tensor, a trend that indicates anisotropic
diffusion in orientationally ordered domains. The distinct patterns observed in the
hex signals indicate that the two voxels contain data from crystallites oriented along
two different directions. The dodecane and water signals are observed to be rather
insensitive to both 45 and (O, ®), a feature that is consistent with isotropic diffu-
sion. The faster decay with increasing & observed for the water phantom indicates that
this sample is characterized by a higher diffusivity. Non-parametric inversion of the
data yields DTDs that are consistent with the diffusion features inferred from simple
visual inspection of the raw signal patterns. Namely, hex yields a DTD character-
ized by highly anisotropic components (log,, (D) /D) ~ 2) and intermediate-to-low
diffusivity (log,,(Dio/m*s™ ') ~ —9.4), dodecane is characterized by isotropic com-
ponents with intermediate diffusivity (log,,(Diso/m?s™!) ~ —9), and water gives a
DTD composed of fast diffusing isotropic components (log,,(Diso/m?s™') ~ —8.5).
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Figure 5.1: Representative 4D diffusion encoded signal data and diffusion tensor distributions (DTDs) for
four selected voxels containing hex (column 1 and 2), dodecane (column 3), or water (column
4). (Top panel) Acquisition protocol with b-tensor magnitude b and normalized anisotropy b
displayed as a function of acquisition point index, and corresponding normalized signal data
S(b)/So. In the S(b)/Sy plot, the grey circles and the black points distinguish between experi-
mental and fitted signal profiles, respectively. (Lower panel) DTDs obtained by non-parametric
inversion of the signal data in the top panel. The DTDs are displayed as 2D logarithmic scat-
ter plots of isotropic diffusivities Dis, and axial-radial diffusivity ratios D) /D_. The diffusion

tensor orientation (6, ¢) is color-coded as [R,G,B] = [cos¢ sin@,sin¢ sind,cosd] - D) —
DL|/max(D” ,D1 ) and the circle area is proportional to the weight of the corresponding com-
ponent.

As expected, the two hex voxels are distinguished by the orientation of their respective
anisotropic components.

The estimated DTDs all feature broad clusters of points. Because the chemical compos-
ition and microstructure are constant throughout each phantom, the observed spread
of points reflects the uncertainty of the inversion process and the low SNR characteristic
of high-resolution diffusion MRI experiments [13]. The low experimental SNR in par-
ticular also explains the non-negligible discrepancies between measured and predicted
signals observed in the top panel of Figure 5.1.
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5.1.2 High-resolution imaging of the living mouse brain

We used the pipelines validated with phantom measurements to acquire and analyse an
in vivo mouse brain dataset. Pure component voxels containing either WM, GM, or
CSF were observed to yield DTDs similar to those obtained for the hex, dodecane, and
water phantoms, respectively. Namely, WM is characterized by high Dj/D, compon-
ents, while GM and CSF both exhibit low anisotropy, with CSF being differentiated
by its high Djs,. While the estimated DTDs were able to accurately capture the dif-
fusion hallmarks of the main components of the healthy living brain, they were also
observed to comprise biologically implausible spurious components and to yield sig-
nificantly higher residuals than the phantom experiments. These undesirable features
were attributed to a low SNR (SNR = 26) and other uncertainty sources such as mo-
tion and eddy current artefacts. Consistent with the findings of Paper III, the higher
amount of noise was observed to induce a positive bias in the anisotropy metric.

The voxel-wise DTDs were converted to ensembles of So, E[Dis,], E[DA], Var[Dis),
Var[D3], and Cov|Dis,, D3] by following the procedure described in Section 4.1.3.
For the purpose of calculating parameter maps, it is useful to condense each statist-
ical descriptor ensemble to a single average measure (-). The average is measured as a
median and not as a mean in order to increase its robustness to outliers. The result-
ing parameter maps are compiled in Figure 5.2, which also displays the (Sp), (E[x]),
(Var[x]), and (Covl[x, y|) maps obtained for the diffusion phantoms.

