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The reasonable man adapts himself to the world;
the unreasonable one persists in trying to adapt
the world to himself. Therefore, all progress
depends on the unreasonable man.

George Bernard Shaw

sammanfattning

Världen är föränderlig. För att kunna överleva måste allt liv kunna
anpassa sig till rådande förhållanden. För cellen, livets minsta enhet, sker
detta bland annat genom reglering av produktionstakten av proteiner,
vilka är de molekyler som utför de flesta grundläggande funktioner.

En speciell klass av proteiner utgörs av så kallade transkriptionsfak-
torer. Dessa slår av eller på en gens produktion av proteiner, genom att
binda till gens position på dna-molekylen. Eftersom dessa transkriptions-
faktorer också själva är proteiner, som produceras av gener som regleras
av andra transkriptionsfaktorer, bildas komplexa nätverk där gener
som producerar denna proteinklass kan sägas interagera med varandra.
Dessa transkriptionsnätverk av genreglering ligger till grund för hur, till
exempel, en växt kan stänga av klorofyllproduktion i avsaknad av ljus.
I praktiken har genregleringsnätverken gått än längre och kan — gi-

vet dagsljusets periodicitet — förutsäga solens upp- och nedgång. I
två artiklar undersöker vi dessa gennätverk med hjälp av matematiska
modeller. I artikel III undersöker vi ett nätverk, specifikt för växten
backtrav, som fungerar som en klocka, med vilken gryning och skymning
kan förutsägas genom oscillationer i specifika proteinkoncentrationer. I
artikel II undersöks mer generella nätverk utan direkt anknytning till
någon specifik organism. I dessa nätverk lagras den genetiska informa-
tionen i en sträng av ettor och nollor, vilken representerar dna-kedjan.
Denna binära sträng tillåts i artikel IV att vara av variabel längd, vilket
försvårar den matchning som är av biologisk relevans vid reproduktion.
Vi undersöker därför olika metoder för att effektivt jämföra två olika
långa binära strängar.

Orelaterat till genreglering ovan, presenteras i artikel I en korrigerad
feluppskattningsformel för parameteranpassning till korrelerad data. När
datapunkter sägs vara korrelerade avses att dessa inte är oberoende av
varandra. Det vill säga, att addera fler punkter, t.ex. genom att göra
fler mätningar, innebär inte nödvändigtvis att vi får mer information
om systemet. Den vanligaste metoden för att anpassa en funktion till
data, minsta kvadratmetoden, kommer däremot att ge sken av att så är
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fallet, och således ge en allt för optimistisk uppskattning av felet. Detta
avhjälper vi genom att introducera en korrigerad feluppskattningsformel
för minsta kvadratmetoden, vars giltighet vi demonstrerar på tre system
där data är benägen att vara korrelerad.
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Tillägnat det som en gång var. . .



It is possible to believe that all the past is but the
beginning of a beginning, and that all that is and has been
is but the twilight of the dawn. It is possible to believe
that all that the human mind has ever accomplished is
but the dream before the awakening. We cannot see, there
is no need for us to see, what this world will be like when
the day has fully come. We are creatures of the twilight.
But it is out of our race and lineage that minds will spring,
that will reach back to us in our littleness to know us
better than we know ourselves, and that will reach forward
fearlessly to comprehend this future that defeats our eyes.
All this world is heavy with the promise of greater things,
and a day will come, one day in the unending succession
of days, when beings, beings who are now latent in our
thoughts and hidden in our loins, shall stand upon this
earth as one stands upon a footstool, and shall laugh and
reach out their hands amid the stars.

H.G. Wells, The discovery of the future (1902)



There is no such things as magic, though there is such
a thing as knowledge of the hidden ways of Nature.

H. Rider Haggard, She (1887)

Introduction

Nature can be understood. This is a realization that we in large part
owe to Aristotle (384–322 bc), a student of Plato. He fathered the field
of biology and made significant contributions to all fields of science of
the era, including physics. The two fields of biology and physics, where
the former is devoted to the study of the living, and the latter to the
inanimate laws of our universe, have generally been kept separated.

In this thesis we investigate biological systems by applying the meth-
ods which have proven so lucrative in the field of physics [1]. This
entails constructing mathematical models which reproduce the observed
behaviour of the system under investigation. To this effort we strive to
“make things as simple as possible, but not simpler” [2], which might
leave a reader with a background in biology wanting for a less idealized
description of the biological systems addressed in this thesis. However,
if we are to understand the inner workings of a (metaphorical) fine
mechanical clock, we have to start with pendulums.
This introduction aims to give the reader a firm footing of the key

concepts touched upon in this thesis, from which he can leap into any
of the articles which are to follow. Our first step illustrates how the
marriage of a biologist’s discovery and a physicist’s endeavours born
the revelation of the smallness of matter, that is necessary for life.

1.1.1 Physics and flowers
In 1827 the Scottish botanist Robert Brown observed, through his
microscope, the irregular motion of particles enclosed by micrometer
sized pollen grains suspended in water [3].1 He initially attributed this to

1 It is worth pointing out that he was not the first to describe the phenomenon
that now bears his name. Dutch physician Jan Ignenhousz observed it with coal
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2 introduction

“the vitality of pollen” [5]; however, the motion persisted undiminished in
the absence of nutrients. Brown found that even ground down inanimate
particles from the Sphinx behaved in this peculiar fashion [6], thus ruling
out the discovery of living “animalcules” [7].
It was shown by theoretical physicist Albert Einstein, in one of his

annus mirabilis papers of 1905 [8], that this was the result of the thermal
motion of the hypothesized molecules, acting in conjunction to displace
the pollen grain at random. He derived the mean square displacement of
a particle undergoing what he coined “Brownian motion”, and provided a
relation which connected the macroscopic observable (diffusion constant)
with the microscopic world, allowing a numerical value to be determined
for both Boltzmann’s constant, and Avogadro’s number. This not only
proved the existence of molecules, but also gave an experimental way to
determine their size, for which the french experimentalist Jean Baptiste
Perrin was awarded the Nobel prize in 1926 [3, 6].

Indeed, it is the very smallness of the molecules, allowing them to act
in enormous numbers, that permits life. The deterministic physical and
chemical laws that are relevant to life rely on the statistical laws that are
valid only for large ensembles. So does the irregular heat movement of
particles give rise to the regular phenomenon of diffusion [9]. However,
in stark contrast to the microscopic disorder, we find the dna molecule.
It contains the recipe for life, held in the hereditary unit of genes. These
give rise to organized events, in spite of the disordered thermal motion
around it.

1.1.2 What is life?
Brown’s experiment with the ground down Sphinx particles raises an
important and difficult question (beyond that of the ethics of archaeo-
logical desecration): what is alive, and what is dead? At one end of the
spectrum we find the inanimate stone statue of aeons past, at the other
we may place our animate selves; we must clearly be alive to pose this
ultimate question to begin with.
If life is the outcome of a continuous process of evolution, then the

boundary between the living and the non-living is a difficult one to
distinguish [10]. A growing crystal or a replicating virus is by most
definitions not considered to be alive, yet they exhibit traits which
we associate with the living [11]. Anyone who has been chased by an

particles on alcohol in 1785 [3], and before him the Roman Lucretius (c. 99 – 55 bc)
described it in a poem [4], see appendix 3.A, p. 45.
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angry bee would consider it to be most alive, even if it is incapable of
reproducing or replicating. However, we can attempt to identify a “least
common denominator” of living systems.
Life is an ordered process which adheres to a set of common re-

quirements. For order to persist, there needs to be an organized plan,
a program, that implements instructions for the parts needed for main-
taining life and how they interact. For the system to be self-sustaining
it needs energy to drive its chemical and physical movement that act
to reverse entropy and keep the system from its equilibrium state of
death. Finally, the system needs to be self-regenerating, and replenish,
to counteract the thermodynamic losses of the processes that instil
order [11]. However, the regeneration does not restore the system to the
exact original state. As we look upon the previous generation, whether
it be our own species or bacteria, we see the cost of time: We age.
Death is a necessity for life, and evolution is its direct consequence.

With time the cumulative changes cause ageing which inches the indi-
vidual ever closer towards its end. The cure is for life to reset itself
by starting over through reproduction. This introduces the need for
the life-instructing program to be passed to the next generation. The
information transfer will be perceptible to imperfections (mutations)
which combined with selection will optimize the species to better serve
the genes as “survival-machines” [12]. We are but vessels for the immor-
tal genes. To this end life comes in many forms, both as single celled
organisms and as multicellular.

All living organisms can be categorized into two main branches based
on cell structure. At the simplest we find the small prokaryotes (typ-
ically 1-10 µm in size), such as bacteria, which all lack a membrane
enveloped cell nucleus. The other class is the eukaryotes, which make up
all multicellular life, but does not exclude single cell organisms. Scientist
have adopted a particularly keen liking to a set of model organisms with
desirable traits that are well suited for their probing minds, such as
the organism having short generations, small genetic material, being in
abundant supply, as well as being subjected to the whimsical disdain of
human society, giving scientists free rein. In the following we will touch
upon the prokaryote Escherichia coli (bacteria), as well as the eukary-
otes Arabidopsis thaliana (plant, thale cress), Mus musculus (mammal,
mouse), Neurospora crassa (fungus), and Drosophila melanogaster (in-
sect, fruit fly). The first mentioned from each respective domain shall
also play a part in the papers that are to follow.
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1.2 the gene as the fundamental information unit of life

The information that is necessary to maintain and replicate life needs
a representation for encoding and a reliable system for storage and
copying. At its core, information is stored by simply stringing together
different entities that are not all the same, just like the letters of the
alphabet making up words, or the base two system used by digital
computers, usually represented as ones and zeroes. The cell uses a
similar system where four nucleotides, A (adenine), T (thymine), C
(cytosine), and G (guanine), make a base four system. By attaching
the bases to the sugarphosphate backbone of deoxyribonucleic acid
a long polymer is formed: the dna molecule. The nucleotide bases
pair up by forming hydrogen bonds between A-T (adenine-thymine)
and C-G (guanine-cytosine), thereby creating a complementary cdna
strand which stabilizes the structure and, in addition, acts as a backup
copy [13]. The two strands combine to form a long double helix, which
coils and loops itself multiple time into a chromosome if in a eukaryote,
or a single closed loop if in bacterial prokaryote [13, 14]. In eukaryotes
the entire dna code is contained within the cell nucleus. For humans
the dna packing allows two meters of dna, (3.2 · 109 nucleotides), with
1 nm diameter to fit into the micro meter sized cell nucleus [13]. The
chromosomes are collectively referred to as the genome, as it contains
all the genes, which are the discrete units of hereditary information, as
well as the non-coding regions.

The genome sequence is used as a blueprint to generate the long
chains of amino acids that constitute the protein molecules. The genetic
sequence is read in triplets. A triplet in a coding region is referred to
as a codon, and is interpreted as a “word” that instructs the cell which
amino acid should come next. The amino acids come in twenty different
flavours, and are linked together to a long chain, in the order specified
by the codons, into a protein. With four nucleotides, read in triplets,
there are 43 = 64 possible codons which map to the 20 different possible
amino acids, thus there is a degeneracy: generally several codons map to
the same amino acid. Codons that are similar typically map to the same
amino acid. This redundancy acts as a safeguard against mutations.
However, not all codons are reserved for coding amino acids, as the
boundaries of the coding region are marked by special start and stop
codons.
A gene is a well defined region on the dna, where the genetic infor-

mation between the start codon and stop codon encodes a protein (gene
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product). The start codon is unique, and defines the reference frame of
the genetic code. The triplet following the start codon corresponds to
the first amino acid of the protein to be. If there is a shift of one base
pair, the meaning of all codons following it will subsequently change,
thus we have entered a new reading frame. This means that there are
three distinct reading frames on the dna strand, and an additional three
in the opposite direction on the complementary chain. In theory, one
section of a single dna strand could therefore encode three different
proteins, and its complement yet another three, making in total six
overlapping genes. In reality, the information content of the genome is
sparse, genes are separated by large non-coding intergenic regions, and
only rarely do overlapping reading frames occur.

The information in the dna chain can be read through two different
processes, each serving a different purpose. When a cell divides, the
entire dna is read and copied, resulting in a new identical dna molecule.
This is equivalent to copying a program on the hard drive of a modern
computer. However, if we want to execute the genetic program, the
“wetware”, in order to synthesize a protein, only the region of the dna
chain containing the gene in question needs to be accessed, and loaded
into “memory”. This process of gene expression entails many steps and
differs between prokaryotes and eukaryotes [13], but can be described
in the following (see Figure 1.1):

1. A large protein, rna polymerase (rnap), attaches at a specific
dna-sequence. The double helix is locally uncoiled and opened
by the rnap molecule. As rnap slides downstream, it transcribes
the dna code (80 bp/sec [14]) to a single stranded short lived
(∼ 10 minutes) complementary “working copy” of the dna sequence,
through a 1:1 base pair alignment — except where base T (thymine)
is replaced by U (uracil), and ribose is used as backbone instead
of deoxyribose as in the dna molecule — resulting in the aptly
named messenger rna molecule (mrna) [14]. The genetic program
is now loaded into the “memory”. Transcription stops when rnap
reaches the transcriptional terminator which triggers a release of
the mrna and rnap from the dna-strand [13].

2. The mrna transcript is transported from the nucleus (if in eukary-
ote) to the ribosome, a large protein complex in the cytoplasm of
the cell. Here each codon, between the start codon (AUG) and
the degenerate stop codon (UAA, UGA, or UAG), is translated to
an amino acid which are all chained together to form a protein. In
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E. coli the speed of this process is about 40 amino acids per second,
allowing a full protein to be translated in minutes [14]. The one
dimensional four-letter information stored in the transcript has
now been mapped to a base twenty amino acid sequence that
defines the protein.

3. The protein then folds by exposing its hydrophilic part and en-
veloping its hydrophobic, giving it a complex three dimensional
structure, which defines its function. The nanometer sized protein
is now free to perform its function.

Promotor 
region

Downstream

. . . C T A A T G T A T T A C . . .

. . . G A T T A C A T A A T G . . .

C U A A U G U A U U A C . . .

TF

mRNA

RNAp

TSS

Figure 1.1 Transcription process. Transcription is initiated by transcription
factors (tfs) binding to the promotor region, which recruits rnap binding.
As rnap starts sliding downstream, from the transcriptional start site (tss),
along the uncoiled and opened double helix, it will assemble an mrna molecule
with complementary base pairs, except T is replaced by U. The process stops
when rnap reaches the transcriptional terminator (not shown) and releases
mrna and itself from the strand. The mrna will be transported to the
ribosome where each base triplet (codon), will be translated into a specific
amino acid, that will be assembled into a protein. In the example sequence
shown, the two codons following the start codon (AUG) both code for the
same amino acid Tyrosine. The complementary dna can also be transcribed
in the same way, but in the opposite direction. For example, in order for the
cdna sequence to be expressed, a promotor region would be needed upstream
of it, and a start codon that would define a second reading frame. The
description is simplified compared to present understanding, where the process
differs between eukaryotes and prokaryotes, but the main characteristics are
conserved.

A large part of the genome does not contain any genetic information
and is never expressed. This also applies to the transcribed gene se-
quence, as only a subset of the mrna sequence, the exons, are expressed.
The introns, the region between the exons, is removed, through splicing,
from the transcript prior to translation [13]. Thus the sequence of the
introns have no bearing on the final synthesized gene product.

The genome length and fraction of unexpressed code differs between
species. The genome of prokaryotes, such as E. coli (1 Mbp, i.e. 106

base pairs), typically holds a few thousand genes, while eukaryotes,
like Arabidopsis (142 Mbp) or human (3200 Mbp) both hold some
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30,000 genes [13]. The difference in length is mainly due to the larger
amount of introns and intergenic regions, e.g. only 11% of the genome
is unexpressed in E. coli while the same holds true for 98.5% of the
human genome [13]. This unexpressed code is often referred to as “junk
dna”, but this is a misnomer as it serves as a playground for evolution
of the species by allowing the emergence of new functional genes. For
eukaryotes there does not seem to be any great disadvantage to have
a long genome. The length does not necessarily mean the organism is
more “advanced”. Some species of amoeba have a genome 200 times
longer than that of humans [13].

1.2.1 Mutation and fidelity of base pairs
Stagnation means death. The ability to adapt to the changes in the envi-
ronment is a requirement for survival. Through accumulating mutations
of the dna a species can evolve to better suit its environment, thereby
improving its survival fitness. The genes are not selected for directly,
but rather through their effect on the phenotype — the resulting traits
and properties of the underlying genotype of the organism [15].

The replication of dna shows a remarkable high fidelity. For life to be
possible, the genetic information must be preserved over generational
time, and at the same time be able to adapt to changing conditions, by
incremental trial-and-error through small changes to the code [16]. The
mutation rate of E. coli is 10−9 per bp and replication, and similar in
eukaryotes [16]. Since most mutations are harmful and lower the fitness
of the organism, the mutation rate is also under evolution. It is lowered
by proof-reading mechanisms [17].

Through a point mutation a single base in the genome is changed. A
point mutation is often neutral, not having any effect on the phenotype,
due to the extent of non-coding regions, as well as the degeneracy of
the codons — similar codons map to the same amino acid. A point
mutation through substitution, (e.g. A to G, C or T), can result in a
missense mutation, meaning that the codon will map to another amino
acid. This is most likely to happen if the first or second base in the
codon is mutated, as the last base pair holds the least information [18].
A mutation can also lead to the creation of a stop codon in the middle
of the gene causing an abrupt stop of transcription.
A point mutation in the form of deletion or insertion of a base can

be a highly intrusive point mutation as in an exon it leads to a frame
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shift , which will change the reading frame of all codons following it, as
they are defined from their first position.

1.3 regulation through transcription networks

The cell is continuously affected by its external and internal environment
and in order to function it must correctly regulate its gene expression
(protein production) in response to different input signals so that the
right genes are expressed at the right time and in the correct tissue.
For a gene to be transcribed, rnap must first bind upstream of it,

to a promotor site. However, the expression rate of an individual gene
is regulated by special dna binding proteins, so called transcription
factors (tfs). Through facilitated diffusion — a combination of a
diffusive three-dimensional random walk in the cytoplasm followed by
a one-dimensional diffusion along the dna — they quickly locate and
bind to their target binding site in the promotor region [19, 20]. From
there their presence modulates the probability of rnap binding to the
promotor, resulting in either less mrna being transcribed (repression)
or more (activation), which will affect the overall concentration of the
protein species in the cell. Repression of the gene expression can be
achieved by a tf blocking rnap from binding to the promotor site, and
activation by a tf recruiting rnap to the promotor site, by lowering
the binding energy of rnap. Usually, transcriptional networks have
comparable number of positive (activating) and negative (repressing)
edges (the interactions connecting two nodes) [14].
The tfs are proteins themselves, and are regulated by each other,

thereby forming a gene regulatory network , where the genes (nodes) are
connected by their transcriptional interaction (edges) into a directed
graph, see Figure 1.2. The network can receive environmental input
signals in the form of small molecules, or protein modifications, which
changes the activity of a tf. This can happen on timescales of ∼
1 msec [14]. Thus a signal feeding into the transcription network changes
a tf causing a modification in the rate of transcription/translation of
the gene products which in turn changes the overall concentration of
the proteins (∼ 1 h) in the cell. Some of the proteins carry out vital
functions like dna repair, metabolite synthesis, etc. while others, being
tfs themselves, feed back to some node (gene) [14].

In this way the network architecture encodes how to perform compu-
tational tasks: it takes an input and processes the information according
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to how nodes are connected and gives an output. This allows the organ-
ism to shut down redundant processes to conserve resources or direct
them where they are needed.
An effective means for the gene to accomplish this is by regulating

its own expression. The most common form of this autoregulation is
negative repression, which allows the transcript level to quickly increase
to its steady state value, and remain stable there. This works much
like the mechanical equivalent to James Watt’s centrifugal governor for
steam regulation [14, 15].

Most genes are regulated by more than one tf. The gene expression
resulting from the interaction at the promotor site, where tfs can block
or promote each other, lends itself to a Boolean description of logic rules.
We can imagine an and-gate, where both tfs are required in order to
switch the gene from an off-state to on-state, or an or-gate where either
one will suffice for the gene to be expressed [21]. Furthermore, one can
have non-Boolean gates such as sum-gate, where each tf binding to the
promotor will increase the transcription rate of the gene [14].
Most tfs regulate more than one gene. The sign of the regulation

mediated by a tf is highly correlated. The tf is either predominantly
repressing or activating its targets. However, the sign of the incoming
edges regulating the tf are less so [14]. This gives valuable information
about how networks are shaped, as we soon shall see.

1.3.1 The structure of functional networks
The different networks of the cell exhibit similarities in both global as
well as local structure. In parallel with the previously described protein–
dna transcription network, there is also an additional protein–protein
and a protein–metabolite network. On a global scale, all three networks
share the same type of out-degree distribution — the number of edges
going out from a node — which follows an approximate power-law,
where a few nodes are more important to the network and have many
edges, while many nodes have only a few [14, 22]. Concerning tf–dna
networks, these show common features across function and species, such
as a high degree of cooperative binding, overlapping gene function, as
well as encompassing a large set of nodes [23].

Biological networks also bear a strong resemblance to engineered
circuits, as they share common design criteria. They must be robust
to random deletion of nodes, as well as be able to operate in noisy
conditions, and manage all conceivable input ranges the network might
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be subjected to [24, 25]. Furthermore, both biological and engineered
networks show strong modularity, with only a few input and output
nodes exposed to the wider network, but high degree of connectivity
among the nodes of the module [24, 26]. This allows a network to adapt
more readily to changing design specifications [26]. Also on the local
scale of the biological network there is similarity to engineered circuits,
by recurring elements, of so called network motifs [25].

Network motifs are small patterns that are found in evolved networks
in far greater abundance than what would be expected from simple
random connections [27]. The motifs are nature’s recurring solution to
frequent regulatory problems. These subgraphs can be though of as
the building blocks of networks. Different network motifs are found in
networks that have different function. Information processing networks,
such as transcriptional networks, have a high frequency of the three node
feed forward loop (ffl) motif [25], where node Z is regulated directly
through X → Z and indirectly through X → Y → Z (see Figure 1.2). If
the direct and indirect paths have the same effect on the target node Z
this coherent ffl acts as a noise filter, capable of ignoring either brief
on-signals, or off-signals, depending on whether X and Y interact with
node Z as and or or gates, respectively [27]. When the direct and
indirect paths differ in net sign (odd number of negative edges) this
incoherent ffl can act as a pulse generator, as the indirect path will
counteract the direct but with a delay [14]. But by what mechanism
have these observed local patterns and global structure of networks
emerged?

X

Y

Z

X

Y

Z

X

Y

Z

Figure 1.2 Three node network motifs. The first two graphs are coherent
feed forward loop (ffl) network motifs, where the direct path from X regu-
lating the target node Z has the same net effect on the target as the indirect
path through the intermediary node Y . The rightmost motif is said to be an
incoherent ffl, where the flat arrow represents repression counteracting the
other activating triangular arrows.
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1.3.2 The construction of a network
The common structure shared by the different networks of the cell,
across a multitude of species, betray the forces by which they were
shaped. The similarity can not be attributed to a common ancestor, as
many of the studied networks are younger than the time of divergence
from the ancestor [23]. It is warranted to ask if the over-abundance of
network motifs and common large scale properties, shared in biological
networks, are a result of their function, or are they simply the outcome
of the evolutionary process? In the case of network motifs, it has been
argued that they might exist due to being the optimal solution given
the functional requirements of the network [14]. However, there are also
indications that motifs are not strongly linked to network function [28].

The evolution of the networks follows the most probable path of least
resistance through evolutionary space. Neutral evolution, that does not
affect the phenotype, can open up new possibilities and remove fitness
barriers, allowing new regions to be explored, under the constraints of
what is permitted by biochemical and physical reactions [23].

The process of gene duplication is the main method for creating new
genes [29]. It allows the original gene to maintain necessary function
while its copy is free to diverge and explore new possibilities. If the gene
has bifunctionality, the duplicates can subfunctionalize, by dividing the
functions of the ancestral gene among them, and in that way become
more specialized [30].

The sheer duplication of genes leads to an inherent high probability of
network motifs [23, 31]. For instance, a fflmotif (Figure 1.2) could arise
from a duplication event of node Y , followed by divergence where it turns
into the new node Z and receives an extra edge. Indeed, even in networks
with no function, but evolved by duplication, motifs do appear [32].
However, since the tf binding sites are short (∼ 10 bp [14, 19]) they
are easily lost to mutational drift if not explicitly selected for, as a
single point mutation in the binding site can abolish an edge. Gene
duplications offer a conceivable explanation for how almost all genes in
eukaryotes are regulated by more than two tfs, resulting in the high
degree of connectivity observed [23]. Furthermore, through a neutral
process of repeated gene duplication and removal, an approximate
power-law degree distribution can emerge naturally [22]. Duplication of
a whole genome is often followed by divergence and large gene loss [33].
The dna is susceptible to mutations during duplication events. In

the course of cell division, when the cell creates an identical copy
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of itself, the dna is replicated (mitosis), but imperfections can arise.
Duplication errors can be introduced by misalignment during crossover
events, which is the process where two chromosomes, one from each
parent, are “blended” into a single copy (meiosis), lest the number of
chromosomes of a species would double with each new generation. This
is done by creating a copy that, at random crossover points along the
sequence, changes which of the two chromosomes it is duplicating. The
two “parent” chromosomes are aligned at the beginning of the crossover
process, resulting in the blended offspring having the same length and
a complete set of genes, from either parent [13, 34].

1.4 modelling of genetic networks

Gene networks quickly become highly complex structures with increasing
number of nodes, too complicated to intuitively understand. Through
experiments we can start to unravel their intricacies. But to understand
a fine mechanical clock we should not stop at prying it open and investi-
gating its gears and springs; we must venture further by reconstructing
it ourselves. This has been done experimentally, by building small
synthetic gene networks in living cells [35, 36]. Although these systems
are, in themselves, remarkable feats of experimental techniques, they
are limited to a small size and by the currently available experimental
methods. Instead, using mathematical reconstruction and modelling of
gene networks, we shall know no such limitation.
By describing a network mathematically the dynamics of its inter-

actions can be modelled and compared to known experimental data,
followed by model experimentation that yield falsifiable predictions that
can be verified or disproved by experiments. Even though the model is
constructed manually, with preassigned input, the outcome can often
be surprising.

The concentration level of each tf can be seen as describing the current
state of the cell. Through a set of coupled ordinary differential equations
(odes) that describe the change of state variables (tf concentration
levels), X = (X1, . . . , Xn), the dynamics can be solved if the update
function f(X), which describes the interactions, is known:

dX

dt
= f(X). (1.1)

Here each component of X can describe the concentration of a protein
at the current time step. The update function can model the gene
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expression either as a binary Boolean function, being on or off, or as a
continuous process.
The coupled equation system can be solved through numerical inte-

gration, where the system in next time step t+ ∆t is computed from a
simple Euler step, X(t)−X(t+ ∆t) ≈ ∆tf(X), which follows from a
series expansion of X(t+ ∆t) [37]. In practice one typically uses higher
order methods, with accuracy equivalent to a 4th order Runge-Kutta,
or better [38].

1.4.1 Law of mass action
We now turn our attention to find the updating function that describes
the system. Through the pioneering work of Norwegian chemist Peter
Waage and his brother-in-law Cato Maximilian Guldberg, the law of
mass action was derived at the end of the 19th century [39]. It describes
a system in dynamical equilibrium such that the forward and backward
reaction rates, kf and kb respectively, are in balance, in the following

A + B
kf


kb

C. (1.2)

The probability of the reactants colliding depends on their concentration,
thus the chemical reaction rate is proportional to the product of (the
mass of) the reactants,

d[A]

dt
= −kf [A][B] + kb[C] =

d[B]

dt
d[C]

dt
= kf [A][B]− kb[C],

where quantity [X] in square brackets denote the concentration of X
in some arbitrary unit. This can be generalized to a system with m

reactants and n−m products

ν1X1 + . . .+ νmXm
kf


kb
νm+1Xm+1 + . . .+ νnXn, (1.3)

with stoichiometric coefficients νi defining the number of molecules
of each reactant Xi which is needed for the reaction to occur. The
generalized chemical reaction in eq. (1.3) forms an ode system:

d[Xi]

dt
= −kfνiXν1

1 · . . . X
νm
m + kbνiX

νm+1
m+1 · . . . X

νn
n i = 1, . . . ,m

d[Xj ]

dt
= kfνjX

ν1
1 · . . . X

νm
m − kbνjX

νm+1
m+1 · . . . X

νn
n j = m+ 1, . . . , n.
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For chemical equilibrium the ratio of the reaction rates must equal the
chemical equilibrium, thus

keq =
kf
kb

=
[Xm+1]νm+1 · . . . · [Xn]νn

[X1]ν1 · . . . · [Xm]νm
.

However, in our transcription networks we are concerned with reactions
where tfs bind to a site on the dna to regulate the production of some
protein, X, without itself being consumed. If the binding tf is an
activator it acts as an enzyme catalysing the reaction, although during
the time it is bound to the dna it can not partake in any other reaction.
We get Michaelis-Menten kinetics [14, 40]:

TF + DNA
kf


kb

TF–DNA kc→ TF + DNA +X (1.4)

This gives the equation system:

d[TF]

dt
= −kf [TF][DNA] + (kb + kc)[TF–DNA] (1.5a)

d[TF–DNA]

dt
= kf [TF][DNA]− (kb + kc)[TF–DNA] (1.5b)

d[DNA]

dt
= −d[TF–DNA]

dt
(1.5c)

d[X]

dt
= kc[TF–DNA]. (1.5d)

We assume the first reaction is much faster than the last (kf , kb � kc),
so the reaction is in quasi-equilibrium.2 From the chemical equilibrium
of the intermediate, rate limiting, process and the observation that the
total amount of dna is constant [DNAT] = [DNA] + [TF–DNA], we get

[TF–DNA] = keq[DNA][TF] = (kb + kc)[DNA][DNAT−TF–DNA],

from which we get the probability of the tf being bound to the dna

Pbound =
[TF–DNA]

[DNAT]
=

[TF]
kb+kc
kf

+ [TF]
, (1.6)

which is known as the Michaelis-Menten equation, and is useful for
describing many process in biology [14]. Inserted in eq. (1.5d) this gives
the gene activity , through its production rate of [X]

d[X]

dt
=

Vmax[TF]

KM + [TF]
(1.7)

2 Typically, tf binding to dna reaches equilibrium in seconds [14].



1.4 modelling of genetic networks 15

where we have introduced the Michaelis-Menten constant KM = (kb +

kc)/kf , and Vmax = kc[DNAT] which is the maximum production rate
when [TF] has saturated the system, see Figure 1.3A.
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Figure 1.3 . The resulting modelled production of protein X as function of
concentration of TF. (A) Michaelis-Menten kinetics, eq. (1.7), and (B) Hill
equation, (1.9) for different degrees of cooperativity, n. The production rate
saturates at Vmax.

For gene transcription networks, cooperativity can be a key player.
To model this we require several transcription factors, n in total, to
interact for a reaction to happen,

nTF + DNA
kf


kb
nTF–DNA kc→ nTF + DNA +X. (1.8)

resulting in

d[X]

dt
=

Vmax[TF]n

Kn + [TF]n
(1.9)

with Hill coefficient n and Hill constant K, which is the dissociation
equilibrium constant, giving the rate between dna-binding ratio and
dna-unbinding ratio [40]. If cooperativity is not required but merely
assisted, or otherwise not fully understood, the Hill coefficient need not
be integer [40].
Hill functions can describe the production (and its regulation) of a

gene product. If the interactions are not fully understood one usually
fits n and K to experimental data. For this purpose, a least squares
method is commonly used, which we will have reason to get back to in
Section 1.5.
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1.4.2 A three-node network
As an instructive example we now consider the small network in Fig-
ure 1.4A. It consists of three nodes connected in a loop by the same
number of edges. Each component represses the next and is in turn itself
being repressed by the previous. While giving an overview of the system,
the graph representation does not reveal much information on the exact
mechanism of the interactions. Unlike eq. (1.6), the interaction is now
repressive, instead of activating. If X1 is being repressed by X3, its
production will depend on the probability of X3 not being bound:

Pnot-bound = 1− Xn
3

Kn +Xn
3

=
Kn

Kn +Xn
3

. (1.10)

Thus, with a linear degradation term, the three coupled ode equations
can be describe by:

dXi
dt

= ki
Kni
i

Kni
i +Xni

i−1

− diXi, i = 1, 2, 3. (1.11)

Here, the first term is our Hill function, where the production is repressed
as motivated in eq. (1.10). The second term represents the degradation
of Xi. In the absence of production, we are left with simple exponential
decay. We can interpret each component Xi as the concentration of
a tf. Thus eq. (1.11) includes transcription, transport to/from the
nucleus (if in a eukaryote) and translation as a single step.
The output concentration over time of each component, for a set of

parameters (see table 3.1, p. 47), can be made to oscillate (Figure 1.4B).
We shall have cause to return to the fundamental traits needed for a
system to exhibit such properties. A similar network, consisting of three
proteins in a closed loop, each repressing the next, was built in a real
cell and borough to oscillate in a similar manner [36].

1.5 model fitting

In order to evaluate a model, we compare its prediction to data represent-
ing the very system that the model aims to describe. Models often have
free parameters that need to be determined by fitting them to data. This
involves minimizing the deviation of the observations y = (y1, . . . , yN )T ,
at corresponding measurement points x = (x1, . . . , xN )T , with the es-
timating function f(x;λ) = (f(x1;λ), . . . , f(xN ;λ))T , with respect to
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Figure 1.4 A three node network. (A) The network is connected in a loop,
where each edge represses the next. (B) The output from each node, normalized
to unity, oscillates with time, for suitable parameters chosen in eq. (1.11).

the K parameters λ = (λ1, . . . , λK)T . This can be summarized as
minimizing the residuals

∆(λ) = y − f(x;λ). (1.12)

The two main methods for determining the optimal model parameter
estimators are the least squares method and the maximum likelihood
method. The following derivations are adapted from van den Bos [41].

1.5.1 Least squares method
One of the standard methods for fitting a model to data is the least
squares method. It can be defined from the weighted least squares
minimization criterion [41]

χ2(λ) = ∆T (λ)R∆(λ), (1.13)

where R is a known positive definite (N × N) weighting matrix. If
this matrix is diagonal, eq. (1.13) is reduced to χ2(λ) =

∑N
i=1 rii∆

2
i (λ),

which becomes an ordinary least squares method if rii = 1 ∀i, with
minimization criterion: χ2 = ∆T∆.

At the stationary point, where λ = λ is the estimator of the unknown
true parameters λ that we seek, the gradient of eq. (1.13) is the null
vector and defines K normal equations for the least squares criterion:

∂χ2(λ)

∂λk
= −2

fT (x;λ)

∂λk
R∆(λ) = 0, k = 1, . . . ,K, (1.14)

and likewise for the ordinary least squares, but with weights given by
the unit matrix.
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When the expectation model is linear, the expectation of the observ-
able may be written as

〈y〉 = f(x;λ) = Xλ, (1.15)

where X is a known nonsingular (N × K) matrix independent of λ.
From this it follows that the least squares criterion, eq. (1.13), becomes

χ2(λ) = (y −Xλ)TR (y −Xλ)

= yTRy − λTXTRy − yTRXλ+ λTXTRλ

= yTRy − 2λTXTRy + λTXTRλ,

(1.16)

which leads to the normal equations

∂χ2(λ)

∂λ
= −2XTRy + 2XTRXλ = 0, k = 1, . . . ,K. (1.17)

Thus we get XTRXλ = XTRy from which we find our estimating
parameters

λ = (XTRX)−1XTRy ≡ Ay, (1.18)

where in the last step we defined, for convenience, the matrix A. Next,
taking the expectation value of our parameter estimator, results in

〈λ〉 = 〈Ay〉 = A〈y〉 = AXλ = λ, (1.19)

where we used eq. (1.15), and from eq. (1.18) we note that AX is the
unit matrix. Thus, if the assumption of the linearity of the estimating
model is correct, and that the weighting matrix is know, the weighted
least squares estimator is an unbiased estimator, free of systematic
errors.

To get an estimate of the nonsystematic errors in the parameter fit, we
can determine its covariance matrix. First we note: λ−〈λ〉 = A(y−〈y〉),
thus

cov(λ,λ) = 〈(λ− 〈λ〉)(λ− 〈λ〉)T 〉

= 〈A(y − 〈y〉)(y − 〈y〉)TAT 〉

= A〈(y − 〈y〉)(y − 〈y〉)T 〉AT

= ACAT ,

(1.20)
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or when written explicitly, from eq. (1.18), and using the symmetry of
the matrices R and (XTRX)−1:

cov(λ,λ) = (XTRX)−1XTRCRX(XTRX)−1. (1.21)

We see that the parameter (co)variance depends on the measurement
points X, the covariance C of the observable y and the choice of
weighting matrix R.3 The variance for the weighted linear least squares
method is minimized by the choice R = C−1, which yields a covariance
of the estimated parameters as [41]:

cov(λ,λ) = (XTC−1X)−1, (1.22)

with error of the estimated parameters as the diagonal elements.

1.5.2 Maximum likelihood method
Provided that the probability density function of the observable y and
its dependence on the parameters λ are known, then the maximum
likelihood method is applicable. The method has several desirable
traits, such as, under general conditions, λ − λ tending to a normal
distribution with increasing observations, with zero mean and minimal
(co)variance [41]. The likelihood function is based on the joint probability
distribution of the observations where the fixed exact parameters λ are
replaced with independent variables λ, and the probability is parametric
in the observations,

p(y;λ). (1.23)

The maximum likelihood estimator of λ are the parameters, λ, that
maximizes the likelihood function, or alternatively, that maximizes the
log-likelihood function:

q(y;λ) = ln p(y;λ). (1.24)

For the most probable parameters, λ = λ, the gradient of q is equal to
the null vector, and we get K likelihood equations:

∂q(y;λ)

∂λk
= 0, k = 1, . . . ,K. (1.25)

3 The result of eq. (1.21) is alluded to in paper I as “eq. 5.253 of van den Bos [41]”,
which we there extend into the nonlinear regime.
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If the observations y are independent stochastic variables their likelihood
function may be written on the form

p(y;λ) =

N∏
i

pi(yi;λ) (1.26)

and log-likelihood

q(y;λ) =

N∑
i

qi(yi;λ). (1.27)

If the observables are normally distributed, as often is the case due
to the central limit theorem [42, 43], the log-likelihood function is

q(y;λ) = ln

(
1

(2π)N/2
√

detC
exp

(
−1

2
∆T (λ)C−1∆(λ)

))

= −N
2

ln(2π)− 1

2
ln(detC)− 1

2
∆T (λ)C−1∆(λ),

(1.28)

from which we get K likelihood equations by demanding that the
gradient is equal to the null vector at the stationary point

∂fT (λ)

∂λk
C−1∆(λ) = 0, k = 1, . . . ,K. (1.29)

For jointly normally distributed observations, the weighted least squares
estimator is the same as the maximum likelihood estimator, eq. (1.14),
with the inverse covariance of the observables as weighting matrix,
providedC does not depend on the unknown parameters. From eq. (1.29)
it follows, in the same way as for the weighted linear least squares, that
the estimator of a linear model is unbiased.

