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“Science – Is it cool, or is it whack?” 
 

This question was first posed by the great philosopher Ali G. 
Despite years of dedicated pursuit, the answer still eludes me. 
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Populärvetenskaplig sammanfattning 

Sin ringa storlek till trots har insekter enorm inverkan på vårt samhälle och våra 
liv. Bin, som är centrala för att vårt jordbruk ska fungera, har minskat drastiskt i 
antal de senaste åren. En utbredd bidöd skulle i bästa fall tvinga oss lägga om vår 
kosthållning markant, och i värsta fall leda till svält. Utöver detta skulle växter 
som är beroende av bin för sin fortplantning och djur som äter bin löpa stor risk att 
dö ut. Skadedjur har stor ekonomisk inverkan på jord- och skogsbruk. En stor del 
av skörden förloras varje år, och majoriteten av alla träd som dör gör det på grund 
av skadedjur. Insekter sprider även en mängd sjukdomar, i vissa fall med dödligt 
utfall. Myggan är det mest mordiska djuret på vår planet, och ligger bakom 
uppemot en miljon dödsfall per år. Fattiga barn på landsbygden i Afrika är den 
mest utsatta gruppen. Konventionella metoder för att studera insekter inbegriper i 
många fall att de fångas in med hjälp av olika typer av fällor. Sådana metoder kan 
ge väldigt bra information om de infångade insekterna, men är arbetskrävande och 
fångar ett relativt lågt antal insekter. De kan även ge snedvridna resultat på grund 
av så kallad bias, vilket innebär att den erhållna informationen är inte 
nödvändigtvis representativ för de insekter som ej fångats in, eller för 
populationen som helhet. Utöver detta kan metoderna inte mäta exempelvis 
flygaktivitet, flygriktning och spridning av insekter. 

Optiska metoder har under flera decennier tillämpats inom medicin, i fältet 
biofotonik. Molekyler i biologisk vävnad, såsom melanin och vatten, har olika 
optiska egenskaper, vilka i stor utsträckning är kända. Optisk fjärranalys är, liksom 
biofotonik, ett väl etablerat forskningsområde inom vilket gaser och partiklar i 
atmosfären studeras med hjälp av laserljus. I detta avhandlingsarbete kombineras 
biofotonik och optisk fjärranalys, och teori och metoder från båda fälten används 
för att studera insekter på avstånd. 

Aktiva metoder (med laserljus) och passiva metoder (med solljus) har utvecklats 
för att detektera insekter i realtid på flera hundra meters avstånd. För varje 
observerad insekt beräknas storheter som vingslagsfrekvens med 
modulationsspektrum, storlek, flyghastighet och flygriktning. Dessa parametrar 
har sedan använts för att klassificera insekter. När två laserstrålar med olika 
våglängd används kan vatten- och melaninhalten i en insekt beräknas, och när två 
laserstrålar med olika polarisation används kan mikrostrukturer undersökas. 
Utöver dessa fältmetoder har ett flertal laboratoriesystem konstruerats för att 
undersöka specifika arters optiska egenskaper under kontrollerade former. Dessa 



x 

referensmätningar kan sedan användas för att identifiera de undersökta arterna i 
fält, så att deras beteende kan studeras. Jämfört med konventionella metoder kan 
långt fler insekter observeras, mätt i tusental per minut. Utöver detta har de 
utvecklade metoderna avsevärt högre rums- och tidsupplösning, och möjliggör 
studier av insekters aktivitet och rörelsemönster på helt ny detaljnivå. 

Inom ramen för min forskarutbildning har jag använt dessa metoder för att studera 
insekter i olika sammanhang. Jag har studerat ett flertal insekter i laboratorium, 
både för att förstå deras optiska egenskaper från ett fysikaliskt perspektiv och för 
att ta fram referensinformation till fältstudier. Jag har utvecklat mätmetoder och 
signalbehandlingsmetoder för att klassificera och kartlägga insekter i det fria. Jag 
har studerat insekter som föda till större djur, såsom fåglar och fladdermöss, för att 
förstå dynamiken och interaktionen som ligger bakom deras beteende. Slutligen 
har jag studerat malariamyggor i laboratorium och fält, och kartlagt deras 
rörelsemönster flera dagar i sträck. Därmed framkom att hanmyggor svärmar på 
specifika platser vid exakt samma tidpunkt varje kväll, och att honmyggor 
konsekvent flyger in till befolkade områden i jakt på blod i samband med 
solnedgången. 

Mät- och analysmetoderna har nu nått en brytpunkt där de kan appliceras på 
faktiska biologiska frågeställningar. I samband med att tekniken och kompetensen 
sprids, och att förståelsen för insekters optiska egenskaper ökar, finns det 
möjligheter att rädda människoliv genom kartläggning av smittobärande insekter, 
att bekämpa skadedjur mer effektivt för att reducera användandet av pesticider, 
och att förbättra förståelsen för ekosystemen runt omkring oss  och deras 
växelverkan med vårt samhälle. 
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Abstract 

This thesis treats entomological lidar from various angles: laboratory reference 
work on insects of interest, methodological development of lidar- and data 
processing methods, as well as field implementations of lidar techniques for 
entomological research. Insects are crucial components of ecosystems and are 
currently in a global decline. In this thesis, insects are mainly studied in their roles 
as disease vectors and food sources for vertebrates. However, several other 
feasible application avenues of entomological lidar exist and are touched upon 
briefly. Entomological lidar is an optical remote sensing technique in which the 
light scattered by insects is recorded by a sensor and the distance to each insect is 
derived. In classical lidar, ranging is achieved through time-of-flight detection. In 
this thesis the Scheimpflug- and passive lidar methods have been used, in which 
ranging is achieved through triangulation and geometrical optics. 

In the laboratory reference work, the light-scattering properties of insects were 
investigated. Considerable effort has been put into the study of ex-vivo and in-vivo 
malaria mosquitoes in search of optical properties that may enable remote species 
classification. These species otherwise require capture and microscope analysis by 
an expert to distinguish. Dragonflies have the narrowest spectral bands so far 
observed in nature. In this PhD work, their scattering properties were investigated 
and give hints regarding possible uses of these narrow bands. 

Methodological development has been pursued for improvement and optimization 
of instrumentation through simulation and laboratory reference measurements. 
Hyperspectral images of insects were used to motivate laser wavelength selection 
based on signal strength, information yield and laser availability. Raytracing was 
used to devise a passive lidar scheme and to optimise the geometry of Scheimpflug 
lidars. Data processing techniques for robust and accurate calibration of sizes, 
wing-beat frequencies with associated modulation spectra, flight headings and 
dispersal of insects in lidar data were developed. 

Entomological lidar techniques were applied in a number of field settings around 
the world. In Sweden, insect swarms at the nacelle of a wind farm were observed 
post sunset in weather conditions associated with high bat mortality through 
collision with wind farms. In China, increased insect activity was observed at the 
onset of heavy rain. The main crepuscular activity peak of insects was observed in 
the short time window with decreased predation pressure around sunset, when 
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neither birds nor bats were active. In Africa, an extra activity peak was observed at 
noon among mosquitoes and other crepuscular insects during a solar eclipse. Male 
mosquito mating swarms were observed with consistent timing and location each 
day, and a highly directional dispersal of mosquitoes into a village was observed 
every evening. 

In this thesis work, peak numbers of more than a thousand insects per minute have 
been observed, resolved temporally and spatially at μs and cm scales, respectively, 
which is inconceivable with conventional entomological methods. Laboratory 
reference work and methodological development allow the quantification and 
classification of insect signals in-situ. Thereby, questions of significant ecological 
importance could be answered. 



 

1 

1.  Introduction 

We see, we hear, and we smell. While writing this thesis, I can see the pigeon on 
the windowsill, I can hear the traffic on the street outside, and I can smell the 
coffee brewing in the kitchen. We are born with these senses, and through 
experience we learn to use them intuitively in order to understand our 
surroundings from a distance. This is the fundamental principle of remote sensing 
– using our senses to acquire information remotely. Oftentimes, this is done with 
so-called passive remote sensing, in which the signal carrying information about 
an object has an external origin. The signal source may be the ambient light which 
is scattered by the pigeon, the sound produced by the car engines, or the coffee 
particles themselves travelling through the air by diffusion. In passive remote 
sensing, the observer has no control over the signal source. Active remote sensing, 
in contrast, makes use of an internal, or controlled, signal source. This may 
correspond to using a flashlight to navigate a dark room or to dropping a rock into 
a well to determine its depth. Through technological development, our ability to 
make sense of our surroundings from a distance has improved significantly. 

1.1. Optical remote sensing 
Optical remote sensing methods utilize light to gain information about a target 
remotely. These methods are used in a wide range of industries and activities, 
including topographic mapping [1], forest characterization [2], autonomous 
vehicle research [3] and mapping of aerosols [4, 5] and gases [6, 7] in the 
atmosphere. Light detection and ranging (lidar) is a technique that was developed 
during the second world war using search lights [8]. Since then, lidar techniques 
have developed to make use of powerful lasers for improved sensitivity. In the 
past fifteen years [9, 10], optical sensing techniques have been developed for 
ecological applications, resulting in lidar systems specialized for insect detection 
[11-13], automated electronic insect traps [14] and inelastic hyperspectral aquatic 
lidar [15]. Furthermore, optical techniques for distinguishing salmon lice from 
other zooplankton in salmon farms are being developed [16]. 

In entomological lidar, lidar technology is adapted for efficiently studying insects. 
Thus, the disciplines of atmospheric optical remote sensing [7], in which lidar is 
employed to monitor gases and aerosols in the atmosphere [4, 6], and 
biophotonics, in which the optical properties of biological tissue are investigated 
and utilized in medical applications [17-19], are merged. Fast acquisition allows 



2 

retreival of wing-beat frequencies, which relate to the species, sex and payload of 
an insect, and the spectral contents of a signal may yield information on wing 
thickness and the water- and melanin contents. Polarization properties [9] can be 
used to distinguish between matte and glossy wings, relate to species and sex and 
have even been shown to enable distinction of gravid and non-gravid female 
mosquitoes [20]. 

1.2. Other remote sensing domains 

1.2.1. Radar 
Radar is a tool that has been utilized in ecology for more than 40 years [21]. There 
are dedicated systems used in entomology [22] and ornithology [23, 24], as well as 
extensive networks of weather radars which may be utilized for ecological studies 
[25-27]. Entomological radar systems can be used to estimate the activity and flux 
of insects. The potential for target classification has been demonstrated [28], 
utilizing the radar cross section (RCS) and other signal parameters. Wing-beat 
frequencies (WBF) of insects are generally not observable in radar signals due to 
the wings being dry, and the RCS largely originating from the water contents in   

Figure 1.1 Heading and flight direction in entomological radar. By wobbling the beam 
and rotating the polarization, the heading and flight direction of aerofauna flying through 
the beam is obtained. a) The radar beam is transmitted vertically into the air. By angling 
and rotating the radar antenna, the beam is wobbled around its own axis. b) An insect 
flying through the wobbling beam. The flight direction is obtained through the beam 
wobbling, and the heading angle/orientation of the insect is obtained from the rotating 
polarization. 
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insect bodies. Rotating the polarization of the transmitted beam yields an 
oscillating RCS, enabling deduction of the heading of an insect flying through the 
beam [28], see Figure 1.1. In addition, by wobbling the beam, the flight direction 
can be determined [29]. Radar systems are generally robust and may be deployed 
and run without supervision for long periods of time. Many radar systems have a 
near limit for detection of about 200 m and may only be deployed vertically due to 
ground clutter. The theoretical capability of two entomological radar systems to 
detect a few insect species of interest is shown in Figure 1.2. Passive coherent 
location (PCL) radar [30] makes use of third party transmission of microwaves, 
e.g. FM radio, and phased array antennae to deduce the location of a moving 
object. However, the method suffers from low signal-to-noise ratios (SNR), and 
insect detection with PCL radar is unfeasible. 

Figure 1.2 Estimated signal-to-noise ratios of two radar designs for a number of 
entomological target species. Two theoretical entomological radar systems were designed 
and evaluated: a monostatic zenith-pointing linearly-polarized conical scan radar (ZLC) 
and a bistatic frequency-modulated continuous wave radar (FMCW). The signal-to-noise 
ratios (SNR) of different insect targets for both systems were evaluated based on the 
distance between the radar system and the target. Although the ZLC radar is able to detect 
insects further away compared to the FMCW radar, it comes with drawbacks such as 
being blind at close range (~200 m). Both types of systems are used in research on animal 
migration [22, 31]. 