As evidenced by the phantom results, the (E[Dis,]) map distinguishes between environ-
ments with a fast mean diffusion and environments with a slow mean diffusion. For the
living mouse brain, the overall (E[D;s,]) map was found to be in excellent agreement
with mean diffusivity maps estimated from high-resolution DTT protocols [141], and
high (E[D;s0]) values were found to correlate well with the expected spatial distribu-
tion of CSE High E[D3] values were concentrated in WM-rich structures such as the
cerebellum and the olfactory bulb, while smaller, yet non-negligible, E[Di] values were
found spread throughout the brain. This is in contrast with high-resolution DTT stud-
ies of the in vivo mouse brain, which only report a significant anisotropy in coherently
aligned WM tracts [141, 142]. The differences between our method and DTI studies
can be explained by the fact that, unlike Fractional Anisotropy (FA), E[D4] quantifies
anisotropy independently from orientational coherence, as discussed in Section 2.3.2.
However, the existence of a noise induced bias towards anisotropic components makes
it unclear if the higher E[D] values do in fact reflect the tissue properties of the mouse
brain. While further work is needed to elucidate this point, microscopic anisotropy
has been detected in ex vivo GM tissue [26, 139, 143], an observation that supports a
widespread non-zero anisotropy.

The (co)variance maps report on intra-voxel heterogeneity. Vanishingly low values
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Figure 5.2: DTD parameter maps of phantoms and living mouse brain. Row 1: hex phantom [92] (aniso-
tropic), row 2: dodecane (slow isotropic), row 3: water (fast isotropic), and row 4: living mouse
brain. The parameter maps were derived from the 4D diffusion tensor distributions, and inform
on the bootstrap averages of different descriptors: total signal amplitude (Sg), and the mean
(E[x]), variance (Var[x]), and covariance (Covlx,y]) of isotropic diffusivities Djs, and squared
normalized diffusion anisotropy D% . The numerical values of the linear color scales are identical
to the horizontal axes of the histograms in Figure 4.3.

of Var[Dis,], Var[D3], and Cov|[Dy,, D3] are found for the homogeneous phantoms.
In the mouse brain, elevated Var[Dj,| and negative Cov|[Dis, Di} were detected in
voxels containing both GM and CSE These trends indicate a mixture of slow- and
fast-diffusing components [27, 28] wherein low Djy, values are correlated with higher
values of diffusion anisotropy [13].

To separate the signal contributions from WM, GM, and CSF we sorted the spatially
resolved DTD components into three coarse bins named 7hin, Thick, and Big. The
bin names describe the visual appearance of the corresponding diffusion tensor glyphs;
the Thin and Thick bins capture slow-diffusing anisotropic and isotropic components,
respectively, and the Big bin selects fast-diffusing components. Figure 5.3 shows the
limits and fractional signal contributions of the various bins. The additive color map
reveals that binning can demarcate distinct anatomical structures based on their micro-
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Figure 5.3: Division of the DTD space into the Thin, Thick, and Big bins. The colour-coded composite map
shows the signal contributions from the fractional populations in the Thin (red), Thick (green),
and Big (blue) bins. Voxels containing more than one fraction are visible as mixed colours, e.g.
equal proportions of Thin and Thick populations result in a yellow voxel. The various legends
identify anatomical features of interest [144]: LV: lateral ventricles, D3V: dorsal third ventricle,
Aq: sylvius aqueduct, OB: olfactory bulb, fi: fimbria and CB: cerebellum.

scopic diffusion properties. For example, the Big bin (blue voxels) teases apart CSF-rich
areas such as the ventricles (LV and D3V) or the sylvius aqueduct (aq), while the Thin
bin (red voxels) captures the fibrous tissues found in structures such as the cerebellum
(CB), the fimbria (f1), or the olfactory bulb (OB) [144]. The binning process was also
observed to be useful in the detection of WM/GM partial volume effects (yellow voxels)
such as those observed at the interface of white and grey matter areas of the cerebellum.