1.6 the circadian clock

We live in a world of periodic change. Hence, most life has evolved
endogenous mechanisms which can accurately predict the diurnal cycle,
and respond in anticipation of dawn and dusk, rather than react to the
periodic environmental changes after they occur [44].

By predicting when a cell function is needed, resources can be directed
towards that aim, and likewise conserved when not needed, thereby
improving the survival ability. Both mammals and plants show improved
health and survival fitness when their internal clock is synchronized
with the environment [45–47]. It is also found that arrhythmic plants
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grow far worse than plants with a clock with the wrong period [47]. In
this thesis we will focus on the circadian clock (from Latin: circa diem,
meaning approximately daily) of plants.
The earliest written observation of circadian clocks originates from

the fourth century bc. At that time, Aristotle had encouraged his
student, Alexander the Great, to defeat Persia, and to be “a hegemon
(leader) of Greeks and a despot to the barbarians, to look after the
former as after friends and relatives, and to deal with the latter as with
beasts or plants” [48]. It was during Alexander’s the campaign in Tylos
(modern Bahrain) that Androsthenes made note of the leaf movement
of the Tamarind tree which tracked the motion of the sun. Close to
two millennia came to pass before the discovery, in 1729 by french
astronomer de Marian, that the rhythmic leaf movement persisted also
for plants held in constant darkness. Yet another century later came
the realization that these are not exactly 24 h periodic, but circadian,
indicating that the plant is not just using external environmental signals
but indeed has an internal clock [44].

The plant circadian clock is remarkably robust despite the many chal-
lenges it faces. It relies on biochemical reactions, yet it is able to operate
under a wide range of temperature fluctuations (∼ 20 degrees) [49]. The
clock is entrained by using the light as its main zeitgeber (German: time
giver) to match its phase with the environment. Usually, one measures
the state of the clock from the zeitgeber time (zt), marking the time
of when light is turned on. To prevent the clock from resetting in the
middle of the day, the response to the light input is time-dependent,
or gated ; meaning its importance is primarily during dawn and dusk,
since there is no seasonal information in light variation in the middle
of the day [44, 49]. In the absence of its main input the clock can be
entrained by as little as a two degree temperature fluctuation, or even
by changes in the sugar solution it grows on in the laboratory [50, 51].
The importance of the clock is demonstrated by the sheer scope of

genes that are regulated by it. In Arabidopsis roughly a third of the
genes are directly regulated by the clock and up to 89% show diurnal
rhythm, be that from cyclic external environmental stimuli, like light
or temperature, or independent of environment [49, 52]. Among the
many processes controlled by the clock we find both photosynthesis
and enzyme activity. There is also a strong overrepresentation of genes
regulating stress response as well as hormones like auxin, which is a
plant growth hormone [44, 49, 53]. The clock predicts seasonal changes
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by comparing the external photoperiod with its internal state. This
allows the clock to control fragrance emission, germination [44], and
flowering [54–57], furthermore, at the onset of winter the plant can
pre-treat its cells to withstand cold [58].
To investigate the direct benefit of a clock, experimentalists have

created mutant plants, by removing genes to partially change the clock
mechanism. Plants with a normal 24 hour period (T24) clock grow better
(fixate more carbon, and contain more chlorophyll) when subjected to a
matching period of light/dark cycle [47]. Likewise, both short-period
mutants (T20), and long-period mutants (T28) perform best when
their respective environment matches their free running period — their
intrinsic period when subjected to constant light or constant dark, in
order to not be reset by dawn and dusk [47].

1.6.1 What makes the clock tick?
The circadian clock stems from oscillations of protein concentrations in
cells. A three-node system, e.g. Figure 1.4, is the smallest network that
exhibits stable oscillations [59]. There are several additional require-
ments on a network for oscillations to emerge. First, a negative feedback
loop is required for the system to bring itself back to its starting point.
This makes the system converge to a limit cycle, where the variable set
is repeated in a cyclic manner, forming a closed loop in phase space.
Additionally, the system needs to retain a memory of its past states, to
avoid convergence to a steady state. This is achieved by introducing a
time delay by components acting indirectly on their targets, together
with balancing the timescales of the processes. Furthermore, the rate
laws must be sufficiently non-linear to destabilize the system from its
stable state [59].

Oscillations of protein concentrations can be experimentally resolved
for individual cells, each having its own autonomous clock, needing no
external input to persist [40]. The genes of each cell are rhythmically
expressed as a result of the regulatory interactions encoded in the
transcription network. The cells need not share phase information
between each other [60]; different tissues can have different phase, but
the main clock in mammals stem from the protein oscillation in cells of
the hypothalamus [52].
The circadian gene network is diverse across different domains of

life. The transcription factors which constitute the core clock genes
in eukaryotes like the fungus Neurospora crassa (frq and wc), the



1.6 the circadian clock 23

plant Arabidopsis thaliana (cca1 and toc1), the insect Drosophila
melanogaster (per and tim), and the mammal Mus musculus (bmal1
and period) are not shared, indicating the clock has developed inde-
pendently across taxa [61, 62].4

Although different in execution, the gene networks share common
design principles. Through the trial-and-error process of rewiring and
tinkering nature seem to converge on the same solution [24]. Each
implementation of a period predicting circuit consist of a gene network
with transcriptional and translational interaction with feedback loops
(ttfl) for generating robust oscillations with correct period, phase and
amplitude [59, 61]. The multiple feedback loops and light input of
the ttfl network allows it to track both dawn and dusk, as well as
withstand seasonal changes in day length, and input noise [49, 63].

However, it has been shown that the clock of prokaryotic cyanobacteria
does not only rely on a ttfl, but also on a post transcription-translation
oscillator (pto). The two oscillators are mainly independent of each
other, but combined give a robust clock [60]. Even more intriguing is
the discovery of circadian oscillations in eukaryote cells such as found
in human red blood cells [64], which lack a cell nucleus and therefore
have no means for a ttfl circuit. Alternative means for oscillations
have also been identified in algae [65].
Recent investigations indicate that a pto proto-clock is preserved

across all probed phylogenetic domains. It has been found that a
separate post translational clock is shared in prokaryote bacteria, as well
as in eukaryotes such as mouse, fruit fly, and fungus. It manifests itself
through oscillations in the oxidation level of a protein (peroxiredoxin). If
either the ttfl or pto clock of the organism is disabled, the remaining
one will continue unabated, although at a different phase [61, 62]. The
advantage of having two separate clocks could be higher resistance to
stochastic molecular noise, and a pto based clock gives stability during
the metabolic stress and dilution at high cell division rates [52, 60].

1.6.2 The transcriptional clock in Arabidopsis
The clock in the plant Arabidopsis thaliana, known under the common
name “thale cress”,5 or the more descriptive one: “mouse-ear cress”, has
been the focus of much research over the past decades. Through an

4 It is worth pointing out that although the period gene is homologous in mouse
and fruit fly, they appear to have different functions [62].

5 Known as Backtrav in Swedish, Vårskrinneblom in Norwegian, Gåsemad in Danish,
and Schaumkressen in German.
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iterative process of experimentation and modelling, its inner workings
has been probed ever further. The models recreate existing data, and
make predictions for where no data yet exists, that the experimentalists
then can verify or refute. The experimentalists typically measure time
series of clock gene expression in wild type (wt) plants, which have all
genes fully functional, and compare these to mutant plants where one,
or several, genes have been “knocked out” rendering them effectively
non-functional [66]. Also partially working mutant plants can yield
important clues to decipher the intricate workings of the gene regulatory
network.
The initial Arabidopsis circadian clock model started as a simple

system with two genes, each having three components (mrna, cytoso-
lic and nucleic protein), connected in a loop with feedback.6 This
first model, conceived in 2005 by Locke et al. [67, 68], treated the
two closely related morning expressed genes circadian clock asso-
ciated 1 (cca1) and late elongated hypocotyl (lhy) as a single
node [69–71], which represses the evening expressed gene timing of
cab expression 1 (toc1), which in turn regulates cca1/lhy and
thus closes the loop [66]. It is believed that cca1 and lhy need to
form a homodimer or heterodimer in order to bind to dna [72] where
they typically act as repressors [73]. In spite of the close relation of
the two morning genes, they are only partially redundant, as loss of
either one will affect the clock by shortening the period, in an additive
manner [74, 75].
It was long believed that toc1 activates cca1 transcription [67, 68,

76]. In a toc1 loss-of-function mutant7 the levels of mrna of both
cca1 and lhy is low; however, this is also the case for when toc1
is over-expressed, resulting in a drastic increase of the toc1 mrna
concentration, and consequently the toc1 protein [66]. The confusion
was cleared when it was found that toc1 binds to dna and can regulate
the cca1/lhy expression directly [77], by repression [78].
The early two-component clock model, consisting of cca1/lhy and

toc1, was extended by including more genes to account for period
lengthening and shortening by mutants of genes defined in the model [66].
Among them were the pseudo response regulators 9,7,5 (prr9,
prr7, prr5), which, together with toc1 (also known as prr1), form

6 For a schematic overview, see Figure III.S1, p. 161.
7 We here use the same notation as used for Arabidopsis where genes are written in

cursive and its gene product (protein) in upright; in addition, if it is the (functional)
wild type it is written in uppercase, and if mutant in lowercase.
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a “prr wave” by their sequential expression starting with prr9 in the
morning [79]. Each component in the wave can bind to dna [77] to
repress cca1/lhy [80], thereby helping to turn off the earlier expressed
morning genes [81]. Since cca1/lhy regulate the prrs, the loop is
closed [81].
The multiple feedback loops confer the clock redundancy against

gene loss. In order to render the clock arrhythmic, multiple genes need
to be knocked-out, such as the triple mutant prr5;prr7;prr9 [82], or
cca1;lhy;toc1 [83]. Nonetheless, a non-functional early flowering 4
(elf4) gene stops all oscillation of toc1, cca1, and lhy in the absence
of rhythmic light, as this evening expressed gene is required for acti-
vating the morning genes [84, 85]. The elf4 transcript represses toc1
and another gene, lux arrhythmo (lux), which is required for the
expression of elf4 itself [86]. If either lux or the gene early flow-
ering 3 (elf3) is over-expressed, they can counteract the detrimental
effect of the elf4 mutant [87]. Both elf3 and elf4 target the promotor
region of prr9 [87, 88], where also lux has a binding site [87, 89]. The
three genes have similar phenotypic effects [87], and are believed to
form a multiprotein evening complex (ec), where elf3 tether elf4 and
lux together, as they do not interact directly [86]. Through ec, elf3
represses many genes together with elf4 during the night, among them
prr9, to which lux helps it bind [87, 89]. Furthermore, it is found that
both lux and the gene nox help the formation of the ec [90]. The
latter is regulated negatively by cca1 [91], as is the former [92, 93].
In addition, there are yet other genes that play a part in regulating

components of the clock, but are not yet included in any models, such
as cca1 hiking expedition (che) which binds to the promotor region
of cca1 and decreases its activity when in high concentration [94], and
early bird (ebi) which interacts with another clock controlled protein,
zeitlupe (ztl), through a not yet fully understood mechanism [95].

1.6.3 Post translational circadian regulation in Arabidopsis
There are several components of the clock in Arabidopsis that are subject
to post translational modifications. An early gene to be included in
the models was gigantea (gi) [68]. It is not regarded to encode for
a transcription factor, but it is believed to be cyclically regulated by
toc1, and stabilize the oscillation of ztl [96], that in turn will regulate
both toc1 and prr5 proteins [97, 98] (but no other prr [99]), by
marking toc1 [97] and prr5 [100] for degradation. The gi protein is
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also repressed by lhy [93] and elf4 [85], and degraded by the protein
constitutive photomorphogenic 1 (cop1), which acts in this regard
with elf3 [101].

Localization of a protein in the cell can provide the means of regulating
transcription. This can be achieved by controlling how much transcript
is released from the nucleus into the cytoplasm, where it would be
translated into a working protein [13]. Conversely, if a protein is a tf,
it will not be able to function (if in eukaryote) unless it is located in
the nucleus where the dna molecule resides. In Arabidopsis toc1 is
transported into the nucleus by prr5 [102], by forming a dimer which
helps toc1 accumulate in the nucleus [103], where it is protected from
degradation from ztl, which is only found in the cytosol [96].
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Von allem Geschriebenen liebe ich nur Das, was Einer
mit seinem Blute schreibt. Schreibe mit Blut: und du
wirst erfahren, dass Blut Geist ist.
Freidrich Nietzsche, Also sprach Zarathustra (1891)

Summary of Publications

The articles that follow are here presented in the context of this intro-
duction. The articles are independent of each other, but can be divided
into three fields: functional fitting to correlated data (paper I); a model
of the circadian clock in the plant Arabidopsis thaliana (paper III),
and transcriptional networks, represented as strings of bits (paper II
and IV).

2.1 on model fitting to correlated data

Despite the many years that have come to pass since the discovery and
explanation of Brownian motion, it still remains an active area of both
experimental and theoretical research. The advent of super-resolution
microscopy, capable of resolving individual particles of the cell, with
unprecedented quality [1, 2], has a great potential for increasing our
understanding of biological processes, e.g. following a single mrna
from transcription to translation to a protein is almost within our
reach [3]. In particle tracking experiments, one typically takes the
squared displacement of the fluorescently tagged particle over time and
averages over many trajectories, to get the mean square displacement
(msd) as a function of time. One then extracts model parameters such
as diffusion constants, by functional fitting using some standard method
like least squares (ls) which minimizes the residuals.

However, in this setting, the error estimation of the fitted parameters
of the ls method will generally be orders of magnitude too optimistic, as
the lsmethod is not valid when applied to correlated data, like trajectory
data. The correlation is apparent when considering two neighboring
sampling points for an individual trajectory. If the displacement is
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larger than the mean at that point, it is likely to still be for the next
point. Thus more frequent measurements do not necessarily increase
the accuracy of the parameter estimation as much as the ls method
lets on. A maximum likelihood method (ml) does little to alleviate
the problems of ls fitting, as it is associated with numerical instability
when inverting the covariance matrix of the observable. In addition,
the parameter estimate of the ml method is also subject to a strong
bias in the parameter estimation itself. In paper I we highlight this
problem, that seems to have gone largely unnoticed in the particle
tracking community. We provide a new correlation corrected error
estimation formula for the otherwise robust ls method, making it valid
also for nonlinear models. We demonstrate the improvement of the new
method on three prototypical systems: one linear system describing
ordinary Brownian motion, and two nonlinear subdiffusive systems with
weaker time dependence than Brownian motion [3]. We also derive
an expression for the bias of the ml method, valid to first order, and
evaluate both first and second order jackknife bias reduction procedures
applied to ml fitted parameters.
Furthermore, we introduce a Brownian motion adapted ls method,

which uses the exact covariance matrix for Brownian motion as basis
for its weighting matrix for the ls method. We find that the variance
of the estimated parameters is smaller than what was found for the
correlation corrected ls method, but at the cost of increased bias of the
parameter estimation itself.

Contribution
M.A.L. and T.A. conceived the idea of the project. All authors con-
tributed to the conceptual design of the cls method. I wrote all software
and performed all simulations, under supervision by T.A. I also pre-
pared all figures. I wrote the manuscript together with T.A., with input
from A.I. and M.A.L. The new error estimation formula (with and
without jackknife) was derived by T.A, and M.A.L. derived the bias
correction prediction for Brownian motion with input from me and T.A.
A.I. suggested the use of jackknife for ml fitting. T.A. coordinated the
project.
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2.2 on what shapes transcriptional networks

In paper II we set out to further our understanding of what shapes
the structure of transcriptional networks. As previously touched upon,
in section 1.3.1, it is currently unclear what underlying mechanisms
give rise to the many structural similarities of gene regulatory networks.
It can be argued that the similarities are a result of networks being
exposed to similar mutations, or alternatively, that network function
requires them to have certain structural properties. Selection and large-
scale gene duplication events [4] can explain the shared properties of
gene regulatory networks [5, 6]. In order to explore how mutation and
selection together shape networks, we develop a model of transcriptional
networks that we can subject to evolution, either neutral or towards
some function. The evolution can be restricted to just point mutations
and crossover, or also encompass gene duplication.
In greater detail, we represent gene regulatory regions and tfs as

sequences of ones and zeros, 256 or 32 bits, respectively. The binding of
tfs to dna is determined by the number of mismatching bits between
their sequences, and the regulatory action of the tfs depends on their
position on the dna relative to the transcriptional start site (tss). Half
of the possible tf binding site positions are downstream of the tss and
will block rnap from binding to the dna, effectively disallowing any
expression of the gene. Any tf binding upstream of the tss will act as
an activator. The network is built up of genes (nodes) producing tfs,
which bind to other genes to regulating them (edges). By the binding of
multiple tf species to a regulatory region, complex logic combinatorics
arise from cooperative and exclusive interactions. The model allows a
variable number of genes.

The total transcription rate of a gene depends on the probability for
rnap to bind and initiate transcription. This is computed from the
distribution of statistical weights for all possible binding states. This
representation of gene interactions is then used to evolve networks with
one of two possible functions. Either solve a majority decision task,
where the network must determine the state of the majority of the seven
binary input nodes, or act as an internal clock by using periodic input to
generate a timely gene expression. Networks are also allowed to evolve
neutrally, constrained to have the same structure (number of nodes,
edges and degree distribution) as their evolved functional counterpart.
We noted differences between networks depending on their function.

Networks performing the clock function were strongly biased towards
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negative edges and strong cooperativity among the tfs. This is expected,
as the clock needs negative feedback and nonlinearity for robust oscilla-
tions [7]. The majority decision system favoured positive regulation and
and logic in the interactions of binding sites. For tfs with two binding
sites in the same regulatory region, the number that had ambiguous
regulation (one repressing and one activating) behaved like expected
for a random process in the neutrally evolved networks. However, in
both our functional networks, and in data from E. coli, such ambiguity
was reduced. This result holds regardless of whether we allow gene
duplication or not.

When looking at the sign of each tf’s regulatory action in the network
as a whole, we found that both neutral and evolved networks follow the
random expectation in the absence of gene duplication as an evolutionary
step. However, when allowing gene duplication, tfs in both neutral and
functional networks evolved to specialize to act predominately as either
global repressors or activators. The main observed difference between
the two different types of functional networks lies in their Boolean logic
rules governing the gene regulation. The majority decision networks
were rich in and gates while the clock had comparatively many nor
gates. Furthermore, the networks differed in their distribution of number
of inputs to the logic rules, as well as their typical structure.

Contribution
The model was conceived and developed in collaboration with C.T. and
C.P. The software was developed in close collaboration with C.T., with
whom I also co-wrote the manuscript. I also contributed to making plots
and computer code for data analysis. Experiments and data analysis
were done together with C.T.

2.3 on transcriptional activation
in the circadian clock

In paper III we set out to model the circadian clock network of Arabidop-
sis thaliana. We used a system of odes that describe the transcription
and translation of the genes. Our starting point was an earlier model by
Pokhilko et al. [8], which we made heavy modifications to. For instance,
we assumed most regulatory interaction to be mostly repressing [7],
much like our example system in section 1.4.2 or what was found for our
clock network in paper II. We also abolished the sequential activation



2.4 on algorithms for an efficient crossover 41

for generating the prr wave, and instead modelled it as each component
turning off its predecessor. Furthermore, we added two newly discovered
clock genes, the night expressed nox [9] and the morning expressed
reveille 8 [10, 11]. The latter acts as the sole activator within in our
clock network.
For our modelling procedure we developed a data driven approach.

This meant culling time course measurement data from published ex-
periments, resulting in over 11,000 extracted data points from 800 time
courses in 150 different mutants and light conditions. Our model uses
simulated annealing to minimize a cost function that fits both profile
shape and level of the simulated expression of all variables to all data
in all conditions simultaneously.

Contribution
I compiled all experimental time course data used in the fitting, by
extracting 11,000 data points, by hand, from published articles. I went
through the corpus of published experimental findings in the field of
Arabidopsis. C.T. designed the software, but I made contributions, such
as code for generating plots, and model optimization. I performed the
simulations. I co-wrote the article with C.T., and prepared the figures.

2.4 on algorithms for an efficient crossover

To investigate mechanisms of evolution, we need a representation of
the genome for it to act on. Therefore, we implement a model with
a variable-length linear genome, that will allow relevant operations
such as mutations and gene duplications. In our model, the genome
is able to get longer, by insertion of duplicated sequences, or shorter,
by deletion. This enables better exploration of evolutionary space by
providing ample room for neutral evolution on the genome. However,
using a variable-length genome makes meaningful crossover operations
challenging. A viable offspring needs a complete set of the genes shared
between its parents, and a combination of the features that are unique
to either one. We solve this by aligning the parental genomes to identify
the homologous regions, and use these shared sequences as potential
crossover points.

The alignment can be made using a global alignment method, such as
the Hirschberg algorithm [12], but this is computationally demanding.
Another method exists for performing crossover operations: by aligning
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the longest identical sequences (“synapses”), the regions in between
can be exchanged [13]; however, the method assumes high sequence
similarity, which might not be fulfilled in evolutionary simulations. We
compared these two methods, together with our own heuristic alignment
method. The methods were assessed through three different measures:
cpu time consumption, the ability for the crossover algorithm to align
homologous sequences, and the performance of the offspring in a simple
evolutionary setting.
In more detail, our model represents the genome as a single string

of bits. In the evolutionary simulations, a gene is identified by a start
sequence, which is an arbitrary predetermined six bit pattern, and
the following three groups of ten bits are read as integers, giving the
height, width, and position of triangles whose area should sum up to
approximate a sinusoidal function, which is how we map genotype to
phenotype.
We find that our heuristic method aligns sequences as well as the

theoretically optimal Hirschberg algorithm, as long as the parental
sequences are not extremely divergent. The cpu time consumption
scales more favourably for our heuristic algorithm as the genome length
grows, than it does for the Hirschberg method. For low sequence
divergence, the heuristic algorithm is approximately twice as fast as the
synapsing method. We find that with crossover operations, the fitness
increases faster with fewer generations, than it does without crossovers.
Thus crossover operations are especially beneficial when evaluating time
consuming fitness functions, resulting in an overall lower computational
cost.

Contribution
I developed the model for encoding the network as a single bitstring
together with C.T., and collaborated on implementing the synapsing
algorithm with A.M., H.Å. and C.T. I prepared the figures, took part in
discussions on sequence alignment, and contributed to the manuscript
together with the co-authors. C.T. ran all simulations and generated
the data.

references

1. K. R. Chi, “Super-resolution microscopy: breaking the limits,” Na-
ture Methods, vol. 6, no. 1, pp. 15–18, 2009.



References 43

2. M. J. Saxton, “Single-particle tracking: connecting the dots,” Nature
Methods, vol. 5, no. 8, pp. 671–672, 2008.

3. E. Barkai, Y. Garini, and R. Metzler, “Strange kinetics of single
molecules in living cells,” Phys. Today, vol. 65, no. 8, p. 29, 2012.

4. P. D. Kuo, W. Banzhaf, and A. Leier, “Network topology and
the evolution of dynamics in an artificial genetic regulatory net-
work model created by whole genome duplication and divergence,”
Biosystems, vol. 85, no. 3, pp. 177–200, 2006.

5. R. De Smet and Y. Van de Peer, “Redundancy and rewiring of
genetic networks following genome-wide duplication events,” Current
opinion in plant biology, vol. 15, no. 2, pp. 168–176, 2012.

6. T. R. Sorrells and A. D. Johnson, “Making sense of transcription
networks,” Cell, vol. 161, no. 4, pp. 714–723, 2015.

7. B. Novák and J. J. Tyson, “Design principles of biochemical os-
cillators,” Nature reviews Molecular cell biology, vol. 9, no. 12,
pp. 981–991, 2008.

8. A. Pokhilko, A. P. Fernández, K. D. Edwards, M. M. Southern, K. J.
Halliday, and A. J. Millar, “The clock gene circuit in Arabidopsis
includes a repressilator with additional feedback loops,” Mol Syst
Biol, vol. 8, p. 574, 2012.

9. S. Dai, X. Wei, L. Pei, R. L. Thompson, Y. Liu, J. E. Heard,
T. G. Ruff, and R. N. Beachy, “brother of lux arrhythmo is a
component of the Arabidopsis circadian clock,” Plant Cell, vol. 23,
no. 3, pp. 961–972, 2011.

10. R. Rawat, N. Takahashi, P. Y. Hsu, M. A. Jones, J. Schwartz, M. R.
Salemi, B. S. Phinney, and S. L. Harmer, “reveille 8 and pseudo-
reponse regulator 5 form a negative feedback loop within the
Arabidopsis circadian clock,” PLoS Genet, vol. 7, no. 3, p. e1001350,
2011.

11. P. Y. Hsu, U. K. Devisetty, and S. L. Harmer, “Accurate timekeeping
is controlled by a cycling activator in Arabidopsis,” eLife, vol. 2,
p. e00473, 2013.

12. D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Commun. ACM, vol. 18, pp. 341–343, June
1975.

13. B. Hutt and K. Warwick, “Synapsing variable-length crossover:
Meaningful crossover for variable-length genomes,” Evolutionary
Computation, IEEE Transactions on, vol. 11, no. 1, pp. 118–131,
2007.





In search of Truth the hopeful zealot goes,
but all the sadder turns, the more he knows

H.P. Lovecraft

Appendices

Herein, we collect information deemed outside the scope of the main
text, as we do not want to risk leading the reader astray.

3.a excerpt from “on the nature of things”

It has been argued by many that things were better in the days of
yore. Indeed, gone are the days when science was written on verse, as
was done by Roman natural philosopher Titus Lucretius Carus, c. 99 –
55 bc [1].
In his poem, De rerum natura, divided into six books, he describes

the principles of atomism. He strives to explain the world through
natural laws rather than the will of gods. In the second book, he
describes how dust particles, dancing in the sunlight, are the result
of collisions of many small atoms having an impact on an hierarchy
of larger particles, finally resulting in the movements of objects large
enough for our perception [2].

The following is an excerpt, as translated by William Ellery Leonard
(1876–1944), from On the nature of things:

For us thin air and splendour-lights of the sun.
And many besides wander the mighty void–
Cast back from unions of existing things,
Nowhere accepted in the universe,
And nowise linked in motions to the rest.
And of this fact (as I record it here)
An image, a type goes on before our eyes
Present each moment; for behold whenever
The sun’s light and the rays, let in, pour down
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Across dark halls of houses: thou wilt see
The many mites in many a manner mixed
Amid a void in the very light of the rays,
And battling on, as in eternal strife,
And in battalions contending without halt,
In meetings, partings, harried up and down.
From this thou mayest conjecture of what sort
The ceaseless tossing of primordial seeds
Amid the mightier void–at least so far
As small affair can for a vaster serve,
And by example put thee on the spoor
Of knowledge. For this reason too ’tis fit
Thou turn thy mind the more unto these bodies
Which here are witnessed tumbling in the light:
Namely, because such tumblings are a sign
That motions also of the primal stuff
Secret and viewless lurk beneath, behind.
For thou wilt mark here many a speck, impelled
By viewless blows, to change its little course,
And beaten backwards to return again,
Hither and thither in all directions round.
Lo, all their shifting movement is of old,
From the primeval atoms; for the same
Primordial seeds of things first move of self,
And then those bodies built of unions small
And nearest, as it were, unto the powers
Of the primeval atoms, are stirred up
By impulse of those atoms’ unseen blows,
And these thereafter goad the next in size:
Thus motion ascends from the primevals on,
And stage by stage emerges to our sense,
Until those objects also move which we
Can mark in sunbeams, though it not appears
What blows do urge them.
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3.b on the repressilator

The parameter values used for generating our three-component repressi-
lator.

Parameter Value Parameter Value
k1 5.50 d1 2.23
k2 0.36 d2 2.32
k3 15.47 d3 1.00
K1 0.11 n1 3.46
K2 0.38 n2 3.84
K3 0.0027 n3 3.79

Table 3.1 Parameter values. The parameter set used for bringing the three
component network described in section 1.4.2 to a limit cycle.
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I

Experimental super-resolution methods allow tracking of particles with an
unprecedented spatial resolution. A crucial down stream objective when inter-
preting tracking experiments is to fit averages (typically, squared displacements
at different times) with a model and extract parameters, such as diffusion
constants. A commonly overlooked challenge in such fitting procedures is that
fluctuations around mean values almost always exhibit temporal correlations.
We show here that current methods, maximum likelihood and least squares
fitting, fail at either robust parameter estimation or accurate error estimation.
We remedy this deficiency by deriving a new error estimation formula for
least square fitting. The new formula uses the full covariance matrix, i.e.,
rigorously includes correlations, but is free of the robustness issues, inherent
to the maximum likelihood method. We demonstrate its accuracy in three pro-
totypical examples of importance in cell biology: Brownian motion, fractional
Brownian motion and continuous time random walks. Our correlated-corrected
least squares method is general in character and will therefore be of use in
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other fields where fitting to ensemble data is common, such as physics, astron-
omy, and finance. Our closed-form error estimation formula is well suited for
standard curve fitting software packages.

i.1 introduction

The last decade has witnessed a revolution in the ability of probing
biological structures in the nanometer-range, via super-resolution flu-
orescence microscopy techniques, such as sted, palm, storm and
high-accuracy localization techniques like fiona [1–6]. These techniques
have been predicted to profoundly change our understanding of the
working of biological cells at a truly nanoscopic level. Super-resolution
microscopy was “Method of the Year” in Nature Methods 2009 [7] and
was awarded the Nobel Prize in chemistry in 2014. The method, applied
on particle tracking, entails the following steps: [8] (i) label the fluores-
cent molecules, (ii) localize the associated “dots” in movies, (iii) connect
the dots and (iv) interpret the resulting trajectories. Step (i) involves
challenges such as increasing biocompatibility, brightness and photosta-
bility of fluorophores [9]. Steps (ii)-(iii) concern several theoretical and
computational challenges, which have attracted considerable attention
over the past ten years [10–12]. Step (iv) requires the interpretation
of ensemble averages over the measured trajectories and often requires
fitting the measured mean square displacements (msd) at different sam-
pling times to some standard model [8]. This final and crucial step is
here revisited.
Fitting a model function to data is done so readily in the field of

science that one seldom considers the correctness of the standard go-to
solution of the least squares (ls) method (χ2 minimization) [13]. For
applications to the present problem, one of the crucial assumptions of
the ls method is that the fluctuations around mean values (in tracking
experiments, often the mean square displacements) are independent
quantities. However, since in particle tracking experiments, the data is
sampled along trajectories, this assumption is in general never satisfied
when analyzing ensemble averages based on a set of trajectories; heuristi-
cally, if in one trajectory an observable, such as the square displacement,
was smaller than its ensemble averaged value at some time, it is typically
still so at the next time step (see Supplementary Figure I.S1 for an
illustration). Thus, the fluctuations around the estimated msd, or any
other ensemble averaged observable, exhibit temporal correlations.
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The question now arises of how severe the consequences of neglecting
the temporal correlations in ls fitting are. We demonstrate that it can
lead to underestimated errors for parameters (such as diffusion con-
stants) by more than one order of magnitude for our prototype systems
(see below), which can have detrimental effects when interpreting the
data. To our knowledge, the only previous method for dealing fully
with correlation in data is the correlated χ2 minimization method [14]
(maximum likelihood, ml [15]). This method is known to the lattice
qcd community, but does not seem to have found wide spread use.
This could partly be due to that, while statistically sound, robustness
issues have been identified [16, 17]. Herein, we carefully examine the
ml method and demonstrate that it only provides correct parameter
estimation in a small region of the "phase space" (N,M), where N is
the number of sampling times and M is the number of trajectories.
Thus, it appears that the ml and ls methods are of limited general
purpose use for interpretation of ensemble averages based on particle
trajectories.
Here, we remedy the lack of available tools for accurate parameter

estimation based on sampled trajectories. We derive a new error es-
timation formula for standard ls fitted parameters which takes into
account the temporal correlations, intrinsic to ensemble averages based
on trajectories. We compare our method, referred to as the correlation-
corrected least squares (cls) method, to both the ls method and to
the ml approach. The new method has the following desirable unique
features: (1) robust estimation of parameters in the full phase space
(N,M); (2) estimated mean parameter values are in agreement with
theory for our prototype systems; (3) the error estimation formula accu-
rately reproduces the spread of the actual parameter values. Brownian
motion (bm), fractional Brownian motion (fbm) and continuous time
random walks (ctrw) are here used as prototype models. These have
been identified as three important model systems for motion of fluores-
cently labeled particles and molecules in cells [18]. Additionally, these
three model systems provide ideal test beds for our method, as they are
accessible by analytical means; in particular, the msd is known for all
three cases. Like in previous tracking method evaluation studies [19]
(where different methods for steps (ii) and (iii) were benchmarked) we
use simulations for validation purposes.
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i.2 methods

In what follows, we provide a ready-to-use method, which is further
motivated and detailed in the Supplementary. In particle tracking
experiments one records a set of trajectories, here enumerated by m.
The task at hand is to fit some functional form f(ti;λ) = fi(λ), with
K free fitting parameters λ = λ1, . . . , λK to some ensemble average
y(ti) = yi over the trajectories, i.e., to an unbiased sample mean of the
form

yi =
1

M

M∑
m=1

y
(m)
i (I.1)

where the index i is over the N sampling times T = T1, . . . , TN (with
N ≥ K). In all applications (see Results) we use squared displacements,
i.e., y(m)

i = |x(m)(Ti)− x(m)(0)|2, where x(m)(t) is the particle position
(a vector with d elements, where d is the number of spatial dimensions) at
time t for trajectorym, and the start time for the simulation/experiment
is t = 0. We point out, however, that in the cls method the quantity
y

(m)
i can be any observable for trajectory m at sampling time Ti. We

shall consistently use single bar to denote a sample estimator and double
bar for exact expectation value. The challenge of model parameter
estimation [15] is to "fit" some function fi(λ) to data yi and thereby
extract the model parameters, λ. This problem has previously typically
been tackled using the ls or ml methods (reviewed in section I.D). We
do not concern ourselves here with the model selection problem [20],
i.e., how to choose the functional form for fi(λ).
Our approach, the cls method, extends the standard ls procedure

with a correct error estimation formula valid also for correlated data.
For completeness and ease of application, we here provide the full details
of the proposed cls fitting procedure. We start by introducing a cost
function, χ2, based on the the difference between the sample average
and the fitting function Λi = yi − fi(λ) for all time points, according
to

χ2 = ΛTR Λ, (I.2)

here in matrix (bold) notation. This cost function is to be minimized
with respect to λ in order to determine the best parameter values, λ∗a
(a = 1, . . . ,K) [21]. The matrix R is any symmetric positive definite
matrix. In the cls method we use Rij = Rij = δij/Cij as in the stan-
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dard ls approach, where δij is the Kronecker delta, and the (unbiased)
sample “covariance matrix of the mean” is defined as Cij = Qij/M ,
with Q as the sample covariance matrix

Qij =
1

M − 1

M∑
m=1

(y
(m)
i − yi)(y

(m)
j − yj). (I.3)

We note here that, while this specific choice of R is used in our applica-
tions, the results in this section, including the new error formula below,
is valid for arbitrary choices of R. In section I.E we elaborate on one
"non-conventional" choice of R particularly adapted for bm, namely
using the exact covariance matrix for bm.

The parameters, λ∗a, obtained by minimizing the cost function χ2 will
have a (co)variance ∆ab = 〈(λ∗a − λa)(λ∗b − λb)〉, where 〈. . .〉 denotes
ensemble average. The variance of the fitted parameter is σ2

a = ∆aa.
As noted in the Introduction, this covariance depends on the temporal
correlations. For a stationary process, it is well-known how to estimate
the variance of a mean in the presence of temporal correlations, typically
by expressing the variance in terms of the sum or integral of the auto
correlation function [22, 23]. In the present context, such an estimation
corresponds to fitting a “horizontal line”, fi(t) = λ1 and assuming
all correlation functions only depend on time differences. We here
extend these results to non-stationary processes and arbitrary fitting
functions by deriving the analogous expression for ∆ab by using the full
multivariate probability density for their fluctuations around the mean
values. We find (see section I.E.2 for details):

∆ab =
4

M

∑
c,d

∑
i,j

(h−1)ac
∂fi
∂λc

∣∣∣∣
λc=λ∗c

(RTQ R)ij
∂fj
∂λd

∣∣∣∣
λd=λ∗

d

(h−1)db,

(I.4)

and

hab = 2
∑
i,j

∂2fi(λ)

∂λa∂λb

∣∣∣∣λa=λ∗a
λb=λ

∗
b

RijΛj

+ 2
∑
i,j

∂fi(λ)

∂λa

∣∣∣∣
λa=λ∗a

Rij
∂fj(λ)

∂λb

∣∣∣∣
λb=λ

∗
b

,

(I.5)

where the indices a, b = 1, . . . ,K. Eq. (I.4) gives a mathematically
rigorous expression (to first order in 1/M) for the covariance of the
estimated parameters, and is a key result. It allows us to accurately
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estimate the covariance of any parameter fitted using minimization of
the cost function in eq. (I.2). For a good fit, one may neglect the first
term on the right hand side of eq. (I.5). Notice that the correlations in
fluctuations around mean values enter through the quantity Q, i.e., the
covariance function of the squared displacements, and is estimated using
the usual sample estimate above. Neglecting the off-diagonal elements
of Q above we recover the standard ls error estimation formula [13].
For linear fi(λ), eq. (I.4) reduces to previously known expression for
linear ls (eq. 5.253 in van den Bos [15]). By setting R = C

−1 above
we recover the covariance estimation formula for ml [15, 24]. For
a stationary process one seeks to fit a horizontal line, fi(λ1) = λ1,
to the data. For such a case, the minimization procedure (solving
∂χ2/∂λ1 = 0 with Rij = δij) yields λ1 = (1/N)

∑
i yi, i.e. the parameter

estimate is the mean of the data. The error estimation eq. (I.4), then
reduces to ∆ = (1/M)

∑
i,j Qij/N

2, which, using the fact that for a
stationary process Qij only depends on time differences, reduces to
the usual result [22, 23] used, for instance, in interpretation of Monte
Carlo and molecular dynamics simulations. In practice our general
formula, eq. (I.4), involves only matrix multiplications and is thus
computationally fast and simple to implement.

i.3 results

To validate the new cls method (see Methods), our three prototype
systems were simulated as described in section I.C. For all systems the
msd is known analytically (important for validation purposes): for bm
the msd is known to behave as 〈[x(t)− x(0)]2〉 = fBM(λ, t) = λt, where
t is the sampling time and λ = 2dD, and D is the diffusion constant.
For ctrw and fbm, we instead have f(λ, t) = λ1t

λ2 , where λ1 and λ2

are known, see section I.B.
The integrity of the two previous standard methods, ls and ml, were

evaluated together with our cls method, by applying them to a large
set of msds, each computed from a fixed data set of M trajectories,
sampled N times. For both ml and the cls/ls methods the 500 fitted
values of a given parameter were binned to a histogram, see Figure I.1,
and compared to a Gaussian centered on the mean parameter value and
a variance from the average error estimate from either of the ls and cls
methods. For all parameters, the cls/ls yield a correct parameter fit
centered on the true value, but only the cls method gives a correct error
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estimation, eq. (I.4), as the narrow predicted width in the ls method,
see equations (I.34) and (I.35), is much too optimistic. Clearly, the
new error estimation of the cls method performs extremely well. By
contrast, the standard ls method does not provide correct errors of the
estimated parameters; this result extends beyond the chosen parameters
for (N ,M) in Figure I.1, and holds true under general conditions, see
Figure I.2.