1.2.2. Acoustics 
Sound-based remote sensing has been used underwater since 1906, when the first  
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sound navigation and ranging (sonar) 
device was invented by Lewis Nixon 
to detect icebergs. Since its 
conception, implementations of sonar 
have been used for both military and 
civilian purposes, in particular in the 
fishing industry [33]. Ultrasound 
(Figure 1.3) is a diagnostics tool in 
medicine, used to image tissue inside 
the body [34]. One of the most 
common applications is examination 
of unborn babies inside the womb of 
their mothers. In ecology, ultrasonic 
sensors are commonly used to detect 
the sound pulses transmitted by bats 
for echolocation (Figure 1.4), and 
ultrasonic transducers have been used 
in attempts to deter bats from 
dangerous locations [35]. Bioacoustic 

methods have been used to assess biodiversity, and computational bioacoustics 
makes use of sound for species classification [36, 37]. With passive acoustic  
 

Figure 1.4 Search calls and a feeding buzz from a common pipistrelle (Pipistrellus 
pipistrellus) hunting insects at night. Bats use echolocation to find and trace insects. 
They transmit pulses faster and faster as they approach their prey, ending with a low-
frequency “feeding buzz” as they finally catch and devour it. 

Figure 1.3 Ultrasonic image of mosquito 
larva. Ultrasonic waves have been proposed 
as a method of killing mosquito larvae in 
water to benefit integrated vector 
management programs without resorting to 
usage of chemicals [32]. 
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detection, localization has been made possible through the implementation of 
sound phase arrays, where the positions of birds are determined by the time their 
calls arrive to different array elements [38]. Recently, acoustic sensors for 
detecting and classifying species and sexes of mosquitoes have been demonstrated 
[39], and methods using the microphones of regular cell phones are being 
developed for crowd-sourced mosquito detection [40]. 

1.3. Entomological overview 

1.3.1. Field-sampling methods 
Insects have been studied for a long time, resulting in the development of a large 
number of investigation methods. Conventional methods typically rely on catching 
the insects [41] and include the usage of sweep nets [42] and elaborate traps, 
which attract insects in different ways using e.g. pheromones [43], CO2 [44] or 
light [45]. In a recent study, migrating mosquitoes were caught a few hundred 
meters above ground with sticky tape attached to balloons [46]. These methods 
(Figure 1.5) require a lot of manual labor and yield comparatively low numbers of 
insects compared to remote sensing techniques. By necessity, they employ low 
time resolution on a scale of hours or even days. Certain flight parameters, such as 
exact timing and flight direction, are difficult to measure. In addition, traps and 
other catch-based methods are known to have systematic biases and may attract 
different insect species, sexes and age groups to different extents. Despite these  
 

Figure 1.5 Mosquito traps in Lupiro, Tanzania. a) Experimental huts where humans lie 
as mosquito bait at night. Female mosquitoes enter the huts in search of a blood meal, and 
their bite timing and subsequent behavior is studied. b) Trap used to catch mosquitoes. 
Photos by Samuel Jansson. 
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drawbacks, sampling methods may yield rich information on each individual 
insect obtained. Genetic sequencing [47], microscopic evaluation [48], mass 
spectroscopy [49] and chromatography [50] can provide information on sexual 
maturity, dietary choices of individuals, relatedness of populations, and much 
more. 

1.3.2. Disease vectors 
One entomological lidar application is 
disease vector monitoring. Malaria, 
which is spread by mosquitoes (Figure 
1.6), claims close to half a million lives 
each year and has severe economic 
consequences for some of the poorest 
countries in the world [51-53]. 
Including all warfare, terrorism and 
crime, humans are still left in second 
place as mosquitoes are the world’s 
most lethal animals. Apart from 
malaria, mosquitoes spread other 
illnesses such as dengue fever, the zika 
virus and yellow fever, which may have 
fatal outcomes at times. Mosquito 
species that specialize in feeding upon 
humans are very efficient vectors of 
malaria, and affect rural areas in the 
African countryside disproportionately 
[54, 55]. The implementation of vector 
control with insecticide-treated bed nets 
and indoor residual spraying has 
reduced the malaria burden significantly since the turn of the century [56, 57]. 
However, mosquitoes have adapted their biting hours as a result [58]. Progress has 
stalled [59], and further reduction of the malaria burden necessitates improved 
understanding of mosquito behavior [60]. 

1.3.3. Pests 
Insect pests cause significant damage in forestry and agriculture. Pests are one of 
the primary causes for the reduction of crop yield, and cause an annual loss of up 
to 10% of the production [61]. They are a major plague in forestry, causing up to 

 
 
 
 
 
 
 
 

 
Figure 1.6 Microscopic images of 
Anopheles arabiensis mosquitoes. 
Anopheles arabiensis is one of the main 
malaria vectors in large parts of Africa. a) 
Female An. arabiensis mosquito, 
characterized by a slightly larger abdomen 
with a blood sac and a needle with which 
to penetrate skin. Females are attracted to 
human hosts by the carbon dioxide we 
exhale, and ingest blood to develop fertile 
eggs. b) Male An. arabiensis mosquito, 
characterized by its furry antennae. Photos 
by Mikkel Brydegaard. 
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60% of tree deaths [62]. Bark beetles (Figure 1.7) are the most prevalent forestry 
pest, and outbreaks often follow storms [63] and wildfires [64]. The damage 
caused by pests prompts large-scale usage of pesticides and insecticides, which in 
turn can have severe consequences for human health [65]. The overuse of  
 Figure 1.7 Bark beetles preparing for 

take-off. Bark beetles are a major pest in 
forestry, causing a large amount of tree 
deaths. They normally do not attack 
healthy trees – however, when large 
amounts of trees have been felled by a 
storm or wildfire it may lead to an 
outbreak during which the number of 
beetles increases to such a level that even 
healthy forest is affected. a) Bark beetles 
poised for take-off in Nyteboda forest in 
southern Sweden. The area was hit by a 
storm a few years ago, and suffers from 
seasonal pest outbreaks since then. Photo 
by Mikkel Brydegaard. b) A captured 
bark beetle with wings extended. Photo 
by Meng Li. 

pesticides can have additional adverse effects, improving the flight capacity of 
long-distance migratory recurrent pests [66] and causing outbreaks by increasing 
the fecundity of insects [67, 68]. Automated insect monitoring in agricultural- and 
forestry settings may predict pest outbreaks [69], thereby reducing the need for 
continuous application of pesticides. 

1.3.4. Pollinators 
Pollinators provide important services to most terrestrial ecosystems, wild [70] or 
cultivated [71]. Bees in particular are the main pollinators of most crops, and are 
crucial for sustainable agriculture. As such, the currently observed decline of 
pollinators may have severe economic consequences, and significant negative 
impact on biodiversity [72] and human nutrition and health globally [73]. The 
pollinator decline has been shown to depend on a number of factors, such as 
habitat loss [74], the introduction of foreign species, climate change [72] and 
pesticide usage [75]. 
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1.3.5. Migrants 
Animal migration involves a massive displacement of biomass covering the entire 
planet [76]. Many animals migrate, including e.g. birds [77], moths (Figure 1.8) 
[78, 79] and mosquitoes [46]. The same species may form an integral part of two 
or more distant ecologies [77] and may carry diseases and parasites between 
different habitats [80]. Migration is strongly affected by climate change [81], and 
some populations are declining [82]. Improved monitoring tools are crucial for 
improving our understanding of these phenomena and to aid in mitigation efforts. 

 

 

 

 
 
 
 
 
 

Figure 1.8 Bogong moths aestivating on 
cave walls after migration flight. Bogong 
moths have a peculiar life cycle. They 
hatch in winter all over south-eastern 
Australia and migrate up to 965 km to 
spend the summer months aestivating on 
cave walls in the Australian Alps [83]. 
Upon reawakening, they migrate once 
more, back to their birthplace where they 
mate and die, restarting the cycle. Photo by 
Anna Honkanen. 

1.3.6. Prey insects 
Insects constitute food sources for many species of vertebrates, including birds 
such as swifts and swallows [84, 85] and bats (Figure 1.9). Bats comprise many 
protected species that are endangered by human activities. This is effected by 
urban expansion, increasing light pollution [86] and wind power production [87, 
88], among other things. Wind farms alone account for an estimated loss of several 
hundred thousand bats each year in Europe and North America [89-91]. Through 
the study of prey insects, insights regarding the behavior of insectivores may be 
obtained to reduce the number of deaths. 

 Figure 1.9 P. pipistrellus bats foraging in 
a manure well near a wind farm in Östra 
Herrestad, Sweden. Dung and manure are 
well known to attract large amounts of 
insects. Large collections, such as the wells 
used by farmers to produce manure for 
their fields, are therefore excellent hunting 
grounds for bats. Photo by Jens Rydell. 
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2.  Light and light-insect interaction 

2.1. Light descriptions 
Light is an essential part of existence and defines our diurnal rhythm through the 
day-night cycle, which is a fundament of our society. By segmenting the day into 
periods of light and dark, of hot and cold, animals evolve and adapt their behavior 
to improve their chances of survival and reproduction [92]. Thereby, interaction 
dynamics emerge, forming complex ecosystems in which predators and prey 
compete [93]. Despite being so fundamental to our lives, light is a complex 
phenomenon that has been studied considerably. Its interaction with matter is a 
subject of further study. Light can be understood or interpreted in different ways, 
some of which are described below. 

2.1.1. Rays 
The description of light as rays is the earliest [94] and simplest treatment, and has 
been used to design ground-breaking optical instruments through the ages, such as 
the telescope [95]. In ray optics, light is treated as rays travelling from a light 
source to an observer. The refractive index n describes how light propagates 
through a medium, and the speed of light through the medium is given by c=c0/n, 
where c0=299792458 m/s is the speed of light in vacuum. Modern day 
developments of computational power have led to the rise of raytracing, in which 
large numbers of rays are simulated in complex optical systems (used in Paper V). 
However, ray-optical models are inefficient for describing many properties of 
light, such as interference, diffraction or propagation in turbid media, for which 
wave optics is required. 

2.1.2. Waves 
The wave theory of light was established by Thomas Young in the beginning of 
the 19th century and demonstrated in the famous double slit experiment [96]. Wave 
optics encompasses ray optics, but offers explanations for phenomena like 
interference, diffraction, Mie scattering, polarization of light, spatial frequencies 
and structural colors. The complex wavefunction, U(r,t), describes a light wave in 
time and space, where r=(x,y,z) describes a location in space and t denotes the 
time. Any function U(r,t) that satisfies the wave equation, Equation (2.1), is a 
possible optical wave. 
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 (2.1) 

The spherical wave, Equation (2.2), is a solution to the wave equation of particular 
importance. By superimposing spherical waves (Figure 2.1), approximate 
solutions to components such as gratings can be obtained. 

 (2.2) 

In Equation (2.2), U0 is the light strength at the source and λ is the wavelength. 

 

Figure 2.1 Interference of point sources. 
Two point sources (blue dots) interfere 
with each other, producing an interference 
pattern. The wave fronts from both point 
sources are marked with black lines. 
Constructive interference is observed in 
areas where wave fronts overlap. 

2.1.3. Photons 
The photon interpretation of light treats it as a collection of elementary particles 
called photons. The photon is the quantum of the electromagnetic field, and is 
described as a massless particle with an impulse [97, 98]. The intensity I of light is 
proportional to the photon density, and particles have interaction cross sections, or 
probabilities, μ, of interacting with photons, which govern light transport in dense 
or turbid media. For example, the scattering coefficient μs relates to the photon 
being scattered by a particle, and the absorption coefficient μa relates to the photon 
being absorbed. 

2.1.4. Light properties 
Light from any given light source has a number of properties. The intensity of 
light corresponds to the square of the electric field amplitude in vacuum. The light 
intensity from a point source given by Equation (2.2) condenses into Equation 
(2.3). Light intensity is normally measured in units of W/m2. 

 (2.3) 
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Light has a frequency f which relates to the photon energy in the photon 
interpretation, and to the oscillation frequency of the electric field in the wave 
interpretation. The energy of a photon is given by Equation (2.4), in which h is 
Planck’s constant, f is the oscillation frequency and λ is the wavelength in vacuum. 

 (2.4) 

As the light amplitude undergoes periodic oscillations, the stage of the oscillation 
at which the light is at any given time is called phase. In optics, the absolute phase 
of a wave cannot be acquired. However, the relative phase or phase difference 
between two waves may be measured with interferometric techniques, e.g. 
Doppler lidar [99] and optical coherence tomography [100]. 