The diffusion properties of the various bin-resolved components can be inspected
through mean parameter maps of diffusion tensor size, shape, and orientation (see
Figure 5.4). Multiple voxels with low brightness can be found in the Thin (E[x]) maps.
This results in a noisy appearance that hinders the analysis of the Thin maps. How-
ever, the overall green appearance of the composite map in Figure 5.3 indicates that the
darker Thin voxels have a small contribution to the retrieved DTDs. Figure 5.4 addi-
tionally shows that the DTD components of the various phantoms fall cleanly within
the intended bins (hex — Thin, dodecane — Thick, water — Big), thus providing further
evidence that the defined bins can both separate and capture the diffusion properties
of WM, GM, and CSE

5.2 5D relaxation-diffusion correlation MRI

Spectroscopic MR experiments combining both diffusion- and relaxation- encoding
have been routinely used since the early 2000s to characterize the microscopic hetero-
geneity of a wide array of porous materials [85, 86, 112, 145-147]. As explained in
Section 3.3, these experiments yield multidimensional correlated datasets that can be
converted to joint probability distributions of relaxation rates and diffusivities through
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Figure 5.4: Bin-resolved DTD parameter maps of phantoms and living mouse brain. Row 1: hex phantom
[92] (anisotropic), row 2: dodecane (slow isotropic), row 3: water (fast isotropic), and row 4:
living mouse brain. The parameter maps were derived from the fractional populations in the
Thin, Thick, and Big bins defined in Figure 5.3. Columns 1-9 show the per-bin signal fractions
(brightness) and per-bin average mean values (color) of isotropic diffusivity (E[Diso]), squared
normalized diffusion anisotropy (E[DA]), and diffusion tensor orientation (E[Orientation]). The
(E[Orientation]) maps are color-coded as [R,G,B] = [Dxx,Dyy,Dz/max(Dxx,Dyy,Dzz), where Dj;
are the i-th diagonal elements of the diffusion tensor as measured in the laboratory frame of
reference. Column 10 shows colour-coded composite maps of the various bin populations:
[R,G,B] = [Thin,Thick,Big].

a non-parametric inversion algorithm [83, 105, 148]. Diffusion-relaxation correlation
protocols have been recently combined with imaging pulse sequences and used to in-
vestigate the sub-voxel composition of both fixated [149, 150] and living tissues [151].
The combination of diffusion with other MR observables was found to improve the
ability to resolve microscopic tissue environments. Despite their improved resolution,
these approaches relied on a PGSE experiment for diffusion encoding and thus suffer
from the limitations discussed in Section 3.2.

In order to extend relaxation-diffusion correlation MRI protocols to studies of het-
erogeneous anisotropic materials, we have devised a protocol that resolves microscopic
heterogeneity in a five-dimensional space of transverse relaxation rates and axisymmet-
ric diffusion tensors. The method follows the same MR physics as the spectroscopic
experiment presented in Paper II and was implemented within a spin-echo with an
echo-planar imaging (EPI) read-out [152]. Diffusion encoding was performed with a
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Figure 5.5: 5D R,-D distributions estimated for six representative voxels in the living human brain. The
selected voxels contain white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF),
as well as binary combinations of the same components: WM+GM, WM+CSF, and GM+CSF.
The distributions are shown as 3D logarithmic scatter plot of transverse relaxation rates R,
isotropic diffusivities Do, and axial-radial diffusivity ratios Dy /D, with circle area propor-
tional to the weight of the corresponding R,-D coordinates. The colour coding is defined as:
[R,G,B] = [cos¢sin,singsin,cos 0] - |D) — D |/max(Dy, D), where (6, ¢) corresponds
to the orientation of each D.

set of numerically optimized gradient waveforms [127], and relaxation-weighting was
achieved by varying the echo-time (7g). Images with different 4-tensors and 7 were
acquired yielding a 5D dataset that was converted to spatially-resolved R;-D distri-
butions using the unconstrained Monte-Carlo algorithm discussed in Section 4.1.2.
The spatially resolved R,-D distributions were used to derive a comprehensive set of
parameter maps reporting on intra-voxel heterogeneity (Paper V), and to isolate and
visualize fibre-specific information on relaxation and diffusion properties (Paper VI).