While the parameters from the cls and lsmethods are centered on the
analytical prediction, this is not true for parameters from the ml method,
which show a strong bias (Figure I.1). As we show in section I.F.2 we can
analytically predict the expected bias for bm when using the ml method
(cost function with R = C

−1), see Supplementary Figure I.S3. For large
N we find that the bias for ml fitting becomes 〈λ∗〉 = λ+DG(N)/M ,
where G(N) ≈ −8N/(lnN + γ + 2 ln 2) and γ ≈ 0.5772 is the Euler-
Mascheroni constant. Thus, for large N , the bias increases as N/ logN

with the number of sampling points N (see Supplementary Figure I.S3).
The strong bias in the estimated parameters for the ml procedure is
a general one, appearing in all three prototype systems, as seen in
Figure I.1. A similar calculation for the cls method, see section I.F.3,
yields only a minor, essentially N -independent, bias with G(N) =

−4(1− 1/N).
As we have seen, the ml method gives a pronounced bias in the

parameter estimate for a specific choice of the number of sampling
times N and trajectories M (Figure I.1) for all three prototype systems.
In order to investigate the generality of our finding, and its impact on our
systems of other known issues with the ml method [16, 17], we explored
an extended region of phase space (N,M), see Figure I.3. For a region
determined by large N and moderate to small M the sample estimate
for the covariance matrix C is ill-conditioned. In practice this means
that it cannot be numerically inverted, as required in the ml parameter
estimation procedure, without uncontrollable numerical errors. For
parts of phase space where ill-conditioness is not an issue, we defined an
acceptable fit as one where the bias is smaller than 5% (compared to the
analytic value, λa). We find that for bm and fbm there is indeed a thin
region defined by large M and small N , where ml works. In contrast,
for ctrw the ml only yields acceptable parameter estimation in a very
limited part of phase space (e.g. for N < 25 for M = 1000). The bias
inherent in the ml method can be reduced by applying the common
jackknife procedure [25], which removes bias terms proportional to
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Figure I.1 Histograms of fitted parameters for cls/ls and ml com-
pared to theoretical predictions. Each method is tested on: (A) Brow-
nian motion (bm), (B-C) continuous time random walk (ctrw), and (D–E)
fractional Brownian motion (fbm). In each test, we generate 500 data sets,
each consisting ofM = 150 particle trajectories sampled at N = 80 time points
(histograms). Left and right panels show histograms (500 fitted parameters)
for the effective diffusion constant λ1, and the exponent λ2, respectively. The
two Gaussian curves are centered on the mean of the fitted parameters and
have a width corresponding to the parameter uncertainty estimated by the
fit method (averaged over 500 fits). The ml fit exhibits a strong bias in the
parameter value (not centered on the analytical prediction), and the ls fit
gives an error estimation, see eq. (I.35), that is much too small. The new cls
procedure (Methods) works well, i.e. exhibits negligible bias and yields correct
error estimation, eq. (I.4). The rather large number of trajectories (M = 150)
was used in order to avoid ill-conditioness issues for the ml fitting, compare
to Figure I.3. For simulation parameters, see section I.C.
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Figure I.2 Error estimation. Standard deviation from the ls and cls param-
eter fits as a function of the number of sampling points, N , used in the fitting
procedure (log-scale on the horizontal axis for visibility). Each method is
applied to 500 realizations of data from (A) Brownian motion (bm), (B-C)
continuous time random walk (ctrw), and (D–E) fractional Brownian motion
(fbm). In conjunction we show the actual standard deviation of each of these
methods computed from the parameters from the fit (lines), i.e. the width
seen in Figure I.1, but for an extended range of N . It is evident that the
standard deviation from the ls fit is far too small for almost all N . Error
bars show standard error of the mean. For M = 80 there is a small bias in
the observable σ, as compared to actual standard deviation. This bias can
be removed using the jackknife procedure, see section I.G. For simulation
parameters, see section I.C.
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1/M , see section I.G. By applying the (first-order) jackknife procedure
(Figure I.3) we find that the bias is reduced which expands the region
of the phase space where ml method may be used reliably. However,
for the prefactor λ1, in ctrw, the jackknife procedure for ml does not
reduce the bias to an acceptable level. Note that the computational
time is a factor g (g is the number of groups into which the trajectories
are pooled) larger for the first-order jackknife procedure compared to
the non-jackknife case. Finally, in principle the jackknifing procedure
can be extended to remove higher order bias terms (proportional to
1/Mn, with n = 2, 3, . . .) [25]. However, for the present case there is
no guarantee that these higher order terms have this functional form
with respect to M , see section I.F.1. Also, our results show that the
second-order jackknife increased, rather than decreased, the bias in
the parameter estimations for most parts of the phase spaces. For bm,
Supplementary Figure I.S4 indicates that the reason for this is that
the third order term (term proportional to 1/M3) is generally larger
in amplitude (but of opposite sign) than the second order one. It is
also important to remember that higher order bias reduction comes at
a computational price. The number of numerical evaluations required
for second order jackknife is g(g + 1)/2 times that of non-jackknifed
parameter estimation. Due to these findings and the lack of a formal
functional form for the bias, beyond the 1/M term (see above), we do
not recommend applying the jackknife procedure beyond first order.
Finally, we point out that the new error estimation formula, eq. (I.4),
remains valid also for jackknifed parameters, see section I.G.3.

In Supplementary Figure I.S5 we investigated the "goodness of fit" for
the cls and ml procedures using a standard R2 measure, see section I.I.
A good fit is characterized by R2 ≈ 1. We find that, in this sense, the
new method provides "good" fits. In contrast, the ml method in general
provides "bad" fits with R2 � 1 for large N .
Let us finally discuss error estimation using subsampling [23], as an

alternative to the cls method. Subsampling refers to the method of
choosing sampling times sufficiently sparsely in order to make the data
points essentially uncorrelated (the “brute force” method in Supple-
mentary Figure I.S1 is an extreme case of subsampling where only one
data point per trajectory is kept). After subsampling, error analysis is
performed using standard error analysis for independent data. In order
to properly choose N within this method, N is systematically decreased
until the variance saturates to a constant (this constant is assumed to be
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Figure I.3 Phase space of reliable ml fitting. For each of our example
systems, (A) Brownian motion (bm), (B–C) continuous time random walk
(ctrw), and (D–E) fractional Brownian motion (fbm), we investigate for
which number of sampling times N , and number of trajectory realizations M ,
the fitting is more than 5% off from its analytical value, averaged over 500
msds. As indicated, ml is only reliable in a limited region (large M , small
N), which can be extended by a first order jackknife correction. The cross
marks the N,M used in Figure I.1 and Supplementary Figure I.S2. For bm
we also include when the analytically predicted first order bias term for ml,
G(N), eq. (I.80), gives a bias that is 5% of the exact parameter value, see
section I.F.2. We also show the boundary for when more than half of the 500
generated covariance matrices become ill-conditioned. Interestingly, a second
order jackknife generally does more harm than good compared to the first
order, which we elaborate more on in Supplementary Figure I.S4. In contrast
to ml (non-jackknifed), the cls/ls method is valid for most N,M (region
above the curve), and can be extended even further using a jackknife approach
(data not shown).



60 paper i

the true variance) [22, 23]. Figure I.2 shows how estimated errors from
our ls and cls analyses depend on the number of data points used, N .
We find that temporal correlations are so strong that the ls method
underestimates the errors down to very small N . Moreover, finding a
sufficiently small N is difficult, since the ls does not in general saturate
to a constant level as N is reduced. These challenges are completely
circumvented by instead using the error estimation from the cls method
(i.e. using eq. (I.4) instead of eq. (I.35)).

Within our framework, we formulated the fitting procedure in terms of
a cost function, involving a positive definite matrixR. In all illustrations,
we choose R consistent with a ls cost function. However, there is a great
deal of flexibility in the choice of R. In the Supplementary, we explore
yet another choice (based on the Cholesky decomposition of the exact
bm covariance matrix), which, for bm (but not for fbm and ctrw) yield
comparable (slightly improved with respect to variance in parameter
estimation) results to the method introduced herein (Supplementary
Figure I.S6). It remains a future challenge to find R matrices which
are adapted to specific classes of problems; i.e., can one tailor R to
yield minimum variances? In this respect, the Cramer-Rao bound is a
useful tool, providing an expression for the smallest possible variance
for parameter estimators. In practice, the Cramer-Rao bound requires
a knowledge of the full multivariate probability density for the process
under investigation. For the cases considered here, namely, squared
displacements, this probability density is not known (see section I.H),
which for the present applications, may limit the practical usefulness of
the Cramer-Rao bound.

i.4 discussion, conclusion and outlook

An important step in analysis of particle tracking data is that of fitting
a model to the time-evolving mean of some observable and estimate
the associated model parameters. Since fluctuations around observed
mean values, calculated based on particle trajectories, are in general
correlated in time (the particle is likely to remain at the same side
of the average for two consecutive points in time), the standard least
squares (ls) method provides error estimates for parameters which
can be more than one order of magnitude too small. Further, we
demonstrated that the maximum likelihood (ml) estimation, involving
numerical inversion of a noisy covariance matrix, yields a very strong
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bias, or ill-conditioning, in parameter estimation. We remedied this lack
of tools for parameter estimation for ensemble averages, by deriving
a new error estimation formula for ls fitting, that does not require
inversion of the full covariance matrix. The new formula provides simple
means for parameter estimation: (A) perform a ls fit to the data, (B)
use the new error estimation formula, eq. (I.4), to estimate the variance
as well as covariance among parameters. We demonstrated on three
simulated prototype systems that this method provides accurate results
that far outperform the standard ml and ls methods.
In this study, we emphasize the use of our fitting procedure for

ensemble averages based on particle trajectories. However, we wish
to point out that χ2 minimization is ubiquitous throughout all fields
of science. Therefore, we expect that our method finds its way into
essentially all fields where quantitative analysis of data is used, and that
the new error estimation formula will find its way into standard statistical
packages. The new formula is as "easy" to compute as standard ls error
estimates, and, needless to say, the formula incorporates the uncorrelated
case.
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i.a supplementary figures
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Figure I.S1 Correlated and uncorrelated (synthetic) squared displace-
ments. The displacement squared y(m)

i = [x(m)(ti)−x(m)(0)]2 for fractional
Brownian motion as a function of time, t, for two trajectories, labeled by
m, and the mean of a large ensemble (M = 103) of trajectories. Panel (A)
shows actual trajectories which exhibit strong correlation, meaning: if we
are above the mean for some time point on a trajectory, we are likely to
still be for time points close to it (circled). In panel (B) we, for comparison,
construct “synthetic” trajectories by only using one data point from each real
trajectory, and "throw away" the rest, resulting in (computationally expensive)
uncorrelated data. That is, within this “brute force” method, to generate a
single uncorrelated trajectory of N sampling points, we need to use the same
amount of real trajectories, and throw away all data points save one. Data
was generated from a one-dimensional fractional Brownian motion simulation
with Hurst parameter H = 0.9, see section I.B.3.
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Figure I.S2 Example of a fit to msd data for the cls/ls and ml meth-
ods. An illustrative example of a typical fit to msd trajectory data, based on
M = 150 trajectories, for (A) Brownian motion (bm), (B) continuous time
random walk (ctrw), and (C) fractional Brownian motion (fbm). The model
parameters were fitted to the msd using either cls/ls, or ml fitting procedure,
for N = 80, M = 150, see Fig. I.1 and cross in Fig. I.3. For ml fitting to the
msd of fbm data, we see that although the exponent is almost the same, the
pre-factor is inaccurate.
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Figure I.S3 Bias in the parameter fit. The residual bias in the fit (multiplied
by the number of trajectoriesM) as a function of sampling points, N (log-scale
for the horizontal axis for visibility), averaged over parameters from fitting
to 500 msd realizations. (A) For the Brownian motion ml fit, the analytical
prediction, G(N), (full line) for the first order bias follows the observed bias for
M = 103, data (section I.F.2). Also for (B–C) continuous time random walk,
and (D–E) fractional Brownian motion, the bias term in ml is large compared
to cls. The bias can be alleviated to some degree by a computationally
demanding Jackknife procedure. Error bars show standard error of the mean.
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Figure I.S4 High order bias contribution. The bias in the parameter es-
timation is commonly assumed to be of the form λ∗ = λ + a/M + b/M2 +
c/M3 + O(M−4), see section I.F. In panel (A) the vertical axis shows the
(negative) second order bias term −b/M2, and in (B) the (positive) third
order term, c/M3, for three different number of sampling times N . Note
that these are of comparable magnitude, but opposite sign. Thus a second
order jackknife, which removes terms proportional to a/M and b/M2, may
yield more unfavorable results than a first order jackknife, which only removes
the a/M term. We note that the slope of the second order bias term ap-
proximately corresponds to M2, and the third order is slightly more. For
panel (A) the second order bias was extracted combining eq. (I.113) and
eq. (I.115), to give −b/M2 = 2λ

∗(0,1,2)
J + λ

∗(0,1)
J − 3λ, and for panel (B) we

have (λ
∗(0,1,2)
J − λ) = c/M3, which follows immediately from eq. (I.115).
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Figure I.S5 Goodness-of-fit using the the coefficient of determination.
The quality of the ml and cls/ls fit is quantified by the coefficient of determi-
nation, R2, as a function of sampling points, N (horizontal axis on log-scale
for visibility), for our three prototype systems: (A–B) Brownian motion (bm),
(C–D) continuous time random walk (ctrw), and (E–F) fractional Brownian
motion (fbm). A perfect fit yields unit value, while a bad fit results in R2 � 1.
The number of trajectories used in the msd was either M = 103 (left), or
M = 80 (right). All data was averaged over 500 realizations, with standard
deviation given by the error bars. For panel (D) only a few data points could
be obtained, due to numerical instability of the ml-method, and for panels
(B,F) R2 < 0 for larger N .
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Figure I.S6 Bias and variance of Brownian motion adapted least
squares (bmals) compared to the cls method. We show bias in pa-
rameter fit (left panels) and their variance compared to estimates from fitting
procedure (right panels), as a function of the number of sampling times, N .
The msd based on two different data sizes, M (number of trajectories) was
considered: (A,B) M = 103 and (C,D) M = 80; averaged over 500 realizations.
It is evident that there is a bias-variance trade-off between the two fitting
procedures used, cls and bmals: the lower variance in bmals, as compared
to cls, comes at the price of a higher bias in the parameter fit. Error bars
show standard errors of the mean.
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i.b prototypical example systems

In the main text we provide results for different parameter estimation
procedures. As prototype systems we use three processes where the true
parameter values are known, namely: (i) Brownian motion (bm), (ii)
continuous time random walks (ctrw), and (iii) fractional Brownian
motion (fbm). As noted in the main text, these systems are of interest
as they have been shown to be of importance to motion of fluorescently
labeled particles in cells [1]. For bm and ctrw in d spatial dimensions,
steps in different directions are independent. Therefore, without loss of
generality, all simulations are here performed in one dimension, d = 1,
for these systems. Also, for consistency, we use d = 1 in our fbm
simulations.

i.b.1 Brownian motion
Our first example is a simple Brownian motion where a single particle
diffuses in one dimension. The mean square displacement (msd) at
time t, for dimension d, and diffusion constant D, is

〈(x(t)− x(0))2〉 = 〈y(t)〉 = λt, (I.6)

where

λ = 2dD (I.7)

and

y(t) = [x(t)− x(0)]2. (I.8)

In all simulations in the main text we use one-dimensional simulations,
i.e., d = 1.
In one-dimensional Brownian motion, the full covariance matrix for

the displacement is known [2]. Choosing x(0) = 0 and discretizing time
according to ti = iε (i = 1, . . . , N), with time step ε, we have

V ij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 = 2Dmin(ti, tj), (I.9)
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where xi = x(ti) and D is the diffusion constant. On matrix form:

V = 2Dε



1 1 1 . . . 1

1 2 2 2

1 2 3 3
...

. . .

1 2 3 N


. (I.10)

Of interest here is also the covariance matrix for the square displace-
ments:

Qij = 〈(yi − 〈yi〉)(yj − 〈yj〉)〉. (I.11)

Using Wick’s (Isserlis’) theorem for zero-mean processes, we can calcu-
late any moment of a multivariate Gaussian according to

E[x1x2 · · ·x2n] =
∑∏

E[xixj ], (I.12)

where the sum is over all distinct ways of partitioning x1 . . . , x2n into
pairs xixj . Using eq. (I.12) we have the following relation between Q
and V :

Qij = 2V
2

ij . (I.13)

On matrix form:

Q = 8(Dε)2



1 1 1 . . . 1

1 4 4 4

1 4 9 9
...

. . .

1 4 9 N2


. (I.14)

The standard unbiased sample estimator Q is1

Qij =
1

M − 1

∑
m

(y
(m)
i − yi)(y

(m)
j − yj). (I.15)

1 Note that the sample estimate above is unbiased, as it should:

〈Qij〉 =
1

M − 1

∑
m

〈y(m)
i y

(m)
j 〉 −

1

M
〈
∑
n

y
(n)
i

∑
p

y
(p)
j 〉


=

1

M − 1

(
Mσ

2
iσ

2
j + 2MV

2

ij −Mσ
2
iσ

2
j − 2V

2

ij

)
= Qij .
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where m labels trajectories, see main text.
For Brownian motion the inverse of the Q matrix is a tridiagonal

matrix with column sum of zero, except the first. Explicitly

Q
−1

=
1

8(Dε)2



1 + 1
3

− 1
3

0 . . .

− 1
3

1
3

+ 1
5

− 1
5

0

0 − 1
5

1
5

+ 1
7
− 1

7
0

... 0 − 1
7

. . .
. . .

0 − 1
2N−1

1
2N−1


, (I.16)

which can be written as

(Q
−1

)ij =
1

8(Dε)2

[(
1

2i− 1
+

(1− δi,N )

2i+ 1

)
δij

−
(

1

2i+ 1

)
δi,j−1 −

(
1

2i− 1

)
δi,j+1

]
.

(I.17)

It is straigtforward to show that indeed the matrix above satisfies
(Q
−1

) ·Q = I, where I is the identity matrix.
For later purposes, let us also provide a (Cholesky) decomposition of

the Q
−1

= A
T

A matrix. We have

A =
1√
8Dε



1 0 . . .

− 1√
3

1√
3

0

0 − 1√
5

1√
5

0

... 0
. . .

. . .

− 1√
2N−1

1√
2N−1


, (I.18)

which can be written as

Aij =
1√
8Dε

[(
1√

2i− 1

)
δij −

(
1√

2i− 1

)
δi,j+1

]
. (I.19)

i.b.2 Continuous time random walk
Our second example uses the continuous time random walk (ctrw) in
one dimension. Such a process is defined through a waiting time density
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ψ(τ), and a jump length probability density, ϕ(`) [3]. In our case we
choose

ψ(τ) =
α

τ∗
(1 + τ/τ∗)−1−α (I.20)

with 0 < α < 1 so that we have infinite average waiting time 〈τ〉.2 The
jump length probability density is chosen to be a Gaussian:

ϕ(`) =
1√

2πa2
exp

(
− `2

2a2

)
(I.21)

with a variance a2. For such a process, the msd follows (for long
times) [3]:

〈x(t)2〉 = λ1t
λ2 (I.22)

(with x(0) = 0) where

λ1 =
2

Γ(1 + α)Γ(1− α)

a2

2(τ∗)α
, (I.23)

and

λ2 = α. (I.24)

i.b.3 Fractional Brownian motion
Our final example is the case of one-dimensional fractional Brownian mo-
tion (fbm), which is a zero mean Gaussian process with autocorrelation
function, [4]

vij = 〈x(ti)x(tj)〉 = c(t2Hi + t2Hj − |ti − tj |2H), (I.25)

at discrete times ti = iε and where the parameter H denotes the Hurst
parameter [5]. For H = 1/2, fractional Brownian motion becomes
standard Brownian motion. Indeed, if we set H = 1/2 in eq. (I.25) we
find that vij = c[(ti + tj)− |ti− tj |] = 2cmin(ti, tj) which is identical to
eq. (I.9) if we choose c = D. The inverse covariance matrix of eq. (I.25)
is (currently) not known analytically.

2 In simulations, a random waiting time is obtained by drawing a uniformly dis-
tributed random number r ∈ [0, 1], and then calculating τ = τ∗(r−1/α − 1).
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From eq. (I.25) we get the msd, for ti = tj , as (x(0) = 0)

〈x2(t)〉 = λ1t
λ2 , (I.26)

where λ1 = 2c and λ2 = 2H, i.e. the msd has, for H < 1/2, a sublinear
(or superlinear, if H > 1/2) dependence on time, t.

i.c simulation procedures

In this section we provide details about the methods used to generate
the data for our prototypical example systems introduced in section I.B.
All simulations ran to a stop time t = 104.

i.c.1 Brownian motion
For bm we let the particle move in one dimension with random jump
length drawn from a normal distribution. We start by taking the
cumulative sum of N random numbers from a Gaussian distribution
with zero mean and unit variance, and square each element of the sum.
Each step increments time by ε = 1. This is repeated M times and
summed and averaged. In short, the msd was computed as:

yi =
1

M

M∑
m=1

[
i∑

n=1

R(m)
n

]2

, (I.27)

where R(m)
n is a random number drawn from a normal distribution,

associated with the length of the nth jump for trajectory m.

i.c.2 Continuous time random walk
For generating the ctrw data we move a particle randomly with a
step length drawn from a Gaussian probability density, eq. (I.21), at
each time step and increment time with a waiting time τ from the
power-law distribution in eq. (I.20). In greater detail: We let y(m)

i be
the displacement squared at time point t̃i for trajectory m, which is to
be saved, and the current time of the system is t. While t is smaller
than the designated stop time we repeat the following procedure to
generate one trajectory m:

1. Draw a random waiting time, τ , from the power-law in eq. (I.20).
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2. While i < N and t ≤ t̃i < t+ τ .

a) Save displacement squared: y(m)
i .

b) Increase index i by one.

3. Move the particle, by increasing the current displacement by a
random number R drawn from a normal distribution.

4. Update the time t by τ .

The procedure is repeated M times and averaged over, to yield the msd.
For all our simulations we chose α = 0.5, a = 1 and τ∗ = 1. Since the
prediction in eq. (I.22) is only valid for t� τ∗, for fitting purposes, we
include only time points t ≥ T1 with T1 = 200τ∗ in the χ2 expression,
eq. (I.2), and in the associated parameter covariance estimation formula,
eq. (I.4).

i.c.3 Fractional Brownian motion
For fbm simulations we used an algorithm by Davies and Harte [6, 7].
In all our simulations, unless stated otherwise, the Hurst exponent was
chosen as H = 1/4. When fitting the model in eq. (I.26), we include only
time points t ≥ T1 with T1 = 200, since this model prediction for the
msd, as for ctrw (see section I.C.2), is only valid for large simulation
times.

i.d review of standard fitting procedures

In this section we investigate the two previous ubiquitous χ2 methods for
model fitting, namely ls (uncorrelated χ2) fitting and ml (correlated χ2)
fitting.

i.d.1 Least squares fitting
The previous most common method of functional fitting to data is the
least squares (ls) method (uncorrelated χ2 fitting), which is reviewed
in this section.

i.d.1.1 General fit functions
In least squares fitting one maximizes the probability for the function
f(ti;λ) = fi to have a good fit to the data:

P (y;λ) ∝
N∏
i=1

exp

(
−1

2

(yi − fi)2

σ2
i

)
. (I.28)
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Note that this probability is a product over the observations, y, hence the
data is assumed to be statistically independent. Within this assumption,
the unbiased estimator of variance of the mean is

σ2
i =

1

M

1

M − 1

M∑
m=1

(y
(m)
i − yi)

2. (I.29)

Maximizing the probability P is equivalent to minimizing

χ2 =

N∑
i=1

(yi − fi)2

σ2
i

, (I.30)

from which we get the best parameters λ∗, by solving

∂χ2

∂λa

∣∣∣∣
λ=λ∗

= 0 = 2
∑
i

∂fi(λ)

∂λa

∣∣∣∣∣
λ=λ∗

1

σ2
i

(fi(λ
∗)− yi). (I.31)

For χ2 close to the optimal parameter set λ∗ we have the Taylor expan-
sion

χ2 = χ2
∣∣
λ∗

+

K∑
a=1

(λa − λ∗a)
∂χ2

∂λa

∣∣∣∣
λa=λ∗a

+
1

2

K∑
a,b=1

(λa − λ∗a)(λb − λ∗b)
∂2χ2

∂λa∂λb

∣∣∣∣λa=λ∗a
λb=λ

∗
b

,

(I.32)

which we can insert back into the expression for P , eq. (I.28), to yield

P (λ) = W exp

−1

2

K∑
a,b=1

Hab(λa − λ∗a)(λb − λ∗b)

 , (I.33)

where W is a normalization constant and

Hab =
∂2χ2

∂λa∂λb

∣∣∣∣λa=λ∗a
λb=λ

∗
b

(I.34)

is the Hessian matrix, and we used ∂χ2/∂λa|λa=λ∗a = 0. From eq. (I.33)
we find that

∆ab ≡ 〈(λ∗a − λa)(λ∗b − λb)〉 = (H)−1
ab , (I.35)

i.e., the inverse of the Hessian matrix gives the covariance of the esti-
mated parameters.
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i.d.1.2 Linear fit functions
For the case that the fit function is linear, i.e. fi = λ1ti, eq. (I.31) can
be solved analytically (Press et al. [8]). The same can be done for the
variance, σ2, in the estimated parameter. We have

λ∗1 =

∑
i yiti/σ

2
i∑

i t
2
i /σ

2
i

(I.36a)

σ2 = ∆11 =
1∑

i t
2
i /σ

2
i

. (I.36b)

i.d.2 Maximum likelihood fitting
In this section we review the maximum likelihood (ml) fitting procedure
(correlated χ2 fitting) [9–12].

i.d.2.1 General fit functions
Where least squares fit only makes use of the diagonal (variance) of the
covariance matrix, we will now make use of the full matrix, defined as in
eq. (I.15), where the diagonal will be the square of the standard error of
the mean, s2

i = σ2
i /M . The task of fitting a function f(ti;λ), reduces to

maximizing the probability which is taken as the multi-variate Gaussian:

P (y;λ) = Z exp

(
−1

2
(y − f)TC

−1
(y − f)

)
, (I.37)

where C = Q/M is as in eq. (I.3) in the main text, and the nor-

malization constant Z = 1/((2π)N/2
√

det(C)) [13], y = (y1, . . . , yN ),
f = (f1, . . . , fN ), with fi = f(ti;λ), and (. . .)T denotes transpose. For
uncorrelated data the covariance matrix estimator, C, will be diagonal
and eq. (I.37) reduces to eq. (I.28), and the ls method is attained.

As for ls, maximizing P is equivalent to minimizing the cost function

χ2 = (y − f)TC
−1

(y − f). (I.38)
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Thus, we get our optimal parameters λ∗a (a = 1, . . . ,K) by solving:

1

2

∂χ2

∂λa

∣∣∣∣
λ=λ∗

= 0 = − 1

2

∂f

∂λa

∣∣∣∣
λ=λ∗

C
−1

(y − f(λ∗))

+ (y − f(λ∗))C
−1
(
−1

2

∂f

∂λa

∣∣∣∣
λ=λ∗

)
=

∂f

∂λa

∣∣∣∣
λ=λ∗

C
−1

(f(λ∗)− y),

(I.39)

where in the last step we used the symmetry property of C, i.e., that
Cij = Cji.

The derivation of the covariance, ∆ab, of the ml estimated parameters,
λ∗a follows along identical lines as for ls (previous section). Hence, ∆ab

is given by eq. (I.35) where λ∗a is now obtained by solving eq. (I.39)
(instead of solving eq. (I.31) as for ls).

i.d.2.2 Linear fit functions
For fitting a linear function, f(ti;λ) = λ1ti, to data one can determine
the minimum of the ml χ2 function, eq. (I.38), analytically. In particular,
such a fitting function is of relevance for Brownian motion (section I.B.1).
Eq. (I.39) becomes

0 =
1

2

∂χ2

∂λ1

∣∣∣∣
λ1=λ∗1

= (y − λ∗1 t)TC
−1
t. (I.40)

Taking the second derivative we get

∂2χ2

∂λ2
1

∣∣∣∣
λ1=λ∗1

= −tTC−1
t. (I.41)

From these results, as well as using eq. (I.34) and eq. (I.35), we get the
optimal value for the parameter λ1 = λ∗1 and its variance σ2 as

λ∗1 =
yTC

−1
t

tTC
−1
t

(I.42a)

σ2 = ∆11 =
1

tTC
−1
t
. (I.42b)

i.e the correlation-corrected least square method

We here describe our new fitting procedure, the cls method, in detail.
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i.e.1 Parameter estimation
As demonstrated in the main text, the previous standard methods for
fitting of ensemble averages, the ls or ml procedures (section I.D),
are of limited general applicability for fitting of correlated data: the
ls method assumes data points are independent resulting in flawed
error estimation, whereas the ml method (involving inversion of a noisy
sample covariance matrix) provides ill-conditioned results or strong bias
in the parameter estimation.
To remedy this lack of available methods for robust and accurate

fitting of ensemble averages (correlated data), we here formulate the
problem at hand as a minimization of a “cost function”, χ2, which can
be chosen rather general. Minimizing this distance function provides
an estimate, λ∗, for the model parameters of interest. However, unlike
the ls (uncorrelated χ2) fitting procedure, where fluctuations around
mean values are assumed to be independent, we use the full multivariate
probability density function for the mean values, eq. (I.37) (which is
Gaussian due to the multivariate central limit theorem), when estimating
the standard error and covariance in the fitted parameters. This provides
a mathematically rigorous way of avoiding the problems with previous
fitting methods.

The cost function used herein is a χ2 functional (eq. (I.2) in the main
text) on the form:

χ2 = (y − f)TR (y − f), (I.43)

where, y = (y1, . . . , yN ), f = (f1, . . . , fN ), with fi = f(ti;λ), and (. . .)T

denotes transpose. We find the best parameters, λ∗ by minimizing χ2,
i.e., by solving:

∂χ2

∂λa

∣∣∣∣
λ=λ∗

= 0 = 2
∂fi(λ)

∂λa

∣∣∣∣
λ=λ∗

Rij(fj(λ
∗)− yj), (I.44)

where a = 1, . . . ,K. As before, a bar (Z) denotes sample estimator
and we use double bar (Z) to denote its true value. Note that the
positive definite symmetric matrix R could potentially be custom made
for particular applications; for all cases considered herein (see below),
R is a sample estimator based on the data. In the main text the
observables yi are mean square displacements at different sampling
times, Ti. We note, however, that our cls procedure is valid for any
type of ensemble averaged observables (the matrices C and Q below
are then the covariance matrix for those particular observables).
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For the matrix R, we consider three choices:

1. Maximum likelihood (ml): Here we make use of the full covariance
matrix, (see section I.D.2):

R = R
[ML]

= C
−1
, (I.45)

where C is the covariance matrix of the mean, C = Q/M , as
defined in eq. (I.3) of the main text.

2. Correlation-corrected and standard least squares (cls/ls): Here we
only make use of the diagonal elements,

Rij = R
[CLS]
ij = δij/Cij , (I.46)

where δij is the Kronecker delta (δij = 1, if i = j; δij = 0, if i 6= j).

3. Brownian motion adapted least squares (bmals): Finally we probe
our fitting method by the following choice:

R = R
[BMALS]

=
1

M
A
T

d A, (I.47)

where A
T

A = Q
−1

gives the exact covariance matrix for ob-
servables of interest. When these observables are the squared
displacements at different sampling times (case of interest in the
main text), the quantity d is a diagonal matrix with elements

dii =
1

1
M−1

∑M
m (
∑N
j Aij(y

(m)
j − yj))2

. (I.48)

For Brownian motion, the matrix A is given in eq. (I.18). For
comparison of the bmals method to cls, please see Supplementary
Figure I.S6.

i.e.2 Error estimation
The covariance for the estimated parameters (i.e., the parameters λ∗

obtained by solving eq. (I.44)) is defined

∆ab = 〈(λ∗a − λa)(λ∗b − λb)〉, (I.49)

where 〈F (y)〉 =
∫
F (y)ρ(y;λ)dy1dy2 · · · dyN denotes an average over

the multivariate probability density, ρ(y;λ). Due to the multivariate
central limit theorem (note that y is a sum of M identically distributed
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random numbers), for large M this probability density is a multi-variate
Gaussian (compare to section I.D.2):

ρ(y;λ) = Z exp

(
−1

2
(y − y)TC

−1

(y − y)

)
, (I.50)

with normalization constant Z = 1/((2π)N/2
√

det(C)) [13].
In order to derive an explicit expression for ∆ab we follow the lines

of thought of Gottlieb et al. [10] and make a first order Taylor series
expansion of the estimated parameter values in terms of deviations of
the estimated y from their true values:

λ∗a − λa =
∂λ∗a
∂yk

∣∣∣∣
yk=yk

(yk − yk) + O[(yk − yk)(yl − yl)], (I.51)

where repeated indices are summed over. Substituting this expression
into eq. (I.49) and using the definition of the covariance matrix: Ckl =

〈(yk − yk)(yl − yl)〉 we find, to first order,

∆ab =
∂λ∗a
∂yk

∣∣∣∣
yk=yk

Ckl
∂λ∗b
∂yl

∣∣∣∣
yl=yl

. (I.52)

In order to obtain an explicit expression for ∂λ∗a/∂yk we differentiate
eq. (I.44) with respect to yi. This yields

0 = hab
∂λ∗b
∂yi
− 2

∂fj(λ)

∂λa

∣∣∣∣
λa=λ∗a

Rjkδki, (I.53)

where we introduced

hab = 2
∂2fi(λ)

∂λa∂λb

∣∣∣∣λa=λ∗a,
λb=λ

∗
b

Rij(fj(λ)− yj)

+ 2
∂fi(λ)

∂λa

∣∣∣∣
λa=λ∗a

Rij
∂fj(λ)

∂λb

∣∣∣∣
λb=λ

∗
b

.

(I.54)

Solving eq. (I.53) we obtain:

∂λ∗b
∂yi

= 2(h
−1

)ab
∂fj(λ)

∂λa

∣∣∣∣
λa=λ∗a

Rji, (I.55)
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which substituted into eq. (I.52) yields the following expression for the
covariance of the estimated parameter, λ∗:

∆ab =

(
4(h−1)ac

∂fj(λ)

∂λc

∣∣∣∣
λc=λ∗c

RjkCklRlm
∂fm(λ)

∂λd

∣∣∣∣
λd=λ∗

d

(h−1)db

)
yk=yk
yl=yl

.

(I.56)

We finally replace all exact quantities above by the corresponding sample
estimators (and use C = Q/M), giving the key result, eq. (I.4) in the
main text. The replacement of exact ensemble averages by sample
estimates introduces bias terms which, to first order, are proportional
to 1/M , where M is the number of trajectories, see section I.F.1. For
cls/ls procedures, we find that the bias is in practice often negligible
(see main text). Just as the parameter estimates λ∗a are typically biased,
so will the error estimate ∆ab in eq. (I.4) also be, as it is a nonlinear
function of sample estimates, see section I.F.1. This bias in ∆ab can be
reduced using the jackknife procedure (see section I.G).

i.f bias effects in parameter estimation for brownian motion

In this section, we provide analytical expressions for the bias in parame-
ter (diffusion constant) estimation for Brownian motion. We find that
the ml method has a bias which increases strongly with the number of
sampling times, N . In contrast, the ls method provides a (small) bias
which is independent of N for large N .

i.f.1 The origin of bias
We generally expect that the bias, i.e., the expected difference between
some observable, based on sample estimates and the “true” value of
that observable can be written as a series expansion in terms of 1/M ,
where M is the number of trajectories [14]. To understand why this is
so, in the present context, we recall that any sample estimate, Qijk....
(where i, j, k etc. labels sampling times), is an average (normalized sum)
over the M trajectories. The multivariate central limit theorem tells
us that we can, for such averages, write Qijk... = Qijk.... + γijk.../

√
M ,

where γijk... is a zero-mean “noise”. Therefore any observable, O, which
is a function of one, or several, sample estimates (the optimal parameters
λ∗ and their associated covariance matrix ∆, see previous sections, are
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examples of such observables) will (schematically) have a Taylor series
expansion of the form:

O = O +

∞∑
k=1

Ak√
MMk−1

+

∞∑
k=1

Bk
Mk

(I.57)

for largeM . The first term in the Taylor expansion is the sought quantity,
O. Considering the remaining terms, we note that, by construction, we
have that 〈A1〉 = 0, and hence the first non-zero term of the expectation
value of the expression above is 〈B1〉/M ∝ 1/M . For the case that
the observable, O, is function of more than one independent sample
estimates, then we have 〈Ak〉 = 0 for all k. However, note that if O
is a function of several sample estimates which are dependent, then in
general 〈Ak〉 6= 0 for k ≥ 2. We can safely remove the first bias-term
with a jackknife procedure [15], see section I.G. Also higher order bias
terms can be removed formally. However, already at the second order
bias reduction level computational costs becomes considerable.

i.f.2 Bias in parameter estimation of ml for Brownian motion
Consider equations (I.43) and (I.45). We write the sample estimator of
the covariance matrix eq. (I.15), and the exact, Q, as related by

Qij = Qij + ηij , (I.58)

where η represents their deviation. We seek the “noise” in the inverse,
(Q
−1

)ij . Using the normalization condition, and writing

(Q
−1

)ij = (Q
−1

)ij + ξij , (I.59)

we get

I = Q Q
−1

= (Q+ η)(Q
−1

+ ξ)

= I + ηQ
−1

+ Qξ + ηξ.
(I.60)

Thus, to first order ηQ
−1

+ Qξ = 0, and by definition η = Q−Q:

ξ = Q
−1

− Q
−1

Q Q
−1

. (I.61)
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Using eq. (I.59) in eq. (I.43) and eq. (I.45) yields

λ∗ =
yT (Q

−1

+ ξ)t

tT (Q
−1

+ ξ)t
=

yTQ
−1

t

tTQ
−1

t

(
1 + tT ξt

tQ
−1
t

)
+

yT ξt

tTQ
−1

t

(
1 + tT ξt

tQ
−1
t

)

≈ 1

tTQ
−1

t

(
yTQ

−1

t+ yT ξt− y
TQ
−1

t

tQ
−1

t
tξt

)
,

(I.62)

where we did a series expansion to first order in ξ. Using eq. (I.61) we
get

λ∗ =
yTQ

−1

t

tTQ
−1

t
+
yT (Q

−1

−Q
−1

Q Q
−1

)t

tTQ
−1

t

− yTQ
−1

t

(tTQ
−1

t)2

(
tTQ

−1

t− tTQ
−1

Q Q
−1

t

)

=
yTQ

−1

t

tTQ
−1

t
−y

TQ
−1

Q Q
−1

t

tTQ
−1

t
+

yTQ
−1

t

(tTQ
−1

t)2

tTQ
−1

Q Q
−1

t

︸ ︷︷ ︸
bias=B

.