The polarization direction of light corresponds to the oscillation direction of the 
transverse electric field component in the wave interpretation. Light may contain 
multiple polarizations simultaneously, and the complete polarization of light is 
described by the four parameters in the Stokes vector [101]. For light impinging 
on a surface, the polarization is described in terms of s- and p-polarization, where 
s-polarized light is polarized perpendicular to the plane of incidence, and p-
polarized light is polarized parallel to the plane of incidence. This description is 
used in Paper IV. In radar application, the notation HH, VV, HV and VH is used, 
wherein H and V correspond to horizontal and vertical polarization. The first letter 
in each combination corresponds to the transmitted polarization, and the second 
letter corresponds to the received polarization. In biophotonics, the polarization of 
light is described by the terms co-polarization and depolarization [101], which is 
used in Paper I-III, VI-VII, IX and XI. For linearly polarized light, the oscillations 
of the electric field occur in one direction only. Unpolarized light has random 
polarization. Other polarizations include elliptical polarization, in which the two 
polarization components have different phase. In that case, the polarization 
direction rotates periodically around the optical axis. The reflection from some 
scarab beetles has been shown to be elliptically polarized [102]. Certain materials 
and structures interact differently with light depending on its polarization. 
Polarizers, for example, selectively absorb light with polarization along one axis, 
while fully transmitting light with the other polarization. Birefringent crystals have 
different refractive indices in different spatial directions, thereby affecting the two 
polarization components differently. The degree of linear polarization (DoLP) 
corresponds to the fraction of light that maintains its polarization through the 
interaction with a sample and is calculated according to Equation (2.5). Linearly 
polarized light has a DoLP=1, whereas fully depolarized light has a DoLP=½. 

 (2.5) 

Interaction processes between light and matter can generally be divided into 
coherent interaction, wherein the polarization, phase and propagation direction of 
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the light is preserved, and incoherent interaction, wherein the light loses its 
polarization. 

2.2. Coherent interaction processes 
Light sources and interaction processes can be divided into two categories: 
coherent and incoherent. Coherent light sources, such as lasers, produce light in 
which the photons are in phase, whereas incoherent light sources produce light 
with random phase. Similarly, coherent interaction processes are processes in 
which the phase of light is preserved, whereas incoherent interaction may change 
the phase of light. 

2.2.1. Refraction 
Light changes propagation direction when passing from one medium to another, 
an effect called refraction (Figure 2.2). The refraction angle θ2 depends on the 
incident angle θ1, as well as the refractive indices of the two mediums, n1 and n2, 
according to Snell’s law, see Equation (2.6). Some refractive indices of relevance 
to this work are melanin with n=2.5, water with n=1.3, chitin with n=1.5 and 
biological tissue in which n is proportional to the density [17]. Air has a refractive 
index n=1. 

 (2.6) 
 

 

Figure 2.2 Refraction of light. As a ray of 
light transitions from one medium to 
another, the change in refractive index 
effects a change in the direction of 
propagation. Since the speed of light in a 
medium is inversely proportional to the 
refractive index, refraction can also be 
expressed as light taking the shortest 
optical path between two points (Fermat’s 
principle). 

Furthermore, the transition of light between two mediums results in some of the 
light being transmitted through the surface between the mediums, and some of the 
light being reflected. The amount of light that is reflected and transmitted depends 
on the polarization of the incident light, according to the power reflectance and 
transmittance described by Fresnel’s equations, Equation (2.7), and relate to Paper 
IV. These equations are derived for flat surfaces, whereas many insects have 
wrinkled wings which reduce the reflectance and may reduce predation risk [103, 
104]. 
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 (2.7) 

where Rs and Ts are the reflection and transmission coefficients for light with a 
perpendicular polarization to the plane of incidence, and Rp and Tp are the 
coefficients for light with a parallel polarization to the plane of incidence. There 
exists an angle at which the reflection coefficient for light with parallel 
polarization to the plane of incidence is zero (Figure 2.3), called the Brewster 
angle θB. The Brewster angle is described by Equation (2.8). 

 (2.8) 

 

Figure 2.3 Reflection coefficients an air-
chitin transition (n1=1, n2=1.5). Light 
with different polarizations are reflected 
to different extents when impinging on a 
surface. The reflectance coefficient is zero 
for p-polarized light impinging at the 
Brewster angle. In the air-chitin 
transition, this occurs at 56°. 

An important outcome of Snell’s law 
of refraction, and one that has been 
utilized heavily in this PhD work, is 
the lens equation. When an object is 
placed adjacent to a lens outside of 
the focal point, an image of the object 
is formed on the opposite side of the 
lens (Figure 2.4). The imaging 
properties of a lens are described by 
its focal length f and aperture Ø. The 
distances between the object and the 
lens, z1, and between the lens and the 
image, z2, are related according to 
Equation (2.9), and the magnification 
M of the lens is given by Equation 
(2.10). Furthermore, the amount of 
light collected by a lens is proportional to the square of the aperture, Ø2, and the 

 
Figure 2.4 Image formation by a lens. When 
an object is place next to a lens, an image is 
formed on the other side. The effect is 
reciprocal. As the object moves closer to the 
focal point of the lens, the image moves 
towards infinity. If the object is a sensor, 
focus is obtained at different distances by 
adjusting the distance between the sensor 
and the lens. 
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angular resolution relating to the point spread function is proportional to λ/Ø, 
where λ is the wavelength of light. Therefore, a large aperture is crucial for 
retrieving backscatter at a fast pace from small point sources such as insects in e.g. 
Scheimpflug lidar. 

 (2.9) 

 (2.10) 

2.2.2. Single scattering 
Single scattering is a phenomenon in which light changes its direction of 
propagation through the interaction with a particle or object. The direction change 
is described by a phase function, which indicates the amount of scattered light in 
each direction. Three scattering regimes are defined, based on the size of the 
particle or object: geometrical optics, Mie scattering and Rayleigh scattering. 
Geometrical optical theory, such as refraction which is described in Chapter 2.2.1, 
sufficiently describes the processes that occur when the particle or object is 
significantly larger than the wavelength of the light. Rayleigh scattering describes 
the process when the scattering particle is significantly smaller than the 
wavelength of light, as is the case with atoms and molecules in the atmosphere 
[105]. The Rayleigh scattering cross section is proportional to λ-4, indicating that 
light with shorter wavelengths are significantly more probable to scatter than light 
with longer wavelengths. Mie scattering describes the scattering process when the 
size of the scattering particle is roughly the same as the wavelength of the light 
[106, 107], and has a scattering coefficient with an approximate λ-2 dependence, 
where the exponent depends on the particle size [108]. Mie theory is typically used 
to describe the interaction of light with spherical aerosols in the atmosphere, and 
Mie phase functions are complex and contain angular scattering lobes. The 
Henyey-Greenstein phase function is a simplified description that does not contain 
scattering lobes, and is described in Equation (2.11). By changing one parameter, 
called the anisotropy coefficient g (-1<g<1), scattering goes from backscattering, 
through isotropic scattering, to forward scattering. The phase functions obtained 
from a mosquito through goniometry in Paper I correspond approximately to the 
Henyey-Greenstein phase function. Paper I further illustrates that ballistic light 
and single scattering are dominant in tiny insects such as mosquitoes, compared to 
multiple scattering. 

 (2.11) 

in which θsc is the scattering angle and p is the probability. 
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2.2.3. Interference 
Interference is a process in which two or more light waves with different phase 
interact with each other, producing a new wave which is a superposition of the 
original waves. Light from the same light source may interfere with itself after 
travelling along different paths. 

When light impinges on a thin film, interference occurs at the back- and front side 
of the film. Depending on the thickness of the film, the interference may be either 
constructive or destructive, which determines how much light is transmitted and 
how much is reflected. Thin-film interference is a prominent feature in light 
reflected in insect wings (Figure 2.5) [109]. One-, two- and three dimensional 
structures of spatial frequencies may also cause light to interfere with itself. The 
grating is a basic optical component in which this occurs, but there are many 
examples in nature as well [110, 111]. Volumes exhibiting dominant spatial 
frequencies may produce so-called structural colors, which can be spectacular 
[112, 113] and account for the darkest [114] colors so far observed in nature. 
Iridescence is another structural phenomenon in which the color of an object or 
animal depends on the angle from which it is observed [115, 116]. 

Figure 2.5 Thin film interference in the wing of a fly. The reflectance is compared to a 
diffuse target, and specular reflexes may therefore reach several hundred percent 
reflectance. Depending on the wavelength, light may interfere in the back- or forward 
scatter direction, resulting in spectral fringes. The reflexes appear colored when 
constructive interference is obtained in one or two visual bands and bright white when it 
is obtained in all visual bands simultaneously, which is normally the case in human vision 
due to our broad spectral bands. The separation of fringes is spectrally shorter at the root 
of the wing where the membrane is thick, and spectrally longer at the tip of the wing 
where the membrane is thin. This is consistent with how the free spectral range of a 
Fabry-Perot interferometer changes with membrane thickness. The image was acquired 
with a hyperspectral camera. 
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2.3. Incoherent interaction processes 

2.3.1. Absorption 
When light is propagating through a medium, the energy is absorbed and 
converted into other energy forms, most often thermal energy, with a certain 
probability per unit length. This is modelled by the Beer-Lambert law, Equation 
(2.12), in which the intensity of transmitted light I is calculated based on the 
original intensity I0, the absorption coefficient μa and the distance l travelled 
through a medium. 

 (2.12) 
The absorption coefficient further relates to the refractive index of a medium 
through the Kramers-Kronig relations [117]. In addition, the absorption coefficient 
(and consequently the refractive index) is wavelength-dependent. Absorption 
occurs when the wavelength, i.e. photon energy, corresponds to the transition 
energy of an atom or molecule. For visible light, this typically corresponds to the 
excitation energies of electrons in the outer shells, whereas infrared wavelengths 
correspond to vibrational transitions. Chitin [118] and keratin [119] have 
absorption peaks in the ultraviolet (UV) region, around 280 nm. Melanin [120] 
exhibits a gradually decreasing absorbance with longer visible wavelengths, 
resulting in a brown color. The absorption coefficient of melanin can be described 
as μa=Cλ-3.48, where C is a constant [121]. Water exhibits absorption peaks in the 
short-wave infrared (SWIR) region. Many spectral features of insects can be 
described well by the absorbance of melanin and water (Figure 2.6). The 
melanisation is used in Paper II to distinguish between An. coluzzii and An. 
arabiensis mosquitoes. 

 

Figure 2.6 Absorption in fresh mosquito 
sample. The reflectance spectrum of a 
fresh mosquito was obtained from a 
hyperspectral image. A model containing 
the absorption coefficients of water and 
melanin corresponds well to the mosquito 
spectrum. The model used an equivalent 
water path length of 700 μm. 

2.3.2. Multiple scattering 
In dense and turbid media such as tissue [17], light is usually scattered multiple 
times. In that case, any coherence the light may have had before entering the 
scattering medium is lost, as photons travel different paths and are scattered a 
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different number of times before exiting the medium. The whitest color observed 
in nature corresponds to a very high scattering coefficient [122]. Multiple 
scattering may also be referred to as photon migration or diffuse scattering [123], 
and lacks the directionality of specular scattering. This anisotropy may be modeled 
by the Henyey-Greenstein phase function, see Equation (2.11). An ideal diffusely 
scattering surface is called a Lambertian, and scatters equally in all directions. 
Multiple scattering is often simulated with Monte Carlo simulations, in which the 
scattering properties of a medium are defined, and billions of simulated photons 
are sent into the medium to determine the scattered light distribution [124, 125]. 
When light propagates through a medium a certain amount loses its direction of 
propagation through scattering of absorption. This is referred to as extinction, and 
is utilized in Paper I-II. 

2.3.3. Depolarization 
Light travelling through a sample may lose its polarization state in a process called 
depolarization [126]. When light is scattered in a particle there is a chance for it to 
lose its polarization based on the geometrical and physical characteristics of the 
particle. As the light undergoes multiple scattering events the likelihood of 
deviations from the original polarization state increases. For linear polarization, 
the rate of depolarization per unit length in a sample is determined by the 
depolarization coefficient μLP [101]. Thereby, the DoLP of scattered light, 
obtained according to Equation (2.5), may shed light on the optical properties of a 
sample through Equation (2.13). Should the optical path length in the sample be 
known, μLP may be inferred. 

 (2.13) 

The depolarization ratio has been demonstrated as a parameter that can be used to 
distinguish gravid and non-gravid mosquitoes [20], and is used in Paper IX to 
distinguish insects from rain drops. 

2.4. Dynamic properties 
Optical signals obtained from insects normally contain both coherent and 
incoherent parts, corresponding to scattering in different parts of insect bodies 
(Figure 2.7). These signals are varying periodically in time as insects beat their 
wings. Decoupling these signal contributions is a complex process that is explored 
in Chapter 4. The different signal components contribute to different features in 
the frequency domain. The body scatter is static and contributes only to the lower 
end of the frequency spectrum. The wing scatter has an incoherent (or diffuse) part 
which contributes to the wing-beat frequency and the first few overtones. The 
coherent wing scatter appears in the form of sharp specular spikes as the wing 
membrane reflects light straight into the sensor. These spikes have a very short 
duration in time, and contribute to high overtones in the spectrum. Accordingly, up 
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to 27 overtones have been observed from fruit flies in a laboratory setting, as 
shown in Paper IV. The dynamic properties of insects are further explored in 
Paper II-XIII. 