5.2.1 Voxel-wise distributions

Pure component voxels containing either WM, GM, or CSF are characterized by R,-
D distributions that accurately reflect the distinguishing microscopic features of the
various tissues (see Figure 5.5). Both WM and GM yield fast-relaxing components
(log,o(Ra/s™ ") > 1) of low isotropic diffusivity (log,,(Diso/m?*s™") &~ —9), with
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WM being differentiated by its high diffusion anisotropy (log,,(Dy/D1) > 1); CSF
exhibits slow-relaxing (log,,(R2/s™!) ~ 0), fast-diffusing (log,,(Diso/m?*s™ ") =
—8.5) isotropic components. The distributions obtained for mixed component voxels
comprise a linear combination of the R,-D properties that tease apart the individual
WM, GM, and CSF distributions. For example, a voxel containing both WM and CSF
yields a distribution with isotropic fast-diffusing components with low R, and aniso-
tropic slow-diffusing components with higher R, rates (see WM+CSF distribution in
Figure 5.5).

The distributions displayed in Figure 5.5 all feature broad clusters of points that cover
a significant range of the R,-D space. Similar broad distributions were also observed
for discrete component phantoms (see Figure 5.1), where the spread of components
was attributed to the inversion and measurement uncertainties. The various sources of
uncertainty obscure any subtle differences in R-D properties and challenge the resol-
ution of fine microanatomical details such as those assumed in biophysical models of
brain tissue [19, 20, 93, 153-155]. Focusing on the GM voxel of Figure 5.5, we notice
a nearly symmetric spread of components around the log,,(Dj/D1) = 0 plane. The
bimodal “butterfly” pattern reflects the bias towards anisotropic components discussed
in Section 4.3 (Paper I1II) and gives rise to an overestimation of E[D3].

5.2.2 Parameter Maps

Parameter maps of average statistical descriptors were estimated as described in the
previous section. The additional R, dimension translates into new descriptors inform-
ing on the mean relaxation value E[R;], the underlying dispersion in relaxation rates
Var[R;], and correlations between relaxation and diffusion properties Cov[R,, x]. It
should be mentioned that the E[R,] and Var[R,| parameters can also be retrieved with
classical quantitative MRI protocols [42], or estimated from 1D R, distributions ob-
tained through the inversion of multi-echo MRI data [41, 44]. However, the covariance
measures require correlations between R, and the four distinct parameters of D, and
its estimation constitutes a novel contribution of this thesis.

Figure 5.6 displays the various maps computed from the entirety of the R,-D space. In
line with classical results [30, 42], CSF regions exhibit low E[R;] and high E[D;,] when
compared to WM and GM areas. The (E[D3]) allows the distinction between WM
(high (E[D%])) and GM (low (E[D3])) regions. High E[D5] values were found across
the expected spatial distribution of WM, even in regions of crossing pathways, where
conventional diffusion anisotropy metrics such as FA yield low values. This finding
is in agreement with those from previous studies [28, 29, 70, 156], and indicates that
— unlike the FA metric [23] — E[D%] measures anisotropy independently of tissue
orientational coherence.
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Figure 5.6: Statistical descriptors derived from the 5D relaxation-diffusion distributions P(R,,D). An en-
semble of distinct P(R,,D) solutions was used to calculate the means E[x], variances Var[x] and
covariances Covlx,y] of all combinations of transverse relaxation rate R,, isotropic diffusivity
Diso, and squared anisotropy D3. The ensemble averages of the various statistical descriptors,
(Elx]), (Varlx]y and (Covlx,y]), are displayed as parameter maps.