(I.63)

Note that the expectation value of the first term on the right hand
side evaluates to λ, hence the additional terms yield the bias, whose
expectation value, 〈B〉, we now seek. We write eq. (I.63) on component
form (repeated indices are summed over, as before). We have

B1 = −
yk(Q

−1

)kiQij(Q
−1

)jltl

tTQ
−1

t
(I.64a)

B2 =
yi(Q

−1

)iktktj(Q
−1

)jmQml(Q
−1

)lntn

(tTQ
−1

t)2

(I.64b)

(the component form of the quantity appearing in the denominators

above is tTQ
−1

t = tp(Q
−1

)pqtq). Consider first the expectation value
of B1. To that end we seek the quantity (a, b, c . . . label trajectories):

〈ykQij〉 =
1

M(M − 1)

〈 M∑
a=1

y
(a)
k

[
M∑
b=1

y
(b)
i y

(b)
j −

1

M

M∑
b=1

y
(b)
i

M∑
c=1

y
(c)
j

]〉
.

(I.65)
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We also have:

〈y(a)
k 〉 =

〈 [
x

(a)
k − x

(a)(0)
]2 〉

= σ
2
k = V kk, (I.66)

where we in the last step used eq. (I.9). Also 〈x(a)
i − x

(a)(0)〉 = 0, and
since different realizations (trajectories) are independent we have

〈x(a)
i x

(b)
j 〉 = δabV ij . (I.67)

Higher order terms can be calculated using Wick’s theorem, eq. (I.12)
(for large i, x(a)

i is a sum of many small increments, from the central
limit theorem it follows that x(a)

i are Gaussian). We have

〈y(a)
i y

(b)
j 〉 = 〈(x(a)

i )2(x
(b)
j )2〉 = 〈x(a)

i x
(a)
i x

(b)
j x

(b)
j 〉

= 〈x(a)
i x

(a)
i 〉〈x

(b)
j x

(b)
j 〉+ 〈x(a)

i x
(b)
j 〉〈x

(a)
i x

(b)
j 〉

+ 〈x(a)
i x

(b)
j 〉〈x

(a)
i x

(b)
j 〉

= σ
2
iσ

2
j + 2V

2

ijδab.

(I.68)

Now, in the same way for higher order terms, we get

〈y(a)
k y

(b)
i y

(c)
j 〉 = 〈x(a)

k x
(a)
k x

(b)
i x

(b)
i x

(c)
j x

(c)
j 〉

= [tedious enumeration of all cases] =

= σ
2
kσ

2
iσ

2
j + 2σ

2
kV

2

ijδbc + 2σ
2
jV

2

kiδab

+ 2σ
2
iV

2

kjδac + 8V
2

kiV
2

kjV
2

ijδabδbcδac,

(I.69)

(no sum over repeated indices). Eq. (I.65) now becomes

〈ykQij〉 =
1

M(M − 1)

M∑
a=1

M∑
b=1

〈y(a)
k y

(b)
i y

(b)
j 〉︸ ︷︷ ︸

U1

− 1

M2(M − 1)

∑
a,b,c

〈y(a)
k y

(b)
i y

(c)
j 〉︸ ︷︷ ︸

U2

.

(I.70)

Using eq. (I.69) we get:

U1 =
∑
a,b

〈y(a)
k y

(b)
i y

(b)
j 〉 = M2σ

2
kσ

2
iσ

2
j + 8MV kiV ijV kj

+ 2M2σ
2
kV

2

ij + 2Mσ
2
jV

2

ki + 2Mσ
2
iV

2

kj (I.71a)
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U2 =
∑
a,b,c

〈y(a)
k y

(b)
i y

(c)
j 〉 = M3σ

2
kσ

2
iσ

2
j + 8MV kiV ijV kj

+ 2M2

[
σ

2
kV

2

ij + σ
2
jV

2

ki + σ
2
iV

2

kj

]
. (I.71b)

Combining eq. (I.71) with eq. (I.70) results in:

〈ykQij〉 =
1

M(M − 1)

[
(2M2 − 2M)σ

2
kV

2

ij + (8M − 8)V kiV ijV kj

]
= σ

2
k2V

2

ij +
8

M
V kiV ijV kj .

(I.72)

Using eq. (I.72) in eq. (I.64a) we find

〈B1〉 = −
σ

2
k(Q

−1

)kiδiltl + 8
M
V kiV ijV kj(Q

−1

)ki(Q
−1

)jltl

tTQ
−1

t
, (I.73)

where we used that Qij(Q
−1

)jl = δil. Now consider B2, eq. (I.64b).
We write eq. (I.72) according to (also see eq. (I.13))

〈yiQml〉 = σ
2
iQ

2

ml +
8

M
V imV mlV li. (I.74)

Eq. (I.64b) now becomes

〈B2〉 =
(Q
−1

)iktktj(Q
−1

)jm
[
σ

2
iQml + 8

M
V imV mlV li

]
(Q
−1

)lntn

(tTQ
−1

t)2

=
σ

2
i (Q

−1

)iktk

tTQ
−1

t
+

8

M

(Q
−1

)iktktj(Q
−1

)jmV imV mlV li(Q
−1

)lntn

(tTQ
−1

t)2

.

(I.75)

Combining B1 and B2 we arrive at an expression for the predicted
first order bias (eq. (I.63)) for the suggested matrix, R[ML]; (notice the
cancellations of the first terms):

〈B〉 =
1

M

8

tTQ
−1

t

(
(Q
−1

)iktktj(Q
−1

)jmV imV mlV li(Q
−1

)lntn

tTQ
−1

t

− V kiV ijV jk(Q
−1

)ki(Q
−1

)jltl

)
,

(I.76)
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which can be analytically evaluated. With this in mind we use eq. (I.9),
with ti = iε, and eq. (I.17), in eq. (I.76). When evaluating the associated
sums over repeated indices in eq. (I.76), one uses:

min(i, j) =

i, if i ≤ j

j, if i > j
(I.77)

and then splits the sums accordingly. This splitting leads to sums on
the form

I(m, p) =
∑
k

km

(2k − 1)p
, (I.78)

where m and p are positive integers. These sums are rewritten according
to

I(m, p) =
1

2m

∑
k

1

(2k − 1)p
((2k − 1) + 1)m

=
1

2m

m∑
q=1

(
m

q

)∑
k

(2k − 1)q−p,

(I.79)

where we used the binomial theorem. The full calculation is tedious but
straightforward. The final result is:

〈B〉 =
D

M
G(N) (I.80a)

G(N) = −a
d

+
b

d2
(I.80b)

a =
N

2
+ s1 −

s2

2
(I.80c)

b =
1

16
(3s1 − s3) (I.80d)

d =
s1

8
(I.80e)

sn =

N∑
k=1

1

(2k − 1)n
. (I.80f)

i.f.2.1 Asymptotic expansion
Let us now investigate eq. (I.80) for large N . To that end, we write sn,
defined above, according to

sn =

N∑
k=1

(
1

(2k − 1)n
+

1

(2k)n
− 1

(2k)n

)
=

2N∑
k=1

k−n − 1

2n

N∑
k=1

k−n.
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(I.81)

In eq. (I.80), there are three sums, s1, s2 and s3. Out of these sums, s1

decays most slowly with N and hence this sum is the only one which
needs to be kept for large N . From eq. (0.131) in Gradshteyn et al. [16]
we have

N∑
k=1

1

k
= γ + lnN +

1

2N
+O(

1

N2
), (I.82)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Combining the
result above with eq. (I.81) and eq. (I.80) we arrive at the asymptotic
expression

G(N) ≈ − 8N

lnN + γ + 2 ln 2
, (I.83)

where we used ln ab = ln a + ln b. For large N , eq. (I.83) is a good
approximation compared to the exact bias, eq. (I.80), see Supplementary
Figure I.S3.

i.f.3 Bias in parameter estimation of cls and ls for Brownian motion
Let us now consider the second case, eq. (I.46), of choosingR. According
to eqs. (I.43) and (I.46) we have the following:

λ∗ =
yTQ

−1

newt

tTQ
−1

newt
, (I.84)

where

Qnew,ij = Qijδij (I.85)

Qnew,ij = Qijδij (I.86)

(Q
−1

new)ij = δij/Qij (I.87)

(Q
−1

new)ij = δij/Qij . (I.88)

The calculation starting from eq. (I.61) to eq. (I.63) is identical to before,
just replace Q with Qnew, and same for exact (double bar). Since our
new matrices are diagonal, eq. (I.64) becomes (we here reintroduce
explicit sums for the sake of clarity)

B1 = −

∑
k yk

1

(Qkk)2
Qkktk∑

q t
2
q/Qqq

(I.89a)
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B2 =

∑
j,k yk

1

Qkk
tk · t2j 1

(Qjj)
2
Qjj(∑

q t
2
q/Qqq

)2 . (I.89b)

Also the calculation from eq. (I.65) which leads up to eq. (I.72) is
identical. From eq. (I.89) we see that we need

〈ykQjj〉 = 2σ
2
kV

2

jj +
8

M
V

2

kjV jj (j, k fixed), (I.90a)

〈ykQkk〉 = 2σ
6
k +

8

M
σ

6
k (k fixed). (I.90b)

Substituting eq. (I.90b) into eq. (I.89a), and using eq. (I.13) Qkk =

2V
2

kk = 2σ
4
k, and σ

2
k = 2Dtk we get (with sums explicitly written)

〈B1〉 = −

∑
k

1

(Qkk)2

(
2σ

6
k + 8

M
σ

6
k

)
tk∑

q t
2
q/Qqq

= −
(1 + 4

M
)
∑
k 1/2D∑

k 1/(2D)2

= −2D

(
1 +

4

M

)
.

(I.91)

In much the same way, we insert eq. (I.90a) into eq. (I.89b)

〈B2〉 =

∑
j,k

(
2σ

2
kσ

4
j + 8

M
σ

2
jV

2

kj

)
1

2σ
4
k

tkt
2
j

4σ
8
j(∑

q t
2
q/2σ

4
q

)2

=

∑
j,k

(
1
4

1
(2D)3

+ 1
M

1
(2D)5

V
2

kj

tktj

)
1/64D4

(∑
k 1
)2

= 2D +
2

MD

1

N2

∑
j

∑
k

V
2

kj

tktj︸ ︷︷ ︸
I

.

(I.92)

Consider the double sum, I, in eq. (I.92). We have time step tj = εj and
separate the sums into j = k and j 6= k, which gives V ij = 2Dεmin(i, j)

I = 4D2
N∑
k=1

N∑
j=1

[min(i, j)]2

jk
= 4D2

(
N∑
k=1

1 + 2
N∑
k=1

k−1∑
j=1

[min(i, j)]2

jk

)

= 4D2

(
N + 2

N∑
k=1

1

k

k−1∑
j=1

j

)
= 4D2

(
N + 2

N∑
k=1

1

k

k(k − 1)

2

)
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= 4D2
N∑
k=1

k = 2D2N(N + 1), (I.93)

which inserted in eq. (I.92) yields

〈B2〉 = 2D +
4D

M

(
1

N
+ 1

)
, (I.94)

from which we get the complete full bias together with eq. (I.91):

〈B〉 = 〈B1〉+ 〈B2〉 =
4D

M

(
1

N
− 1

)
. (I.95)

Thus,

λ∗ − λ = −4D

M

(
1− 1

N

)
. (I.96)

Note that the bias is independent of N for large N . As a final step we
will now turn to the bias term of the Brownian motion adapted least
squares.

i.f.4 Bias of Brownian motion adapted ls
We now consider our third and final choice of R-matrix. We write
eq. (I.47), where we make use of the decomposition of the exact covari-

ance matrix, eq. (I.18), A
T

A = Q
−1

, as

R =
1

M
A
T

b
−1
A, (I.97)

where b is the inverse of d, in other words, b is diagonal with elements

bii =
1

dii
=

1

M − 1

M∑
m

(
N∑
j

Aij(y
(m)
j − yj)

)2

(I.98)

on the diagonal. Thus eq. (I.43) now becomes

λ∗ =
Y
T
b
−1
T

T T b
−1
T
, (I.99)

where

Y ≡ Ay (I.100)

T ≡ At. (I.101)
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Eq. (I.99) now has the same form as eq. (I.84), (case 2, cls/ls). If we
replace yi with Y i, ti with Ti, and Qii with bii (and same for double
bar), eq. (I.89) becomes (introducing explicit sums for clarity):

B1 = −

∑
k Y

T
k

1

(bkk)2
bkkTk∑

q T
2
q /bqq

= −

∑
k,l,n ylA

T

lk
1

(bkk)2
bkkAkntn∑

p,q,w
1

bqq
AqptpAqwtw

(I.102a)

B2 =

∑
j,k Y k

1

bkk
TkT

2
j

1

(bjj)2
bjj

(
∑
q T

2
q /bqq)2

=

∑
k,l,n,j,p,p′

(
ylA

T

lk
1

bkk
Akntn

)(
AjptpAjp′tp′

1

(bjj)2
bjj

)
∑
q,p,w(AqptpAqwtw/bqq)2

.

(I.102b)

From eq. (I.98) we have

bii =
1

M − 1

M∑
m

∑
j,j′

Aij(y
(m)
j − yj)Aij′(y

(m)

j′ − yj′)


=
∑
j,j′

AijAij′
1

M − 1

M∑
m

(y
(m)
j − yj)(y

(m)

j′ − yj′)︸ ︷︷ ︸
Qjj′

=
∑
j,j′

AijQjj′A
T

j′i,

(I.103)

from which it follows that

〈bii〉 =

(
A〈Q〉A

T
)
ii

=

(
A Q A

T
)
ii

= 1 = bii, (I.104)

which used with eq. (I.102a), gives

B1 = −
∑
k,l,n ylA

T

lkbkkAkntn∑
p,q,w A

T

pqAqwtptw

= −
∑
k,l,n ylA

T

lkbkkAkntn∑
p,w tp(Q

−1

)pwtw

. (I.105a)
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Substituting bii in the same way for eq. (I.102b) gives

B2 =

∑
l,k,n,j,p,p′

(
ylA

T

lkAkntn

)(
AjpAjp′bjjtptp′

)
(
∑
p,w tp(Q

−1

)pwtw)2

=

∑
l,n,j,p,p′

(
yl(Q

−1

)lntn

)(
AjpAjp′bjjtptp′

)
(
∑
p,w tp(Q

−1

)pwtw)2

.

(I.105b)

As a sanity check we note that the total bias, B1 +B2, is zero if bar is
replaced with double bar and yl = 2Dtl. From eq. (I.105) we see that
we now need to find the following, by route of eq. (I.103),

〈ylbkk〉 =
∑
i,j

A
T

ikAkj〈ylQij〉 =
∑
i,j

A
T

ikAkj

(
σ

2
lQij +

8

M
V liV ijV jl

)
(I.106)

(no sum over k), where we in the last step used eq. (I.72). Eq. (I.105a)
now becomes (repeated indices are summed over)

〈B1〉 = −
A
T

lkA
T

ikAkj
(
σ

2
lQij + 8

M
V liV ijV jl

)
Akntn

tTQ
−1

t

= −
σ

2
l (Q

−1

)lntn + 8
M
AklAkiAkjAknV liV ijV jltn

tTQ
−1

t
,

(I.107)

where for the first term we used thatAQA
T

= I (for the termA
T

ikAkjQij),

followed by A
T

lkAkn = (Q
−1

)ln which gives the final step in eq. (I.107).
Now consider eq. (I.105b)

〈B2〉 =
(Q
−1

)lnAkpAkp′〈ylbkk〉tptp′tn

(tTQ
−1

t)2

=
(Q
−1

)lnAkpAkp′AkiAkj
(
σ

2
lQij + 8

M
V liV ijV jl

)
tptp′tn

(tTQ
−1

t)2

=
tpAkpAkp′tp′(Q

−1

)lnσ
2
l tn

(tTQ
−1

t)2

(I.108)

+
8
M

(Q
−1

)lnAkpAkp′AkiAkjV liV ijV jltptp′tn

(tTQ
−1

t)2

,
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where we in the middle step used that Aki Akj Qij′ = δkj′ . Let us use

that Akp Akp′ = (Q
−1

)ij and arrive at

〈B2〉 =
σ

2
l (Q

−1

)lntn

tTQ
−1

t
+

8

M

(Q
−1

)lnAkpAkjAkiAkjV liV ijV jltptp′tn

(tTQ
−1

t)2

.

(I.109)

Our arduous journey has now come to its end, and the total bias
〈B1〉+ 〈B2〉 is

〈B1〉 = − 8

M

AkiV ijAkjV jlAklV liAkntn

tTQ
−1

t
(I.110a)

〈B2〉 =
8

M

AkiV ijAkjV jl(Akptp)
2(Q

−1

)lntn

(tTQ
−1

t)2

. (I.110b)

i.g jackknife bias reduction

Through data resampling, bias in data-fitting can often be significantly
reduced. Let O be the parameter estimator, based on some data set
with M trajectories, to the true parameter O. Herein, we choose O as
either the parameters λ∗ or their associated covariance matrix ∆. As
outlined in section I.F.1, one often expects such a finite data set to yield
a bias contribution of the form

O = O +
a

M
+

b

M2
+

c

M3
+O

(
1

M4

)
. (I.111)

The bias terms can be reduced by increasing the data samples, M , or by
using the jackknife method [15]. Let us split the sample into g groups,
each of size h, and define O[−j] as the parameter fitted to a data sample
with the jth group removed.

i.g.1 First order jackknife
The first order bias term can be removed through repeated fitting and
averaging over the sampled data set:

O(1) =
1

g

g∑
j=1

O[−j] (I.112a)

O
(0,1)
J = gO − (g − 1)O(1). (I.112b)
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By using eq. (I.111) which has bias terms proportional to M = hg for
the full fitting, O, and h(g − 1) for the reduced sample estimator in
eq. (I.112), we see that we are left with

O
(0,1)
J = O − b

h2

1

g(g − 1)
− c

h3

(
1

(g − 1)2
− 1

g2

)
+O(g−3)

≈ O − b

M2
− 2

c

M3
,

(I.113)

lacking the first order bias term. Although the higher order terms
remain, their contribution is expected to be lower than the first order
term.

i.g.2 Second order jackknife
For further bias reduction we can apply a second order correction. In
a similar spirit to what is done in the first order jackknife, we split
the data into g groups, and define O[−j,−j′] as the parameter estimator
based on a data set with the jth and j′th group removed, each of size h.
This follows Schucany et al. [17]. We get

O(2) =
2

g(g − 1)

g∑
j<j′

O[−j,−j′] (I.114a)

O
(1,2)
J = (g − 1)O(1) − (g − 2)O(2) (I.114b)

O
(0,1,2)
J =

g

2
O

(0,1)
J − g − 2

2
O

(1,2)
J . (I.114c)

If we combine our result with eq. (I.111), we are only left with the third
order term and the ones that follows it,

O
(0,1,2)
J = O +

c

h3

1

g(g − 1)(g − 2)
+O(g−4)

≈ O +
c

M3
.

(I.115)

i.g.3 Variance for jackknife estimators

In this section, we use eq. (I.51) to show that λ∗a − λa is insensitive (to
lowest order in 1/M) to the jackknifing procedure. As a consequence,
the covariance estimation formula, eq. (I.4) in the main text, remains
valid also for jackknifed parameter estimations.
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For later convenience, we define the derivative in eq. (I.51) as

Aa,i =
∂λ∗a
∂yi

∣∣∣∣
yi=yi

, (I.116)

which we will use in the following.

i.g.3.1 First order jackknife
To first order the jackknife estimator is obtained by dividing the M
trajectories into g groups of size h. Define the observable O[−j],i as
the estimate for observable O, in point i, with group j removed. In
particular,

y[−j],i =
1

M − h
∑
m 6=mj

y
(m)
i =

1

M − h

 M∑
m=1

y
(m)
i −

∑
mj

y
(m)
i

. (I.117)
The corresponding non-jackknifed estimator is

yi =
1

M

M∑
m=1

y
(m)
i . (I.118)

The bias of the first order jackknife estimator of λa within the cls
method (see section I.E) is

λ
(0,1)
J,a − λa = gλ∗a − (g − 1)

[
1

g

g∑
j=1

λ[−j],a

]
− λa

=
1

h

[
Mλ∗a − (M − h)

1

g

g∑
j=1

λ[−j],a

]

=
1

h

∑
i

Aa,i

(
M(yi − yi)− (M − h)

1

g

g∑
j=1

(
y[−j],i − yi

))

=
1

h

∑
i

Aa,i

(
M∑
m=1

(y
(m)
i − yi)

−1

g

g∑
j=1

 M∑
m=1

(y
(m)
i − yi)−

∑
mj

(y
(mj)

i − yi)

)

=
∑
i

Aa,i

 1

gh

g∑
j=1

∑
mj

(y
(mj)

i − yi)


=
∑
i

Aa,i

(
1

M

M∑
m=1

(y
(m)
i − yi)

)
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= λ∗a − λa, (I.119)

where we used eq. (I.51) to get to the second and last (fifth) row, and
eq. (I.117)-(I.118) for the third row. Thus

λ
(0,1)
J,a − λa = λ∗a − λa. (I.120)

Hence, jackknife does not change the (co)variance:

(λ
(0,1)
J,a − λa)(λ

(0,1)
J,b − λb) = (λ∗a − λa)(λ∗b − λb). (I.121)

i.g.3.2 Second order jackknife
For the second order bias removal, the M trajectories are again divided
into g groups. We define, as before, O[−j,−j′],i as the estimate for
observable O, in point i, with group j and j′ removed. In particular

y[−j,−j′],i =
1

M − 2h

∑
m 6=mj ,mj′

y
(m)
i

=
1

M − 2h

 M∑
m

y
(m)
i −

∑
mj

y
(mj)

i −
∑
mj′

y
(mj′ )

i

 .

(I.122)

The average over all groups for λa is

λ(2)
a =

1

g(g − 1)

∑
j 6=j′

λ[−j,−j′]. (I.123)

The second order jackknife is now (as given by eq. (I.114c))

λ
(0,1,2)
J,a =

g

2
λ

(0,1)
J,a −

g − 2

2
λ

(1,2)
J,a . (I.124)

Using eq. (I.114b) we note

λ
(1,2)
J,a − λa =

1

h

(
(M − h)

[
1

g

g∑
j=1

λ[−j],a

]

−(M − 2h)

 1

g(g − 1)

∑
j 6=j′

λ[−j,−j′],a

)− λa
=

1

h

∑
i

Aa,i

(
1

g

g∑
j=1

M∑
m=1

(y
(m)
i − yi)−

1

g

g∑
j=1

∑
mj

y
(mj)

i − yi


−

[
1

g(g − 1)

∑
j,j′

M∑
m=1

(y
(m)
i − yi)
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− 1

g(g − 1)

∑
j,j′

M∑
mj

(y
(mj)

i − yi)−
1

g(g − 1)

∑
j,j′

M∑
mj′

(y
(mj′ )

i − yi)

])

=
1

h

∑
i

Aa,i
(
− 1

g

g∑
j=1

∑
mj

(y
(mj)

i − yi)

+
1

g − 1

∑
j′

1

g

∑
j

∑
mj

(y
(mj)

i − yi) +
1

g − 1

∑
j

1

g

∑
j′

(y
(mj′ )

i − yi)
)

=
1

h

∑
i

Aa,i

(
−1

g
+

1

g
+

1

g

)∑
j

∑
mj

(y
(mj)

i − yi). (I.125)

Thus

λ
(1,2)
J,a − λa =

∑
i

Aa,i
1

M

∑
j

∑
mj

(y
(mj)

i − yi) = λ∗a − λa (I.126)

and

(λ
(0,1,2)
J,a − λa) = λ∗a − λa. (I.127)

Thus the second order jackknife estimator has the same variance and
covariance as non-jackknifed estimators.

i.h cramer-rao lower bound

The Cramer-Rao lower bound puts a precise bound on how well we can
estimate a parameter. More precisely it is a bound on the variance of
any observable [9]. We here state the bound for the case of a single
parameter to be estimated (as for Brownian motion). In general we can
write:

λ∗ = λ+B(λ), (I.128)

where λ is our estimated parameter, λ is the exact parameter value and
B(λ) is the bias. The Cramer-Rao lower bound is then

variance(λ∗) ≥

(
1 +B′(λ)

)2

I(λ)
, (I.129)

where a prime denotes derivative and

I(λ) =
〈∂l(y1, . . . , yN ;λ)

∂λ

〉
(I.130)
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is the Fisher information, with the likelihood function defined as

l(y1, . . . , yN ;λ) = log
(
ρ(y1, . . . , yN ;λ)

)
, (I.131)

with ρ(y1, . . . , yN ;λ)) being the joint probability density for {yi}Ni=1.
As previously discussed, in general we have that B(λ) = a(λ)/M , and
therefore we can write eq. (I.129) according to

variance(λ∗) ≥ 1

I(λ)

(
1 +

2a′(λ)

M
+O(

1

M2
)

)
. (I.132)

Evaluating the Fisher information is a complicated task. The one
exception is for the case that ρ(y1, . . . , yN ;λ) is a multivariate Gaussian,
in which case I(λ), and hence the Cramer-Rao bound to lowest order
in 1/M , can be explicitly evaluated.

In the cases of interest here, namely, “squared processes” in d dimen-
sions, where yi = x2

i , the quantity p(y1, . . . , yN ;λ) is formally:

ρ(y1, . . . , yn;λ) =

∫ N∏
i=1

δ(yi− |xi|2)p(x1, . . . ,xN ;λ)ddx1 · · · ddxN ,

(I.133)

where p(x1, . . . ,xN ;λ) is the probability density for the displacements,
assuming the particle’s initial position is at the origin. For bm and fbm
in one-dimension, we have the explicit form:

p(x1, . . . , xN ;λ) =
1

(2π)N/2 det(v)1/2
exp

−1

2

∑
ß,j

xi(v
−1)ijxj


(I.134)

i.e., a multivariate Gaussian with covariance v. For such a probability
it is not possible (nor for squared displacements from ctrw) to express
the Fisher information in a simple closed-form, for general v.

i.i coefficient of determination

We determine the goodness of fit by using the R2 coefficient of determi-
nation, defined as

R2 = 1− Sres
Stot

. (I.135)
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The method is based on a sum of squares over the N sampling points of,
in our case, the msd y; hence, measuring the deviation from the sample
mean in time,

ŷ =
1

N

N∑
i

yi (I.136)

Stot =

N∑
i

(yi − ŷ)2 (I.137)

Sres =

N∑
i

(f(ti;λ)− yi)
2 . (I.138)

A model that fits data perfectly has an R2 = 1, while if it does not fit
at all, R2 � 1, see Supplementary Figure I.S5.
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Background
Living organisms need to regulate their gene expression in response to environ-
mental signals and internal cues. This is a computational task where genes act
as logic gates that connect to form transcriptional networks, which are shaped
at all scales by evolution. Large-scale mutations such as gene duplications and
deletions add and remove network components, whereas smaller mutations
alter the connections between them. Selection determines what mutations
are accepted, but its importance for shaping the resulting networks has been
debated.

Methodology
To investigate the effects of selection in the shaping of transcriptional networks,
we derive transcriptional logic from a combinatorially powerful yet tractable
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model of the binding between dna and transcription factors. By evolving the
resulting networks based on their ability to function as either a simple decision
system or a circadian clock, we obtain information on the regulation and logic
rules encoded in functional transcriptional networks. Comparisons are made
between networks evolved for different functions, as well as with structurally
equivalent but non-functional (neutrally evolved) networks, and predictions
are validated against the transcriptional network of E. coli.

Principal findings
We find that the logic rules governing gene expression depend on the function
performed by the network. Unlike the decision systems, the circadian clocks
show strong cooperative binding and negative regulation, which achieves tight
temporal control of gene expression. Furthermore, we find that transcription
factors act preferentially as either activators or repressors, both when binding
multiple sites for a single target gene and globally in the transcriptional
networks. This separation into positive and negative regulators requires gene
duplications, which highlights the interplay between mutation and selection in
shaping the transcriptional networks.

author summary

The living cell responds to internal and external cues, altering its activity
and composition to maximize survival and reproduction. Many biological
processes are regulated at the transcriptional level: the expression of
individual genes is activated or repressed by proteins whose own levels
depend on similar regulation. These interactions form a transcriptional
network, which dynamically processes information from the environment.
The networks are shaped by mutations that rewire connections be-

tween genes, and by selection that accepts changes in relation to their
impact on network function. As in other areas of biology, it is not clear
whether similarities between networks found in nature reflect strongly
beneficial adaptations or merely result from exposing the different net-
works to similar types of mutations.

So what distinguishes functional networks from non-functional ones
with similar architecture? By computer simulated evolution of transcrip-
tional networks, we examine differences in the regulation of individual
genes that results from interactions between transcription factors at gene
regulatory regions on the dna. We extract Boolean logic functions from
the gene regulation, and investigate how they differ between functional
and non-functional networks.
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ii.1 introduction

The living cell can be viewed as a decision-making system that needs to
respond appropriately to a wide range of external and internal signals
in order to survive and maximize its reproductive success. Interacting
components such as genes and proteins form networks that control
the flow of information. Such biological networks can be described at
different scales, ranging from communication between large functional
modules down to biochemically detailed models that include e.g. protein
modifications. Here we consider genetic networks where the nodes are
genes connected by edges that represent transcriptional regulation [1].

At all scales, evolutionary pressures shape networks under constraints
imposed by their function. Biological functions may require specific
network architectures and logic; for instance, an oscillator cannot work
without a negative feedback loop. Some solutions are favourable because
of greater evolvability and/or mutational stability; for instance, the
modularity of evolved networks may resemble that of their engineered
counterparts [2].

The structure of evolved biological networks can be replicated in silico
through a combination of selection and large-scale duplication events [3].
On the other hand, the importance of selection has been questioned on
the grounds that frequent and largely neutral rewiring events are able to
explain common features of evolved transcriptional networks [4, 5]. In
this view, gene duplications and other large mutation events are drivers
of the exploration of the vast space of possible networks, with selection
acting as a guide.

To study the balance between selection and neutral evolution in silico,
as well as the role of gene duplications and other mutations, we need
a model of evolvable transcriptional networks, including both network
topology and transcriptional dynamics. Gene expression levels can be
modelled either as continuous or discrete variables, each with its own
advantages. Describing transcriptional regulation in terms of logic rules
that govern gene expression is straightforward when the networks are
modelled as discrete systems using Boolean functions [6]. However, real
gene expression is not an all-or-nothing process, and a continuous model
gives a more accurate representation of the transcriptional dynamics.
Even so, the regulation of a gene is easier to understand in a Boolean
description. We will therefore discretize the continuous expression levels
only when analyzing the transcriptional logic encoded in networks.
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A continuous dynamical model for the binding of transcription factors
(tfs) to gene regulatory regions was derived by Banzhaf in [7]. Starting
from a simplistic description of dna and binding motifs as sequences of
bits, the expression of a gene was determined by the sequence mismatch
between the tfs and two binding regions, one activating and one repress-
ing. However, limiting the regulatory region to only two non-interacting
binding sites severely restricted the possibilities for transcriptional logic
in that model.
In order to generate transcriptional logic functions, Buchler et al.

constructed a model with competitive and cooperative binding of tfs
at nearby binding sites. The recruitment or blocking of rna polymerase
(rnap) depended on the positions of bound tfs, leading to activation
or repression of the gene [8]. Cooperative binding, which in nature
occurs through several possible molecular mechanisms, favours network
connectivity and rewiring [5]. Even though Boolean terminology was
used to describe the rich set of logic generated by this binding model,
the underlying rules were continuous functions of tf concentrations.
Inspired by this earlier work, we construct a dynamical model of

transcriptional regulation with combinatorial interactions of tfs on the
dna, which allows us to grow and evolve networks to explore the effects
of selection. The representation of genes as strings of bits is borrowed
from Banzhaf [7], but we allow multiple binding sites so that we can
derive complex logic from the interactions of tfs within the regulatory
region, as suggested by Buchler et al. [8]. In addition, we formulate
dynamics for the production and degradation of proteins.
To perform network selection, we need to compute a biologically

relevant measure of fitness based on the dynamics of the system. Ideally,
we would like to simulate an entire organism, but this is not feasible.
Instead, as targets for the simulated evolution we choose two well-defined
computational problems with the potential to generate a variety of large
circuits. The first is a relatively simple artificial problem: the majority
rule, a Boolean decision problem which can be expected to yield networks
with few feedback loops and mostly positive regulation. The second
is a more complex problem which is directly linked to biology: the
circadian clock, whose inherent properties include oscillations, internal
feedbacks and input from the environment [9]. Simple oscillators have
previously been used as a target for evolution in more detailed models
of transcriptional and posttranslational regulation [10, 11].
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Even if neutral mutations dominate the evolutionary process, the
effects of selection must in some way be reflected in the structure of
biological networks. The aim of this work is to identify markers of
biological function in transcriptional networks evolved under selection,
as compared to neutrally evolved ones, at the level of individual genes
and their connections. To address this issue, we investigate properties
such as the degree of specialization in transcription factors towards
either activation or repression. We identify properties of regulation
in functional networks, validate the results against the transcriptional
network of E. coli, and show that large-scale mutations are necessary for
reproducing the observed separation between activators and repressors.

ii.2 methods

We have implemented a dynamical model of transcriptional regulation
where proteins and regulatory regions are represented as sequences of
bits, and transcription rates are determined by the interactions between
tfs and dna. An individual network consists of a variable number of
genes, each represented as strings of bits. In the current model, all
proteins are tfs, which may bind to the regulatory region of a gene to
modify its expression, by either facilitating or inhibiting the recruitment
of rnap. A regulatory region may contain binding sites for many
different tfs, giving rise to complex logic through the combinatorics
of cooperative and mutually exclusive binding, as explained in the
following section. This regulatory model is shown as miniature example
in Figures II.1A and II.1B, together with an overview of the simulation
process in Figure II.1C.

ii.2.1 Transcriptional regulation
At the heart of the model, transcriptional regulation is derived from
regulatory regions and binding motifs which are described as sequences
of ones and zeroes. Typical binding motifs are about 5–20 basepairs in
size, which motivates us to represent motifs by 32 bits to serve as 16
nucleotides, considering that dna carries two bits of information per
basepair. Regulatory regions are represented by 256 bits surrounding the
transcriptional start site (tss). Extending the regulatory regions to 512
bits produced similar results (Figures II.S3 and II.S4), suggesting that
the smaller size provides sufficient combinatorics at lower computational
cost.
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To form a network, every tf motif is compared with all positions
along the dna sequences, and binding is considered to occur where
the Hamming distance (the number of mismatching bits) is below a
threshold, Hmax= 6 (with similar results at Hmax= 8). A regulatory
region may thus contain a large number of binding sites, and the same
tf may bind to several sites. If a pair of binding sites have any overlap,
they cannot be occupied simultaneously, and this exclusion limits the
number of bound tfs at any given moment. For our choice of parameters,
there are 256− 32 + 1 = 225 possible binding sites and no more than
256/32 = 8 simultaneously bound tfs.

Transcriptional regulators may have properties that make them pre-
dominantly activating or repressing. Examples include the potent activa-
tor Gal4 in yeast [12] and the krab domain which is strongly associated
with repression in eukaryotes [13]. To be able to investigate whether
the separation of positive and negative regulation is a fundamental
principle of gene networks, we based the model on the more flexible
arrangement in E. coli, where the sign of tf regulation is primarily
determined by the positions of binding sites relative to the tss [14].
In the model, tfs that bind to the regulatory region upstream of the
tss act as activators to initiate or enhance transcription, whereas tfs
that are located downstream of the tss are assumed to block rnap and
act as repressors, disallowing any transcription of the gene. The tss is
located near the middle of the regulatory region, such that half of the
possible binding sites are activating and half are repressing.

A tf may thus act as an activator for some genes and as a repressor
for others, depending on where it finds a matching binding pattern on
the dna sequence. It may also regulate ambiguously, with binding sites
of opposite signs in a single regulatory region.

Negative interactions are created by overlapping binding sites, but the
model also includes cooperative binding between tfs at nearby binding
sites, partly to capture the effects of complex formation and other
protein–protein interactions. As motivated in the Buchler et al. model,
two tfs that occupy closely spaced binding sites lower their binding
energy by β = 3 kBT [8]. Presently, our model includes this cooperative
interaction between all pairs of binding sites within a distance of 10 bits
end-to-end, regardless of the identity of the tfs. This nonspecificity is
a simplification aimed at capturing cooperative binding regardless of its
mechanisms (cf. ref. [5]).
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The transcription rate of gene g is determined by the recruitment of
rnap to its promotor region, which depends on the number of bound
activating tfs, which in turn follows a distribution computed from the
statistical weights of all possible binding states.
Given that n tfs are bound as activators, the probability of finding

rnap bound at gene g is

Pg(n) =
e−(bg−λn)

1 + e−(bg−λn)
, (II.1)

where the rnap binding energy is lowered by λ = 3 kBT by each
additional bound tf [8], and where the gene-specific ground state energy,
−3 kBT < bg < 9 kBT , allows for a wide range of basal transcription
rates.

Assume that tf i can bind to site j with a mismatch of Hij < Hmax

bits. The statistical weight of site j being occupied by any tf at time t
is

zj(c(t)) =
∑
i

αe−γHij ci(t), (II.2)

where the dimensionless tf concentration levels, c(t), typically peak
in the range 0.001 < ci < 10 due to the dynamics (see eq. (II.6)).
The binding affinity drops by γ = 1

2
ln 10 kBT ≈ 1.15 kBT for every

mismatching bit, in agreement with experimentally measured mismatch
energies of about 1–3 kBT per nucleotide [15]. The factor α = 1000 is
required to convert the concentration levels into a realistic range of site
occupancies.
The binding state a is defined as a set of occupied binding sites. Its

statistical weight, wa, is a product of the weights of the individual sites
and the interactions of all pairs of sites:

wa(c(t)) =
∏
j∈a

zj(c(t))
∏

j1<j2∈a

Cj1j2 , (II.3)

where the contribution from the pair of sites j1, j2 is

Cj1j2 =


0, if exclusive

eβ ≈ 20, if cooperative

1, otherwise.