Figure 2.7 Coherent and incoherent dynamic signal contributions from a fruit fly, Dr. 
melanogaster. Left) The time-series signal is separated into three components: body-, 
diffuse wing- and specular wing scattering. The wing scatter appears mostly diffuse, 
however a series of specular reflections are observed between 60 and 120 ms. Right) 
False-color image of the spectrograms of the three signal components. The body 
spectrogram is shown in blue, and only contributes to the lower frequencies. The diffuse 
wing spectrogram, shown in green, contributes mainly to the first two harmonics. A burst 
of higher harmonics appears in the specular wing spectrogram, shown in red, due to the 
specular spikes in the time series. 
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3.  Instrumentation 

3.1. Light sources 

3.1.1. Ambient light 
Ambient light is used extensively in remote sensing. Lunar obscuration is a 
conventional method for studying nocturnal bird migration [127]. The Sun is a 
readily available light source that can be utilized in a variety of passive optical 
detection schemes, e.g. Paper V and [128, 129], and by aiming a setup towards the 
Polaris star the incident sunlight on the field of view (FoV) is always 
approximately 90º [130]. The Sun is a strong light source with a broadband 
spectrum which can be approximated as blackbody radiation with the solar surface 
temperature of 5778 K. It has its emission peak in the green wavelength regime, at 
around 500 nm. Due to absorption in the atmosphere, some solar wavelengths do 
not reach the surface of the Earth. Narrow absorption lines from the UV to the 
near infrared (NIR) regions are called Fraunhofer lines, and correspond to specific 
atomic transitions. Broader absorbed spectral regions are found in the mid-infrared 
(MIR) region, corresponding to vibrational or rotational molecular transitions. 
Measurements using the Sun as light source are restricted to daytime usage, and 
require a clear sky. They are therefore unsuitable for studying crepuscular or 
nocturnal phenomena. 

3.1.2. Light emitting diodes 
A light emitting diode (LED) is a semiconductor light source [131]. It consists of a 
so-called p-n junction, which is the interface between two semiconductors. One of 
them is n-doped (negative), indicating that it contains an excess of electrons, and 
the other is p-doped (positive), indicating that it contains an excess of electron 
holes. There is a difference in electric potential, called bandgap, between electrons 
in the conduction band and holes in the valence band. Thus, applying a voltage to 
the p-n junction (p-doped to anode and n-doped to cathode) causes electrons to fall 
across the bandgap to the lower potential and recombining with holes in the p-
doped material, thereby generating a current across the p-n junction. The 
recombination process generates emission of photons with an energy and 
wavelength equivalent to the bandgap of the material, and a stronger voltage yields 
a higher light intensity. Light is emitted in a semi-random direction, with random 
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phase and polarization. LEDs are inexpensive and available commercially in a 
large range of wavelengths. Requiring only low voltage and current to run, LEDs 
are simple and robust light sources that are suitable for many studies, such as 
Paper I and VII in this thesis. 

3.1.3. Laser diodes 
Light amplification by stimulated emission of radiation (laser) is a phenomenon in 
which coherent light is produced. Though many laser sources exist, multimode 
laser diodes (LDs) have been used exclusively in this PhD work. Compared to 
other laser sources, they benefit from low cost, complexity, weight and power 
consumption, but typically lose out in terms of beam quality. They are suitable for 
remote or rural field applications of lidar, where the power supply may be 
unreliable or non-existent and the components may be exposed to the weather 
conditions. 

LDs are similar to LEDs in design and function. Like an LED, a LD utilizes a p-n 
or p-i-n junction to produce light. They need to be supplied with a high enough 
current to achieve population inversion, and function like LEDs when supplied 
with currents below this threshold. The current running through an LD depends on 
the supplied voltage and the diode temperature. The bandgap is affected by the 
temperature, and the refractive index of the material is affected by the current. 
Both of these parameters in turn affect the transmitted wavelength of a LD. The 
temperature may change during operation, causing wavelength drift. 
Consequently, the wavelength can be tuned by monitoring the temperature and 
controlling the supplied voltage. LDs transmit light from the side of the depletions 
layer, with different divergence along the width and height of the beam as a 
consequence. The light is typically linearly polarized, which is utilized with 
multiple polarization bands in Paper II-IV, VI-VII, IX and XI. LDs are available 
commercially in many wavelengths from the UV to the IR. In this PhD thesis, LDs 
transmitting at 808 nm were used in entomology in Paper II-IV and VI-XIII. An 
additional 1550 nm band was employed in Paper II-III and VII. In Paper VI, 
multiple additional laser bands in the UV and VIS spectral regions were employed 
in Paper VI, and a 980 nm laser was used in Paper VII. 

3.2. Detectors 

3.2.1. Photocurrent detectors 
Similar to an LED, a photodiode (PD) may consist of a p-n or the better 
performing p-i-n junction in which an undoped (intrinsic) layer is sandwiched 
between the p- and n-layers to reduce the response time. A photodiode operates in 
reverse bias mode, which means that only a small current, IPD, flows through the 
diode. When light with sufficient photon energy hits the diode it is absorbed, 
generating electron-hole pairs. This generates a photocurrent, which is 
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proportional to the intensity of the absorbed light. Sandwich photodiodes (SPD), 
utilized in Paper II-IV, consist of two semiconductor layers which are sensitive to 
different wavelength regions, and quadrant photodiodes (QPD), as used in Paper 
V, consist of an array of 4 PDs arranged in a 2x2 scheme. 

A photodiode has a capacitance defined by the cross-sectional area and length of 
the depletion layer, which relates to its response time. In this PhD work, PDs were 
implemented with trans-impedance amplifiers (TIA, Figure 3.1) to enhance the 
obtained signal. A TIA ensures that the voltage over a photodiode, UPD, is 
constant, which implies that its capacitance is not sensed. Thereby, the bandwidth 
of the diode is increased (Figure 3.2). 
Figure 3.1 Electrical circuit for a 
photodiode with a trans-impedance 
amplifier. A TIA makes use of an 
operational amplifier to convert the 
photocurrent produced by a photodiode 
into an amplified voltage through negative 
feedback. The output voltage is negative 
and proportional to the photocurrent, and 
the amplification is determined by the load 
resistor. 
 
 
 

 

 
Figure 3.2 Measured bode diagram of a silicon photodiode. A LED is placed in front of 
the sensor and modulated at different frequencies, and the magnitude of the photocurrent 
produced by the PD is measured. The detected magnitude is constant up to ~1 kHz, and 
thereafter starts to attenuate. The -3 dB line intersects the curve at 3.4 kHz, which defines 
the bandwidth of the sensor. 

3.2.2. Cascade detectors 
Cascade detectors are a class of photonic detectors that rely on incident light 
generating an avalanche-like process to produce electric signal. In this way, a 
strong signal can be obtained even from faint light sources. A photomultiplier tube 
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(PMT) is a device in which the photoelectric effect is utilized to let a photoanode 
eject electrons when hit by incident light. A negative high voltage (HV) is applied 
to the photocathode. The ejected electrons are accelerated by an electric field to a 
series of dynodes, each of which has a successively higher voltage than the 
previous one. As the original electrons hit the first dynode, their kinetic energy 
leads to more electrons being emitted and accelerated towards the next dynode. 
The dynodes are set up such that the number of electrons increases exponentially, 
until finally arriving at an cathode where the signal is measured. An avalanche 
photodiode (APD) is a cascade detector based on semiconductor technology. 
Similar to a regular PD, an APD utilizes a reverse-biased p-i-n junction in which 
incident light generates electron-hole pairs to produce a photocurrent. However, in 
an APD a higher, so-called breakdown voltage is utilized. This voltage is strong 
enough to accelerate the charge carriers to the extent that they knock other bound 
electrons free, generating more charge carriers in a cascade effect. This leads to a 
significant growth of the reverse current through the APD. Cascade detectors are 
sometimes implemented in arrays, such as multi-anode photomultiplier tubes 
(MA-PMT) and quadrant avalanche photodiodes (QAPD). 

3.2.3. Integrating detectors 
An integrating detector is a device in which light is absorbed to gradually build up 
charge over an integration time τint. After τint, the built up charge is drained from 
the sensor, and the amount of charge corresponds to the signal strength. Charge-
coupled devices (CCD) and complementary metal-oxide semiconductor sensors 

(CMOS) are two integrating detector 
types [117] that have been used in this 
work. Both types of sensors utilize 
MOS capacitors, making use of the 
photoelectric effect to convert 
incident light into charge. CCD and 
CMOS detectors are implemented in 
pixel arrays, either line arrays or 2D 
arrays, and the main difference 
between them is the way the 
accumulated charge is read out from 
the pixels. On a CMOS chip, each 
pixel has its own amplification. In 
contrast, the charge is moved from 
pixel to pixel on a CCD chip and read 
out sequentially with the same 
amplifier. CCDs typically offer higher 
uniformity between pixels and better 
noise characteristics, whereas CMOS 
sensors can be read out faster. The 

Figure 3.3 Bode plot for an integrating 
detector, modelled with a sinc function. 
According to the model, a 500 Hz sample 
rate yields a 220 Hz bandwidth, a 2 kHz 
sample rate yields a 880 Hz bandwidth and a 
5 kHz sample rate yields a 2.21 kHz 
bandwidth. Unlike TIAs, integrating sensors 
have adjustable bandwidths. 
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frequency response of an integrating detector with a rectangular integration profile 
can be modelled with a sinc function [132], which corresponds to the Fourier 
transform of a rectangular pulse (i.e. the integration window). Examples with 
different sample rates are shown in Figure 3.3. Although the side lobes of sinc 
functions are strongly attenuated, sampling artifacts such as beating and folding of 
tones may appear when insects exhibiting wing-beat harmonics above the Nyquist 
frequency are observed with an integrating detector. This is further discussed in 
Paper XII. 

3.3. Systems 

3.3.1. Hyperspectral camera 
A push-broom hyperspectral camera [133] may be used to investigate the spectral 
properties of insects ex-vivo. A tungsten halogen white-light lamp is used to 
illuminate a sample. Scattered light was imaged onto a slit, passed through a 
grating spectrometer and recorded with a 2D sensor array. Two sensors have been 
used in this PhD work: a Si-CMOS covering the visible and NIR spectral region 
(400-1000 nm) and a mercury cadmium telluride (MCT) focal-plane array (FPA), 
covering the SWIR spectral region (900-2500 nm). Thereby, one dimension on the 
sensor images the sample in one direction, and the other dimension on the sensor 
  

 

Figure 3.4 Hyperspectral image of a 
bumblebee with associated spectra. a) 
The bumblebee is mounted with a needle 
on a board and scanned with a push-
broom hyperspectral camera. Three 
regions are marked in the image, which 
correspond to the spectra shown in b). b) 
Adjoined spectra of the same sample from 
two hyperspectral images are displayed: 
one in the VIS spectral region, and one in 
the SWIR spectral region. The slope 
observed in all spectra between 450 nm 
and 1100 nm is due to melanin absorption. 
The bumblebee is dried, unlike the sample 
used for Figure 2.6, which is why no 
significant water absorption is observed. 
Spectral fringes are observed from the 
specular reflex in the wing, as in Figure 
2.5. The diffuse reflectance of the wing is 
comparatively low. 
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resolves the sample spectroscopically. The sample is translated in the non-imaged 
direction, and consecutive images are used to construct hyperspectral images of 
the entire sample (Figure 3.4). 

3.3.2. Entomological ex-vivo characterization 
The optical properties of insects have been studied ex-vivo by many groups [102, 
109, 114]. For insect surveillance, heading-dependent reference values are 
important for classification. To this end, tomographic approaches wherein a 
sample is mounted and rotated have been employed in the optical- [9] and 
microwave regimes [134]. In this thesis work, a laboratory ex-vivo reference 
system was built for characterizing the heading-dependent optical cross section 
(OCS) of insects. The system, which is further described in Paper I, enables 
acquisition of the scattering phase functions of insects. In addition, the DoLP of 
different body parts at different scattering angles can be obtained (see thesis cover) 
and compared to the backscatter OCS of insects at different aspect angles. As 
such, the system enables the acquisition of excellent reference data which may be 
used for interpretation of field data. Further improvements to the system may 
include additional wavelength bands, and another axis of insect rotation. Thereby, 
tomographic 3D models of insects may be obtained [135]. 