While mean parameter maps were observed to provide valuable insight on the main fea-
tures of the human brain, they cannot quantify a dispersion of sub-voxel components.
To investigate microscopic heterogeneity we resort to the various (co)variance elements.
For example, the high Var[D,] values found in voxels surrounding the ventricles in-
dicate mixtures of CSF with other components. GM+CSF voxels can be distinguished
from WM+CSF voxels by inspecting the Var[D4] descriptor, which captures hetero-
geneous voxels comprising both isotropic and anisotropic components. As CSF and
GM are both characterized by a low anisotropy, partial volume effects involving these
two components do not result in a significant dispersion in D%; conversely, WM+CSF
voxels are characterized by elevated values of Var[D4] and finite negative values of
Cov|Diso, D3], as lower isotropic diffusivities are correlated with higher values of dif-
fusion anisotropy (see WM+CSF distribution in Figure 5.5). Consequently, the low
Var[D3] in the lateral ventricular regions suggests the existence of deep gray matter,
while a combination of high Var[D3] and negative Cov|Djs,, D3] identifies WM+CSF

voxels.

Following the same procedure used for the analysis of the mouse brain dataset, we
classified the detected R;-D components into the Thin, Thick, and Big bins. In Fig-
ure 5.7, we compare the spatial distribution of the various bin populations with a
high-resolution R;-weighted image segmented in three tissue classes: WM, GM (cor-
tical+deep), and CSF [157]. The binning of components based on their (Dis, Da)
properties is observed to agree well with the R;-based segmentation, with the Thin,
Thick, and Big populations resolving the signal contributions from WM, GM, and
CSE. While deep GM was for the most part captured by the Thick bin, certain struc-
tures such as the pallidum or the thalamus were observed to yield anisotropic com-
ponents that fall within the Thin bin (Paper V). This is attributed to the presence of
myelinated axons within those structures.
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Figure 5.7: Division of the R,-D space into the Thin, Thick, and Big bins. The contributions from different
bins are compared with a high-resolution R;-weighted image segmented into three different
tissues: white matter WM, grey matter GM (cortical+deep), and cerebrospinal fluid CSF [157].
Colour-coded composite maps display the spatial distribution of the bin fractions, [R,G,B] =
[Thin, Thick,Big], and of the segmentation labels, [R,G,B] = [WM,GM,CSF].

Figure 5.8 shows the bin-resolved (E[R;]), (E[Orientation]), and per-bin signal con-
tribution maps for a number of selected slices. The displayed average mean parameter
maps provide a clean visualization of the relaxation and diffusion properties of distinct
microscopic tissue environments. For example, the (E[Orientation|) map allows us to
easily tease out the orientation of WM pathways close to the cortical surface. Also note-
worthy is the detection of sub-voxel mixtures of anisotropic (Thin bin) and isotropic
(Thick bin) components within the thalamus (arrows in the first row of Figure 5.8).
This observation is in agreement with previous studies, where a reduced microscopic

anisotropy was observed in the thalamus and interpreted as a consequence of mixtures
between WM and GM [28].

The E[R;] values of WM components were found to be higher than those of cortical
GM voxels, see the first two columns of Figure 5.8. This behaviour is in accordance
with classical relaxometry literature [42] and was consistently observed across the entire
dataset, even in voxels containing WM+GM mixtures (Paper V). It is important to note
that the subtle differences between the R, rates of WM and GM are challenging to
separate with classical 1D distribution protocols [43, 45]. Here, the resolving power is
boosted by the correlations across the various dimensions of the diffusion space, which
spread the various sub-voxel components across a vast high-dimensional space [79, 88].
Different R, populations were also detected within the Thin and Thick bins. The fast-
relaxing voxels found in the midbrain region of the Thin (E[R;]) maps identify the
myelinated axons that transverse the globus pallidus, an iron-rich basal ganglia structure
that is characterized by particularly high R, rates [158, 159]. Within the Thick bin, we
find significant E[R,] differences between cortical (lower R,) and subcortical (higher
Ry) GM structures.
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Figure 5.8: Parameter maps derived from the R,-D bins defined in Figure 5.7. Columns 1-6 show
the per-bin average mean values (colour) of transverse relaxation rate (E[R;]) and diffusion
tensor orientation (E[Orientation]). The (E[Orientation]) maps are color-coded as [R,G,B] =
[Dxx,Dyy,Dzz)/max(Dxx,Dyy,Dzz), where Dj; are the i-th diagonal elements of the laboratory-
framed average diffusion tensors estimated from the various distribution bins. Column 10
shows colour-coded composite maps of the various bin populations: [R,G,B] = [Thin, Thick,Big].
The various arrows identify anatomical regions singled-out in the main text.