(II.4)
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Putting these pieces together, we arrive at an expression for the
transcription rate of gene g, as a weighted mean over all binding states:

Tg(c(t)) =

∑
a⊂Ag

(
Pg(|a|)wa(c(t))

∏
j∈a

Rj

)
∑
a⊂Ag

wa(c(t))
, (II.5)

where the sums run over all subsets of Ag, the set of all identified binding
sites for gene g, and |a| is the number of sites in subset a. There is no
transcription if rnap binding is blocked by any tf, as Rj is 0 if binding
site j is in the repressing region and 1 otherwise.
As an implementation detail, the fact that λ in eq. (II.1) does not

depend on the identity of the tf (see [8]) enabled us to implement
eq. (II.5) with a dynamical programming algorithm that scales far
better with the number of binding sites than a naive enumeration of all
2|Ag| states. This algorithm considers the sites in order and tracks the
statistical weight of having up to k tfs bound, with the last being at
site j; at worst it thus scales as 225 sites times 8 bound tfs, which is
crucial when the transcription rate is evaluated at every time step. The
algorithm can be extended to discrete tf-specific rnap binding energies
(λ), both positive and negative.

ii.2.2 Network dynamics
The scheme for transcriptional logic defines transcription rates for all
genes, given the tf concentration levels, c(t). To model the time devel-
opment of these tf levels, transcription and translation are treated as a
single step, a simplification motivated by the shorter typical timescale
for turnover of mrna compared to proteins [16]. The time derivative of
the protein level for gene g is

dcg
dt

= pgTg(c(t))− dgcg(t), (II.6)

where the transcription rate is modified by a gene-dependent transla-
tion efficiency 1 < pg < 10, which allows fine-tuning of protein levels.
Protein degradation follows mass action kinetics at a protein-specific
rate 0.1 < dg < 10. We simulated the production and degradation of
tfs deterministically, as a set of ordinary differential equations.
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Figure II.1 Transcriptional logic and networks derived from bitstrings.
(A-B) A miniature example of possible interactions between 6-bit transcription
factors at a 36-bit gene regulatory region. There are in this example binding
sites for three different tfs (tf1, tf2, and tf3) which can bind to regulate
the transcription rate of a fourth (tf4), whose properties are determined by
information outside of the 36 bit regulatory region. The model computes
the transcription rate as a mean over all possible states of tf–dna binding,
weighted by probability. In the notation of eq. (II.5), Ag = {1, 2, 3}. (A)
Example of activation (a = {1, 2} in eq. (II.5)): tf1 and tf2 are bound
cooperatively (C12 = eβ) and promote rnap recruitment to the transcriptional
start site. (B) Example of repression (a = {1, 3}): When tf2 is not bound
to site j = 2, tf3 is free to bind to site j = 3 and block the recruitment
of rnap, disabling transcription (R3 = 0). Binding by tf2 and tf3 is
mutually exclusive (C23 = 0). Of all possible binding sites, half lead to
repression when a tf blocks rnap at or downstream of the transcriptional
start site (orange region). In the full model, the tfs and dna are longer
than here (32 and 256 bits), and binding is possible also when sequences
partially match (Hmax= 6). (C) The simulation process. Each generation
starts with the indexing of tf binding sites for all genes, which defines
the transcriptional network. Transcription rates are computed according to
eq. (II.5) and tf levels are updated according to eq. (II.6). The resulting
dynamics are evaluated by a cost function whose value is used by the selection
step of an evolutionary algorithm. When the evolution loop has completed
after a number of generations, Boolean rules and other statistics are extracted
for further analysis.
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ii.2.3 Cost functions
The fitness of a network was evaluated in terms of its ability to produce
a suitable response to a range of inputs. Two different systems were
implemented using our model of transcriptional regulation.

In the Boolean majority decision system seven tfs were used only as
binary inputs, held at constant low or high levels (0 or 1, respectively).
The task of the system was to determine whether a majority of the
inputs were high or low; see Figure II.2. A target profile was defined as
0 or 1 according to the majority of input bits, for each of the 27 = 128

combinations of binary inputs. For each combination, we simulated
the system for up to 480 time units, or until a fixed point was found.
For each gene, the final expression levels were recorded and normalized
to the same sum as the the target profile, to which they were then
compared. The cost was defined as the mean square deviation of the
best matching gene, normalized to 0 for a perfect match and 1 for a flat
expression profile.
For the circadian clock system, we used a cost function that strives

to focus the expression of a set of genes to specific times of the day. To
encourage the emergence of a circadian clock, the network should find
the correct timing of gene expression over a range of light conditions
[17]. A large number of transcription and degradation rates are light-
dependent in models of the plant clock [18]. We therefore simulated
the input of light into the system through a 24 h periodic binary signal
which selected between two independent sets of degradation rates for
all tfs, dg and d′g; see Figure II.3.

For each light input, the network dynamics were run for a maximum
of 20 days or until convergence to a limit cycle, with 6, 12 or 18 hours of
light centred at noon. The expression level of each gene was integrated
in six 4 h time windows over 24 h and normalized to a sum of 1. For
each time window, the gene with the highest expression when averaged
over the three different light conditions was chosen as the output in
that window. The cost of the network was one minus the mean of the
six output genes in their respective windows. Thus the cost function
measured how well the system divided the 24 hours into six equal
parts, reminiscent of the consecutively expressed prr genes in the plant
circadian clock [19].
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Figure II.2 Evolving networks with majority function. Networks were
selected for their ability to determine if the majority of seven binary inputs
were on or off. (A) For all 128 possible input combinations, the network output
(blue circles) should be as close as possible to the target (red dots), as measured
by a cost function based on the deviations (black crosses, right hand y-axis).
(B) The evolved network used to generate the output in (A). The input nodes
(squares) take binary signals, and the output is the steady state level of the
output node (grey). Blue edges with arrows represent activation, red edges
with bars represent repression, and grey edges with circles represent ambiguous
regulation. This example network was evolved for 2 · 106 generations with a
non-zero link cost in order to become suitably small for publication.
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Figure II.3Evolving networks with clock function. Networks were selected
for having each 4 h time window marked by the temporally focused expression
of one tf. The six output tfs should be expressed at the correct time in
24 h periodic light conditions with 18 h (A), 12 h (B) and 6 h (C) of light.
The coloured lines show the normalized expression levels of the output tfs,
and the background is white/grey for light/dark. (D) The evolved network
used to generate the output in panels A-C, with the output nodes (grey)
labelled by time window. Light acts as input to all nodes through the protein
degradation rates. Blue edges with arrows represent activation, red edges
with bars represent repression and grey edges with circles represent ambiguous
regulation. This example network was evolved for 2.5 · 106 generations with a
non-zero link cost in order to be suitably small for publication.

ii.2.4 Evolution of fitness
To evolve the networks using an evolutionary algorithm, we defined
mutations and crossover operations. Possible point mutations included
alterations of the bitstrings for tfs and regulatory regions, the tf
production rate and degradation rate (pg and dg in eq. (II.6)) and the
affinity of rnap for a specific promoter region (bg in eq. (II.5)). Genes
could also be deleted, and new genes were produced by duplication
of a whole gene, from a recombination of a regulatory region and a
tf, or, more rarely, de novo (which may be interpreted as an influx
of genes into the system, e.g. from unrelated parts of the organism’s
genome). The probabilities for the different types of mutations were
chosen arbitrarily, and were not expected to greatly affect the results.

The initial network consisted only of a single randomized gene. Instead
of imposing a small cost for each additional gene, which may impose an
undue pressure on networks early in their evolution, we capped the total
number of genes at 40, which is considerably more than the number
of genes in, e.g., models of the Arabidopsis circadian clock. When
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studying the effects of evolution without gene duplication, we started
the simulations with 40 random genes and disabled duplication events
but allowed deletions and de novo gene creation.
For each generation of the evolutionary algorithm, we replaced the

least fit individual out of a population of 20 networks. With 90%
probability, the best of two randomly chosen individuals was duplicated
and mutated. In the remaining cases, two parents were chosen in the
same way (tournament selection) and used for crossover, where each
gene of the offspring was picked from a random parent. After the final
generation, the network with the lowest cost was saved. The networks
were evolved for 7 · 104 or 1 · 105 generations for the majority rule or
clock cost function, respectively. This process was iterated to create a
sample of 100 independently evolved networks for each of our two cost
functions. The resulting distributions in cost is shown in Figure II.S1.

To make the networks more comparable with data on real transcrip-
tional networks, we designed a pruning process to remove interactions
that left the fitness nearly unchanged. The individual network links
were sorted according to the fitness cost of removing them, and links
were then removed one at a time until the total change in cost would
have exceeded 0.01 (clocks) or 0.001 (majority rule).

ii.2.5 Neutrally evolved networks
To study the effects of selection, we generated networks without selection
for function but with the same structural characteristics. The in-degree
of a node (gene) was defined as the number of distinct tfs that bound
to its regulatory region, and the out-degree was similarly defined as
the number of distinct genes to which a tf bound. We constructed a
cost function which compared two networks, such that a value of zero
corresponded to the new network having the same number of nodes
and edges, and the same distributions of in-degree and out-degree as
the target network. Aside from this selection towards similar structure,
the networks were allowed to evolve neutrally, using the same mutation
mechanisms as the functional networks. From each functional network,
we created 5 neutrally evolved networks.

ii.2.6 Extracting Boolean rules
The interactions of tfs that bind to a gene regulatory region result
in a multivariate function, with input and output levels that need to
be discretized if we are to extract a Boolean representation of the
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transcriptional logic rule. To build the truth table of a k -input rule,
we applied all 2k combinations of high and low input tf levels, where
“low” was defined as 0 and “high” as the peak concentration level of the
respective input tf in the dynamics. The gene was considered to be on
for combinations where it reached at least half of its peak transcription
rate observed in the dynamics, and off otherwise.

Many of the possible Boolean truth tables describe rules that do not
depend on all of their inputs. This is a general problem when discretizing
expression levels: tfs that only weakly affect the transcription rate may
not be sufficient to push the output across the binarization threshold
in any of the input conditions. For the analysis of Boolean rules, we
removed all such “unused” inputs.

ii.3 results

As described in Methods, we evolved functional networks with selection
either for performing the Boolean majority rule (Figure II.2) or for circa-
dian clock function (Figure II.3), with and without gene duplications as
a possible mutation step, and compared these networks with structurally
similar but non-fuctional networks created by neutral evolution. The
functional networks showed considerable variation in fitness, with gene
duplications improving the rate of convergence towards the selection
target for the same number of generations (Figure II.S1). As expected,
selection for network function led to an enrichment in strong tf–dna
binding relative to random sequences, particularly for circadian clocks
(Figure II.S2).

ii.3.1 Low ambiguity of transcriptional regulation
A tf may act as an activator at one binding site and as a repressor
at another, even within the same regulatory region. We refer to this
case as ambiguous regulation of the target gene. The E. coli transcrip-
tional network database RegulonDB includes information on this level,
with nearly all tf–dna interactions described as either activating or
repressing. Disregarding a small number of binding sites with unknown
or dual function, we could thus compare the prevalence of ambiguous
regulation between the model and the E. coli data.
Considering only cases where a tf bound to exactly two sites in a

regulatory region, we defined n++, n−− and n+− as the number of
activators, repressors and ambiguous regulators, respectively. If the sign
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of regulation is random, we expect that the ratio n+−/(2
√
n++n−−) = 1.

As shown in Figure II.4, this relative ambiguity was indeed close to 1
in neutrally evolved networks. In networks evolved with selection, the
ratio was much lower, between 0.2 and 0.3, regardless of the network
function and whether gene duplications were allowed or not. This trend
is in qualitative agreement with data from the E. coli network, where
the relative ambiguity was only about 0.04.
The relative ambiguity was decreased by pruning unimportant links

in the networks as described in Methods, whereas altering the tf–dna
binding cutoff to include many weaker binding sites (setting Hmax=8)
had the opposite effect (Figure II.S3). Strong and important links
were thus associated with lower ambiguity, which could explain why we
observed so few ambiguous interactions among those that have been
found worthy of study and inclusion in RegulonDB.

ii.3.2 Binding site interactions
Depending on how they interact, every pair of binding sites in a regula-
tory region may be classified as competitive, cooperative or independent
(Figure II.1 and eq. (II.4)). A further division can be made into pairs
of sites where either identical or different tfs bind. In the case of
cooperative binding, these homogeneous and heterogeneous pairs of
sites may represent binding by homo- and heterodimers, respectively.

Regardless of the selection target used to evolve functional networks,
competitive binding was considerably less likely between homogeneous
pairs of binding sites than between heterogeneous ones (Figure II.5A).
It appears that networks have little use for components that directly
counteract themselves. Conversely, cooperative binding was most likely
between identical tfs (Figure II.5B). Homodimer-like regulators were
thus particularly favoured, but a comparison with the random expecta-
tion shows that cooperativity caused by heterodimer-like regulators was
also significantly overrepresented.
To test these model predictions against data from a real transcrip-

tional network, we collected statistics on the distance between midpoints
of binding sites in E. coli from RegulonDB. For simplicity and com-
parability with the model, we classified sites within 16 basepairs as
competitive and those within 32 basepairs as cooperative. As shown
in Figure II.5, a comparison between heterogeneous and homogeneous
pairs of binding sites verified the model prediction that cooperative
binding is preferentially associated with homodimers.
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Figure II.4 Prevalence of ambiguous gene regulation. The probability
of a tf having exactly one activating and one repressing binding site in a
regulatory region, relative to the null hypothesis that the sign of regulation
is independent between sites (see main text). In neutrally evolved networks
(gray), regulation was as ambiguous as expected by chance. In contrast, genes
in functional evolved networks were predominantly regulated unambiguously,
regardless of the network function (blue and red for majority rule and clock
networks, respectively). Restricting the evolutionary paths by disabling gene
duplications had little effect on this ambiguity (hashed bars). The model
qualitatively predicted the situation in the transcriptional network of E. coli
(green), where tfs almost always regulate their targets with a clearly defined
sign. Binding site data were pooled from all networks; error bars indicate
standard errors based on the total counts. See also Figure II.S3, which explores
the effects of some model parameter choices on the relative ambiguity.
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Figure II.5 Pairwise interactions of tf binding sites. The fraction of pairs
of tf binding sites that were (A) mutually exclusive because of competitive,
overlapping binding, (B) cooperatively binding due to proximity, or (C) nei-
ther. Binding sites were defined as specific to one tf and may thus overlap
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neous interaction (tf1 and tf2 are the same) and heterogeneous (tf1 and
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for random dna and tf sequences. All pairs of binding sites (within the same
regulatory region) were counted in 100 networks evolved as either majority
rule (blue) or clock (red). E. coli data from RegulonDB [20] (green). Error
bars indicate standard errors.
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ii.3.3 Dominant sign of regulation
When a tf could bind to multiple sites at a gene, the regulation of that
gene was predominantly either activating or repressing. This preference
for a clear sign of regulation at the level of individual genes does not
necessarily mean that tfs regulate all their targets in equal direction.
We hypothesized that tfs may be divided into activators and repressors
by selection if such a division constitutes a design principle for successful
transcriptional networks.
We define the activator-repressor status of a tf as the fraction of

a tf’s individual binding sites that are classified as activating. When
all binding sites for a tf are considered, the expectation with random
dna and tf sequences is that the activator-repressor status follows a
binomial distribution; it is rare to see mostly activation or repression
by chance (Figure II.6A).
The activator-repressor status of tfs in networks evolved neutrally

without gene duplication was found to closely follow the expected bi-
nomial distribution. Similar results for networks selected for function
indicated that selection did not encourage the separation of tfs into
activators and repressors. The only deviation from the random expec-
tation was a small bias towards negative regulation in clock networks
(Figure II.6A).

When gene duplication events were allowed, selection for either of the
two network functions produced networks where the tfs were clearly
separated into activators and repressors (Figure II.6B). Neutral evolution
produced similar results, which suggested that the separation between
activators and repressors was not selected for, but rather a consequence
of evolution following paths opened up by gene duplications. The results
from the simulations were remarkably similar to data from E. coli. A
majority of the tfs still had some binding sites of opposing signs,
but pure activators and pure repressors were far more abundant than
expected by chance (Figure II.6C).

As before, clock networks showed a preference for negative regulators,
while in the E. coli data we could see an overrepresentation of tfs with-
out any activating interactions; these may represent inherent inhibitors
of transcription.
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Figure II.6 tf proclivity towards positive or negative regulation. For
each tf, we computed the fraction of binding sites that enhanced rather
than blocked transcription. The distribution of this quantity is presented for
functional networks evolved either for majority rule or clock function (blue
squares and red squares, respectively), compared with structurally similar
neutrally evolved networks (black dashed lines) and with E. coli data [20] (green
triangles) where applicable. (A) Without gene duplication, both functional
and neutrally evolved networks followed the binomial distribution expected
when individual target genes are randomly regulated (black dot-dashed line).
A small bias towards negative regulation was observed in clock networks. (B)
With gene duplications, tfs separated into mostly activating or repressing.
The same pattern was observed in E. coli. (C) The relative overrepresentation
of positive/negative regulators in functional networks, shown as the ratio
between the data from panel B and the expectation for random networks. The
number of pure activators or repressors was twentyfold to hundredfold higher
than expected by chance, both in the simulated networks and in E. coli. The
graphs are based on all tfs with at least 6 (A) or 8 (B-C) binding sites, with
rebinning applied to those with additional sites. The lower limit in (A) is due
to a scarcity of highly connected tfs in the majority rule networks; aside from
statistical noise, the number of bins does not affect the shape of the curves.
Data from 100 functional and 500 neutrally evolved networks of each kind.
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ii.3.4 Transcriptional logic
The function of a transcriptional network is determined not only by its
structure but also by the logic rules that govern the expression of its
genes. These rules are defined by the binding and mutual interactions
of tfs, and the transcriptional logic is thus constrained: only a subset
of the Boolean functions can practically be realized [8]. As we have
shown, our model predicts that the pairwise interactions between tfs
follow similar patterns in networks evolved to perform different tasks.
However, we would expect the resulting logic to differ.
The transcription rates, which are described by eq. (II.5) as contin-

uous functions of the tf concentrations levels, were discretized into
Boolean functions based on typical expression levels observed in the
dynamics of the system. This procedure, which is explained in further
detail in Methods, works only for functional networks; the neutrally
evolved networks lack meaningful dynamics, and the resulting rules
would depend strongly on arbitrary assumptions about expression levels.
Hence, we have only compared Boolean rules extracted from functional
evolved networks.
Binary Boolean rules such as and and or accounted for about 20%

of the roughly 3000 multivariate rules extracted from each ensemble
of networks (Figure II.7C). The distribution of these rules is shown in
Figure II.7A, from which it can be seen that the presence or absence
of gene duplication had little effect on the types of rules formed by
rewiring of the transcriptional regulation. In contrast, the selection
target strongly affected the number of rules of the most common types.

The most common logic rules were and-like functions that tie together
the presence of activators and the absence of repressors. The correspond-
ing or-like functions were relatively uncommon, accounting only for a
few percent of the total. None of the evolved networks contained any
cases of eq or xor, though tests with random sequences showed that
such rules are possible to express in this model (not shown). The six
binary rules that were realized are all canalizing, i.e., they have at least
one input value that renders the other inputs irrelevant for determining
the output. When the canalizing input is set to its non-canalizing
value, the rule may be canalizing on additional inputs. Rules that are
defined completely by such recursion are referred to as nested canalizing .
These occur frequently in biology and generally lead to stable network
dynamics [21].
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A majority of the genes were regulated by more than two tfs. To
characterize the resulting Boolean functions, we determined their nested
canalizing depth. This number is maximal for nested canalizing rules
such as a ∧ (b ∨ (c ∧ ¬d)) but zero for non-canalizing rules [22]. Two
patterns emerged, one concerning biological function and one concerning
evolutionary mechanisms: Clocks make use of more canalization than
networks that solve the majority rule problem, and gene duplications
favour the emergence of canalizing rules; see Figure II.7B.
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Figure II.7 Transcriptional logic of evolved networks. Comparison be-
tween the logic rules in majority rule networks (blue) and clock networks (red),
evolved with (solid) or without (hashed/dashed) gene duplications. (A) The
relative frequencies among the eight rules that have only two inputs. (B) The
structure of logic rules with up to 9 inputs, computed as the mean nested
canalizing depth [22] normalized by the number of inputs. (C) The degree
distribution of panel B. All three panels indicate that network function is
a major factor in determining the distribution of transcriptional logic rules.
The transcription rates, which were modelled as continuous functions of tf
concentration levels, were discretized into Boolean logic rules as described in
Methods. Data from 100 networks of each kind.
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ii.4 discussion

By applying in silico evolution to a combinatorial model of transcrip-
tional regulation, we have explored how mutation and selection together
shape interactions between genes in transcriptional networks. We have
compared two specific network functions with the transcriptional net-
work of an entire organism, partly for practical reasons but motivated
by the philosophy that grand principles should be generic and robust.

The model demonstrates that tfs separate into activators and repres-
sors even when they carry no inherent predisposition towards either sign
of regulation. There are two aspects to this. First, the regulation of an
individual gene by a tf is mostly unambiguously positive or negative;
ambiguous regulation is relatively rare in nature as well as in our sim-
ulations of functional networks. Presumably, ambiguity leads to weak
interactions that are unlikely to persist. Second, the model reproduces
the observed broad separation of tf function into predominantly acti-
vating or repressing, but only in simulations of evolution that include
gene duplications. These two points differ in one important regard: The
former is specific to networks with functional dynamics, whereas the
latter is also found in neutrally evolved networks. However, both are
surprisingly insensitive to the choice of network function used as the
target for selection.

In contrast, we found that the function of a network largely determined
its distribution of logic rules, regardless of large-scale mutations such as
gene duplications. Networks that were evolved to act as circadian clocks
depended on negative interactions and distinctly canalizing logic rules.
Furthermore, they were rich in cooperative binding and strong repression,
in agreement with the view that oscillations are favoured by negative
and nonlinear regulation of gene expression [23]. The importance of
repression in circadian clocks is corroborated by modelling work in
organisms such as Arabidopsis thaliana [24, 25]. In contrast, networks
evolved to solve a simple decision problem made use of less canalizing
logic and showed no bias towards repression.
Despite these differences, we observed strong similarities between

all functional networks compared with neutrally evolved ones. This
indicates that networks evolved with selection adhere to certain “design
principles” for transcriptional regulation. tfs regulate their targets
with less ambiguity and a higher incidence of cooperative binding than
expected by chance, but the most striking feature is the polarization of
the sign of regulation.
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Four main conclusions can thus be drawn:

• The model produces testable hypotheses that agree with data
from E. coli, such as the overrepresentation of cooperative binding
among homogeneous pairs of binding sites (Figure II.5).

• Selection leaves clear marks on gene regulation in functional net-
works; neutrally evolved networks do not regulate their genes in a
coherent, unambiguous way (Figure II.4).

• The evolutionary shortcuts created by gene duplications favour
the approximate division of tfs into activators and repressors
(Figure II.6).

• The choice of target function for network selection has impact on
the resulting logic rules, whereas the choice of allowed evolutionary
paths appears to be of less importance; for the clock system, nested
canalizing rules are dominant (Figure II.7).

The importance of selection to the transcriptional regulation con-
trasts with earlier results on local structure by Kuo et al., who found
that the prevalence of network motifs depended only on gene dupli-
cation and was unaffected by selection [3]. On the other hand, Kash-
tan et al. reported that selection did affect motif formation in modular
information-processing networks compared with networks evolved only
for modularity [26]. These conflicting results seem to be sensitive to
model assumptions that affect the evolved non-functional networks.
We expect greater robustness when conclusions are based on compar-
isons between functional networks, evolved either for different biological
functions or using different mutational steps.
The effects of gene duplication on tf specialization requires further

study. It appears that when target genes are duplicated, tfs retain
their initial bias towards specialization despite subsequent rewiring of
binding sites. Further work will be needed to clarify the robustness of
this result. For instance, by tracking the evolutionary history of every
binding site, we could quantify the extent and impact of the rewiring.

In the model presented here, transcriptional binding sites arise from
a bit-based genotype, without prior assumptions about how the genes
are connected. Network structure and function are created by the
combinatorial interactions between transcriptional regulators. Models
that include such a dynamical mapping from genotype to phenotype
are well suited to mimic the complexity of natural systems and explore
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the mutation space to improve fitness [7]. The present model describes
the core parts of transcriptional regulation in a simplified form, which
is robust towards changes in model parameters (see e.g. Figure II.S4).
Depending on the context, the model could be extended to include
explicit rna and translation, as well as post-translational interactions
such as protein complex formation. The model represents a simplified
picture compared to the situation in E. coli, where repressors may bind
upstream of the tss [14], and to generic models that explicitly include
longer-range interactions [8]. Future developments may thus include
nonlocal interactions (dna looping) as well as more tf-specific binding
strengths and cooperative interactions.
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Figure II.S1 Distribution of fitness in evolved networks. Final cost func-
tion values for networks evolved with or without gene duplication events,
sorted by cost. (A) Majority rule networks evolved for 7 · 104 generations. (B)
Clock networks evolved for 1 · 105 generations. Data from 100 simulations of
each kind.
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Figure II.S2 Distribution of tf–dna binding strengths. The relative
frequency of Hamming distances between tf binding motifs and dna sequences,
for all binding sites in networks evolved at binding strength cutoff Hmax= 8.
Data from 100 networks selected for function as the majority rule (blue circles)
or circadian clock (red squares), either with or without gene duplications (thick
solid and thin dashed, respectively). The enrichment in strong binding sites is
due to selection; this is demonstrated by a comparison with 500 non-functional
networks with similar structure (gray symbols and lines), which match the
binomial distribution expected for random sequences (solid black line).
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Figure II.S3 Prevalence of ambiguous gene regulation. The probability of
a tf having exactly one activating and one repressing binding site in a regula-
tory region, relative to the probability under the null hypothesis that the sign
of regulation is independent between sites. This figure expands on Figure II.4
by including four model choices for neutrally evolved networks (gray), random
regulatory regions and binding sequences (dark gray), majority rule networks
(blue) evolved either normally, without gene duplications, without the pruning
of unimportant interactions or with a larger regulatory region (512 bits), ma-
jority rule networks evolved with weaker binding mismatch cutoff (Hmax= 8)
with or without gene duplications or pruning, circadian clock networks for the
same cases as the majority rule networks (red and orange) and data for E. coli.
Unless otherwise stated, the model used Hmax= 6 and 256-bit regulatory
regions. As expected, Hmax= 8 resulted in more ambiguous regulation due to
a larger number of weak binding sites; this is reflected in the greater effect
of pruning these networks. Increasing the size of the regulatory region leads
to a decrease in ambiguity in the clock networks, which suggests that clocks
sometimes use one negative and one positive binding site to implement their
preferred cooperative negative regulation. Error bars indicate standard errors.
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Figure II.S4 tf proclivity towards positive or negative regulation. This
figure is identical to Figure II.6A-B (Hmax= 6, 256 bits), except that we here
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(dashed lines), or simulations with lower binding strength cutoff (Hmax= 8,
dot-dashed lines). The inclusion of weaker binding sites shifts the results
towards the random expectation, but otherwise the results are qualitatively
unchanged by these parameter changes. Data from 100 functional and 500
neutrally evolved networks of each kind.
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III

Circadian clocks are biological timekeepers that allow living cells to time
their activity in anticipation of predictable daily changes in light and other
environmental factors. The complexity of the circadian clock in higher plants
makes it difficult to understand the role of individual genes or molecular
interactions, and mathematical modelling has been useful in guiding clock
research in model organisms such as Arabidopsis thaliana.

We present a model of the circadian clock in Arabidopsis, based on a large
corpus of published time course data. It appears from experimental evidence
in the literature that most interactions in the clock are repressive. Hence,
we remove all transcriptional activation found in previous models of this
system, and instead extend the system by including two new components, the
morning-expressed activator rve8 and the nightly repressor/activator nox.

Our modelling results demonstrate that the clock does not need a large
number of activators in order to reproduce the observed gene expression
patterns. For example, the sequential expression of the prr genes does not
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require the genes to be connected as a series of activators. In the presented
model, transcriptional activation is exclusively the task of rve8. Predictions
of how strongly rve8 affects its targets are found to agree with earlier in-
terpretations of the experimental data, but generally we find that the many
negative feedbacks in the system should discourage intuitive interpretations of
mutant phenotypes. The dynamics of the clock are difficult to predict without
mathematical modelling, and the clock is better viewed as a tangled web than
as a series of loops.

iii.1 author summary

Like most living organisms, plants are dependent on sunlight, and
evolution has endowed them with an internal clock by which they can
predict sunrise and sunset. The clock consists of many genes that
control each other in a complex network, leading to daily oscillations
in protein levels. The interactions between genes can be positive or
negative, causing target genes to be turned on or off. By constructing
mathematical models that incorporate our knowledge of this network,
we can interpret experimental data by comparing with results from
the models. Any discrepancy between experimental data and model
predictions will highlight where we are lacking in understanding. We
compiled more than 800 sets of measured data from published articles
about the clock in the model organism thale cress (Arabidopsis thaliana).
Using these data, we constructed a mathematical model which compares
favourably with previous models for simulating the clock. We used our
model to investigate the role of positive interactions between genes,
whether they are necessary for the function of the clock and if they can
be identified in the model.

iii.2 introduction

The task of the circadian clock is to synchronize a multitude of biological
processes to the daily rhythms of the environment. In plants, the primary
rhythmic input is sunlight, which acts through photoreceptive proteins
to reset the phase of the clock to local time. The expression levels
of the genes at the core of the circadian clock oscillate due to mutual
transcriptional and post-translational feedbacks, and the complexity of
the feedbacks makes it difficult to predict and understand the response
of the system to mutations and other perturbations without the use of
mathematical modelling [1].
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Early modelling of the system by Locke et al. demonstrated the
feasibility of gaining new biological insights into the clock through
the use of model predictions [2]. The earliest model described the
system as a negative feedback loop between the two homologous myb-
like transcription factors circadian clock associated 1 (cca1) and
late elongated hypocotyl (lhy) [3, 4] on one hand and timing
of cab expression 1 (toc1/prr1) [5] on the other. Over the past
decade, models have progressed to describing the system in terms of
multiple interacting loops, still centred around lhy/cca1 (treated as
one component) and toc1. The latest published model by Pokhilko
et al. (2013) describes transcriptional and post-translational interactions
between more than dozen components. We refer to that model as
P2012 [6], in keeping with the tradition of naming the Arabidopsis
clock models after author and submission year (cf. L2005 [2], L2006 [7],
P2010 [8] and P2011 [9]).
The clock depends on several genes in the pseudo response reg-

ulator (prr) family: prr9, prr7, prr5, prr3 and toc1/prr1 are
expressed in a clear temporal pattern, with prr9 mrna peaking in
the morning, prr7 and prr5 before and after noon, respectively, and
prr3 and toc1 near dusk [10]. prr9, prr7 and prr5 act to repress
expression of cca1 and lhy during the day [11], but, until recently,
toc1 was thought to be a nightly activator of cca1 and lhy, acting
through some unknown intermediate. However, toc1 has firmly been
shown to be a repressor of both cca1 and lhy, and it now takes its
place in the models as the final repressor of the “prr wave” [9, 12–14].
prr3 has yet to be included in the clock models and the roles of the
other prrs are being reevaluated following the realization that toc1
acts as a repressor [15].
The gigantea (gi) protein has long been thought to form part of

the clock [16], whereas early flowering 3 (elf3) was known to
affect clock function [17] but was only more recently found to be inside
the clock, rather than upstream of it [18, 19]. gi and elf3 interact
with each other and with other clock-related proteins such as the E3
ubiquitin-ligase cop1 [20]. gi plays an important role in regulating
the level and activity of zeitlupe (ztl) [21], which in turn affects the
degradation of toc1 [22] and prr5 [23] but not of the other prrs [24].
The clock models by Pokhilko et al. include gi and ztl; gi regulates
the level of ztl by sequestering it in a gi-ztl complex during the day
and releasing it at night [8].
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Together with early flowering 4 (elf4) and lux arrhythmo
(lux), elf3 is necessary for maintaining rhythmicity in the clock [25–
27]. The three proteins are localized to the nucleus, and elf3 is both
necessary and sufficient for binding elf4 and lux into a complex termed
the evening complex (ec) [19]. In recent models, ec is a major repressor;
it was introduced in P2011 to repress the transcription of prr9, lux,
toc1, elf4 and gi [9].

We here present a model (F2014) of the circadian clock in Arabidopsis,
extending and revising the earlier models by Pokhilko et al. (P2010–
P2012). To incorporate as much as possible of the available knowledge
about the circadian clock into the framework of a mathematical model,
we have compiled a large amount of published data to use for model
fitting. These curated data are made available for download as described
in Methods.

The aim of this work is to clarify the role of transcriptional activation
in the Arabidopsis circadian clock. Specifically, we use modelling to
test whether the available data are compatible with models with and
without activation. There is no direct experimental evidence for any
of the activators postulated in earlier models, and as a crucial step in
remodelling the system we have removed all transcriptional activation
from the equations. Instead, we have added a major clock component
missing from earlier models: the transcription factor reveille 8 (rve8),
which positively regulates the expression of a large fraction of the clock
genes [28, 29]. A further addition is the nightly transcription factor
nox/brother of lux arrhythmo (nox/boa), which is similar to
lux but may also act as an activator of cca1 [30]. By examining
transcriptional activation within the framework of our model, we have
clarified the relative contributions of the activators to their different
targets.

iii.3 results

Based on available experimental data and interpretations in the pub-
lished literature, we have developed a revised model of the Arabidopsis
circadian clock. The new model is presented in Figure III.1, and a
comparison with the most recently published model, P2012 [6], is shown
in Figure III.S1. Five major alterations are discussed below: remod-
elling of ec, addition of the lux homologue nox, removal of sequential
activation in the prr wave, repression of the prrs by cca1, and ad-
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dition of rve8 as the main transcriptional activator. For brevity, we
refer to Section III.B for further details and results concerning nuclear
localization of toc1 by prr5, splitting of lhy/cca1 and removal of
unmotivated components and light inputs.
To increase the robustness of the conclusions drawn from the mod-

elling, all our model simulations are presented as eight curves, derived
from an ensemble of eight independent parameter sets as described in
Methods.

iii.3.1 A remodelled evening complex
Overexpression of elf3 rescues clock function in the otherwise arrythmic
elf4-1 mutant [27]. This suggests that the function of elf4 is to amplify
the effects of elf3 through the elf3-elf4 complex, which led us to
consider an evening complex (ec) where free elf3 protein can play the
role of elf3-elf4, albeit with highly reduced efficacy. This, together
with our aim to add the nox protein in parallel with lux, as described
in the next section, prompted us to rethink how to model this part of
the clock.
ec is not given its own variable in the differential equations, unlike

in the earlier models. Instead, ec activity is seen as rate-limited by
lux and nox on one hand and by elf3-elf4 and free elf3 on the
other. In either pair, the first component is given higher importance,
in accordance with previous knowledge. For details, see the equations
in Section III.C. This simplified description requires few parameters,
which was desirable because the model had to be constrained using time
course data for the individual components of ec, mainly at the mrna
level.

The effects of our changes to ec are illustrated in Figure III.2, which
shows ec and related model components in the transition from cycles
of 12 h light, 12 h dark (ld 12:12) to constant light (ll). elf3, which
is central to ec in our model, behaved quite differently at the mrna
level compared with the P2011 and P2012 models, and more closely
resembled the available experimental data, with a broad nightly peak
and a trough in the morning at zeitgeber time (zt) 0–4 (Figure III.2A).
The differences in the dynamics of the ec components between our

eight parameter sets demonstrate an interesting and more general point:
The components that are most reliably constrained are not always
those that were fitted to measured data. In our case, the model was
fitted to data for the amount of elf3 mrna (Figure III.2A) and total
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Figure III.1 The F2014 model of the Arabidopsis circadian clock. Com-
ponents of the clock are laid out according to approximate time of peak mrna
expression, clockwise with zeitgeber time 0 (lights on) at the bottom. Yellow
and grey boxes indicate proteins that are active primarily during the day
and night, respectively. Solid lines indicate transcriptional regulation and
dashed lines indicate protein–protein interactions, with arrows for activation
and bars for repression or degradation. Additions to the model relative to
P2012 are shown in blue. The green line indicates a hypothetical interaction,
and the light grey line indicates an interaction that the model predicts to be
extremely weak. The light blue boxes show three main modules of the clock,
and interactions between them are shown with thick black lines. ec is the
evening complex between elf3, elf4 and lux or nox, and the dark grey line
indicates the elf3-elf4 complex. Lightning and yellow circles symbolize light
input at the transcriptional and post-transcriptional level, respectively. For
an alternative version comparing F2014 with P2012 [6], see Figure III.S1.
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elf3 protein (not shown), but the distribution between free elf3 and
elf3 bound in the elf3-elf4 complex was not directly constrained
by any data. As expected, the variation between parameter sets was
indeed greater for the levels of free elf3 protein and the elf3-elf4
complex, as shown in Figure III.2B-C. However, the predicted level of
ec (Figure III.2D) showed less variation than even the experimentally
constrained elf3 mrna. This indicates that the shape and timing of
ec were of such importance that the ec profile was, in effect, tightly
constrained by data for the seven ec repression targets (prr9, prr7,
prr5, toc1, gi, lux and elf4).
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Figure III.2 The evening complex and its components. Concentration
levels of a selection of model components relevant to ec, in the transition from
ld 12:12 (light/dark cycles) to ll (constant light), comparing our ensemble
of models (eight parameter sets, black lines), to the previous models P2011
(dashed red line) and P2012 (dotted blue line). (A) elf3 mrna in wild type
(wt), compared with a typical experiment (green triangles, data from [31]).
(B) elf3 protein in the nucleus, not counting complexes. (C) The elf3-
elf4 protein complex. (D) The resulting evening complex. Each curve was
normalized to a peak level of 1. Grey background signifies the night of the
last day of ld before the transition to ll at zt 24.
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iii.3.2 nox as a brother of lux
nox is a close homologue of lux, with a highly similar dna-binding
domain and a similar expression pattern which peaks in the evening.
Like lux, nox can form a complex with elf3 and elf4, but it is only
partially redundant with lux, which has a stronger clock phenotype [32].
The recruitment of elf3 to the prr9 promoter is reduced in the lux-4
mutant and abolished in the lux/nox double amirna line [33]. To
explain these findings, we introduced nox into the model as a component
acting in parallel with lux; we assumed that nox and lux play similar
roles as transcriptional repressors in the evening complex.
There is evidence that nox binds to the promoter of cca1 (and

possibly lhy) in vivo and activates its transcription. Accordingly, the
peak level of cca1 expression is higher when nox is overexpressed, and
the period of the clock is longer [30]. This possible role of nox as an
activator fits badly with its reported redundancy with lux as a repressor.
In an attempt to resolve this issue, we first modelled the system with
nox only acting as a repressor in ec, and then investigated the effects
of adding the activation of cca1 expression.