Figure 3.5 Backscatter signal from a fruit fly (Drosophila melanogaster) at 808 nm 
segmented into contributions from the body, diffuse wing and specular wing. The 
polarimetric setup enables the distinction of coherent (specular) and incoherent (diffuse) 
signal contributions. Whereas the signal from the body is relatively static, the wing signal 
oscillates with the wing-beat frequency. The incoherent signal from multiple scattered light 
contributes to both polarization bands, whereas the specular reflections only contribute to 
the co-polarized band. 
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3.3.3. Entomological in-vivo characterization 
To enable remote identification of insect species of interest, knowledge of their in-
vivo scattering properties are necessary. Insect wing-beat signals have been 
recorded in laboratory conditions in transmission- [136-139] and backscatter mode 
[20]. In this PhD project, a polarimetric and spectroscopic laboratory system was 
constructed to measure the time-resolved backscatter signal from insects released 
into the FoV of the system, used in Paper II-IV. The system measures 
backscattered light in two wavelength- (808 nm and 1550 nm) and two 
polarization bands (co-polarization and depolarization). Flight tracks are obtained 
through stereovision [140, 141], which relate to the flight kinematics of insects 
[142]. The flight heading also relates to the relative phases of wing-beat 
harmonics, see discussion in Paper V. An additional photodiode is used to measure 
the extinction, enabling calculation of the reflectance of a target. 

Figure 3.6 3D flight path of a fruit fly (Dr. melanogaster) flying through the laser beam. 
Through a folding mirror, a camera monitors insects from above and from the side 
simultaneously, enabling acquisition of 3D flight paths. The velocity and acceleration is 
calculated with the time stamp from each measured position. The flight heading of an 
insect is expected to relate to the frequency contents of the signal, and in particular to the 
relative phases of the wing-beat frequency and the overtones. 
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Insects are released into the probe volume, and the signals are calibrated by 
dropping diffuse white targets (1/4’’ teflon spheres) through the probe volume. 
The diffuse and specular components of the body- and wing signals of insects are 
obtained (Figure 3.5). Thereby, signal parameters such as the WBF and OCS of 
insect bodies and wings in all bands can be derived. Figure 3.6 shows the flight 
track of an insect, from which the heading angle, flight path angle, velocity and 
acceleration is acquired. 

3.3.4. Passive lidar 
Passive detection is employed in the microwave [30], acoustic [36] and optical 
regime [128-130, 143, 144]. In passive radar [145, 146], the phase difference 
between the signals detected in two or more radar array elements is used to 
extrapolate the location of a scattering object. A similar concept is used in 
bioacoustics to localize birds from their calls [38]. In this PhD project, passive 
ranging was accomplished in the optical regime with a quadrant photo diode 
(QPD) under a clear sky with a FoV uniformly illuminated by the Sun (Paper V). 
The technique is time-resolved, in-vivo and in-situ. In principle, passive lidar can 
be achieved with any combination of telescope and quadrant sensor. However, 
ranging is most consistent when the termination is placed at the limit between the 
near- and far field. Reliable flight speed estimates may be obtained when both the 
sensor and aperture are quadratic, ensuring that the FoV is quadratic along the 
entire range. If aimed upwards into the sky, i.e. not using a termination cavity, 
active light sources like LEDs and lasers may be implemented to enable night-time 
usage. Overall, the method is a simple and robust “poor-man’s entomological 
lidar” which can be adapted to many applications and measurement geometries. 

3.3.5. Scheimpflug lidar 
Scheimpflug lidar (Figure 3.7) is a technique that was developed in the past ten 
years [12, 147]. In this technique, a continuous wave (CW) laser beam is 
transmitted across a field, and a line sensor monitors an air volume illuminated by 
the laser. Range resolution is achieved by Scheimpflug criterion and Hinge rule 
[148, 149]. Thereby, infinite focal depth is achieved, with each pixel on the sensor 
monitoring a specific section of the laser beam. 

In conventional lidar, pulsed lasers are used [150]. The time between transmission 
of a laser pulse and detection of an echo signal is used to calculate the distance 
through the known speed of light. Using nanosecond-scale pulses yields a range 
resolution of about 1 m. The temporal resolution of pulsed lidar is limited by the 
pulse repetition rate and the roundtrip time of the pulse. In Scheimpflug lidar the 
pixel foot prints grow with distance from the system. At close range (~0-200 m) 
the range resolution is in the order of a few centimeters, whereas further away the  
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Figure 3.7 Scheimpflug lidar system in the evening sun in Ivory Coast. Light from a 
laser diode is expanded and collimated with a refracting telescope. Backscattered light is 
collected by a Newtonian receiver telescope and imaged onto a CMOS line sensor. The 
laser output is controlled with a laser driver, able to operate in CW mode or with two or 
more time slots. The laser is switched on and off intermittently so that the optical 
background is recorded every second exposure, which corresponds to operation with two 
time slots. When operating with three or more time slots, the extra slots correspond to 
additional spectral- or polarization bands. 

range resolution is in the order of meters or tens of meters. The temporal 
resolution is limited by the sample rate of the detector. In a recent study, a side-by-
side comparison of pulsed lidar and Scheimpflug lidar was performed [151]. The 
study found the methods comparable in most regards, indicating that the main 
advantage of Scheimpflug lidar is the lower cost and complexity. 

Scheimpflug lidar is a versatile tool that has been used for in-vivo and in-situ 
studies of insects, in aquatic environments [15] and for combustion diagnostics 
[152]. Differential absorption lidar (DIAL) to measure atmospheric CO2 
concentrations was accomplished in a Scheimpflug configuration using a tunable 
laser diode [153]. Light-weight and compact implementations have been mounted 
on drones to scan vegetation from above [154]. 

Entomological Scheimpflug lidar has been implemented with dual polarization 
bands [155], as used in the work reported in Papers IX and XI, and with dual 
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spectral bands [156], as used in the studies described in Paper VII. The laser is 
modulated on and off to enable background subtraction. High sample rates are 
used in most entomological applications in order to resolve insect wing beats 
(Figure 3.8). 

 

Figure 3.8 Lidar signals from an insect 
flying through the laser beam. Insect 
signals are sparse in space and time, and 
modulated with the insect wing beat 
frequency, giving rise to signal bursts with 
different frequency contents than the 
optical background. In this case, the wing-
beat frequency is about 100 Hz, and 
several overtones are observed 
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4.  Data processing 

4.1. Data types 
The data produced by several methods described in Chapter 3 share many 
similarities. They are time-resolved at kHz rates and incorporate multiple channels 
– either different spectral- or polarization bands, or sensor elements observing 
different spatial locations (Figure 4.1). Depending on the sample rate and the 
number of channels, the data are stored in files spanning between a few seconds 
and a few minutes. The majority of the data is empty, and insects flying through 
the FoV give rise to sparse signal snippets with higher intensity [157]. The data 
needs to be reduced for efficient processing, and the observed insects extracted 
and stored separately from the raw data. 

Figure 4.1 Entomological lidar data file from Tanzania. With a sample rate of 3.5 kHz, 
16bit data was acquired using a CMOS sensor with 2048 pixels. The data file contains 
35000 time exposures, corresponding to 10 seconds of measurement. Insects appear in 
the data as brief regions of high intensity. This particular data file was recorded during 
very high insect activity at dusk. The color scale has been adjusted to enhance contrast. 
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4.2. Observation extraction 
 

Different methods of extraction of sparse features in entomological optical remote 
sensing data have been implemented since the first experiments [129, 157, 158], 
and have been gradually refined (Paper VIII) to where they are today (Paper IX-
XIII). To find and extract insect observations in time-resolved data, the fact that 
most of the data is empty is utilized. In each data file, a detection threshold is 
  

Figure 4.2 Intensity distribution of lidar 
data, illustrating the two thresholding 
methods. The noise level is represented by 
the distribution around the median, and a 
detection threshold is defined according to 
Equation (4.1), from the measured 
intensities shown in Figure 4.1. The signal 
exceeding the threshold is interpreted as 
an insect flying through the laser beam, 
and evaluated further. 

Figure 4.3 Signal fluctuations in passive lidar. Because the sunlight travels through the 
entire atmosphere before impinging on the FoV at ground level, the optical background 
signal is affected by the passage of clouds, heat convection, and other atmospheric 
phenomena, and therefore undergoes fluctuations. A static detection threshold is unable to 
distinguish insects from background in these conditions, so a dynamic threshold using 
sliding statistics has to be used. 
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Figure 4.4 Statistical curves from the data file shown in Figure 4.1. Statistical curves for 
the entomological Scheimpflug lidar data file illustrated in Figure 4.1. The detection 
threshold is set with the IQR method, according to Equation (4.1), and all instances where 
the signal exceeds the threshold are shown in the maximum curve. 

defined based on statistics from the measured light intensities in the file. The 
expectation value of the empty data is represented by the median signal, Imed, in 
each pixel or band, and is unaffected by outliers i.e. high intensities obtained from 
insects flying through the FoV. In the early stages of this PhD project (Paper V 
and VIII), the noise amplitude Inoise was approximated as the difference between 
the median and minimum intensity, Imed-Imin. Later on in the project (Paper XIII), 
Inoise was represented by the inter-quartile range (IQR), Iiqr, of the signal (Figure 
4.2). The reason for the change is that Iiqr is robust against negative signal spikes 
and signal fluctuations arising from e.g. smoke from cooking fires drifting into the 
FoV, or clouds partially blocking the sun in passive measurements. In case of 
rapid signal fluctuations, such as those commonly obtained in passive lidar 
measurements (Paper V), a sliding median may have to be employed instead of the 
overall median intensity (Figure 4.3). In that case, the window size must be 
selected with care and adjusted to the signal fluctuations. The detection threshold 
is defined according to Equation (4.1), where K represents the desired SNR. 
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 (4.1) 

All signal segments exceeding the detection threshold are extracted from the data 
for further analysis. In lidar measurements the statistical curves (Figure 4.4) are 
recorded and used to overview the entire dataset (Figure 4.5). The process of going 
from raw lidar data to parameterized insect observations is illustrated fully in 
Figure 4.6. 

Figure 4.5 Statistical overview of approximately 42 hours of lidar data, wherein each 
data column represents one 10-second data file. Top) False-color image of the statistical 
median, maximum and minimum vectors from all data files shown in red, green and blue, 
respectively. Green dots correspond to insects flying through the laser beam, and the line 
just beyond pixel 1800 corresponds to the echo from the termination target. Increased 
insect activity is observed at dawn and dusk. The generator powering the system ran out 
of gas at one point in the middle of the night and had to be refuelled. Middle) Stability 
plots for the lidar system, showing the pixel position and width of the termination echo. 
The position of the termination echo on the sensor is stable, drifting about 10 pixels over 
42 hours. The termination echo width during the day is about twice as large as during the 
night. Bottom) The termination intensity and insect activity is shown in relation to the 
background light level. The background light level decreases at noon due to a solar 
eclipse. Clear crepuscular activity peaks among the insects are observed. 
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Figure 4.6 Illustration of the entire observation extraction procedure in entomological 
lidar. a) Raw data, in which every second exposure corresponds to when the laser is on 
and off, respectively. b-c) The raw data is sorted into the on- (b) and off components (c). 
d) The optical background is acquired from (c) through interpolation, and subtracted 
from (b). e) A detection threshold with an SNR=2 is generated. A detection mask is 
generated to map all data segments which exceed the threshold. f) The detection mask 
(black line) indicates all instances of the signal exceeding the threshold. Image erosion 
and dilation are used to adjust the detection mask, filtering out signal segments too short 
to be of interest. g) The detection mask is used to crop out signal regions of interest. h) 
The signal is summed along the range axis, generating a time series. i) The signal 
intensity is calibrated into an optical cross section. j) Power spectrum of the time series in 
(i), with peaks at the insect wing-beat frequency and its overtones. 
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4.3. Range calibration 

4.3.1. Passive lidar 
Range information is needed to quantify the scattering cross section of a target. 
Acquiring the range passively in optics is challenging. Early approaches include 
coincidence rangefinders [159], whereas some approaches like nephelometry and 
cytometry [160] limit the probe volume to a point, and other methods such as 
digital in-line holography utilize post focussing [161]. In Paper V of this thesis, 
passive lidar was accomplished with quadrant. The method is enabled by three 
assumptions: 

1. Insects are small enough to be considered as point sources when flying 
through the probe volume. 

Figure 4.7 Time-lag correlation of detector segments. The signals from two adjacent 
detector segments are compared. One of the signals is kept fixed, and the other is 
gradually scanned by increasing the time delay. The correlation is calculated at each 
point, and the maximum correlation corresponds to the time delay with which the two 
signals are the most similar. In this figure, the simulated FoVs of two adjacent detector 
elements are time-lag correlated, illustrating that the time delay τ corresponding to the 
maximum correlation increases linearly with the distance from the sensor. 
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2. Insects fly straight through the probe volume with a constant velocity 
vector. 