5.2.3 Orientation Distribution functions

The various maps of Figure 5.8 show that the Thin bin provides a clean 3D mapping of
sub-voxel fibrous tissues. Here, we concentrate on the solutions that are contained
within that bin, {w,, D|| ,, D1 ,,04, ®»}Thin» and inspect their orientation-specific
properties.

The orientational information of fibres is often described by a smooth Orientation Dis-
tribution Function (ODF) P(6, ¢) that is visualized as a directionally coloured surface
with a local radius given by P(6, ¢) [160, 161]. To obtain a smooth ODEF, we convolve
{w,} hin with a Watson distribution kernel [162, 163]:

P(ea (b) = C Z w; exp [’% (H(97 (b) : ui)z] ) (51)

i€Thin
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Figure 5.9: Per-voxel Orientation Distribution Functions (ODFs) estimated from bin-resolved R,-D distribu-
tions. All ODFs were calculated following a separation and selection of components within
the Thin bin, see Figure 5.7. (Left panel) Arrays of ODF glyphs color-coded as [R,G,B] =
[ﬂxx,ﬂyy,ﬂzz], where z; are the elements of the unitary vector u(6, ¢) (see Eq. 5.1 for more
details). The sets of ODF glyphs are superimposed on a grey-scaled map that shows the signal
contributions from the Thick and Big populations. The zoom-ins in the lower part of the panel
offer a more detailed look into selected fibre-crossing regions. The spatial location of the right-
most zoom-in is indicated by the white square at the top right coronal map. (Right Panel) ODF
maps coloured according to the orientation-specific mean values of transverse relaxation E[R;],
isotropic diffusivity E[Diso], and squared normalized diffusion anisotropy E[Di} (see Eqg. 5.2 for
more details).

where u; is the unit vector describing the orientation of the i-th discrete solution,
u(0, ¢) is the unit mean direction vector of the Watson kernel, and ( is a normal-
ization constant. The variable k£ denotes a concentration parameter that regulates the
amount of orientation dispersion around p(6, ¢). A different ODF was calculated for
each bootstrap solution, and a final P(6, ¢) was then estimated as the average of the
per-boostrap ODFs.
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The left panel of Figure 5.9 shows the directionally coloured ODFs estimated for an
axial slice and zoom-ins on two selected crossing regions. The estimated ODFs were
able to capture major WM tracts, and were observed to resolve crossings between more
than two fibre populations (Paper VI). More importantly, anatomically plausible ODFs
were also estimated for heterogeneous voxels containing not only WM, but also GM
and CSF; the low fraction of Thin components did not affect the orientation of the
corresponding ODF lobes.

The comprehensive correlations across the R,-D space allow us to investigate the relax-
ation and orientation properties along different fibre orientations. To do so, we assign
mean values of Ry, D, and Di to the various coordinates of the smooth ODF space.
Taking R as an example, the mean value per orientation, E[Rz] (0, @), is calculated as

A ¢S iethin wiRei exp [ (10, 6) - w)’
ER)(0,6) = 0.0 . 52)

ODF glyphs coloured according to E[R,], E[Dis,], and E[Di] are shown in Figure 5.9.
Note that ODFs close to ventricles do not reveal an increased E[D;,] or decreased

A

E[R;], which indicates a successful separation of distinct tissue components.