Figure III.3 illustrates the role of nox in the model in comparison with
lux. The differences in their expression profiles (Figure III.3A-B) reflect
the differences in their transcriptional regulation (cf. Figure III.1). cca1
expression is decreased only marginally in the nox mutant (Figure III.3C-
D) but more so in lux (Figure III.3E). Because of the redundancy between
nox and lux, the model predicted that the double mutant lux;nox has
a stronger impact on circadian rhythms, with cca1 transcription cut
at least in half compared with lux (Figure III.S2A). According to the
model, the loss of lux and nox renders the evening complex completely
ineffective, which in turn allows the prr genes (including toc1) to be
expressed at high levels and thereby repress lhy and cca1.
A comparison with the P2011 and P2012 models, which include

lux but not nox, is shown in Figure III.3B, C and E. Here, the most
noticeable improvement in our model was the more accurate peak timing
after entry into ll, where in the earlier models the clock phase was
delayed during the first subjective night [34].
Period lengthening and increased cca1 expression was observed in

nox-ox only for some of the parameter sets (Figure III.3F). The four
parameter sets with increased cca1 all had a very weakly repressing
nox whose main effect was to counter lux by taking its place in ec.
Removing nox from ec in the equations and reoptimizing a relevant
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subset of the parameters worsened the fit to the data (Figure III.S3).
These results support the idea of nox acting through ec in manner that
makes it only partially redundant with lux.
The possibility that nox is a transcriptional activator of cca1 and

lhy was probed by adding an activating term to the equations (see
Section III.C) and reoptimizing the parameters that control transcription
of cca1 and lhy. The resulting activation was very weak in all parameter
sets, and had negligible effect on the expression of cca1 in nox-ox
(Figure III.S2B-C). Accordingly, the addition of the activation term did
not improve the fit to data as measured by the cost function described
in Methods (Figure III.S3).
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Figure III.3 nox and its interaction with cca1. Comparison between the
F2014 model (eight parameter sets, black lines) and experimental data (green
triangles [32], blue circles [30], red squares [35] and purple diamonds [36]),
and the earlier models P2011 (dashed red lines) and P2012 (dotted blue lines),
where applicable, in the transition from ld to ll. (A) nox mrna in wt.
(B) lux mrna in wt. (C-F) cca1 mrna in (C) wt, (D) nox mutant (boa-1),
(E) lux mutant (pcl1-1), and (F) nox-ox. The peak mrna levels for the models
were normalized to 1 in wt, and the same normalization was kept for the
mutants. Experimental data were scaled to match the model in panel C, and
the same normalization was used in panels D-F. Note the different vertical
scales.

iii.3.3 Sequential prr expression without activation
In earlier models that included the prr genes, the prrs were described as
a series of activators; during the day, prr9 activated the transcription of
prr7, which similarly activated prr5. These interactions improved the
clock’s entrainability to different ld cycles [8]. However, this sequential
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activation disagrees with experimental data for prr knockout mutants,
which indicate that loss of function of one prr leaves the following
prr virtually unaffected. For instance, experiments have shown that
the expression levels of prr5 and toc1 (as well as lhy and cca1) are
unaffected in both prr9-1 and prr7-3 knockout mutants [11, 37].

Instead, direct interactions between the prrs have been found to be
negative and directed from the later prrs in the sequence to the earlier
ones [15, 38]. A strong case has been made for toc1 as a repressor
of the prr genes [9, 14]. As in P2012, we modelled transcription of
prr9, prr7 and prr5 as repressed by toc1, but we also included
negative auto-regulation of toc1, as suggested by the ChIP-seq data
that identified the toc1 target genes [14]. Likewise, prr5 directly
represses expression of prr9 and prr7 [38], and we have added these
interactions to the model.

As illustrated in Figure III.4A-C, this reformulation of the prr wave is
compatible with correct timing of the expression of the prrs in the wild
type, and the timing and shape of the expression curves were improved
compared with the P2012 model. An earlier version of our model gave
similar profiles despite missing the repression by prr5, which suggests
that such repression is not of great importance to the clock.
A nightly repressor appears to be acting on the prr7 promoter, as

seen in the rhythmic expression of prr7 in ld in the cca1-11;lhy-21;toc1-
21 mutant [39]. An observed increase in prr7 expression at zt 0 in
the lux-1 mutant relative to wild type [29] points to ec as a possible
candidate. Although Helfer et al. report that lux does not bind to the
lux binding site motif found in the prr7 promoter [32], we included
ec among the repressors of prr7. This interaction was confirmed by
Mizuno et al. while this manuscript was in review [40], demonstrating
the power of modelling and of timely publication of models.

We further let ec repress prr5. We are not aware of any evidence for
such a connection, but the parameter fitting consistently assigned a high
value to the connection strength, as was also the case with prr7. This
result hints that nightly repression of prr5 is of importance, whether it
is caused by ec or some related clock component.
The real test of the model came with knocking out members of the

prr wave. Here, the model generally outperformed the P2012 model, as
judged by eye, but we are missing data for some important experiments
such as prr7 in prr9. As an example, Figure III.4D shows the level
of prr5 protein in the prr9;prr7 double mutant, where half of our
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parameter sets predict the correct profile and peak phase. In the earlier
models, the only remaining inputs to prr5 were lhymod (a hypothetical
delayed lhy/cca1), toc1 (in P2012 only) and light (which stabilized
the protein), and these were unable to shape the prr5 profile correctly.
The crucial difference in our model was the repression of prr5 by cca1
and lhy, as described in the next section.
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Figure III.4Expression and regulation of the prr genes. (A-C) The mrna
levels of prr9 (solid red), prr7 (long dashed green), prr5 (short dashed blue)
and toc1 (dotted black) in the transition from ld to ll. (A) The F2014 model
with eight different parameter sets. (B) Experimental data: prr9 [38, 39, 41],
prr7 [38, 41, 42], prr5 [29, 42, 43] and toc1 [36, 44, 45]. (C) The P2012
and P2011 models (thick and thin lines, respectively). (D) Total prr5 protein
level in prr9;prr7 in ld in F2014 (solid black), P2011 (dashed red), P2012
(dotted blue) and experimental data (green triangles [41]). (E) The predicted
repression of prr transcription by cca1 and lhy, as a multiplicative factor,
with colours as in (A-C). (F) prr9 mrna in cca1-11;lhy-21 in ld, normalized
to the corresponding wt curves in (A-C); colours as in (D) but data from [11].
The peak levels in (A), (C) and (D) were normalized to 1, whereas the levels
in (B) were adjusted manually.

iii.3.4 Regulation of the prrs by cca1 and lhy
cca1 and lhy appear to work as transcriptional repressors in most
contexts in the clock (see e.g. [46]), but knockdown and overexpres-
sion experiments seem to suggest that they act as activators of prr9
and prr7 [37]. Accordingly, previous models have used activation by
lhy/cca1, combined with an acute light response, to accomplish the
rapid increase observed in prr9 mrna in the morning. However, with
the misinterpretation of toc1 regulation of cca1 [12] in mind, we were
reluctant to assume that the activation is a direct effect.
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To investigate this issue, we modelled the clock with cca1 and lhy
acting as repressors of all four prrs. If repression was incompatible with
the data for any of the prrs, parameter fitting should reduce the strength
of that repression term to near zero. As is shown in Figure III.4E, the
model consistently made cca1 and lhy strongly repress prr5 and toc1.
prr7 was also repressed, but in a narrower time window that acted
to modulate the phase of its expression peak. In contrast, prr9 was
virtually unaffected; cca1 and lhy do not directly repress prr9 in the
model.
Even though cca1 and lhy were not modelled as activators, the

model reproduced the reduction in prr9 expression observed in the
cca1-11;lhy-21 double mutant (Figure III.4F and Figure III.S4). prr7
behaved similarly to prr9 in both experiments and model. Conversely,
in the P2011 and P2012 models, where lhy/cca1 was supposed to
activate prr9, there was no reduction in the peak level of prr9 mrna
in cca1;lhy compared to wild type (Figure III.S5A).

To explore whether cca1 and lhy may be activating prr9 transcrip-
tion, we temporarily added an activation term to the equations (see
Section III.C) and reoptimized the relevant model parameters. The
activation term came to increase prr9 expression around zt 2 at least
twofold in two of the eight parameter sets, and by a smaller amount in
several (Figure III.S5B). This would seem to suggest that activation
improved the fit between data and model. Surprisingly, there was no
improvement as measured by the cost function (Figure III.S3). With the
added activation, prr9 was reduced only marginally more in cca1;lhy
than in the original model (Figure III.S5C). A likely explanation is that
feedbacks through ec and toc1, which repress prr9, almost completely
negate the removed activation of prr9 in the cca1;lhy mutant. Thus
the model neither requires nor rules out activation of prr9 by cca1
and lhy.

iii.3.5 Transcriptional activation by rve8
Like cca1 and lhy, rve8 is a morning expressed myb-domain tran-
scription factor. However, unlike cca1 and lhy, rve8 functions as an
activator of genes with the evening element motif, and its peak activity
in the afternoon is strongly delayed in relation to its expression [28].
Based on experimentally identified targets, we introduced rve8 into
our model as an activator of the five evening expressed clock compo-
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nents prr5, toc1, gi, lux and elf4, as well as the morning expressed
prr9 [29].
prr5 binds directly to the promoter of rve8 to repress its transcrip-

tion [38], and it is likely that prr7 and prr9 share this function [28, 29].
Using only these three prrs as repressors of rve8 was sufficient to
capture the expression profile and timing of rve8, both in ll and ld
(Figure III.5A).

rve8 is partially redundant with rve4 and rve6 [28], which led us to
model the rve8 mutant as a 60% reduction in the production of rve8.
To clearly see the effects of rve8 in the model, we instead compared
with the rve4;rve6;rve8 triple mutant, which we modelled as a total
knockout of rve8 function. The phase of the clock was delayed in ld,
and the period lengthened by approximately two hours in ll in the
simulated triple mutant, in agreement with data for lhy (Figure III.5B-
C), though we note that cab::luc showed a greater period lengthening
in experiments [29].
To investigate the significance of rve8 as an activator in the model,

we made a version of the model without rve8. The model parameters
were reoptimized against the time course data (excluding data for rve8
and from rve mutants). As with nox, we found that removing the
activation had no clear effect on the costs of the parameter sets after
refitting (Figure III.S3). It appears that activators such as rve8 are not
necessary for clock function. Still, the effects of the rve mutants can
only be explained when rve8 is present in the model, motivating its
inclusion.
The model used rve8 as an activator for four of its targets in a

majority of the parameter sets (Figure III.5D-F). The exceptions were
toc1 and elf4. Although toc1 is a binding target of rve8 in vivo, toc1
expression is not strongly affected by rve8-ox or rve8-1 [28, 47]. This
was confirmed by our model, where the parameter fitting disfavoured
the activation of toc1 in most of the parameter sets (Figure III.5E).
The eight parameter sets may not represent an exhaustive exploration
of the parameter space, but the results nevertheless support the notion
that the effect of rve8 on toc1 is of marginal importance.

iii.4 methods

As with previous models of the Arabidopsis clock, our model consists of
a set of ordinary differential equations (odes) with parameters that need
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Figure III.5 The effects of rve8 in the model. (A-C) Expression levels in
the transition from ld to ll, comparing the model (eight parameter sets, solid
black lines) with experimental data (green triangles [29], red squares [48], blue
circles [28] and purple diamonds [49]). (A) rve8 mrna in wt, (B) lhy in wt,
and (C) lhy in rve4;rve6;rve8. (D-F) The effect of rve8 on each of its target
genes, as a time-dependent multiplicative factor, in the eight parameter sets.
(D) prr9 (solid red) and prr5 (dotted blue), (E) gi (solid green) and toc1
(dotted black), and (F) lux (solid purple) and elf4 (dotted light blue).

to be fitted against experimental observations. The final F2014 model
consists of equations for 35 variables, with a total of 119 parameters. The
number of variables has increased compared with previous models (see
Table III.1), but the number of parameters has been reduced relative to
P2012, due to the simplifications described in Results and Section III.B.

iii.4.1 Data collection
Constraining the many parameters in our model requires a cost function
based on a large number of experiments. To this end, we compiled time
course data from the published literature, mainly by digitizing data

Model Parameters Variables
L2006 [7] 60 (+8) 16
P2010 [8] 80 (+17) 19
P2011 [9] 107 (+6) 28
P2012 [6] 123 (+10) 28 (+4)
F2014 119 (-) 35

Table III.1 The number of parameters and variables in different Ara-
bidopsis clock models. Parameter counts in parentheses refer to constant
integer Hill coefficients, which are written explicitly into the F2014 equations.
Variables in parentheses for P2012 refer to aba related variables.
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points from figures using the free software package g3data [50]. We
extracted more than 11,000 data points from 800 time courses in 150
different mutants or light conditions, from 59 different papers published
between 1998 and 2013. The median time resolution was 3 hours. The
list of time courses and publications can be found in section III.G,
and the raw time course data and parameter values are available for
download from http://cbbp.thep.lu.se/activities/clocksim.

Most of the compiled data refer to the mrna level, from measurements
using Northern blots or qpcr, but there are also data at the protein level
(67 time courses) and measurements of gene expression using luciferase
assays (12 time courses). About one third of the time courses can
be considered as replicates, mainly from wild type plants in the most
common light conditions. Many of these data are controls for different
mutants. Where wild type and mutant data were plotted with the same
normalization, we made note of this, as their relative levels provide
crucial information that is lost if the curves are individually normalized.

iii.4.2 Model fitting and constraining
To find suitable values for the model parameters, we constructed a
minimalistic cost function based on the mean squared error between
simulations and time course data. This approach was chosen to allow
the model to capture as many features of the gene expression profiles as
possible, with a minimum of human input.

The cost function consists of two parts, corresponding to the profiles
and levels of the time course data, respectively. For each time course i
with ni experimental data points xij , the corresponding simulated data
yij were obtained from the model. The simulations were performed
with the mutant background represented in the model equations, with
entrainment for up to 50 days in light/dark cycles followed by mea-
surements, all in the experimental light conditions. The cost for the
concentration profile was computed as

E
(p)
i = wi

1

ni

ni∑
j=1

(
yij
ȳi
− xij

x̄i

)2

, where ūi =
1

ni

ni∑
j=1

uij , u ∈ {x, y}.

(III.1)

Since the profile levels are thus normalized, eq. (III.1) is independent
of the units of measurements. The parameters wi (see Section III.G
for values) allowed us to weight time courses to reflect their relative
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importance, e.g. where less data was available to constrain some part of
the model.

Where several experimental time courses had the same normalization,
e.g. in comparisons between wild type and mutants, the model should
reproduce the relative changes in expression levels between the time
courses. For each group of time courses, Gk, we could minimize the sum

∑
i∈Gk

wi

(
ȳi
〈ȳ〉k

− x̄i
〈x̄〉k

)2

, where 〈ū〉k =
1∑

i∈Gk
wi

∑
i∈Gk

wiūi. (III.2)

Unlike eq. (III.1), the nominators in this sum are guaranteed to be
non-zero, which allows us to operate in log-space where fold changes up
or down from the mean will be equally penalized. Replacing x̄i/〈x̄〉k
with ln x̄i − 〈ln x̄〉k, and likewise for y, we write the final scaling cost
for group k as

E
(s)
k =

∑
i∈Gk

wi

(
ln
ȳi
x̄i
− 〈ln ȳ

x̄
〉k
)2

. (III.3)

This cost term thus penalizes non-uniform scaling between experiment
and data within the group.
The total cost to minimize was

E =
∑
i

E
(p)
i + λ

∑
k

E
(s)
k , (III.4)

where λ sets the balance between fitting the simulation to the profile or
the level of the data. We used λ = 0.1.
A downside to our approach is that period and phase differences

between different data sets result in fitting to a mean behaviour that
is more damped than any individual data set. To reduce this problem,
we removed the most obvious outliers from the fitting procedure. We
also considered distorting the time axis (e.g. dynamic time warping) to
normalize the period of oscillations in constant conditions, in order to
better capture the effects of mutants relative to the wild type. This
process would be cumbersome and arbitrary, which is why it was deemed
outside the scope of our efforts.
Compared to previous models by Pokhilko et al., fewer parameters

were manually constrained in our model. In the P2010–P2012 models,
roughly 40% of the parameters were constrained based on the experi-
mental data [6, 8, 9], and the remaining free parameters were fitted to
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mrna profiles in ld and the free running period in ll and dd (constant
dark) in wild type and mutants [9]. For the F2014 model, we completely
constrained 16 parameters in order to obtain correct dynamics for parts
of the system where we lacked sufficient time course data. Specifically,
the parameters governing cop1 were taken from P2011 where they were
introduced, whereas the parameters for the ztl and gi proteins (except
the gi production and transport rates) were fitted by hand to the figures
in [51]. All other parameters were fitted to the collected time course
data through the cost function.

The eight parameter sets presented here were selected from a group of
30, where each was independently seeded from the best of 1000 random
points in parameter space, then optimized using parallel tempering for
> 104 iterations at four different temperatures which were gradually
lowered. The resulting parameter values, which are listed in Section III.F,
typically span at least an order of magnitude between the different
parameter sets (Figure III.S11). The sensitivity of the cost function
to parameter perturbations is presented in Figure III.S6 and further
discussed in Section III.D. Plots of the single best parameter set against
all experimental data is shown in Figure III.S7.

To simulate the system and evaluate the cost function rapidly enough
for parameter optimization to be feasible, we developed a C++ program
that implements ode integration and parameter optimization using the
gnu Scientific Library [52]. Evaluating the cost function for a single
point in parameter space, against the full set of experiments and data,
took about 10 seconds on a 3 GHz Intel Core i7 processor. Our software
is released under the gnu General Public License (gpl) [53] and is
available from http://cbbp.thep.lu.se/activities/clocksim/.

iii.5 discussion

iii.5.1 Modelling and data
Accurately modelling the circadian clock as a network of a dozen or more
genes is challenging. Previous modelling work (e.g. P2010–P2012) [6, 8,
9] has drawn on existing data and knowledge to constrain the models,
but as the amount of data increases it becomes ever more difficult to
keep track of the effects of mutations and other perturbations. For a
system as large as the plant circadian clock, it is desirable to automate
the parameter search as much as possible, but encoding the uncertainties
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surrounding experimental data in a computer-evaluated cost function is
not trivial.
Our modelling demonstrates the feasibility of fitting a model of an

oscillating system against a large set of data without the construction
of a complicated cost function based on qualitative aspects of the model
output, such as entrainability, free-running period or amplitude. Instead,
we relied on the large amount of compiled time course data to constrain
the model, using a direct comparison between simulations and data. This
minimalistic cost function had the additional advantage of allowing the
use of time courses that span a transition in environmental conditions,
e.g. from rhythmic to constant light, where the transient behaviour of
the system may contain valuable information. Consequently, our model
correctly reproduces the phase of the clock after such transitions (see
e.g. Figure III.3C).

Our approach makes it easy to add new data, at the price of ignoring
previous knowledge (e.g., clock period) from reporters that are not
represented in the model. Accordingly, our primary modelling goal was
not to reproduce the correct periods of different clock mutants, but
rather to capture the profiles of mrna and protein curves, and the
changes in amplitude and profile between mutants and different light
conditions. Compiling a large amount of data from different sources has
allowed us to see patterns in expression profiles that were not apparent
without independent replication. For example, the toc1 mrna profile
shows a secondary peak during the night in many data sets (see examples
in Figure III.4B).
All collected time course data were used in fitting the parameters.

To validate the model, we instead used independently obtained period
data from clock period mutants. The results are shown in Section III.E.
In brief, most predictions in ll are in good agreement with experi-
ments, with the exception of elf4 where the period changes in the wrong
direction.

To experimentally measure a specific parameter value, such as the nu-
clear translocation rate of a protein, is exceptionally challenging. Hence,
constraining a model with measured parameters can introduce large un-
certainties in the model predictions, especially when the understanding
of the full system is incomplete. Fitting the model with free parameters
can instead give a large spread in individual parameter values, but
result in a set of models that make well constrained predictions. For
this reason, we have based our results on an ensemble of independently
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optimized parameter sets, as recommended by Gutenkunst et al. [54].
At the cost of computational time, this approach gives a more accurate
picture of the uncertainties in the model and its predictions, rather than
focusing on individual parameter values.
Based on our experience of curation of time course data, we offer

some suggestions for how data can be compiled and treated to be more
useful to modellers. These points arose in the context of the circadian
clock, but they apply to experiments that are to be used for modelling
in a broader context.

• If the raw data contain information about the relative levels
between experiments, for example between mutant and wild type,
do not discard this information by normalizing the peak levels of
the curves individually.

• If possible, provide data from both before and after treatment,
preferably as one uninterrupted time course, so that changes in
expression levels become clear. In clock experiments, this would
entail including data from the last day of entrainment before a
shift into constant light.

• Increase the time resolution of measurements where expression
levels are expected to change rapidly, as this adds valuable in-
formation about timing. This is especially important around
light/dark transitions to distinguish between acute light responses
and circadian rhythms.

• Be clear about the conditions during entrainment, especially if
they were varied between experiments.

• If possible, apply background correction so that the data reflect
the true ratio between peak and trough levels. Alternatively, be
clear about whether background correction has been applied.

• Use supplementary figures or files to present data that were not
included in the figures and that would otherwise be lost to the
research community.

Two of these suggestions concern the preservation of information
about the relative expression levels between experiments. One example
of the value of such information comes from the dramatic reduction in
prr9 expression in cca1;lhy (Figure III.4F). As implied in the section
on prr9 activation in Results, clock models ought to be able to explain
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both shape and level of expression curves in such mutant experiments,
but this is only possible if that information is present in the data.

iii.5.2 rve8 as an activator
Based on the current knowledge of the clock, most clock components
are exclusively or primarily repressive, and rve8 sets itself apart by
functioning mainly (or solely) as an activator. According to our model,
rve8 has only a marginal effect on the expression of toc1, but acti-
vates prr5 and other genes more strongly, in agreement with earlier
interpretations of the experimental data [29].

We note that all six targets of rve8 in the model (prr9, prr5, toc1,
gi, lux and elf4) are also binding targets of toc1 [14]. This may be a
coincidence, because toc1 is a repressor of a majority of the genes in the
model. It is conceivable, however, that activation by rve8 around noon
is gated by toc1 to confer sensitivity to the timing of rve8 relative to
toc1 in a controlled fashion.

We were surprised by the ease with which we could remove rve8
from the model. After reoptimization of the parameters, the cost was
decreased in three of the eight parameter sets compared with the original
model (Figure III.S3). Thus, the clock is not dependent on activation
for its function (although it should be noted that the model without
rve8 lost the ability to explain any rve8-related experiments). This
result indicates that the model possesses a high degree of flexibility,
whereby the remaining components and parameters are able to adjust
and restore the behaviour of the system. Such flexibility challenges our
ability to test hypotheses about individual interactions in the model,
but we argue that predictions can also be made based on entropy.

Even if an alteration to the model, such as the addition of rve8, does
not result in a significant change in the cost function, it may open up
new parts of the high-dimensional parameter space. If, following local
optimization, most parameter sets indicate that a certain interaction
is activating, we may conclude that the activation is likely to be true.
The parameter space is sampled in accordance with the prior belief that
the model should roughly minimize the cost function, and the same
reasoning motivates the use of an ensemble of parameter sets to explore
the model. The conclusion about activation is indeed strengthened by
the use of multiple parameter sets, because we learn whether it is valid
in different areas of the parameter space.
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iii.5.3 Problems and predictions
Our model agrees with a majority of the compiled data sets, but like
earlier models it also fails to fit to data for some mutants. This indicates
that important clock components or interactions may yet be unknown
or misinterpreted. We here give a few examples.

nox expression is rhythmic in the short period double mutant cca1;lhy
[30], but our model predicts a constant high nox level in constant light
(Figure III.S4F). If nox is repressed by prr7 as assumed in the model
(see Section III.B.2), the rhythmicity can only be explained if prr7 is
also rhythmic and drives the nox oscillations. Unfortunately, the model
predicts that prr7 oscillates only for a single cycle in cca1;lhy, before
going to a constant low level (Figure III.S4B). This is a prediction shared
with the P2012 model; we are not aware of any data that invalidate
the prediction, but given that prr7 is only slightly reduced in cca1;lhy
in light/dark cycles [39], we believe that prr7 may be rhythmic in
constant light in this mutant.
The addition of nox as a component partly redundant with lux

leads to an untested prediction regarding cca1 and lhy. Their peak
expression levels are reduced only marginally in nox but roughly by
half in lux compated with wt. In the lux;nox double mutant, the model
predicts that their expression is cut by at least half again, to nearly
zero even in light/dark cycles (see Figure III.3 and Figure III.S2).

The modelling suggests that nightly repression of prr5 and prr7 is of
importance. The evening complex (ec) is thought to repress prr9 and
toc1, and our prediction that ec also represses prr7 was experimentally
confirmed while this manuscript was in review [40].
Several known clock components were not included in the model,

partly due to a lack of suitable data. Examples of genes that could be
included in future models are che [55] and ebi [56]. More experiments
and data are also needed to clarify the differences between cca1 and
lhy, the role of nox as a part of the evening complex, and how prr5
affects the localization of toc1.

Additional non-transcriptional interactions should also be considered
in future work. This includes protein interactions such as the regulation
of lhy degradation by det1 [57, 58]. Most importantly, the recently
discovered and highly conserved redox-related circadian oscillator is
linked to the transcriptional clock [59, 60]. Understanding that link may
help explain why some clock components more easily remain rhythmic
in experiments than in simulations.
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iii.5.4 The complexity of the clock
The insensitivity of prr9 to lhy/cca1 in the P2011–P2012 models, as
illustrated by its unchanged level in the cca1;lhy mutant (Figure III.S5A),
shows one of the problems of constructing and fitting large models: The
transcriptional activation of prr9 by lhy/cca1 looks like an important
term in the model equations, but the effects of this term are small.
To reduce the prevalence of such “dead” terms and parameters in the
equations, we recommend examining their effects in isolation, as was
done with the corresponding repression terms in Figure III.4E.
The ability of our model to reduce prr9 expression in cca1;lhy (Fig-

ure III.4F) can only be explained by indirect effects. cca1 and lhy
repress toc1, which in turn represses prr7 and prr9, and the resulting
indirect activation may be sufficient to counteract the direct repression
by cca1 and lhy. In general, in a highly interconnected system such
as the circadian clock, it is perilous to draw conclusions about whether
interactions are activating or repressing based only on altered expression
levels in mutants.

Previous models (L2006–P2012) described the Arabidopsis circadian
clock as primarily divided into two interacting feedback loops, the
“morning loop” and the “evening loop”. In contrast, we describe the clock
in terms of three main modules linked by transcriptional repression and
many additional connections (Figure III.1). Our results and experiences
support an important point formulated by Hsu et al. [29]: The plant
clock is best viewed as a highly interconnected, complex regulatory
network, in which discrete feedback loops are virtually impossible to
identify.
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iii.a supplementary figures
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Figure III.S1 Model comparison. An alternative representation of the F2014
model (bottom), allowing easier comparison with the P2012 model (top),
adapted from [1]. Symbols as in Figure III.1.
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Figure III.S2 nox interaction with cca1. (A) The predicted cca1 expression
level in the lux;nox double mutant, in the transition from ld to ll in F2014.
The peak levels were normalized to 1 in wt, as in Figure III.3. (B) The
activation of cca1 expression by nox in a variant of the model, expressed as
a multiplicative factor. (C) cca1 mrna in nox-ox in same model variant as
(B), shown as in Figure III.3F.
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Figure III.S4 prr7, ppr9 and nox mrna in wt and cca1;lhy. Comparison
between our model (solid black lines), P2011 (dashed red lines), P2012 (dotted
blue lines) and data (green triangles) between wt (left panels) and cca1;lhy
(right panels), in the transition from ld to ll. (A-B) ppr7, (C-D) ppr9, and
(E-F) nox. Data from [2] (A-D) and [3] (E-F). Peak levels were normalized
to 1 in wt.
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Figure III.S5 Effects of activation of prr9 by cca1. (A) prr9 mrna in
P2011 (dashed red) and P2012 (dotted blue) in wt (thin lines, higher) and
cca1;lhy (thick lines, lower), in the transition from ld to ll. Activation by
lhy/cca1 affects the expression of prr9 in the afternoon, but the peak level
is unaffected in the double mutant. (B) The activation of prr9 by cca1,
after refitting our model with such an activation term. The activation is
shown as a multiplicative factor, whose peak is > 1.2 for half of the eight
parameter sets. (C) Expression of prr9 in cca1;lhy in the day (ld or first day
of ll), in the model where cca1 activates prr9 transcription, with peak levels
normalized to 1 in wt. The difference between the model (black lines) and
data (green triangles [2]) is comparable to the difference without the activation
term (Figure III.4F).

Figure III.S6Parameter sensitivity analysis. (External data, available online
through journal site) The relative change in cost function in each of the eight
best parameter sets (eight different symbols) when each parameter is altered.
Symbols above (below) the zero cost line refer to multiplication (division) of
the parameter by 1.1.
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Figure III.S7 Model simulations compared with all data. (External data,
of 370 plots, available online through journal site) Simulations with the single
best parameter set, plotted against all 800 time courses used for fitting the
model. As described in Methods, simulations and data are normalized to the
same mean. Time courses with identical normalization are shown on the same
page (“Scale group Gk”), with the total scaling cost in the title. The profile
and scaling costs (E(p) and E(s)) for each individual time course is shown in
the legend. The time courses are named after the data files used; these are
available for download as described in Methods. The naming convention is as
follows: initial letters denote light condition, dd (constant dark), ll (constant
light), rr (constant red light), bb (constant blue light), ld (light dark ld 12:12),
lgd (long day ld 16:8), and shd (short day ld 8:16); followed by gene name,
C (cca1), L (lhy), T or P1 (toc1), G (gi), P5,7,9 (prr5,7,9), LUX (lux),
NOX (nox), R8 (rve8), E3 (elf3), E4 (elf4), Z (ztl); suffixed by “_m” for
mrna data and an arbitrary number for uniqueness, or just the number for
protein data. The last part of the filename is “-ox” for overexpression, and/or
lower case gene names for mutants. A combination of ll and another light
condition indicates entrainment in something other than ld 12:12, followed by
ll. Where all data come from the same light conditions, the background is
shaded for night; exceptions include scaling groups with data from different
photoperiods.
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iii.b additional results

Herein, we provide further information about the modelling, covering
details about the evening complex, the regulation of nox, the splitting
of cca1 and lhy into two variables, the localization of toc1 and prr5,
and the removal of the aba circuit, lhymod and some light inputs. We
also include the differential equations of the model, a table of periods
comparing model to experiments, and the parameter values of the eight
best fitted parameter sets. The equations are presented in their wild
type forms, which do not include modifications used when simulating
the many different mutants.

iii.b.1 Evening complex modelling details
The equations describing ec are practically identical between P2011
and P2012. A minor difference is that several parameters for elf3
degradation by cop1 are merged in the latter model. In the P2011–
P2012 equations, ec is formed in two steps: elf3 and elf4 form a
complex, which then binds with lux to form ec. The models also
describe the formation of a complex between gi and elf3, whereby gi
facilitates the degradation of elf3 through cop1, based on observed
interactions between the three proteins [4].
To reformulate the ec equations in order to take into account the

possible redundancy between nox and lux and the ability of elf3-ox
to rescue ec function in elf4, as described in the main text, we had
to simplify the description of ec formation to avoid a combinatorial
explosion of reaction paths between sub-complexes.

In our model, the formation of ec begins with the homodimerization
of elf4 [5]. This homodimer, which is given its own variable, is in turn
bound in the elf3-elf4 complex [6]. We assumed that delays caused
by e.g. the time needed for lux to bind to elf3 (with or without elf4)
can at least partly be transferred to other steps in the model. Thus
we modelled ec activity directly as a function of the levels of elf3,
elf3-elf4, lux and nox.

The equations for cop1, which regulates degradation of elf3 and gi,
were left unchanged from the P2012 model, but the action of cop1 was
by necessity adapted to the altered ec. elf3 is strongly localized to
the nucleus [7] and unlike P2012 our model only considers its nuclear
fraction. In our model, cop1 acts on elf3 through its nuclear “day” and
“night” forms, and in addition elf3 degradation is directly increased by
nuclear gi; the elf3-gi complex of P2012 has been removed. Cytosolic
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and nuclear gi are no longer handled as being in a quasi-steady state,
but instead are given their own variables. The degradation of gi by
cop1 is mediated by elf3 [4]. This is reflected in the equations, where
nuclear gi is degraded by the two forms of cop1 only when elf3 is
present. This is qualitatively similar to the structure of the P2012
model, even though the equations are different and may allow different
dynamics.

In simulations of the elf3-4 knockout mutant, the clock loses rhythmic-
ity in ll, and the expression levels of prr9, prr7, gi and toc1 peak at
the wrong time in ld compared with experiments (Figure III.S8). This
is true for F2014 as well as P2011–P2012, even though the predicted
expression profiles are different. Simulating the mutants as having
elf3 function at 20% of its normal value led to expression profiles in
better agreement with the data for gi and toc1 and possibly also prr9.
However, the elf3-4 mutant has an early stop codon which is expected
to lead to a total loss of function [8].

One way to resolve this conflict could be to assume that lux and nox
retain some function in the absence of elf3. However, when we allowed
lux and nox to act as ec in the absence of elf3, with or without elf4,
the resulting expression of gi was low and out of phase with experiments.
When instead we assumed that elf4 on its own is able to interact with
lux and nox, the level of ec became constant rather than oscillating.
We conclude that if, as expected, the elf3-4 mutant leads to a total loss
of function, ec function may be rescued by some other clock component
which is partly redundant with elf3.

Furthermore, strong rhythmicity was seen in elf3 mrna in ld in the
loss-of-function elf3-1 and elf3-2 mutants [8], even though cca1 and lhy
are repressed and only weakly oscillating in elf3-1 [9]. Even simulations
with elf3 at 20% function showed only weak elf3 rhythms, which
suggests that elf3 transcription is regulated by a clock component
other than cca1 and lhy, probably one with daytime expression and
preserved rhythms in elf3. The best candidate represented in the model
is prr9. Making prr9 a repressor of elf3 transcription did not work
well in the current model, possibly because the predicted timing of
the weakly constrained prr9 protein was incorrect, but we think this
predicted connection is worth exploring in future work.
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Figure III.S8Retained elf3 function in elf3 mutants. Comparison between
modelling the elf3-4 mutant as a complete loss of function (left panels) and
as lowering elf3 production to 20% of its normal value (right panels). The
F2014 model (solid black lines) is compared with data from Dixon et al. [2]
(green triangles) and the models P2011 (dashed red lines) and P2012 (dotted
blue lines) in ld. (A-B) prr9 expression, (C-D) prr7 expression, (E-F) gi
expression, and (G-H) toc1 expression. Levels were normalized to a peak
value of 1 in wt.
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iii.b.2 Additional input into nox
Having only cca1 and lhy as inputs to nox was not sufficient to
reproduce all nox expression data; nox is rhythmic in constant light
in the cca1-11;lhy-21 double mutant [3]. Our interpretation is that
nox should have at least one more repressor in the model. Among
the clock components in our model, the expression profiles of prr7
or prr9 in ld provided the closest match to what we expected of
an additional repressor. For computational reasons, we did not fully
explore the difference between using prr7 or prr9 as the repressor of
nox transcription in the equations, but our initial attempts suggested
that prr7 may lead to a better fit. Hence, we included prr7 as a
transcriptional repressor in the equation for nox. Figure III.S4C, in the
main text, shows the resulting expression profile, where the input from
prr7 is seen to modulate the shape and peak phase of nox expression
by reducing transcription around zt 10.

iii.b.3 cca1 and lhy are modelled separately
Although cca1 and lhy are closely related, highly coexpressed, and
have some overlap in function, they are not redundant [10–12]. There
are noticeable differences in their regulation, as only the cca1 promoter
interacts with che (which is not represented in the current model due
to a lack of experimental data) [13], which may also be true for nox [3].
Furthermore, cca1 is more important than lhy at lower temperatures
for regulating the period, and vice versa at higher temperatures [14].
These facts, in conjunction with access to significant amounts of

separate data for cca1 and lhy, and for their mutants, led us to split
the lhy/cca1 module of previous models (L2005 to P2012) into two
separate parts. Both parts contribute to the repression of the targets
of the previous lhy/cca1 in P2012. The difference between the two
parts in our model lies only in the transcriptional regulation of cca1
and lhy themselves, not in their binding targets. In contrast to the
cca1 promoter, the lhy promoter contains two predicted specific cca1
binding elements [15, 16]. For this reason, we modelled only lhy as
repressed by cca1 and lhy. However, we cannot rule out that the
interaction is activating, but the model agrees with experimental data
that cca1 expression is lower in lhy whereas lhy expression is lower in
cca1 [17].

By modelling cca1 and lhy separately we were able to include the
interaction between the two proteins in the model. cca1 and lhy are
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single myb-domain transcription factors [18] and form both homodimers
and heterodimers in vivo in order to bind dna, which most likely requires
two myb-domains [19, 20]. In the model, we assumed that cca1 and
lhy may differ in their overall binding affinities, but not in any target-
specific way. The heterodimer could be more or less active than the
homodimers, but parameter fitting indicated that this freedom was not
needed; hence, we removed it from the equations.

With the separation of cca1 and lhy, we hope to set forth a process
of better distinguishing what the differences between them actually are.
It is usually taken for granted that one trait of lhy must probably also
be true for cca1. Only on rare occasions is it explicitly said that it is not
so, as in the case of che and nox in relation to cca1 and lhy. Another
example relates to cca1 and lhy mrna stability in dark/light, where
results by Yakir et al. [21] and Kim et al. [22] are in direct contradiction.

iii.b.4 Localization of toc1 and prr5
prr5 plays a major part in translocating toc1 to the nucleus, in
addition to its role as a transcriptional repressor. In the absence of
functional prr5, the level of toc1 is lower in the nucleus and higher in
the cytosol than in the wild type. The total toc1 protein level is lower,
even though the toc1 mrna level is unchanged, suggesting that prr5
both localizes and stabilizes toc1 [23].