3. The coaxial movement of insects is insignificant compared to the length of 
the probe volume. 

The FoV of two adjacent detector elements can be simulated. The sensor is fully 
out of focus at the telescope aperture, and focused at the entrance of a dark 
termination cavity. Therefore, the FoV of the two detector elements are identical 
and overlap fully at the aperture, and identical but sharply separated at the 
termination. As such, an insect flying through the FoV at the aperture will appear 
simultaneously in both detector elements, whereas at the termination it will appear 
in one element after the other. The quotient between the time delay between  
 

 
Figure 4.8 The effect of the focal distance on the range prediction. The FoV of two 
adjacent sensor elements is simulated with raytracing. Four cases are presented in which 
the sensor is focussed at different distances. The bottom panel shows the predicted range 
compared to the actual range in the simulation, demonstrating that the passive ranging 
equation is invalid beyond the focal distance of the sensor. 
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adjacent detector segments τ (Figure 4.7) and the transit time Δt of an insect 
observation is a unique fingerprint for each distance since the flight speed of the 
insect cancels out. The passive lidar equation, Equation (4.2), estimates the 
distance r to an insect with the signal parameters τ and Δt, the telescope focal 
length f and aperture øtel, the sensor diameter ds and the focal distance rfoc. At 
distances beyond rfoc, the FoV of the two segments again start overlapping, and the 
ranging becomes ambiguous as the quotient τ/Δt goes toward an asymptotic value 
(Figure 4.8). 

r  (4.2) 

Paper V illustrates that the ranging accuracy has advantageous properties when the 
sensor is focused at the distance between the near field and far field, i.e. rfoc=rlim. 
The distance rlim is calculated according to Equation (4.3). Since the ranging 
becomes ambiguous beyond rfoc, and rfoc=rlim yields consistent ranging accuracy, 
the best results are obtained when the sensor and telescope are selected so that rlim 
matches the desired measurement geometry. If a long FoV is desired, a small 
sensor and a telescope with a large aperture and a long focal length are beneficial. 

 (4.3) 

4.3.2. Scheimpflug lidar 
In Scheimpflug lidar, each pixel on the sensor monitors a different air volume, 
sharply imaging a different section of the laser beam. This is made possible 
through arrangement of the system according to the Scheimpflug principle and the 
Hinge rule [147, 149, 162]. In short, the Scheimpflug principle states that the lens 
plane defined by the receiver telescope, the image plane defined by the tilt of the 
detector, and the object plane defined by the laser beam must intersect. Further, 
the Hinge rule adds the requirement that the front focal plane, which is parallel to 
the lens plane and intersecting the focal point of the receiver telescope, must 
intersect the object (laser) plane and the plane parallel to the image plane that 
intersects the center of the lens plane. This is illustrated in Figure 4.9. 

The relative position and alignment of the lidar components have implications for 
the distance to the air volumes observed by the pixels. The angle θlens between the 
lens plane and the laser beam is given by Equation (4.4), calculated from the 
detector tilt angle φdet, the distance between the center of the receiver lens and the 
center of the sensor d and the focal length of the receiver telescope frec. The 
baseline h, i.e. the distance between the center of the lens and the laser beam is 
calculated according to Equation (4.5). With the distance ρpix of each pixel from 
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the center of the sensor, the distance rpix is calculated according to Equation (4.6) 
[147, 149]. 

 (4.4) 

 (4.5) 

 (4.6) 

 

 
Figure 4.9 Schematic illustration of how the Scheimpflug principle and Hinge rule are 
implemented in Scheimpflug lidar. When the planes align in the Scheimpflug- and Hinge 
intersection, infinite focal depth along the laser beam is achieved. Thus, each pixel on the 
sensor monitors a specific section of the laser beam with sharp focus. 

Further, the range resolution of the system, drpix, is acquired by taking the 
derivative of rpix with respect to ρpix, see Equation (4.7). In this equation, dρpix 
equates to the pixel pitch p on the sensor. Whereas Equation (4.7) is the ideal 
range resolution, the effective range resolution is limited by the laser beam width. 
Each pixel on the sensor monitors the laser beam at an angle αpix. With a beam 
width of w(r), the effective range resolution dreff is given by Equation (4.8). 
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 (4.7) 

 (4.8) 

4.4. Size calibration 

4.4.1. Angular size 
One size estimate in Scheimpflug lidar data that can be calculated without an 
intensity reference is called the angular size δ (AS), which relates to a similar 
measure used in astronomy [163]. The smallest observable AS is the foot print of 
one pixel at each distance, calculated from the magnification of the receiver 
telescope in a Scheimpflug setup, the pixel pitch of the sensor ρ, and adjusted for 
the tilt angle of the sensor φ. The upper limit corresponds to the width of the laser 
beam at each distance (Figure 4.10). The AS of an insect observation δobs 
corresponds to the maximum number of pixels (npix) it is observed by 
simultaneously during its transit through the laser beam, see Equation (4.9). 

 (4.9) 

where M is the magnification of the telescope at the distance of the observed insect. 
The angular size is a useful size estimate in Scheimpflug lidar because it can be 
calculated without the need for an intensity reference. It is, however, affected by 
poor focus. Subpixel precision can be achieved by calculating the statistical 
moment. 

 Figure 4.10 The minimum and maximum 
angular size δ along the FoV. The angular 
size δ of an observed insect corresponds to 
the size of the number of pixels the insect is 
observed by, projected to the distance at 
which it is observed. The lower limit 
corresponds to the footprint of a single 
pixel, whereas the upper limit corresponds 
to the laser beam width at each distance. 

 
 

4.4.2. Optical cross section 
The optical cross section σ is a quantitative size estimate, analogous to the radar 
cross section [21, 134] obtained with entomological radars. The OCS is the 
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product of the illuminated area of an insect and the probability of scattering light 
into the sensor [164]. In backscatter geometries, the scattering probability is 
equivalent to the reflectance of an insect. The OCS is obtained by comparing the 
scattered light intensity from the insect to the intensity obtained from a target with 
known size and reflectance. The scattering probability, or reflectance, depends on 
the wavelength, and the illuminated area depends on the orientation of the insect 
and the phase in the wing-beat cycle. The scattering probability also depends on 
the illumination angle, as demonstrated in Paper I. For instance, small organisms 
like mosquitoes exhibit much larger OCSs in forward scatter geometries, since the 
light is less likely to interact with the tissue in smaller volumes. For these 
organisms, most of the light is ballistic and passes straight through without 
interacting with the organism. For intermediate sized insects, the light undergoes 
multiple scattering before exiting the insect. The largest insects are opaque, and 
backscattering becomes the dominant part as the size increases. 

In this PhD project, white paper with 97% diffuse reflectance and teflon spheres 
with an assumed 100% Lambertian reflectance have been used for calibration in 
the laboratory work. In lidar field applications, black neoprene termination targets 
with 1.8% diffuse reflectance at 808 nm have been used. Since insects in the 
laboratory are observed at approximately the same distance from the sensor as a 
reference target, σobs can be calculated according to Equation (4.10). 

Figure 4.11 OCS histograms at different distances from a lidar system. In lidar, the 
sensitivity has a r-2 dependence and decreases significantly with distance from the system. 
The smallest organisms may therefore only be observable close to the system. As seen in 
this figure, insects down to a few mm2 are detected at close range, whereas only larger 
insects are detected far away. Assuming homogeneous biomass spectra at different 
ranges, the decrease in counts/m can be attributed to the system sensitivity. 
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 (4.10) 

where Iobs and Iref are the measured light intensities from the insect and reference 
target, respectively, and σobs is the OCS of the reference target. 

In entomological lidar measurements, the distance to an observed insect must be 
taken into account. If the insect is located at a distance robs from the lidar system, 
the reference target is located at a distance rref from the lidar system and the static 
air signal at the distance of the observed insect is given by Ist, the OCS is 
calculated according to Equation (4.11) under the assumption of a homogeneous 
atmosphere [165]. 

 (4.11) 

 

Figure 4.12 Neoprene-covered lidar 
terminations board mounted in a tree in 
Ivory Coast. Neoprene is a diffuse 
scattering target with low reflectance, 
making it ideal as a termination target in 
entomological lidar to prevent signal 
saturation. a) The author is climbing a 
homebuilt bamboo ladder to mount the 
neoprene-covered board several meters 
above ground. Doing so ensures eye safety 
during measurements. b) The laser beam 
is centred on the termination target during 
lidar measurements. The dimensions of the 
laser spot are used in conjunction with 
neoprene reflectance to calibrate optical 
cross sections of insects. 
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Like the angular size, the minimum observable OCS increases with distance due to 
read-out noise and decreasing instrument sensitivity (Figure 4.11). Since the OCS 
is calibrated with a diffuse reference target, the diffuse components of insect 
signals are best suited for comparison. These can readily be isolated from the 
specular components in polarimetric measurements, and through frequency 
analysis in non-polarimetric measurements. Using the neoprene termination target 
(Figure 4.12) as intensity reference is not always ideal – for instance, when the 
neoprene is wet from rain or dew it has been observed to have significantly higher 
reflectance. However, dropping other calibration targets through the beam may be 
challenging [143]. In vertical lidar measurements (Paper X) it is very impractical 
due to the typical near limit of 30-50 m. In horizontal measurements the beam is 
more accessible, but still propagates at least 3-5 m over ground for eye safety 
purposes. 

4.5. Frequency analysis 
The wing-beat frequencies of insects with associated higher harmonics are crucial 
classification parameters [137, 166]. When the WBF of an insect is known, a 
parameterization model can be applied to the signal based on the obtained 
frequency. This enables the signal to be condensed into a discreet set of 
parameters corresponding to the strengths and phases of the WBF and its higher 
harmonics. However, obtaining reliable WBFs is far from a simple task [167, 
168]. The fundamental tone is not always the strongest one (Paper V) [164], and 
varies with ambient temperature and insect weight [169, 170]. In this PhD project 
several approaches to fundamental wing-tone estimation have been pursued (Paper 
VIII, Paper XII-XIII). 

4.5.1. Parameterization model 
In this PhD work, insect signals have been modelled with a parameterization 
model, condensing the raw signals into a discrete set of components (Paper VIII) 
[164]. A fundamental frequency f0 is defined as per Chapter 4.5.2-4.5.4. The signal 
σobs is filtered with a sliding minimum and a sliding maximum filter, with window 
size w=fs/f0, in which fs is the sample rate used in the measurement. The envelope 
of the signal is calculated as the convolution of a normal distribution with full-
width half maximum (FWHM) equal to w, and the average of the sliding minimum 
filtered and sliding maximum filtered signals. A regressor ψ of basis functions is 
defined, containing a Fourier series of f0 and its overtones up to the Nyquist 
frequency fNy. Regression is further detailed in Chapter 4.6.3. The envelope is 
normalized, and all basis functions are weighted with the normalized envelope 
according to Equation (4.12), in which b=[b1,b2,…,bl] is the envelope and 
t=[t1,t2,…,tl] is the time. The index n denotes the harmonic number, and m 
indicates the odd (sine) and even (cosine) harmonic components. 



42 

 (4.12) 

A coefficient an for each basis function is obtained through QR factorization by 
projecting the insect signal onto the basis function, as shown in Equation (4.13). 
The sine and cosine pair of coefficients for each harmonic of f0 can then be used to 
calculate the strength and phase of each harmonic in the insect signal. A 
reconstructed time series  is obtained according to Equation (4.14) (Figure 4.13). 

 (4.13) 

 (4.14) 

 

 

Figure 4.13 Original and reconstructed 
insect signal. The original time series is 
acquired from the data and calibrated. 
The wing-beat frequency f0 is obtained, 
after which the signal is reconstructed 
with a Fourier series containing the signal 
envelope and the sine- and cosine 
components of f0 and its overtones up to 
the Nyquist frequency. The body signal is 
obtained by applying a sliding minimum 
filter to the signal with a window size 
equal to the period of f0. The body- and 
wing OCS can then be acquired as the 
maximum of the body- and wing 
components, respectively, of the signal. 

4.5.2. Power thresholding 
In the frequency estimated described in Paper VIII, the power spectrum of an 
insect signal was obtained with a fast Fourier transform (FFT). A threshold, 
similar to the one used in the observation extraction procedure, was set in the 
power spectrum. This threshold was used to find the modulation peaks 
corresponding to f0 and its overtones. An initial estimation of the WBF, f0init, was 
obtained as the median distance between the peaks. The parameterization model 
was applied with a range of test frequencies ftest between f0init±30%. f0 was then set 
as the test frequency yielding the smallest residual when compared to the original 
signal. 
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4.5.3. Analysis of residuals 
Residual analysis was developed in [168], and further refined in Paper XIII. In this 
method, the parameterization model is implemented with a set of test frequencies, 
ftest, calculating the residual for each test frequency. The model contains inherent 
biases toward both low and high frequencies – at low test frequencies, the 
regressor contains many degrees of freedom, and at high frequencies the window 
size is small, resulting in an envelope that in itself matches the signal well. The 
regressor error is modelled analytically, and the window error is obtained using the 
signal envelope. These two errors are used to adjust the residual vector, and f0 is 
obtained as the test frequency with the smallest adjusted residual (Figure 4.14). 