Previous iz vivo MRI works have shown that fibres orientated along different directions
are characterized by distinct R, rates [159, 164, 165]. However, the maximum differ-
ence between fibre-specific R, rates was of approximately 2.5 s~ ! [164], a value that is
significantly smaller than the uncertainty of the estimated distributions. Consequently,
no interdependence between orientation and R, can be immediately discerned in the
E[Ry]-coloured ODFs displayed in Figure 5.9.
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6 Concluding remarks

This thesis introduces a novel diffusion MRI framework to resolve and characterize
microscopic tissue environments in a multidimensional space of isotropic diffusivit-
ies D50, normalized diffusion anisotropy values Da, and D orientations (6, ¢). The
developed acquisition and analysis protocols are inspired by signal encoding and data
inversion strategies from solid-state NMR spectroscopy and multidimensional Laplace
NMR. Gradient waveforms designed according to the principles of multidimensional
solid-state NMR enable the separation and correlation of different dimensions of the
(Disos Da, 0, ¢) space. Ensembles of DT Ds are then retrieved from the correlated data-
sets using Monte Carlo inversion algorithms from Laplace NMR. The attained distri-
butions allow for the quantification of microscopic tissue heterogeneity without relying
on assumptions about the number or properties of the underlying microscopic envir-
onments.

The development of this protocol spanned a number of papers dealing with the the-
oretical aspects of the framework (Papers I and 1II), the assessment of the inversion
algorithm (Paper III), and the translation to in vivo studies (Papers IV, V and VI). The
individual conclusions from those papers are summarized below:

I Signal acquisition strategies of multidimensional solid-state NMR protocols for
isotropic-anisotropic correlations can be transferred to the field of diffusion MR,
and used to design protocols establishing correlations between diffusion tensor
eigenvalues. The resulting data can be used to estimate non-parametric 2D dis-
tributions wherein the microscopic environments of heterogeneous anisotropic
materials are resolved on the basis of the size and shape of their respective diffu-
sion tensors.

IT The multidimensional diffusion encoding strategies introduced in Paper I can
be combined with relaxation encoding. This allows one to resolve microscopic
heterogeneity on a six-dimensional space that combines the intuitive relation
between structure and diffusion patterns with the chemical sensitivity of relaxa-
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tion rates. Moreover, the unprecedented resolution in the diffusion dimensions
was observed to facilitate the separation of components with similar relaxation
rates.

In silico work shows that the non-parametric inversion of diffusion-correlated
datasets is significantly challenged by the experimental noise, whose main ef-
fect is the introduction of bias in the estimated diffusion anisotropy. Despite
its sensitivity to noise, we observed that model-free inversion preserves a good
contrast at low SNR and exhibits a perfect accuracy at infinite SNR. When com-
paring the model-free algorithm with inversion approaches that directly target
statistical measures of the underlying DTD, we found that the latter are more
robust to noise but exhibit inherent limitations in the estimation of statistical
descriptors. In order to increase the reliability of model-free inversion in clinical
studies, future efforts should be spent in mitigating the bias towards anisotropy
or the overall influence of noise.

The combination of multidimensional diffusion encoding with a SPEN MRI
sequence enables diffusion tensor distribution imaging of the living mouse brain
at a sub-millimetre resolution. The presented protocol shows promise for model-
free investigations of microscopic tissue heterogeneity in animal models.

Non-parametric five-dimensional R,-D distributions were estimated voxel-wise
for the living human brain. The distributions facilitated the resolution and sub-
sequent characterization of microscopic brain tissue environments. The prop-
erties and localization of the estimated sub-voxel environments were found to
agree well with the anatomy of the healthy brain.

Spatially-resolved R,-D distributions can be used to map and visualize fibre-
specific information. While no fibre-specific microstructural differences were
immediately observed in the healthy brain, we nonetheless expect our approach
to be useful in pathology studies dealing with fibre-specific microstructural
changes.
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