Like toc1, prr5 is targeted for degradation by ztl [24, 25], which is
localized only to the cytosol [26]. Thus the model must include cycling
of both toc1 and prr5 between the cytosol and the nucleus.
Due to the small amount of data at the protein level, we modelled

this part of the system in a relatively simple way: toc1 diffuses freely
into the nucleus, but diffusion back into the cytosol is inhibited by
nuclear prr5. The prr5 protein may diffuse between nucleus and
cytosol, unaffected by toc1. The model encourages stabilization of
toc1 by also allowing prr5 to inhibit nuclear degradation of toc1.
However, if toc1 is more stable in the nucleus than in the cytosol, such
a mechanism may be unnecessary.
For some parameter sets, the model reproduces the qualitative level

changes in prr5 compatered with wt, but there is a great variation
between the parameter sets and the fit to data for total toc1 protein
is bad (Figure III.S9). Likewise, neither the nuclear degradation rate
nor the diffusion rate of toc1 shows any clear pattern between the
parameter sets. This difficulty in fitting the model was likely due to
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both the relatively small amount of data relevant to toc1 localization
and the large discrepancies in toc1 peak timing between different data
sets.
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Figure III.S9 Localization of toc1 protein. toc1 protein simulated in wt
(solid black lines) and prr5 (dashed red lines), compared with data [23] for wt
(green triangles) and prr5 (blue circles). (A) Total toc1 protein. (B) Nuclear
toc1 protein. (C) Cytosolic toc1 protein. In each panel, the curves were
normalized to a peak level of 1 in wt.

iii.b.5 Removal of light inputs and components
We discarded several experimentally unmotivated or computationally
unnecessary components and interactions compared with the P2012
model. This includes the removal of several light inputs for which
we could find no convincing evidence. Specifically, we removed the
direct light dependence in the degradation rates of cca1 and lhy mrna
and of the prr9, prr5 and toc1 proteins. In the case of prr5, the
light input was replaced by ztl-dependent degradation [24, 25]. The
direct transcriptional light response of gi was also removed, since the
degradation of ec by cop1 was sufficient to explain the experimentally
observed rise in gi transcription in the morning.
We removed the hypothetical modified form of lhy/cca1, lhymod.

Its purpose in P2010–P2012 was to give a delayed positive input into
prr5, which proved to be redundant in our model where the rise in
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prr5 in the afternoon is instead due to ceasing repression by cca1 and
lhy (see Figure III.4A and E in the main text).

An additional difference between our model and P2012 is our exclusion
of equations related to aba. The primary purpose of the aba circuit was
to introduce an output from the clock, and although this circuit feeds
back into toc1, is has very little impact on the dynamics of the clock
when the aba input level is kept at its normal value (Figure III.S10).

The removal of unmotivated parameters and addition of new clock
components balanced out. In spite of the inclusion of nox and rve8
and the separation of cca1 and lhy, our model reduces the number of
parameters compared with P2012, as shown in Table III.1 in the main
text.
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Figure III.S10 Limited feedback from aba circuit to the clock in P2012.
Normalized toc1 transcription in the P2012 model, with (solid blue lines) and
without (dashed red lines) the aba circuit connected to toc1 transcription.
(A) in the transition from ld 12:12 to ll, and (B) in dd.
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Short Component
P dark accumulator
R rve8
C cca1
L lhy
P9 prr9
P7 prr7
P5 prr5
T toc1
E3 elf3
E4 elf4
E4d elf4 dimer
E34 elf3-elf4 complex
LUX lux
NOX nox
ZTL ztl
G gi
ZG ztl-gi complex
COP1 cop1

Table III.2 Symbols used in the equation system.

iii.c model equations

We here describe the system of ordinary differential equations of the
F2014 model. The dimensionless concentration levels of mrna and
protein of clock component X are denoted c(m)

X and cX , respectively,
where X is an abbreviated component name explained in Table III.2.
Non-subscript L and D denote light and darkness, respectively, where
one is 0 when the other is 1. When localization of a protein X is included
in the model, it is either nuclear, Xn, or cytosolic, Xc. However, with
the nomenclature inherited from P2012, cop1n and cop1d both denote
nuclear cop1 protein, in its day and night forms. For elf4, d indicates
a dimer.

In order to simplify the equations, eqs. (III.5), (III.6), (III.7), (III.18),
(III.21), (III.27), (III.30), (III.39) and (III.44) we define some recurring
expressions. LC is a weighted sum of cca1 and lhy concentrations,
used where both cca1 and lhy repress transcription. LC com is the
common term in the regulation of cca1 and lhy transcription. P5 trans ,
Ttrans and Gtrans describe the cytosolic/nuclear translocation of their
respective proteins. E34 prod and ZGprod are complex formation rates,
and E3 deg is the E3 degradation rate that also applies to E34 .
Parameters are named according to function. Parameters that gov-

ern transcriptional activation and repression are denoted by a and r,
respectively. The symbol q is used for light-activated transcription, t for
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protein transport rates, m for degradation rates (protein and mrna),
and n for protein production (for cop1 only). Weights between com-
ponents that play similar roles (in EC and LC ) are denoted by f , and
p is used for various parameters from P2012 for protein production,
transport, degradation and complex formation.
The mrna production terms are all based on the same general as-

sumptions about how repressors and activators bind to dna to regulate
transcription. cca1 and lhy are assumed to share binding sites, as are
the prr proteins, but otherwise the binding sites for different proteins
are assumed to be independent. As in P2012, all repression terms
are squared in the denominators to represent the unknown degree of
cooperativity. Activators have a corresponding term in the numerators,
with a parameter describing the maximum level of activation relative to
the unactivated state. The degradation rates of mrnas always follow
mass-action kinetics.
With few exceptions, the levels of mrnas and proteins are arbitrary

in the model as a change in the production rate could equally well be
described as an opposite change in all binding affinities of the protein.
The exceptions are those proteins that are involved in complexes, where
the model has parameters to set the relative production rates. For other
proteins, the maximum levels are determined by degradation and the
regulation of production.

The expression for ec is designed such that it is limited by elf3 and
elf3-elf4 when lux and nox are high, and vice versa. What “high”
means is defined by f3 and f4. It is assumed that lux and elf3-elf4
are the most important players in the complex, and f1, f2 and f6 allow
nox and elf3 to also participate. For the difference between nox
and lux, we separate the activity (numerator, f6) from the saturation
(denominator, f2) to allow for the possibility that ec with nox is a
weaker repressor than ec with lux. In contrast, the same expression
with f1 is used in both numerator and denominator because elf3 is
supposed to act like more dilute elf3-elf4.

The equations and parameter values are also available for download1.

LC = (cL + f5cC) (III.5)

LC com =
q1LcP + 1

1 + (r1cP9 )2 + (r2cP7 )2 + (r3cP5n )2 + (r4cTn )2
(III.6)

EC =
(cLUX + f6cNOX )(cE34 + f1cE3 )

1 + f3(cLUX + f2cNOX ) + f4(cE34 + f1cE3 )
(III.7)

1 http://cbbp.thep.lu.se/activities/clocksim/

http://cbbp.thep.lu.se/activities/clocksim/
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dc
(m)
L

dt
=

LCcom

(1 + (r11LC)2)
−m1c

(m)
L (III.8)

dcL

dt
= (L+m4D)c

(m)
L −m3cL (III.9)

dc
(m)
C

dt
= LCcom −m1c

(m)
C (III.10)

dcC

dt
= (L+m4D)c

(m)
C −m3cC (III.11)

dcP

dt
= p7D(1− cP )−m11cPL (III.12)

dc
(m)
P9

dt
= q3cPL+ (1 + a3r33cR)

1

(1 + r33cR)

1

(1 + (r5LC )2)

×
1

(1 + (r6EC )2)

1

(1 + (r7cTn )2)

×
1

(1 + (r40cP5n )2)
−m12c

(m)
P9 (III.13)

dcP9

dt
= c

(m)
P9 −m13cP9 (III.14)

dc
(m)
P7

dt
=

1

(1 + (r8LC )2)

1

(1 + (r9EC )2)

×
1

(1 + (r10cTn )2)

1

(1 + (r40cP5n )2)
−m14c

(m)
P7 (III.15)

dcP7

dt
= c

(m)
P7 − (m15 +m23D)cP7 (III.16)

dc
(m)
P5

dt
= (1 + a4r34cR)

1

(1 + r34cR)

1

(1 + (r12LC )2)

×
1

(1 + (r13EC )2)

1

(1 + (r14cTn )2)
−m16c

(m)
P5 (III.17)

P5 trans = t5cP5c − t6cP5n (III.18)

dcP5c

dt
= c

(m)
P5 − (m17 +m24cZTL)cP5c − P5 trans (III.19)

dcP5n

dt
= P5 trans −m42cP5n (III.20)

Ttrans = t7cTc −
t8

1 +m37cP5n
cTn (III.21)

dc
(m)
T

dt
= (1 + a5r35cR)

1

(1 + r35cR)

1

(1 + (r15LC )2)

×
1

(1 + (r16EC )2)

1

(1 + (r17cTn)2)
−m5c

(m)
T (III.22)

dcTn

dt
= Ttrans −

m43

1 +m38cP5n
cTn (III.23)

dcTc

dt
= c

(m)
T − (m8 +m6cZTL)cTc − Ttrans (III.24)
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dc
(m)
E4

dt
= (1 + a6r36cR)

1

(1 + r36cR)

1

(1 + (r18EC )2)

×
1

(1 + (r19LC )2)

1

(1 + (r20cTn )2)
−m7c

(m)
E4 (III.25)

dcE4

dt
= p23c

(m)
E4 −m35cE4 − cE4

2 (III.26)

E34prod = p25cE3 cE4d (III.27)

dcE4d

dt
= cE4

2 −m36cE4d − E34prod (III.28)

dc
(m)
E3

dt
=

1

1 + (r21LC )2
−m26c

(m)
E3 (III.29)

E3deg = (m30cCOP1d +m29cCOP1n +m9 +m10cGn ) (III.30)

dcE3

dt
= p16c

(m)
E3 − E34prod − E3degcE3 (III.31)

dcE34

dt
= E34prod −m22cE34E3deg (III.32)

dc
(m)
LUX

dt
= (1 + a7r37cR)

1

(1 + r37cR)

1

(1 + (r22EC )2)

×
1

(1 + (r23LC )2)

1

(1 + (r24cTn )2)
−m34c

(m)
LUX (III.33)

dcLUX

dt
= c

(m)
LUX −m39cLUX (III.34)

dcCOP1c

dt
= n5 − p6cCOP1c −m27cCOP1c(1 + p15L) (III.35)

dcCOP1n

dt
= p6cCOP1c − (n14 + n6LcP )cCOP1n (III.36)

−m27cCOP1n (1 + p15L) (III.37)

dcCOP1d

dt
= (n14 + n6LcP )cCOP1n −m31(1 +m33D)cCOP1d (III.38)

ZGprod = p12cZTLcGc − (p13D + p10L)cZG (III.39)

dcZTL

dt
= p14 − ZGprod −m20cZTL (III.40)

dcZG

dt
= ZGprod −m21cZG (III.41)

dc
(m)
G

dt
= (1 + a8r38cR)

1

(1 + r38cR)

1

(1 + (r25EC )2)

×
1

(1 + (r26LC )2)

1

(1 + (r27cTn )2)
−m18c

(m)
G (III.42)

cE3tot = cE3 + cE34 (III.43)

Gtrans = p28cGc −
p29

1 + t9cE3tot
cGn (III.44)

dcGc

dt
= p11c

(m)
G − ZGprod −Gtrans −m19cGc (III.45)
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dcGn

dt
= Gtrans −m19cGn

−m25cE3tot (1 +m28cCOP1d +m32cCOP1n )cGn (III.46)

dc
(m)
NOX

dt
=

1

(1 + (r28LC )2)(1 + (r29cP7 )2)
−m44c

(m)
NOX (III.47)

dcNOX

dt
= c

(m)
NOX −m45cNOX (III.48)

dc
(m)
R

dt
=

1

1 + (r30cP9 )2 + (r31cP7 )2 + (r32cP5n )2
−m46c

(m)
R

(III.49)

dcR

dt
= c

(m)
R −m47cR (III.50)

iii.c.1 Model variants
In the model without rve8, c(m)

R and cR were set to 0, and all data
for rve8 and the rve mutants were removed from the cost function.
For testing nox as an activator of cca1 and lhy, an activation term,
a1cNOX /(1 + r39cNOX ), was added to the numerator of eq. (III.6). Sim-
ilarly, the activation of prr9 transcription by cca1 and lhy was imple-
mented by the addition of a2(r5LC )2 to the numerator in eq. (III.13).

iii.d parameter sensitivity analysis

The sensitivity of the cost function to perturbations in the parameter
values are presented in Figure III.S6, which shows that the parameter
sets generally agree on which parameters are sensitive to perturbations.
However, parameters with high sensitivity are not necessarily constant
between parameter sets.

Figure III.S11 shows that there is only a very weak correlation between
the variability of a parameter between parameter sets and the robustness
of the model to changes in that parameter. Thus, parameter sensitivity
cannot be used to estimate how widely a parameter can vary between
alternative parameter sets. Even though we have removed any obviously
redundant parameters from the equations, the model is likely to be
constraining many nonlinear functions of several parameters rather than
the individual parameters. That is, the parameter values are often
meaningful only in the context of their respective parameter sets.
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Figure III.S11 Parameter sensitivity and variability. For each parameter,
the variability between parameter sets is plotted against the sensitivity of the
parameter. Variability is defined as the standard deviation of the logarithm of
the parameter value across the eight parameter sets. Sensitivity is defined as
the mean relative change in the cost function when the parameter is increased
and decreased by 10%, averaged over the parameter sets.

iii.e model period predictions

To independently verify the output of the model, we compared with
experimental data for the relative period change between wild type and
mutants.

Experiment Light wt Mutant Change Change Source
cond (exp) (exp) (exp) (sim)

toc1 rnai ll 24.27 20.51 −3.72 −1.50 [27]
toc1-1 ll 24.5 21 −3.43 −1.50 [28]
toc1-1 ll 24.82 22.46 −2.28 −1.50 [3]
cca1-1 ll 26.41 24.77 −1.49 −0.76 [19]
cca1-1 ll 25.31 23.82 −1.41 −0.76 [12]
cca1-11 ll 26.02 23.25 −2.55 −0.76 [3]
cca1-11;lhy-21 rr 24.5 18.2 −6.17 −5.90 [29]
cca1-11;lhy-21 ll 26.02 17.4 −7.95 −5.90 [3]
cca1-11;lhy-21 ll 26.41 19.73 −6.07 −5.90 [19]
cca1-1;lhy-R ll 23.99 arr −1.82 [12]
lhy ll 22.71 23.64 0.98 −1.07 [10]
lhyTN104 ll 22.71 24.67 2.07 −1.07 [10]
prr7-3 ll 24.3 25.0 0.69 1.27 [30]
prr7-3;prr9-1 ll 24.3 36.2 11.75 0.30 [30]
prr9-1 ll 24.3 24.8 0.49 1.26 [30]
prr5-ox ll 23.41 22.66 −0.77 −0.30 [31]
nox-ox ll 25.15 29.95 4.58 2.16 [3]
nox-1 ll 24.47 23.23 −1.22 −0.05 [3]
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Experiment Light wt Mutant Change Change Source
cond (exp) (exp) (exp) (sim)

lux ll arr 1.93 [32]
elf3-1 ll arr 0.90 [8]
elf4 ll 23.8 22.3 −1.51 2.42 [33]
elf4-ox ll 27.308 30.89 3.15 −0.63 [34]
elf4-ox ll 25.1 28.75 3.49 −0.63 [35]
elf3-ox ll 26.25 26.85 0.55 1.25 [35]
elf3-ox ll 24.28 26.41 2.11 1.25 [36]
elf4-1;elf3-ox ll 26.25 27.05 0.73 3.23 [35]
ztl-22 ll 26.1 33.0 6.34 2.59 [37]
ztl-21 ll 26.3 27.7 1.28 2.59 [37]
ztl-21 rr 24.5 27.1 2.55 2.59 [29]
ztl-1 bb 24.9 28.95 3.90 2.59 [38]
ztl-3 rr 24.9 29.4 4.34 2.59 [38]
ztl-1 (Bx4) ll 27.3 32.0 4.13 2.59 [39]
ztl-2 (Bx1) ll 27.3 32.8 4.84 2.59 [39]
rve8-ox ll 24 22.16 −1.84 −1.07 [40]
rve8 ll 24 25.68 1.68 0.15 [40]
gi-11 ll 24.4 23.4 −0.98 −0.83 [14]
gi-201 ll 25.12 24.44 −0.65 −0.83 [41]
toc1-1 dd 27.5 22.3 −4.54 0.54 [28]
gi-201 dd 27.48 arr −0.29 [41]
elf3-1 dd 25.07 25.41 0.33 1.46 [36]
elf4-1;elf3-ox dd 28.0 30.3 1.97 1.12 [35]
elf4 dd 26.4 27.1 0.64 0.88 [33]
elf3-ox dd 28.0 29.5 1.29 1.06 [35]
elf3-ox dd 25.07 25.10 0.03 1.06 [36]
ztl-22 dd 27.05 33.56 5.78 3.82 [37]
ztl-27 dd 27.05 36.43 8.32 3.82 [37]
prr7-3 dd 25.7 25.8 0.09 −0.16 [30]
nox-ox dd 24.95 26.85 1.83 0.01 [3]

Table III.3 Period change in mutants, compared between experiments
and the F2014 model. The change in period between mutant, x, and wild
type, y, is computed as (x− y) 24

y
. Experimental data were averaged where

replicates were available within a publication (e.g. toc1 rnai [27], ztl-1/3 [38],
elf4-ox[34], elf3-ox [35], nox-ox [3], rve8-ox, rve8 [40], and cca1-1 [12]). The
periods from the model were taken as the mean, across the eight parameters
sets, of the median of the period of toc1, cca1 and prr5 mrna. Simulations
were run in ld 12:12 and then transferred to constant light (ll) or darkness
(dd) for four days. Some experiments were performed in constant red (rr), or
blue (bb) light; these were simulated as ll. The experimental periods were
largely based on luciferase data which were not used to fit the model. Mutants
marked with “arr” were found to be arrhythmic.
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iii.f the eight best fitted parameter sets

1 2 3 4 5 6 7 8

a1 5.3 1 7 4.8 9.9 9.7 10 10

a4 7.2 9.9 4.7 9.8 8.4 7.9 7.1 1.2

a5 2 5.4 1 5 4.9 10 2.7 1.1

a6 8.9 2.3 2.5 1.4 2.2 1.8 1 1

a7 1.5 5.9 1 9.2 1.7 1 9.3 8.1

a8 3 4.4 6.9 9.4 7 9.9 2.7 9.9

r1 5.7 3.7 11 1.2 3.8 3.5 1 1.2

r2 1.4 2.4 2.6 5.2 3.1 2.8 4.9 3.5

r3 8.6 4.7 1.2 7.6 9.8 4 0.019 9.4

r4 3.4 16 5.8 95 0.1 0.1 0.11 0.1

r5 0.15 0.1 0.1 0.12 0.1 0.1 0.1 0.1

r6 26 0.47 97 280 41 31 1.3 180

r7 12 36 23 230 2.8 0.45 14 12

r8 1.8 2.2 1.9 1.6 1.4 1.8 0.32 1

r9 31 0.59 150 360 48 39 2.5 400

r10 10 22 12 82 3.6 0.011 27 11

r11 1.9 2.1 1.6 1.1 1.2 2.4 1.6 1.1

r12 5 6 3.4 3.5 4.9 11 15 1.3

r13 45 1.1 140 440 59 36 4.4 330

r14 3.9 13 8.9 0.12 1.8 0.34 94 17

r15 5.3 6.7 19 4.4 5 10 6.8 11

r16 9.7 0.15 52 82 13 8.8 0.91 84

r17 2.2 5.2 42 0.38 1.8 0.85 61 15

r18 42 1.2 290 490 64 22 3.1 390

r19 16 16 26 12 12 11 7.6 30

r20 0.11 0.15 0.15 0.43 0.63 0.013 0.25 12

r21 3.3 5.1 3.1 2.5 1.7 13 2.5 4

r22 56 2 180 150 33 94 6.6 730

r23 3.3 7.1 5 4.9 2.6 4.8 4.4 3.9

r24 4.3 16 11 54 4.5 0.11 18 0.1

r25 41 1 160 370 43 39 2.8 370

r26 4.8 5.5 4.5 3.6 4.3 7 3.4 4.7

r27 1.3 6.9 4.3 1.1 2.1 0.43 17 7.2

r28 5.9 8.4 8.7 4.2 3.9 12 4.7 7.3

r29 0.27 0.14 0.1 1.7 0.75 0.1 0.1 0.1

r30 1.4 2.7 6.7 0.52 0.55 3.9 0.21 0.12

r31 0.04 0.01 0.21 0.2 1.9 0.4 2.5 2

r32 7 4.8 1.1 7.8 11 3.5 0.11 0.04

r33 0.71 0.9 0.035 0.59 0.064 0.12 0.11 0.89

r34 2.9 0.057 1.3 0.19 1 1 10 6.8

r35 0.06 0.029 0.26 0.14 0.039 0.026 9.9 0.029

r36 0.089 0.49 0.51 2.5 8.7 1.3 0.021 0.01

r37 10 0.55 0.011 0.52 0.14 0.042 0.17 0.08

r38 3.9 0.051 0.32 0.13 0.2 0.61 0.9 0.37

r40 1.4 1.1 0.28 1 2.3 1.2 1.7 5.3
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1 2 3 4 5 6 7 8

r41 1.9 0.33 0.39 0.61 2.3 1 9.9 3

f1 0.06 0.41 0.13 0.44 0.42 0.095 0.35 0.045

f2 0.027 2 0.01 0.01 0.023 0.074 7.6 2.7

f3 0.27 0.033 4.8 49 1.9 6.9 0.011 4

f4 0.27 0.1 0.18 5.6 0.1 0.19 0.66 1.9

f5 0.29 0.39 0.28 0.44 0.35 0.25 0.21 0.45

f6 0.09 0.25 0.035 0.081 1.7 0.017 0.093 0.25

t5 0.25 1.1 1.5 0.63 3.1 6.6 0.51 0.18

t6 0.11 0.59 0.61 1.1 3 1.8 0.21 0.95

t7 3.8 0.23 13 0.12 0.22 0.36 0.61 3.3

t8 28 0.15 1.2 3.4 0.13 0.53 0.14 2.6

t9 2.5 0.85 1.9 0.95 0.1 1.2 3 3.3

m1 0.61 1 0.8 0.65 0.44 0.64 0.5 0.72

m3 0.62 0.59 0.47 0.61 0.6 0.53 0.38 0.45

m4 0.43 0.38 0.47 0.5 0.55 0.54 0.45 0.54

m5 1.9 2.3 0.5 0.93 0.81 0.7 0.5 0.96

m6 0.45 0.013 0.19 0.059 2.8 0.036 0.01 0.01

m7 1.3 0.65 0.6 0.61 0.6 0.78 0.72 0.6

m8 0.1 5.4 3.4 5.5 2.4 2.3 4.8 0.53

m9 0.19 0.12 0.33 0.29 0.072 0.14 0.01 0.033

m10 0.01 0.01 0.01 0.011 0.23 0.011 3.9 0.24

m11 0.76 0.68 0.61 0.75 1 1.2 0.51 0.88

m12 2.6 2 3 2.1 1.1 2.7 1.7 1.6

m13 0.67 0.38 0.67 0.21 0.3 0.61 0.27 0.22

m14 0.5 4.9 0.5 3.5 0.51 0.5 0.64 0.5

m15 0.18 0.093 0.18 0.2 0.24 0.22 0.23 0.19

m16 0.54 0.58 0.41 0.65 2.6 2.9 1.4 0.28

m17 0.075 0.047 0.11 0.16 0.2 0.2 0.071 0.1

m18 4.5 2.4 1.5 2.1 2.2 1.4 1.2 1.2

m22 0.3 0.3 0.3 0.3 0.3 2.4 0.38 0.43

m23 0.085 0.18 0.095 0.12 0.065 0.039 0.08 0.074

m24 1.5 2.8 4.2 1.9 2.6 5.9 1.2 7.7

m25 0.65 0.42 0.26 0.46 0.086 0.39 0.1 0.069

m26 1 1.6 0.79 0.84 1 0.3 0.75 0.6

m28 0.038 0.028 0.023 0.45 7.6 8.1 10 1.7

m29 0.01 0.01 0.01 0.06 0.17 0.01 0.01 0.032

m30 4.9 5.5 3.8 5.2 7.2 1.8 9.9 3.9

m32 10 5.7 6.3 8.6 7 3.6 10 5.1

m34 0.16 0.11 0.21 0.85 0.23 0.11 0.11 0.16

m35 0.94 0.92 1.2 6.9 6.8 1.6 0.73 5.4

m36 0.51 0.57 0.51 0.51 0.5 9.8 0.5 0.5

m37 0.01 0.94 0.039 0.01 0.7 2.8 0.031 0.01

m38 1.8 8 0.076 25 10 44 0.24 0.19

m39 0.2 0.22 0.2 0.29 0.2 1.6 0.2 0.45

m42 0.92 0.38 0.23 0.46 0.1 0.096 0.35 0.32

m43 1.1 0.52 0.033 0.054 0.078 0.068 0.022 0.0015

m44 0.68 0.36 0.43 1.4 4.4 0.38 0.47 0.45

m45 0.8 0.79 10 1.6 5.1 0.88 6.2 8.5
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1 2 3 4 5 6 7 8

m46 5.3 0.75 0.97 0.84 0.73 0.5 0.7 2.6

m47 0.25 0.13 0.17 0.18 0.23 0.15 0.25 0.24

p11 1.9 1.8 0.66 0.68 3.2 0.45 1.4 1.9

p16 0.12 0.4 0.16 0.23 0.13 0.3 0.19 0.12

p23 1 1.5 4 15 5.2 30 11 30

p25 1 1.1 1 1.2 4.4 4.3 4.8 1

p28 1.1 2.1 1.2 1.6 8.1 1.1 1.7 3.7

p29 10 25 5.8 24 3.1 19 3.9 5.9

q1 0.26 0.12 0.55 0.3 0.97 1.5 1.4 0.54

q3 0.47 0.29 0.31 1.1 1.2 1.7 9.7 2.5

Table III.4 The eight best parameter sets. The values of the parameters
after optimization with parallel tempering from random initial starting points
in parameter space, as described in Methods.

iii.g table of experimental data sources

An overview of the compiled time course data. Table of the roughly
800 experimental data sets that were compiled and used for fitting the
model.

Ref. Fig. Reporter Light Mut. wi

[18] Alabadi, 2001 1A toc1 ll 12:12 wt, Ler

[18] Alabadi, 2001 1A toc1 ll 12:12 lhy (lhyTN104)

[18] Alabadi, 2001 1B toc1 ll 12:12 cca1-ox

[18] Alabadi, 2001 1B toc1 ll 12:12 wt, Col

[18] Alabadi, 2001 1C toc1 ll 12:12 elf3-1

[18] Alabadi, 2001 1C toc1 ll 12:12 wt, Col

[31] Baudry, 2010 3D cca1 ll 12:12 ztl-4

[31] Baudry, 2010 3D cca1 ll 12:12 wt

[31] Baudry, 2010 3E lhy ll 12:12 ztl-4

[31] Baudry, 2010 3E lhy ll 12:12 wt

[31] Baudry, 2010 3F prr9 ll 12:12 ztl-4

[31] Baudry, 2010 3F prr9 ll 12:12 wt

[31] Baudry, 2010 S1A ztl pr ll 12:12 wt

[31] Baudry, 2010 S2 prr5 ll 12:12 wt

[31] Baudry, 2010 S2 prr5 ll 12:12 ztl-4

[31] Baudry, 2010 S2A prr7 ll 12:12 ztl-4

[31] Baudry, 2010 S2A prr7 ll 12:12 wt

[31] Baudry, 2010 S2A prr7 ll 12:12 lhy-20

[31] Baudry, 2010 S5 toc1 pr ll 12:12 ztl-4;fkf1;lkp2

[31] Baudry, 2010 S5 toc1 pr ll 12:12 ztl-4

[31] Baudry, 2010 S5 toc1 pr ll 12:12 wt

[31] Baudry, 2010 S5 toc1 ll 12:12 ztl-4

[31] Baudry, 2010 S5 toc1 ll 12:12 wt

[31] Baudry, 2010 S5 prr5 pr ll 12:12 ztl-4;fkf1;lkp2

[31] Baudry, 2010 S5 prr5 pr ll 12:12 ztl-4

[31] Baudry, 2010 S5 prr5 pr ll 12:12 wt

[3] Dai, 2011 1 nox ll 12:12 wt, Col-0

[3] Dai, 2011 1 nox ll 12:12 35s:boa-8

[3] Dai, 2011 5C nox ll 12:12 wt, Ws

[3] Dai, 2011 5C nox ll 12:12 cca1-11

[3] Dai, 2011 5C nox ll 12:12 lhy-21

[3] Dai, 2011 5C nox ll 12:12 lhy-21;cca1-11

[3] Dai, 2011 6E cca1 ll 12:12 wt, Col-0

[3] Dai, 2011 6E cca1 ll 12:12 35s:boa-8
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Ref. Fig. Reporter Light Mut. wi

[3] Dai, 2011 7A lhy ll 12:12 wt, Col-0

[3] Dai, 2011 7A lhy ll 12:12 35s:boa-8

[3] Dai, 2011 7B gi ll 12:12 wt, Col-0

[3] Dai, 2011 7B gi ll 12:12 35s:boa-8

[3] Dai, 2011 7C toc1 ll 12:12 wt, Col-0

[3] Dai, 2011 7C toc1 ll 12:12 35s:boa-8

[3] Dai, 2011 8A nox ll 12:12 wt, C24

[3] Dai, 2011 8A nox ll 12:12 toc1-1

[3] Dai, 2011 8B cca1 ll 12:12 wt, C24

[3] Dai, 2011 8B cca1 ll 12:12 toc1-1 5

[3] Dai, 2011 8C nox ll 12:12 wt, Ler-0

[3] Dai, 2011 8C nox ll 12:12 gi-3

[3] Dai, 2011 8C nox ll 12:12 gi-4

[3] Dai, 2011 S1 cca1 ll 12:12 wt, Col-0

[3] Dai, 2011 S1 cca1 ll 12:12 boa-1

[3] Dai, 2011 S1 nox ll 12:12 wt, Col-0

[3] Dai, 2011 S1 nox ll 12:12 boa-1

[3] Dai, 2011 S3 nox ll 12:12 wt, Col-0

[3] Dai, 2011 S3 nox ll 12:12 cca1-ox38

[3] Dai, 2011 S6 cca1 dd 12:12 wt, Col-0

[3] Dai, 2011 S6 cca1 dd 12:12 35s:boa-8

[42] David, 2006 1C gi pr ld 16:8 ha-gi protein

[42] David, 2006 1C gi pr ld 8:16 ha-gi protein

[42] David, 2006 5C gi pr ld 16:8 wt

[42] David, 2006 5C gi pr ld 8:16 wt

[43] Ding, 2007 2A gi ll 12:12 cca1-11;lhy-21;toc1-21

[43] Ding, 2007 2A gi ll 12:12 wt

[43] Ding, 2007 2B lux ll 12:12 cca1-11;lhy-21;toc1-21

[43] Ding, 2007 2B lux ll 12:12 wt

[43] Ding, 2007 2C prr9 ll 12:12 cca1-11;lhy-21;toc1-21

[43] Ding, 2007 2C prr9 ll 12:12 wt

[43] Ding, 2007 5A prr9 ld 8:16 lhy-21

[43] Ding, 2007 5A prr9 ld 8:16 cca1-11;toc1-21

[43] Ding, 2007 5A prr9 ld 8:16 cca1-11;lhy-21;toc1-21

[43] Ding, 2007 5A prr9 ld 8:16 cca1-11;lhy-21

[43] Ding, 2007 5A prr9 ld 8:16 cca1-11

[43] Ding, 2007 5A prr9 ld 8:16 wt

[43] Ding, 2007 5C prr9 ld 8:16 toc1-21

[43] Ding, 2007 5C prr7 ld 8:16 lhy-21;toc1-21

[43] Ding, 2007 5C prr7 ld 8:16 lhy-21

[43] Ding, 2007 5C prr7 ld 8:16 cca1-11;toc1-21

[43] Ding, 2007 5C prr7 ld 8:16 cca1-11;lhy-21;toc1-21

[43] Ding, 2007 5C prr7 ld 8:16 cca1-11;lhy-21

[43] Ding, 2007 5C prr7 ld 8:16 cca1-11

[43] Ding, 2007 5C prr7 ld 8:16 wt

[2] Dixon, 2011 S3 toc1 ld 12:12 elf3-4 3

[2] Dixon, 2011 S3 toc1 ld 12:12 cca1-11;lhy-21;elf3-4 3

[2] Dixon, 2011 S3 toc1 ld 12:12 cca1-11;lhy-21 3

[2] Dixon, 2011 S3, 2 toc1 ld 12:12 wt, Ws

[2] Dixon, 2011 S3 prr9 ld 12:12 elf3-4 3

[2] Dixon, 2011 S3 prr9 ld 12:12 cca1;lhy-21;elf3-4 3

[2] Dixon, 2011 S3 prr9 ld 12:12 cca1-11;lhy-21 3

[2] Dixon, 2011 S3 prr9 ld 12:12 wt, Ws

[2] Dixon, 2011 S3 prr7 ld 12:12 elf3-4 3

[2] Dixon, 2011 S3 prr7 ld 12:12 cca1;lhy-21;elf3-4 3

[2] Dixon, 2011 S3 prr7 ld 12:12 cca1-11;lhy-21 3

[2] Dixon, 2011 S3 prr7 ld 12:12 wt, Ws

[2] Dixon, 2011 S3 gi ld 12:12 elf3-4 3

[2] Dixon, 2011 S3 gi ld 12:12 cca1;lhy-21;elf3-4 3

[2] Dixon, 2011 S3 gi ld 12:12 cca1-11;lhy-21 3

[2] Dixon, 2011 S3 gi ld 12:12 wt, Ws

[44] Edwards, 2010 2A cca1 ll 9:15 wt
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[44] Edwards, 2010 2A cca1 ll 6:18 wt

[44] Edwards, 2010 2A cca1 ll 3:21 wt

[44] Edwards, 2010 2A cca1 ll 18:6 wt

[44] Edwards, 2010 2A cca1 ll 12:12 wt

[44] Edwards, 2010 2C gi ll 9:15 wt

[44] Edwards, 2010 2C gi ll 6:18 wt

[44] Edwards, 2010 2C gi ll 3:21 wt

[44] Edwards, 2010 2C gi ll 18:6 wt

[44] Edwards, 2010 2C gi ll 12:12 wt

[44] Edwards, 2010 2E toc1 ll 9:15 wt

[44] Edwards, 2010 2E toc1 ll 6:18 wt

[44] Edwards, 2010 2E toc1 ll 3:21 wt

[44] Edwards, 2010 2E toc1 ll 18:6 wt

[44] Edwards, 2010 2E toc1 ll 12:12 wt

[44] Edwards, 2010 2B cca1 dd 12:12 wt

[44] Edwards, 2010 2B cca1 dd 18:6 wt

[44] Edwards, 2010 2B cca1 dd 6:18 wt

[44] Edwards, 2010 2D gi dd 12:12 wt

[44] Edwards, 2010 2D gi dd 18:6 wt

[44] Edwards, 2010 2D gi dd 6:18 wt

[44] Edwards, 2010 2E toc1 dd 18:6 wt

[44] Edwards, 2010 2F toc1 dd 12:12 wt

[44] Edwards, 2010 2F toc1 dd 6:18 wt

[44] Edwards, 2010 S3 cca1 dd 12:12 wt

[44] Edwards, 2010 S3 gi dd 12:12 wt

[44] Edwards, 2010 S3 toc1 dd 12:12 wt

[44] Edwards, 2010 S3 cca1 dd 3:21 wt

[44] Edwards, 2010 S3 gi dd 3:21 wt

[44] Edwards, 2010 S3 toc1 dd 3:21 wt

[44] Edwards, 2010 S3 cca1 dd 9:15 wt

[44] Edwards, 2010 S3 gi dd 9:15 wt

[44] Edwards, 2010 S3 toc1 dd 9:15 wt

[40] Farinas, 2011 1A cca1 ll 12:12 wt

[40] Farinas, 2011 1B cca1 ll 8:16 wt

[40] Farinas, 2011 1C cca1 ll 16:8 wt

[40] Farinas, 2011 1A rve8 ll 12:12 wt

[40] Farinas, 2011 1B rve8 ll 8:16 wt

[40] Farinas, 2011 1C rve8 ll 16:8 wt

[40] Farinas, 2011 1D toc1 ll 12:12 wt

[40] Farinas, 2011 1F toc1 ll 16:8 wt

[40] Farinas, 2011 1E toc1 ll 8:16 wt

[40] Farinas, 2011 2C rve8 ll 16:8 wt

[40] Farinas, 2011 2C rve8 ll 16:8 cca1-ox

[40] Farinas, 2011 2F rve8 ll 16:8 cca1;lhy

[40] Farinas, 2011 3C cca1 ll 16:8 wt

[40] Farinas, 2011 3C cca1 ll 16:8 rve8-ox

[40] Farinas, 2011 3F cca1 ll 16:8 rve8

[40] Farinas, 2011 4C toc1 ll 16:8 wt

[40] Farinas, 2011 4C toc1 ll 16:8 rve8-ox

[40] Farinas, 2011 4F toc1 ll 16:8 rve8

[30] Farré, 2005 3F toc1 ll 12:12 prr7-3;prr9-1 3

[30] Farré, 2005 3E toc1 ll 12:12 prr9-1

[30] Farré, 2005 3E toc1 ll 12:12 prr7-3

[30] Farré, 2005 3E toc1 ll 12:12 wt, Col

[30] Farré, 2005 3D lhy ll 12:12 prr7-3;prr9-1 3

[30] Farré, 2005 3C lhy ll 12:12 prr9-1

[30] Farré, 2005 3C lhy ll 12:12 prr7-3

[30] Farré, 2005 3C lhy ll 12:12 wt, Col

[30] Farré, 2005 3B cca1 ll 12:12 prr7-3;prr9-1 3

[30] Farré, 2005 3A cca1 ll 12:12 prr9-1

[30] Farré, 2005 3A cca1 ll 12:12 prr7-3

[30] Farré, 2005 3A cca1 ll 12:12 wt, Col
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[30] Farré, 2005 4A prr9 ld 12:12 wt, Ws

[30] Farré, 2005 4A prr9 ld 12:12 cca1-1

[30] Farré, 2005 4A prr9 ld 12:12 cca1-1;lhy-R

[30] Farré, 2005 4B prr9 ld 12:12 cca1-ox

[30] Farré, 2005 4B prr9 ld 12:12 wt, Col

[30] Farré, 2005 4C prr9 ld 12:12 lhy-1 (-ox)