Figure 4.14 Residual vectors and model biases. a) Initial error vector, regressor error 
and window error as function of test frequency. The regressor error indicates that there is 
a bias toward lower frequencies, and the window error indicates that there is a bias 
toward higher frequencies. b) The adjusted error vector. By eliminating the biases 
inherent to the model, the wing-beat frequency f0 can be selected with much improved 
accuracy. 

4.5.4. Modulation spectrum with fixed frequency vector 
Due to the difficulty in obtaining reliable fundamental frequency estimates, an 
alternative approach circumventing the issue was developed in Paper XII-XIII. A 
frequency vector was defined between the lowest observable frequency defined by 
the transit time and the Nyquist frequency defined by the sample rate. The number 
of bins corresponded to the typical length of an insect signal in a given data set.  
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For each insect signal present in the collected data, a corresponding noise vector 
was obtained just before or after the insect flew through the beam, at the same 
distance. Welch’s method [171] was used to estimate the power spectral density at 
the frequencies in the frequency vector for both the insect and noise signals. Each 
insect power spectrum was normalized with a linear fit of the corresponding noise 
power spectrum, yielding power spectra that could then be used for classification. 

4.6. Factorization and classification methods 
In data sets with many observations and many observed parameters, factorization 
methods are useful for reducing the data to facilitate interpretation, and 
classification methods are used to group observations together based on statistical 
similarity. 

4.6.1. Data factorization 
Principal component analysis (PCA) and singular value decomposition (SVD) are 
fundamental tools in multivariate analysis [172, 173], and reduce a data set to a 
lower number of variables containing most of the information. In a data matrix X, 
wherein each row corresponds to an observed insect and each column corresponds 
to the modulation power at a given frequency, the SVD approach calculates three 
matrices U, S and V according to Equation (4.15). 

 (4.15) 
The columns of V are the modulation spectra that best describe the entire data set, 
in decreasing order of importance. The diagonal matrix S contains the eigenvalues 
of the data set, the magnitude of which equates the overall importance of each 
modulation spectrum in V. The rows in U relate to the observed insects, where the 
value in each column indicates how much of the corresponding modulation 
spectrum in V is found in the modulation spectrum of each insect. By only 
including modulation spectra with high eigenvalues, data sets with large numbers 
of variable may be reduced to only a few (Figure 4.15). 

4.6.2. Unsupervised classification methods 
Hierarchical cluster analysis (HCA) is an unsupervised clustering method in which 
the observed variables are treated as dimensions in a multidimensional space [129, 
174]. Each observation then corresponds to a coordinate in this multidimensional 
space. The statistical distance between one observation and all others is calculated 
with a norm, the most common of which is the Euclidean norm. This may be 
applied to the original dataset, or to a reduced dataset from SVD analysis. Based 
on the calculated distances, observations are grouped into clusters of similar  
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Figure 4.15 SVD factorization of the modulation spectra of insect observations. The 
magnitude of the eigenvalues in S determines their relative importance. In this case, the 
first four principal components in V are included, and the rest are labelled as noise. The 
linear coefficients in U determine how much of each principal component is needed to 
reconstruct a given spectrum. Any modes observed in the scatter plot may correspond to 
different observed species or sexes of insects. Here, the original modulation spectrum is 
modelled with the four first principal components. Though the higher frequencies have 
lower magnitudes, it is known that they are important for classification. In this case it is 
evident that the first four principal components do not contain any high frequencies. The 
reconstruction only models the low-frequency part of the modulation spectrum, and no 
modes are observed in the scatterplot. The dataset may benefit from a more advanced 
method, such as HCA. 

observations in a dendrogram (Figure 4.16). HCA was used to distinguish male 
and female mosquitoes from other insects in Paper XII-XIII. Unsupervised 
methods are useful when there is no training data, such as the field 
implementations of entomological lidar carried out in this PhD work. 

4.6.3. Supervised classification methods 
Supervised classification methods utilize training data in which the classes of 
observations, such as the species and sexes of insects, are known in advance. The 
training data is used to construct a model by which the classes of unknown 
observations can be predicted. In the context of entomological lidar, supervised 
classification methods are difficult to implement due to the challenge involved in 
acquiring training data, i.e. releasing large numbers of classified insects into a 
laser beam propagating several meters above ground. 
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Figure 4.16 Dendrogram and clusters of insects based on Euclidean distance of their 
modulation spectra. The dendrogram at the top shows how closely related the different 
clusters are, with three distinct groups of clusters emerging. Clusters 1-4 correspond to 
mosquitoes based on their high frequency contents. Clusters 5-17 contain a mix of low-
frequency insects and unclassifiable observations, whereas clusters 18-20 contain 
observations corresponding to larger insects or vertebrates. The average spectrum, as well 
as minimum and maximum, are shown together with the number of observations in each 
cluster. 

Naïve Bayes classification (NBC) is a method in which Gaussian distributions are 
fitted to each observed parameter of each cluster of observations [136]. Each 
observation corresponds to a point in the parameter space, and new observations 
are classified based on proximity to the distributions from training data. The 
overlap between classes in the parameter space is used to evaluate the prediction 
accuracy of the acquired model. NBC was used in Paper II-III to classify 
mosquitoes based on their measured optical properties, and in Paper XII to 
evaluate the potential overlap of the obtained HCA clusters. NBC rely on two 
assumptions: that all observed parameters are independent, and that they can be 
modelled by a Gaussian distribution. It is unsuitable for classification based on 
modulation spectra due to the co-variance between wing-beat frequencies and their 
higher harmonics. 
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Regression is a statistical analysis tool in which one or more independent variables 
(predictors, x=x1,…,xn) are used to estimate a dependent variable (outcome, y) 
[175]. This is done by finding the function F that best describes the relation 
between x and y. F is approximated by a polynomial according to Equation (4.16), 
which is written in matrix notation in Equation (4.17). The matrices X and K in 
Equation (4.17) are called the regressor matrix and the model matrix, respectively. 
The least squares solution to K is obtained through projection, see Equation (4.18). 

 (4.16) 

 (4.17) 

 (4.18) 

The model K can be obtained with a set of training data in which the outcome in 
known, and may thereafter be used to predict the outcome based on the predictors 
of new data. In this example, there was only a single outcome, and the model was 
linear. The same principle may be applied with two or more outcomes, modelled 
using second or higher order polynomials. Regression techniques are used in Paper 
II to obtain 3D flight coordinates, and in Paper V and VIII to parameterize insect 
wing beat harmonics. In case of high computational load due to large numbers of 
predictor variables, partial least squares (PLS) regression and linear discriminant 
analysis (LDA) are alternate methods in which the number of predictors is reduced 
in a process similar to PCA. Regression is then performed with the reduced set of 
predictors [176]. Artificial neural networks (ANN) are a related approach in which 
a network of artificial neurons with no prior knowledge is fed training data to learn 
how to distinguish target classes. ANNs have been demonstrated to be capable of 
classifying different species of insects [137]. 



48 

 



 

49 

5. Conclusion and perspectives 

Through the course of this PhD project, entomological lidar methods have been 
developed and improved in conjunction with data processing algorithms. Several 
lidar systems have been constructed and deployed in different field settings around 
the world, from boreal forest in Sweden, through different tropical settings in 
China, Tanzania and Ivory Coast, to a mountain top in Australia. Close to a 
million insects have been observed and characterized, and even more may be 
found in data sets that are yet to be evaluated. With field-sampling methods, such 
numbers of in-situ observations are inconceivable. Entomological radar can yield 
comparable numbers of observations [76], but radars are restricted to vertical 
implementations due to ground clutter. Thus, entomological lidar may provide 
researchers with data that is unattainable in other ways. 

Entomological lidar is also significantly less intrusive than conventional methods, 
which typically involve catching and/or killing the study specimens. Whereas 
passive methods are fully non-intrusive, active laser-based methods may have 
slight effects on insects flying through the laser beam. Laser wavelengths that are 
invisible to insects are used [93, 156, 177]. However, the body may absorb some 
light which can lead to heating. When the laser is modulated on and off, this 
heating is periodic and may result in vibrations at the modulation frequency. 

The usefulness of entomological lidar data relies on robust data processing and 
interpretation, as well as solid experimental design. Large amounts of data do not 
automatically equate to good data, after all. In this PhD project, a lot of effort has 
been put into the data processing. Each step in the process has been evaluated and 
improved, and alternative approaches have been developed and implemented when 
a method was found lacking. Further developments may include implementation 
of machine learning techniques for improved classification. 

The optical properties of insects relate to physical properties, and through multiple 
spectral- or polarization bands, information on water contents, melanization, 
microstructures such as layered scales of Lepidoptera, body glossiness, wing 
glossiness and wing thickness may be obtained. In many cases, researchers are 
interested in the behavior of specific species and sexes, and laboratory 
investigation may yield information enabling the distinction of these species and 
sexes from other insects in situ. In some cases, entomological lidar systems may 
even be adapted and specialized based on the requirements of the study. 
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Entomological lidar technology continues being developed at a rapid pace. 
Through continuous hardware upgrades, the performance has been improved over 
the years. As in many other experimental designs, there is a tradeoff between 
sensitivity and sample rate – when one is increased, the other is reduced. High 
sensitivity enables detection of smaller organisms at farther ranges, whereas high 
sample rates enable the resolution of faster wing beats and more overtones which 
relate to the species and sexes of insects. Both are desired in the ideal case, but the 
specific requirements of a study may enable the reduction of one in favor of the 
other. 

One drawback with entomological Scheimpflug lidar is that the alignment of the 
systems is a complex procedure that requires experience and technological 
knowledge. In addition, the optical and electronic components are sensitive to 
weather conditions. Thus, these systems require constant attendance by 
technologically knowledgeable personnel, which puts significant restraints on 
where, when and for how long measurements can be conducted. This may be 
improved by encapsulating and water proofing lidar systems, and remote control 
may even be an option. Such developments would increase the cost and 
complexity, but reduce the need for manpower. 

Although so-called eye-safe laser wavelengths are selected, the laser output 
powers utilized in entomological Scheimpflug lidar makes eye safety a concern. 
Radiation legislation has to be considered when transmitting laser beams in free 
space, and a notice to airmen (NOTAM) may have to be issued in vertical 
implementations. The laser beams have propagated at least 3 m above ground 
consistently throughout this PhD project – this ensures eye-safe lidar operation, 
but makes intensity calibration more challenging. 

The capability of entomological lidar as a research tool has reached a point where 
it may answer ecological questions. Laboratory reference data of focal species 
may inform decisions on design parameters of lidar systems. Quantitative 
information is obtained from each observed insect through rigorous data 
processing. Target classification enables detailed studies on the behavior of key 
insect groups, with implications for human health, economy and biodiversity.  
Though entomological lidar will never obtain information with the same level of 
detail as conventional field-sampling methods, the strengths of lidar complement 
the weaknesses of other methods excellently. Lidar measurements yield insect 
counts unattainable with other methods. With temporal- and spatial resolution in 
millisecond and centimeter scale, respectively, real-time data with detailed 
information on when, where and in which direction insects fly can be obtained. 

At the onset of this PhD project in 2015, there were only a few groups pursuing 
electro-optical remote sensing of insects worldwide. Since then, the field has 
grown (Figure 5.1), and entomological optical remote sensing is now pursued  
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Figure 5.1 Entomological optical remote sensing world map. The number of groups 
pursuing electro-optical remote sensing of insects has more than doubled in the past 5 
years. Throughout this PhD work, field work has been carried out in a number of countries 
and locations, including collaborations with several AFSIN-affiliated research institutions. 

actively on all of Earth’s continents apart from Antarctica. Although this PhD 
project has contributed to some of the growth, a lot has occurred independently of 
our group in Lund. One focus of this project has been tropical implementations in 
Africa in collaboration with the member institutions of the African spectral 
imaging network (AFSIN). This work has involved constructing optical remote 
sensing instruments and applying them to local problems, such as agricultural 
pests and disease vectors. The instrumentation has been donated to local research 
groups, which are now pursuing independent entomological lidar research. 
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Paper summaries and author 
contributions 

Paper I:  
First Polarimetric Investigation of Malaria Mosquitoes as 
Lidar Targets 
S. Jansson, P. Atkinson, R. Ignell and M. Brydegaard  
IEEE Journal of Selected Topics in Quantum Electronics 25, 1-8 (2019). 

In this paper, a laboratory measurement system was used to investigate the 
scattering properties of Anopheles arabiensis mosquitoes ex-vivo. The samples 
were investigated tomographically and goniometrically. The degree of linear 
polarization of mosquitoes was measured in forward- and backscatter mode, the 
aspect-dependent backscatter- and extinction OCS and the phase function of 
mosquitoes. It was determined that the degree of linear polarization of mosquito 
bodies is independent of the aspect angle, which corresponds to flight heading in 
lidar data. The 808 nm light that is commonly employed in entomological lidar is 
well suited for producing specular flashes of high magnitude in insect wings. It 
was also established that mosquitoes scatter predominantly in the forward 
direction. This work paves the way for flight heading models and is crucial for the 
interpretation of lidar field data, which may in turn have profound impact for 
vector control. 

For this article I carried out the measurements, analysed the data, produced the 
figures and wrote most of the manuscript. 

Paper II:  
Multiband modulation spectroscopy for determination of sex 
and species of mosquitoes in flight 
A. Gebru, S. Jansson, R. Ignell, C. Kirkeby, J. Prangsma and M.Brydegaard 
Journal of Biophotonics 11, e201800014 (2018). 

For this paper, the scattering properties of males and females from four species of 
mosquitoes were investigated in-vivo. Free-flying mosquitoes were released into a 
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laser beam, and backscattered light was measured in two spectral- and two 
polarization bands. Apart from the polarization properties, this paper also shows 
that the spectral ratio between the NIR and the SWIR laser bands, which relates to 
the melanization of insects, are aspect-invariant. It is demonstrated that all 
investigated species and sexes of mosquitoes can be distinguished based on their 
spectral- and polarization properties in conjunction with dynamic properties such 
as the wing-beat frequency, including the closely related Anopheles arabiensis and 
Anopheles coluzzii. Additionally, it is shown that the optical cross sections of 
specular wing flashes enable the distinction of these two species of Anopheles 
mosquitoes, which is of particular interest for lidar applications since the 
magnitude of specular wing flashes does not decay with distance unlike other 
scattering parameters. Thereby, mosquito classification may be possible over very 
long distances. 

For this article I aligned and calibrated the setup, carried out the measurements 
together with the first author, advised on the data analysis and contributed to the 
manuscript. 

Paper III:  
Correlation of mosquito wing-beat harmonics to aid in 
species classification and flight heading assessment 
S. Jansson, A. Gebru, R. Ignell, J. Abbott and M. Brydegaard  
Proceedings of SPIE 11075, 110750Q (2019). 

In this paper, the same dataset was used as in Paper II, and included an additional 
dataset of light scattered by fruit flies, Drosophila melanogaster. The details of the 
modulation spectra of all nine classes of insects were investigated. The correlation 
of the insect body signals and the modulation strengths of the lowest four 
harmonics were examined, and species specific patterns were observed. Wing-beat 
correlation is an important step towards devising a flight-heading model. A flight-
heading model, in turn, may aid in the interpretation of field data, as the aspect-
dependency of several classification parameters can be accounted for. Naïve Bayes 
classifiers were implemented with different sets of data, and it was demonstrated 
that all nine insect classes could be classified with high accuracy when data from 
both spectral- and both polarization bands were used. The classification accuracy 
was reduced significantly when only the co-polarized 808 nm band was used, 
corresponding to common entomological lidar conditions. When only the wing-
beat frequency was used, the classification accuracy dropped even further, and 
many classes were confused for each other. This implies that multiple spectral- or 
polarization bands may be necessary for accurate mosquito classification in lidar 
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measurements, in conjunction with high sample rates to resolve mosquito wing 
beats. 

For this article I aligned and calibrated the setup, carried out the measurements 
together with the second author, took part in conceiving the analysis method, 
analysed the data, produced the figures and wrote the manuscript. 

Paper IV:  
Can the narrow red bands of dragonflies be used to perceive 
wing interference patterns? 
M. Brydegaard, S. Jansson, M. Schulz and A. Runemark  
Ecology and Evolution 8, 5369-5384 (2018). 

In this paper we studied the optical properties of dragonflies (Odonata), and put 
them in relation to their visual bands. Dragonflies have the narrowest spectral 
bands reported in the animal kingdom, and we investigated what features these 
may be used to perceive. We present six lines of clues which indicate that the 
narrow red visual bands of dragonflies may enable them to perceive wing-
interference patterns, and speculate on the ecological implications. 

For this article I aligned and calibrated the setup used to retrieve modulation 
spectra in the laboratory, conducted the measurements on fruit flies, operated the 
lidar for the polarimetric field recordings of dragonflies in China and contributed 
to the manuscript. 

Paper V:  
Passive kHz lidar for the quantification of insect activity and 
dispersal 
S. Jansson and M. Brydegaard  
Animal Biotelemetry 6, 6 (2018). 

For the first time, we demonstrate passive ranging in the optical regime. A ranging 
equation was devised based on a raytracing simulation of a quadrant sensor’s field 
of view. Field data from passive quadrant measurements was used to test the 
ranging equation, and the data matched the simulation well. The flight heading of 
insects was calculated and the flight speed was estimated, demonstrating that the 
method yields rich entomological information despite being inexpensive and 
simple in terms of instrumentation. The method has the potential to become a 
widespread tool for entomological monitoring. It can be implemented with active 
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illumination and may be scaled to fit the geometrical requirements of other 
applications. 

For this article I carried out the simulations and developed the passive ranging 
method with the second author, analysed the data, produced the figures and wrote 
the manuscript. The work resulted in a patent where I am co-inventor. 

Paper VI:  
The Scheimpflug lidar method 
M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Török and G. Zhao 
Proceedings of SPIE 10406, 104060I (2017). 

In this paper, the design parameters for Scheimpflug lidars are discussed and 
evaluated with raytracing. Different applications are briefly reviewed, and the 
performance of the method in each application is evaluated. 

For this article I aided in the development of data processing algorithms of insect 
signals, set up and operated the lidar system during for field measurements 
resulting in figure 3 and 6, and contributed to the manuscript. 

Paper VII:  
Advances in entomological laser radar 
M. Brydegaard and S. Jansson  
The Journal of Engineering 2019, 7542-7545 (2019). 

This paper reviews some of the progress made in entomological lidar with regards 
to quantitative parameterization, target classification and laboratory reference 
measurements. An example of bee monitoring in relation to their hive is presented. 
For the first time, it is demonstrated that the wing beats of insects can be resolved 
by multiple shortwave infrared bands using time multiplexing. As demonstrated in 
Paper II-III, multiple spectral bands enable significantly improved prediction 
accuracy of classification models, which paves the way for species classification 
in-situ. 

For this article I aided in the development of data processing methods, carried out 
the measurements resulting in figures 2-4, produced figure 3 and contributed to 
the manuscript. 
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Paper VIII:  
Effective Parameterization of Laser Radar Observations of 
Atmospheric Fauna 
E. Malmqvist, S. Jansson, S. Török and M. Brydegaard  
IEEE Journal of Selected Topics in Quantum Electronics 22, 1-8 (2016). 

This paper details the first complete analysis process of entomological lidar data, 
by which insect observations are extracted from raw data and parameterized. It is 
shown how quantitative size estimates are obtained, and how the wing-beat 
frequencies of insects are determined. With the wing-beat frequency of insects 
known, the signal can be separated into the body- and wing- signal component. 
The strength and phase of the wing-beat frequency and higher harmonics is 
obtained through regression. By weighting the regressor with the signal envelope, 
the impact of the beam profile and insect transit time on the modulation spectrum, 
such as sidelobes, cancel out. Every step of the process is illustrated with lidar data 
from Brunslöv, Sweden, and most of the methodology is used to date. 

For this article I aided in the development of the data processing, supplied 
feedback on the figures and contributed to the manuscript. 

Paper IX:  
Insect abundance over Chinese rice fields in relation to 
environmental parameters, studied with a polarization-
sensitive CW near-IR lidar system 
S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, 
Z. Song, G. Zhao, M. Brydegaard and S. Svanberg  
Applied Physics B 123, 211 (2017). 

A novel polarimetric dual-band Scheimpflug lidar was used to study aerofauna 
over rice fields in Guangzhou, China. The insect activity was put into context 
relative to environmental parameters such as temperature and rain. Crepuscular 
activity peaks were observed each day. For the first time, insects could be 
distinguished from rain drops by their polarization properties. This enabled 
monitoring of insect activity during rainfall, and sharp activity peaks were 
observed at the onset of rain showers. These were interpreted as high-altitude 
migrants being washed down by the rain and forced to land. 

For this article I aligned the system and carried out the measurements with the 
other authors, took part in discussions the on data analysis, produced figure 5 and 
contributed to the manuscript. 
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Paper X:  
Risky bat bait – Insect swarm dynamics at a wind turbine 
observed with Scheimpflug lidar 
S. Jansson, E. Malmqvist, M. Brydegaard, S. Åkesson and J. Rydell  
In review 

Each year, protected species of bats fly near wind farms to their demise as they are 
hit by the moving rotor blades. It is known that bats are attracted to wind farms 
during warm nights with low wind speed in August and September, but the 
reasons for their attraction is unknown. In this study an entomological lidar system 
was deployed next to a wind farm in southern Sweden to monitor the insect 
population vertically. Insect swarms were observed at the nacelle of the turbine 
most nights before sunset. On particularly warm nights, the swarming was 
prolonged until after sunset, overlapping with the activity hours of bats. On nights 
with particularly low wind speeds, swarms of larger insects were observed at the 
nacelle. Ultrasonic recordings indicate that bats are both feeding and courting at 
wind farms, and that both activities increase with higher insect counts. This 
implies that bats may be at wind farms to feed. Improved understanding of insect 
swarm dynamics at wind turbines may aid in reducing bat deaths in the future. 

For this manuscript I aided in putting together the setup, planned and carried out 
the measurements with the second author, analysed the data, produced the figures 
and wrote the technical parts of the manuscript. 

Paper XI:  
The bat-bird-bug battle: daily flight activity of insects and 
their predators over a rice field revealed by high-resolution 
Scheimpflug Lidar 
E. Malmqvist, S. Jansson, S. Zhu, W. Li, K. Svanberg, S. Svanberg, J. Rydell, Z. 
Song, J. Bood, M. Brydegaard and S. Åkesson  
Royal Society Open Science 5, 172303 (2018). 

In this study a polarimetric Scheimpflug lidar system was used to the activity of 
birds, bats and insects, which has not been possible with any other method before. 
It is shown that the crepuscular activity peaks of insects were constrained into 
short time windows during which neither birds nor bats were present. The results 
indicate that flight behavior may be affected by predation risk. 
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For this article I carried out the measurements with the other authors, aided with 
the data analysis and contributed to the manuscript. 

Paper XII:  
Lidar reveals Activity Anomaly of Malaria Vectors during 
Pan-African Eclipse 
M. Brydegaard, S. Jansson, E. Malmqvist, Y. Mlacha, A. Gebru, F. Okumu, G. 
Killeen and Carsten Kirkeby  
In review 

In this study we conducted entomological lidar measurements in a remote 
Tanzanian village during a solar eclipse. The modulation spectra of insects were 
investigated with hierarchical cluster analysis. Male and female mosquitoes were 
distinguished from other insects for the first time in entomological lidar field 
measurements. Further, the spatio-temporal activity patterns of malaria vectors 
were compared between regular days and the eclipse, during which an increased 
mosquito activity was observed. Thereby, the phototactic activity patterns were 
disentangled from the circadian mechanism of the mosquitoes. The results 
demonstrate that entomological lidar is a powerful tool with which an improved 
understanding of vector ecology may be gained. 

For this manuscript I aided in the construction of the setup, planned the 
measurements with the first author and carried them out with all authors, 
developed algorithms for calibration and thresholding, analysed system stability 
and noise characteristics, supplied reference data on mosquitoes which aided the 
interpretation of field data and contributed to the manuscript. 

Paper XIII:  
Real-time dispersal of malaria vectors in rural Africa 
monitored with lidar 
S. Jansson, E. Malmqvist, Y. Mlacha, R. Ignell, F. Okumu, G. Killeen, C. 
Kirkeby and M. Brydegaard  
Submitted 

In this study an entomological lidar system was deployed in the outskirts of 
Lupiro, a remote village in Tanzania. A 598 m transect 3-5 m above ground across 
an agricultural landscape was monitored for 3 full, consecutive days, observing 
266330 insects flying through the laser beam. Male and female mosquitoes were 
distinguished from other insects using hierarchical cluster analysis, and the cluster 
interpretation was further validated with a separate frequency analysis method. 
Swarms of male mosquitoes were observed by the lidar consequently each night, 
at the same time and place. This has implications for vector control. Further, the 
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spatial distribution and dispersal of mosquitoes was found to differ significantly 
through the day, and a highly directed dispersal of female mosquitoes towards the 
village was observed each night. 

For this manuscript I aided in the construction of the setup, planned the 
measurements with the last author and carried them out with all authors, 
developed thresholding methods, developed frequency analysis methods, analysed 
the data, produced the figures and wrote the manuscript. 
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