[30] Farré, 2005 4C prr9 ld 12:12 wt, Ler

[30] Farré, 2005 4D prr7 ld 12:12 wt, Ws

[30] Farré, 2005 4D prr7 ld 12:12 cca1-1, Ws

[30] Farré, 2005 4D prr7 ld 12:12 cca1-1;lhy-R

[30] Farré, 2005 4E prr7 ld 12:12 cca1-ox

[30] Farré, 2005 4E prr7 ld 12:12 wt, Col

[30] Farré, 2005 4F prr7 ld 12:12 lhy-1 (-ox)

[30] Farré, 2005 4F prr7 ld 12:12 wt, Ler

[45] Farré, 2007 3G toc1 ll 12:12 p7-ox 3

[45] Farré, 2007 3G toc1 ll 12:12 wt

[45] Farré, 2007 3J prr7 ll 12:12 p7-ox 3

[45] Farré, 2007 3J prr7 ll 12:12 wt

[45] Farré, 2007 3D lhy ll 12:12 p7-ox 3

[45] Farré, 2007 3D lhy ll 12:12 wt

[45] Farré, 2007 3A cca1 ll 12:12 p7-ox 3

[45] Farré, 2007 3A cca1 ll 12:12 wt

[45] Farré, 2007 4B cca1 ll 12:12 p7-ox 3

[45] Farré, 2007 4B cca1 ll 12:12 wt

[45] Farré, 2007 4B cca1 ll 12:12 prr7-3

[45] Farré, 2007 5A prr7 pr ll 12:12 wt

[45] Farré, 2007 5B prr7 pr dd 12:12 wt

[45] Farré, 2007 5C prr7 pr ll 12:12 p7-ox

[45] Farré, 2007 5D prr7 pr dd 12:12 p7-ox

[46] Fowler, 1999 3A gi dd 18:6 wt

[46] Fowler, 1999 3A gi ld 18:6 wt

[46] Fowler, 1999 3A gi ll 18:6 wt

[46] Fowler, 1999 3B gi ld 10:14 wt, 18:6 to 10:14

[46] Fowler, 1999 3B gi ld 18:6 wt

[46] Fowler, 1999 3B gi ld 10:14 wt

[46] Fowler, 1999 3B gi ld 18:6 wt

[46] Fowler, 1999 4A gi ld 18:6 wt, ldl 18:5:1

[46] Fowler, 1999 4A gi ld 18:6 elf3, ldl 18:5:1

[46] Fowler, 1999 4C gi ll 18:6 elf3

[46] Fowler, 1999 4C gi ll 18:6 wt

[46] Fowler, 1999 5A gi ll 18:6 c-ox

[46] Fowler, 1999 5A gi ll 18:6 wt

[46] Fowler, 1999 5B gi ld 18:6 lhy-ox

[46] Fowler, 1999 5B gi ld 18:6 wt

[46] Fowler, 1999 5C cca1 ld 18:6 lhy-ox

[46] Fowler, 1999 5C cca1 ld 18:6 wt

[46] Fowler, 1999 6A lhy ld 18:6 wt, ldl 18:5:1

[46] Fowler, 1999 6A lhy ld 18:6 gi-3, ldl 18:5:1

[46] Fowler, 1999 6B cca1 ld 18:6 wt, ldl 18:5:1

[46] Fowler, 1999 6B cca1 ld 18:6 gi-3, ldl 18:5:1

[25] Fujiwara, 2008 1A prr9 ll 12:12 wt

[25] Fujiwara, 2008 1B prr7 ll 12:12 wt

[25] Fujiwara, 2008 1C prr5 ll 12:12 wt

[25] Fujiwara, 2008 1E toc1 ll 12:12 wt

[25] Fujiwara, 2008 3A prr9 ll 12:12 ztl-1

[47] Hazen, 2005 4A cca1 ll 12:12 wt

[47] Hazen, 2005 4A cca1 ll 12:12 lux-1

[47] Hazen, 2005 4A cca1 ll 12:12 lux-2

[47] Hazen, 2005 4B lhy ll 12:12 wt

[47] Hazen, 2005 4B lhy ll 12:12 lux-1

[47] Hazen, 2005 4B lhy ll 12:12 lux-2

[47] Hazen, 2005 4C toc1 ll 12:12 wt
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[47] Hazen, 2005 4C toc1 ll 12:12 lux-1

[47] Hazen, 2005 4C toc1 ll 12:12 lux-2

[48] Helfer, 2011 3A lux ld 12:12 wt

[48] Helfer, 2011 3A prr9 ld 12:12 wt

[48] Helfer, 2011 3B lux ll 12:12 wt

[48] Helfer, 2011 3B prr9 ll 12:12 wt

[48] Helfer, 2011 3C prr9 ll 12:12 wt

[48] Helfer, 2011 3C prr9 ll 12:12 lux-4

[48] Helfer, 2011 S1B lux ld 12:12 wt

[48] Helfer, 2011 S1B nox ld 12:12 wt

[48] Helfer, 2011 S1C lux ll 12:12 wt

[48] Helfer, 2011 S1C nox ll 12:12 wt

[49] Herrero, 2011 3.11 prr9 ld 8:16 e4-ox

[49] Herrero, 2011 3.11 prr9 ld 8:16 e3-ox

[49] Herrero, 2011 3.11 prr9 ld 8:16 wt

[49] Herrero, 2011 3.11 prr7 ld 8:16 e4-ox

[49] Herrero, 2011 3.11 prr7 ld 8:16 e3-ox

[49] Herrero, 2011 3.11 prr7 ld 8:16 wt

[49] Herrero, 2011 3.11 prr9 ll 12:12 e4-ox

[49] Herrero, 2011 3.11 prr9 ll 12:12 e3-ox

[49] Herrero, 2011 3.11 prr9 ll 12:12 wt

[49] Herrero, 2011 3.11 prr7 ll 12:12 e4-ox

[49] Herrero, 2011 3.11 prr7 ll 12:12 e3-ox

[49] Herrero, 2011 3.11 prr7 ll 12:12 wt

[49] Herrero, 2011 3.2A lhy ll 12:12 elf3-4, lhy::luc

[49] Herrero, 2011 3.2A lhy ll 12:12 e4-ox, lhy::luc

[49] Herrero, 2011 3.2B lhy ll 12:12 elf4-1, lhy::luc

[49] Herrero, 2011 3.2B lhy ll 12:12 e3-ox, lhy::luc

[49] Herrero, 2011 3.2B lhy ll 12:12 wt, lhy::luc

[8] Hicks, 2001 4B elf3 ld 12:12 wt

[8] Hicks, 2001 4D elf3 ld 12:12 elf3-1

[8] Hicks, 2001 4D elf3 ld 12:12 elf3-2

[8] Hicks, 2001 4E elf3 ld 18:6 wt

[8] Hicks, 2001 4E elf3 ld 9:15 wt

[8] Hicks, 2001 6A elf3 ll 12:12 wt, Ler

[8] Hicks, 2001 6A elf3 ll 12:12 lhy

[50] Hsu, 2012 2H cca1 ll 12:12 Col

[50] Hsu, 2012 2H cca1 ll 12:12 rve8-1

[50] Hsu, 2012 1C rve8 ll 12:12 Col

[50] Hsu, 2012 1C rve8 ll 12:12 rve8

[50] Hsu, 2012 2G cca1 ll 12:12 Col

[50] Hsu, 2012 2G cca1 ll 12:12 rve8-1

[51] Hsu, 2013 5A prr5 ld 12:12 wt, Col

[51] Hsu, 2013 5A prr5 ld 12:12 rve4,rve6,rve8

[51] Hsu, 2013 5B toc1 ld 12:12 wt, Col

[51] Hsu, 2013 5B toc1 ld 12:12 rve4,rve6,rve8

[51] Hsu, 2013 5C cca1 ld 12:12 wt, Col

[51] Hsu, 2013 5C cca1 ld 12:12 rve4,rve6,rve8

[51] Hsu, 2013 5D lhy ld 12:12 wt, Col

[51] Hsu, 2013 5D lhy ld 12:12 rve4,rve6,rve8

[51] Hsu, 2013 5I prr5 ll 12:12 wt Col

[51] Hsu, 2013 5I prr5 ll 12:12 rve4,rve6,rve8

[51] Hsu, 2013 5J toc1 ll 12:12 wt Col

[51] Hsu, 2013 5J toc1 ll 12:12 rve4,rve6,rve8

[51] Hsu, 2013 5K cca1 ll 12:12 wt Col

[51] Hsu, 2013 5K cca1 ll 12:12 rve4,rve6,rve8

[51] Hsu, 2013 5L lhy ll 12:12 wt Col

[51] Hsu, 2013 5L lhy ll 12:12 rve4,rve6,rve8

[51] Hsu, 2013 5M toc1 ll 12:12 wt Col

[51] Hsu, 2013 5M toc1 ll 12:12 rve4,rve6,rve8

[51] Hsu, 2013 5O lhy ll 12:12 wt Col

[51] Hsu, 2013 5O lhy ll 12:12 rve4,rve6,rve8
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[51] Hsu, 2013 6A rve8 ld 12:12 wt Col

[51] Hsu, 2013 6A rve8 ld 12:12 toc1-4

[51] Hsu, 2013 6A rve8 ld 12:12 lux-1

[51] Hsu, 2013 6A rve8 ld 12:12 cca1-ox

[51] Hsu, 2013 6B prr5 ld 12:12 wt Col, 1 point

[51] Hsu, 2013 6B prr5 ld 12:12 toc1-4, 1 point

[51] Hsu, 2013 6B prr5 ld 12:12 lux-1, 1 point

[51] Hsu, 2013 6B prr5 ld 12:12 cca1-ox, 1 point

[51] Hsu, 2013 6B prr7 ld 12:12 wt Col, 1 point

[51] Hsu, 2013 6B prr7 ld 12:12 toc1-4, 1 point

[51] Hsu, 2013 6B prr7 ld 12:12 lux-1, 1 point

[51] Hsu, 2013 6B prr7 ld 12:12 cca1-ox, 1 point

[51] Hsu, 2013 6B prr9 ld 12:12 wt Col, 1 point

[51] Hsu, 2013 6B prr9 ld 12:12 toc1-4, 1 point

[51] Hsu, 2013 6B prr9 ld 12:12 lux-1, 1 point

[51] Hsu, 2013 6B prr9 ld 12:12 cca1-ox, 1 point

[52] Huang, 2012 2L elf4 ld 12:12 wt

[52] Huang, 2012 2L elf4 ld 12:12 toc1-ox

[52] Huang, 2012 2K gi ld 12:12 wt

[52] Huang, 2012 2K gi ld 12:12 toc1-ox

[52] Huang, 2012 2I prr9 ld 12:12 toc1-ox

[52] Huang, 2012 2I prr9 ld 12:12 wt

[52] Huang, 2012 2J prr7 ld 12:12 toc1-ox

[52] Huang, 2012 2J prr7 ld 12:12 wt

[52] Huang, 2012 4A lhy ll 12:12 wt

[52] Huang, 2012 4A lhy ll 12:12 tocrnai

[52] Huang, 2012 4B prr7 ll 12:12 wt

[52] Huang, 2012 4B prr7 ll 12:12 tocrnai

[52] Huang, 2012 4C prr9 ll 12:12 wt

[52] Huang, 2012 4C prr9 ll 12:12 tocrnai

[52] Huang, 2012 4D gi ll 12:12 wt

[52] Huang, 2012 4D gi ll 12:12 tocrnai

[52] Huang, 2012 S10 prr7 ld 12:12 wt

[52] Huang, 2012 S10 lhy ld 12:12 wt

[52] Huang, 2012 S10 lhy ld 12:12 toc1-2

[52] Huang, 2012 S10 prr7 ld 12:12 toc1-2

[52] Huang, 2012 S7 prr9 ll 12:12 toc1-ox

[52] Huang, 2012 S7 prr9 ll 12:12 wt

[52] Huang, 2012 S7 prr7 ll 12:12 toc1-ox

[52] Huang, 2012 S7 prr7 ll 12:12 wt

[52] Huang, 2012 S7 lhy ll 12:12 toc1-ox

[52] Huang, 2012 S7 lhy ll 12:12 wt

[52] Huang, 2012 S7 cca1 ll 12:12 toc1-ox

[52] Huang, 2012 S7 cca1 ll 12:12 wt

[52] Huang, 2012 S8B lux ld 12:12 wt, lux::luc

[52] Huang, 2012 S8C lux ll 12:12 wt, lux::luc

[52] Huang, 2012 S8D lux ld 12:12 toc1-ox, lux::luc

[52] Huang, 2012 S8D lux ld 12:12 wt, lux::luc

[53] Ito, 2008 2C gi ll 12:12 toc1-2;prr5-11

[53] Ito, 2008 2C gi ll 12:12 toc1-2

[53] Ito, 2008 2C gi ll 12:12 wt

[53] Ito, 2008 2C cca1 ll 12:12 toc1-2;prr5-11

[53] Ito, 2008 2C cca1 ll 12:12 toc1-2

[53] Ito, 2008 2C cca1 ll 12:12 wt

[53] Ito, 2008 4 gi ld 16:8 toc1-2;prr5-11

[53] Ito, 2008 4 gi ld 16:8 toc1-2

[53] Ito, 2008 4 gi ld 16:8 prr5-11

[53] Ito, 2008 4 gi ld 16:8 wt

[53] Ito, 2008 4G lhy ld 16:8 prr5-11

[53] Ito, 2008 4G lhy ld 16:8 wt

[53] Ito, 2008 4H lhy ld 16:8 toc1-2;prr5-11

[53] Ito, 2008 4H lhy ld 16:8 toc1-2
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[54] Kaczorowski, 2003 6A cca1 ll 12:12 wt, Red l. entr.

[54] Kaczorowski, 2003 6A cca1 ll 12:12 prr7-1, Red l. entr.

[54] Kaczorowski, 2003 6B lhy ll 12:12 wt, Red l. entr.

[54] Kaczorowski, 2003 6B lhy ll 12:12 prr7-1, Red l. entr.

[54] Kaczorowski, 2003 6C toc1 ll 12:12 wt, Red l. entr.

[54] Kaczorowski, 2003 6C toc1 ll 12:12 prr7-1, Red l. entr.

[24] Kiba, 2007 1B prr5 ld 12:12 wt

[24] Kiba, 2007 1B prr5 pr ld 12:12 wt

[24] Kiba, 2007 1C prr5 ll 12:12 wt

[24] Kiba, 2007 1C prr5 pr ll 12:12 wt

[24] Kiba, 2007 1D prr5 pr dd 12:12 wt

[24] Kiba, 2007 1D prr5 dd 12:12 wt

[24] Kiba, 2007 1E prr5 ld 16:8 wt

[24] Kiba, 2007 1E prr5 pr ld 16:8 wt

[24] Kiba, 2007 1F prr5 ld 8:16 wt

[24] Kiba, 2007 1F prr5 pr ld 8:16 wt

[55] Kikis, 2005 3A toc1 rr 12:12 wt, Ws (dd to rr)

[55] Kikis, 2005 3A toc1 rr 12:12 cca1-1;lhy-12 (dd to rr)

[55] Kikis, 2005 4A cca1 rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 4A cca1 rr 12:12 toc-101 (dd to rr)

[55] Kikis, 2005 4C lhy rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 4C lhy rr 12:12 toc-101 (dd to rr)

[55] Kikis, 2005 5A cca1 rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 5A cca1 rr 12:12 elf4-101 (dd to rr)

[55] Kikis, 2005 5C lhy rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 5C lhy rr 12:12 elf4-101 (dd to rr)

[55] Kikis, 2005 5E toc1 rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 5E toc1 rr 12:12 elf4-101 (dd to rr)

[55] Kikis, 2005 6A cca1 rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 6A cca1 rr 12:12 elf3-1 (dd to rr)

[55] Kikis, 2005 6C lhy rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 6C lhy rr 12:12 elf3-1 (dd to rr)

[55] Kikis, 2005 6E toc1 rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 6E toc1 rr 12:12 elf3-1 (dd to rr)

[55] Kikis, 2005 7A elf4 rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 7A elf4 rr 12:12 elf3-1 (dd to rr)

[55] Kikis, 2005 7C elf3 rr 12:12 wt, Col (dd to rr)

[55] Kikis, 2005 7C elf3 rr 12:12 elf4-101, (dd to rr)

[55] Kikis, 2005 8A elf4 rr 12:12 wt, Ws (dd to rr)

[55] Kikis, 2005 8A elf4 rr 12:12 cca1-1;lhy-12 (dd to rr)

[22] Kim, J-Y, 2003 3C lhy ld 12:12 lhy-ox

[22] Kim, J-Y, 2003 3C lhy ld 12:12 wt

[22] Kim, J-Y, 2003 3C lhy pr ld 12:12 lhy-ox

[22] Kim, J-Y, 2003 3C lhy pr ld 12:12 wt

[56] Kim, W-Y, 2005 5A gi ld 16:8 wt, Col

[56] Kim, W-Y, 2005 5A gi ld 16:8 elf3-1

[56] Kim, W-Y, 2005 5A gi ld 16:8 e3-ox

[56] Kim, W-Y, 2005 5A gi ld 16:8 elf3-1 ztl-ox

[56] Kim, W-Y, 2005 5A gi ld 16:8 elf3-1;ztl-3

[56] Kim, W-Y, 2005 5A gi ld 16:8 ztl-3

[56] Kim, W-Y, 2005 5A gi ld 16:8 ztl-ox

[26] Kim, W-Y, 2007 1B ztl pr ld 12:12 gi-ox 10

[26] Kim, W-Y, 2007 1B ztl pr ld 12:12 gi-1 10

[26] Kim, W-Y, 2007 1B ztl pr ld 12:12 wt 10

[26] Kim, W-Y, 2007 1C gi pr ld 12:12 wt

[26] Kim, W-Y, 2007 1C gi pr ld 12:12 ztl-103

[26] Kim, W-Y, 2007 1C gi pr ld 12:12 wt, cyt

[26] Kim, W-Y, 2007 1C gi pr ld 12:12 ztl-103

[26] Kim, W-Y, 2007 S5 toc1 pr ld 12:12 wt, nuc

[26] Kim, W-Y, 2007 S5 toc1 pr ld 12:12 wt, cyt

[26] Kim, W-Y, 2007 S5 gi pr ld 12:12 wt, nuc

[26] Kim, W-Y, 2007 2F ztl pr ld 12:12 ztl-21 10
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[26] Kim, W-Y, 2007 2F ztl pr ld 12:12 wt 10

[26] Kim, W-Y, 2007 4A toc1 pr ld 12:12 gi-2

[26] Kim, W-Y, 2007 4A toc1 pr ld 12:12 wt

[26] Kim, W-Y, 2007 4B toc1 ld 12:12 gi-2

[26] Kim, W-Y, 2007 4B toc1 ld 12:12 wt

[57] Kim, Y. 2013 2A lhy ld 16:8 wt

[57] Kim, Y. 2013 2A lhy ld 16:8 gi-2

[57] Kim, Y. 2013 2A lhy ld 16:8 gi-nls

[57] Kim, Y. 2013 2A lhy ld 16:8 gi-nes

[57] Kim, Y. 2013 2B lhy ll 12:12 wt

[57] Kim, Y. 2013 2B lhy ll 12:12 gi-2

[57] Kim, Y. 2013 2B lhy ll 12:12 gi-nls

[57] Kim, Y. 2013 2B lhy ll 12:12 gi-nes

[57] Kim, Y. 2013 4F gi pr (N) ld 16:8 wt

[57] Kim, Y. 2013 4F gi pr (C) ld 16:8 wt

[57] Kim, Y. 2013 4F gi pr (N) ld 16:8 gi-constitutive

[57] Kim, Y. 2013 4F gi pr (C) ld 16:8 gi-constitutive

[57] Kim, Y. 2013 4G lhy ld 16:8 gi-constitutive

[57] Kim, Y. 2013 S1B gi ld 16:8 wt

[57] Kim, Y. 2013 S1B gi ld 16:8 gi-nes (gi cyt)

[57] Kim, Y. 2013 S1B gi ld 16:8 gi-nls (gi nuc)

[57] Kim, Y. 2013 S1C gi pr ld 16:8 gi-nls

[57] Kim, Y. 2013 S1C gi pr ld 16:8 gi-nes

[57] Kim, Y. 2013 S2A toc1 ld 16:8 wt

[57] Kim, Y. 2013 S2A toc1 ld 16:8 gi-2

[57] Kim, Y. 2013 S2A toc1 ld 16:8 gi-nls

[57] Kim, Y. 2013 S2A toc1 ld 16:8 gi-nes

[57] Kim, Y. 2013 S6 lhy ld 8:16 wt Ler

[57] Kim, Y. 2013 S6 lhy ld 8:16 lhy-mutant

[5] Kolmos, 2009 4A cca1 ld 12:12 wt

[5] Kolmos, 2009 4A cca1 ld 12:12 elf4-207

[5] Kolmos, 2009 4A cca1 dd 12:12 wt, Col-0 0.1

[5] Kolmos, 2009 4A cca1 dd 12:12 elf4-207 0.1

[5] Kolmos, 2009 4A cca1 ll 12:12 elf4-207

[5] Kolmos, 2009 4A cca1 ll 12:12 Col-0, wt

[5] Kolmos, 2009 4B lhy ld 12:12 elf4-207

[5] Kolmos, 2009 4B lhy ld 12:12 Col-0, wt

[5] Kolmos, 2009 4B lhy dd 12:12 wt, Col-0 0.1

[5] Kolmos, 2009 4B lhy dd 12:12 elf4-207 0.1

[5] Kolmos, 2009 4B lhy ll 12:12 elf4-207

[5] Kolmos, 2009 4B lhy ll 12:12 Col-0, wt

[5] Kolmos, 2009 4C prr9 ld 12:12 elf4-207

[5] Kolmos, 2009 4C prr9 ld 12:12 Col-0, wt

[5] Kolmos, 2009 4C prr9 dd 12:12 wt 0.1

[5] Kolmos, 2009 4C prr9 dd 12:12 elf4-207 0.1

[5] Kolmos, 2009 4C prr9 ll 12:12 Col-0, wt

[5] Kolmos, 2009 4C prr9 ll 12:12 elf4-207

[5] Kolmos, 2009 4D prr7 ld 12:12 elf4-207

[5] Kolmos, 2009 4D prr7 ld 12:12 Col-0, wt

[5] Kolmos, 2009 4D prr7 dd 12:12 wt, Col-0 0.1

[5] Kolmos, 2009 4D prr7 dd 12:12 elf4-207 0.1

[5] Kolmos, 2009 4D prr7 ll 12:12 elf4-207

[5] Kolmos, 2009 4D prr7 ll 12:12 Col-0, wt

[5] Kolmos, 2009 4E gi ld 12:12 elf4-207

[5] Kolmos, 2009 4E gi ld 12:12 Col-0, wt

[5] Kolmos, 2009 4E gi dd 12:12 wt, Col-0 0.1

[5] Kolmos, 2009 4E gi dd 12:12 elf4-207 0.1

[5] Kolmos, 2009 4E gi ll 12:12 elf4-207

[5] Kolmos, 2009 4E gi ll 12:12 Col-0, wt

[5] Kolmos, 2009 4F toc1 ld 12:12 elf4-207

[5] Kolmos, 2009 4F toc1 ld 12:12 Col-0, wt

[5] Kolmos, 2009 4F toc1 dd 12:12 wt 0.1
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[5] Kolmos, 2009 4F toc1 dd 12:12 elf4-207 0.1

[5] Kolmos, 2009 4F toc1 ll 12:12 elf4-207

[5] Kolmos, 2009 4F toc1 ll 12:12 Col-0, wt

[5] Kolmos, 2009 4G lux ld 12:12 elf4-207

[5] Kolmos, 2009 4G lux ld 12:12 Col-0, wt

[5] Kolmos, 2009 4G lux dd 12:12 wt 0.1

[5] Kolmos, 2009 4G lux dd 12:12 elf4-207 0.1

[5] Kolmos, 2009 4G lux ll 12:12 elf4-207

[5] Kolmos, 2009 4G lux ll 12:12 Col-0, wt

[58] Lau, 2011 3C toc1 ll 16:8 Col

[58] Lau, 2011 3C toc1 ll 16:8 det1-1

[58] Lau, 2011 4A toc1 ll 16:8 cca1-ox

[58] Lau, 2011 4A toc1 ll 16:8 det1-1;cca1-ox

[58] Lau, 2011 3D gi ll 16:8 Col

[58] Lau, 2011 3D gi ll 16:8 det1-1

[58] Lau, 2011 4B gi ll 16:8 cca1-ox

[58] Lau, 2011 4B gi ll 16:8 det1-1;cca1-ox

[58] Lau, 2011 S2B lhy pr ll 16:8 Col wt

[58] Lau, 2011 S2B lhy pr ll 16:8 det1-1

[58] Lau, 2011 S2C lhy ll 16:8 Col wt

[58] Lau, 2011 S2C lhy ll 16:8 det1-1

[58] Lau, 2011 S2D cca1 ll 16:8 Col wt

[58] Lau, 2011 S2D cca1 ll 16:8 det1-1

[59] Li, 2011 3D elf4 ll 12:12 Col-0, wt

[59] Li, 2011 3D elf4 ll 12:12 cca1-ox

[59] Li, 2011 5E elf4 ld 12:12 Ws

[59] Li, 2011 5E elf4 ld 12:12 cca1;lhy

[59] Li, 2011 5E elf4 ll 12:12 Ws

[59] Li, 2011 5E elf4 ll 12:12 cca1;lhy

[7] Liu, 2001 2C elf3 pr ll 12:12 first plot

[7] Liu, 2001 2C elf3 pr ll 12:12 second plot

[60] Locke, 2005 6 gi ll 12:12 wt

[60] Locke, 2005 6 gi ll 12:12 cca1;lhy

[9] Lu, 2012 1 elf3 ll 12:12 cca1-ox

[9] Lu, 2012 1 elf3 ll 12:12 cca1-1

[9] Lu, 2012 1 elf3 ll 12:12 wt

[9] Lu, 2012 1 cca1 ll 12:12 elf3-ox

[9] Lu, 2012 1 cca1 ll 12:12 elf3-1

[9] Lu, 2012 1 cca1 ll 12:12 wt

[9] Lu, 2012 6 gi ld 16:8 wt

[9] Lu, 2012 6 gi ld 16:8 elf3-1;c-ox

[9] Lu, 2012 6 gi ld 16:8 elf3-1

[9] Lu, 2012 6 gi ld 16:8 c-ox

[9] Lu, 2012 7 gi ld 8:16 elf3;c-ox

[9] Lu, 2012 7 gi ld 8:16 elf3

[9] Lu, 2012 7 gi ld 8:16 c-ox

[9] Lu, 2012 7 gi ld 8:16 wt

[41] Martin-Tryon, 2007 5A cca1 ll 12:12 Col

[41] Martin-Tryon, 2007 5A cca1 ll 12:12 gi-201

[41] Martin-Tryon, 2007 5A cca1 ll 12:12 toc1-2

[41] Martin-Tryon, 2007 5B lhy ll 12:12 Col

[41] Martin-Tryon, 2007 5B lhy ll 12:12 gi-201

[41] Martin-Tryon, 2007 5B lhy ll 12:12 toc1-2

[41] Martin-Tryon, 2007 5C toc1 ll 12:12 Col

[41] Martin-Tryon, 2007 5C toc1 ll 12:12 gi-201

[41] Martin-Tryon, 2007 5C toc1 ll 12:12 toc1-2

[41] Martin-Tryon, 2007 5D gi ll 12:12 Col

[41] Martin-Tryon, 2007 5D gi ll 12:12 gi-201

[41] Martin-Tryon, 2007 5D gi ll 12:12 toc1-2

[61] Mas, 2003 2A toc1 pr ld 12:12 tmg

[61] Mas, 2003 2B toc1 ld 12:12 tmg

[61] Mas, 2003 2C toc1 pr ld 12:12 ztl-1 tmg
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[61] Mas, 2003 2D toc1 ld 12:12 ztl-1 tmg

[61] Mas, 2003 3A toc1 pr ll 12:12 wt, tmg

[61] Mas, 2003 3B toc1 ll 12:12 wt, tmg

[62] Matsushika, 2000 7A prr9 ld 16:8 wt

[62] Matsushika, 2000 7A prr7 ld 16:8 wt

[62] Matsushika, 2000 7A prr5 ld 16:8 wt

[62] Matsushika, 2000 7A prr3 ld 16:8 wt

[62] Matsushika, 2000 7A prr1 ld 16:8 wt

[62] Matsushika, 2000 7B prr9 ld 12:12 wt

[62] Matsushika, 2000 7B prr7 ld 12:12 wt

[62] Matsushika, 2000 7B prr5 ld 12:12 wt

[62] Matsushika, 2000 7B prr3 ld 12:12 wt

[62] Matsushika, 2000 7B prr1 ld 12:12 wt

[62] Matsushika, 2000 7C prr9 ld 8:16 wt

[62] Matsushika, 2000 7C prr7 ld 8:16 wt

[62] Matsushika, 2000 7C prr5 ld 8:16 wt

[62] Matsushika, 2000 7C prr3 ld 8:16 wt

[62] Matsushika, 2000 7C prr1 ld 8:16 wt

[63] Matsushika, 2002 3B prr9 ll 12:12 p9-ox 3

[63] Matsushika, 2002 3B prr9 ll 12:12 wt, Col

[63] Matsushika, 2002 3B prr7 ll 12:12 p9-ox 3

[63] Matsushika, 2002 3B prr7 ll 12:12 wt, Col

[63] Matsushika, 2002 3B prr5 ll 12:12 p9-ox 3

[63] Matsushika, 2002 3B prr5 ll 12:12 wt, Col

[63] Matsushika, 2002 3B prr1 ll 12:12 p9-ox 3

[63] Matsushika, 2002 3B prr1 ll 12:12 wt, Col

[63] Matsushika, 2002 4A lhy ll 12:12 p9-ox 3

[63] Matsushika, 2002 4A lhy ll 12:12 wt, Col

[63] Matsushika, 2002 4B elf3 ll 12:12 p9-ox 3

[63] Matsushika, 2002 4B elf3 ll 12:12 wt, Col

[63] Matsushika, 2002 4A cca1 ll 12:12 p9-ox 3

[63] Matsushika, 2002 4A cca1 ll 12:12 wt, Col

[34] McWatters, 2007 6G elf4 ld 12:12 wt C24

[34] McWatters, 2007 6G elf4 ld 12:12 toc1-1

[34] McWatters, 2007 S2A cca1 ll 12:12 Ws

[34] McWatters, 2007 S2A cca1 ll 12:12 elf4-1

[34] McWatters, 2007 S2B lhy ll 12:12 Ws

[34] McWatters, 2007 S2B lhy ll 12:12 elf4-1

[34] McWatters, 2007 S2D toc1 ll 12:12 Ws

[34] McWatters, 2007 S2D toc1 ll 12:12 elf4-1

[34] McWatters, 2007 S1A elf4 ll 12:12 Ws

[34] McWatters, 2007 S1A elf4 ll 12:12 elf4-ox-11

[17] Mizoguchi, 2002 7C gi ld 16:8 Ler

[17] Mizoguchi, 2002 7C gi ld 16:8 lhy-12

[17] Mizoguchi, 2002 7C gi ld 16:8 cca1-1

[17] Mizoguchi, 2002 7D gi ld 16:8 cca1-1;lhy-12

[17] Mizoguchi, 2002 7E toc1 ld 16:8 Ler

[17] Mizoguchi, 2002 7E toc1 ld 16:8 lhy-12

[17] Mizoguchi, 2002 7E toc1 ld 16:8 cca1-1

[17] Mizoguchi, 2002 7F toc1 ld 16:8 cca1-1;lhy-12

[17] Mizoguchi, 2002 7K lhy ll 16:8 Ler

[17] Mizoguchi, 2002 7K lhy ll 16:8 gi-3

[17] Mizoguchi, 2002 7L cca1 ll 16:8 Ler

[17] Mizoguchi, 2002 7L cca1 ll 16:8 gi-3

[17] Mizoguchi, 2002 6C gi ll 16:8 Ler

[17] Mizoguchi, 2002 6C gi ll 16:8 lhy-12

[17] Mizoguchi, 2002 6C gi ll 16:8 cca1-1

[17] Mizoguchi, 2002 6G toc1 ll 16:8 Ler

[17] Mizoguchi, 2002 6G toc1 ll 16:8 lhy-12

[17] Mizoguchi, 2002 6G toc1 ll 16:8 cca1-1

[17] Mizoguchi, 2002 6D gi ll 16:8 lhy-12;cca1-1

[17] Mizoguchi, 2002 6H toc1 ll 16:8 lhy-12;cca1-1
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[17] Mizoguchi, 2002 2C cca1 ll 16:8 wt

[17] Mizoguchi, 2002 2C cca1 ll 16:8 lhy-12

[17] Mizoguchi, 2002 2D lhy ll 16:8 wt

[17] Mizoguchi, 2002 2D lhy ll 16:8 cca1-1

[64] Nakamichi, 2003 1 prr9 ld 12:12 wt

[64] Nakamichi, 2003 1 prr7 ld 12:12 wt

[64] Nakamichi, 2003 1 prr5 ld 12:12 wt

[64] Nakamichi, 2003 1 prr1 ld 12:12 wt

[64] Nakamichi, 2003 3 prr1 dd 12:12 wt

[64] Nakamichi, 2003 3 prr5 dd 12:12 wt

[64] Nakamichi, 2003 3 prr7 dd 12:12 wt

[64] Nakamichi, 2003 3 prr7 dd 12:12 wt

[64] Nakamichi, 2003 3 prr9 dd 12:12 wt

[64] Nakamichi, 2003 4 cca1 dd 12:!2 wt

[64] Nakamichi, 2003 4 lhy dd 12:12 wt

[65] Nakamichi, 2005 4A cca1 ll 12:12 wt, Col

[65] Nakamichi, 2005 4A cca1 ll 12:12 prr5-11;prr7-11

[65] Nakamichi, 2005 4B lhy ll 12:12 wt, Col

[65] Nakamichi, 2005 4B lhy ll 12:12 prr5-11;prr7-11

[65] Nakamichi, 2005 4C toc1 ll 12:12 wt, Col

[65] Nakamichi, 2005 4C toc1 ll 12:12 prr5-11;prr7-11

[65] Nakamichi, 2005 5A cca1 dd 12:12 wt, Col

[65] Nakamichi, 2005 5A cca1 dd 12:12 prr5-11;prr7-11

[65] Nakamichi, 2005 5B lhy dd 12:12 wt, Col

[65] Nakamichi, 2005 5B lhy dd 12:12 prr5-11;prr7-11

[65] Nakamichi, 2005 6A cca1 ld 12:12 wt, Col

[65] Nakamichi, 2005 6A cca1 ld 12:12 prr5-11;prr7-11

[65] Nakamichi, 2005 6B lhy ld 12:12 wt, Col

[65] Nakamichi, 2005 6B lhy ld 12:12 prr5-11;prr7-11

[65] Nakamichi, 2005 6C toc1 ld 12:12 wt, Col

[65] Nakamichi, 2005 6C toc1 ld 12:12 prr5-11;prr7-11

[65] Nakamichi, 2005 6E gi ld 12:12 wt, Col

[65] Nakamichi, 2005 6E gi ld 12:12 prr5-11;prr7-11

[66] Nakamichi, 2005b 5A cca1 ll 12:12 wt, Col

[66] Nakamichi, 2005b 5A cca1 ll 12:12 prr9-10;prr7-11;prr5-11

[66] Nakamichi, 2005b 5B toc1 ll 12:12 wt, Col

[66] Nakamichi, 2005b 5B toc1 ll 12:12 prr9-10;prr7-11;prr5-11

[66] Nakamichi, 2005b 5C gi ll 12:12 wt, Col

[66] Nakamichi, 2005b 5C gi ll 12:12 prr9-10;prr7-11;prr5-11

[66] Nakamichi, 2005b 6C toc1 ld 12:12 wt

[67] Nakamichi, 2010 6A cca1 ld 12:12 wt

[67] Nakamichi, 2010 6B prr9 pr ld 12:12 prr5;prr7

[67] Nakamichi, 2010 6A prr9 pr ld 12:12 wt

[67] Nakamichi, 2010 6A prr7 pr ld 12:12 wt

[67] Nakamichi, 2010 6C prr5 pr ld 12:12 prr7;prr9

[67] Nakamichi, 2010 6A prr5 pr ld 12:12 wt

[67] Nakamichi, 2010 6C lhy ld 12:12 prr7;prr9

[67] Nakamichi, 2010 6B lhy ld 12:12 prr5;prr7

[67] Nakamichi, 2010 6A lhy ld 12:12 wt

[67] Nakamichi, 2010 6B cca1 ld 12:12 prr5;prr7

[67] Nakamichi, 2010 6C cca1 ld 12:12 prr7;prr9

[68] Nakamichi, 2012 S4B lhy ll 12:12 wt

[68] Nakamichi, 2012 S4B lhy ll 12:12 p5-ox 3

[68] Nakamichi, 2012 S4B prr9 ll 12:12 wt

[68] Nakamichi, 2012 S4B prr7 ll 12:12 wt

[69] Niwa, 2007 6L gi ld 10:14 wt

[69] Niwa, 2007 6L gi ld 10:14 toc1-2;cca1-1

[69] Niwa, 2007 6R gi ld 10:14 wt

[69] Niwa, 2007 6R gi ld 10:14 toc1-2;cca1-1

[69] Niwa, 2007 8 gi ld 10:14 toc1-2;cca1-1;lhy-11

[69] Niwa, 2007 8 gi ld 10:14 cca1-1;lhy-11

[69] Niwa, 2007 8 gi ld 10:14 wt



III.G table of experimental data sources 193

Ref. Fig. Reporter Light Mut. wi

[70] Nusinow, 2011 1 elf3 ll 12:12 wt

[70] Nusinow, 2011 1 elf4 ll 12:12 wt

[70] Nusinow, 2011 1 lux ll 12:12 wt

[70] Nusinow, 2011 S11 elf4 ld 8:16 wt

[70] Nusinow, 2011 S11 elf4 ld 8:16 lhy-1 (-ox)

[70] Nusinow, 2011 S11 elf3 ld 8:16 wt

[70] Nusinow, 2011 S11 elf3 ld 8:16 lhy-1 (-ox)

[70] Nusinow, 2011 S11 lux ld 8:16 wt

[70] Nusinow, 2011 S11 lux ld 8:16 lhy-1 (-ox)

[32] Onai, 2005 1D gi ll 12:12 wt

[32] Onai, 2005 1D gi ll 12:12 lux (pcl1-1)

[32] Onai, 2005 1F toc1 ll 12:12 wt

[32] Onai, 2005 1F toc1 ll 12:12 lux (pcl1-1)

[32] Onai, 2005 1G elf4 ll 12:12 wt

[32] Onai, 2005 1G elf4 ll 12:12 lux (pcl1-1)

[32] Onai, 2005 1H cca1 ll 12:12 wt

[32] Onai, 2005 1H cca1 ll 12:12 lux (pcl1-1)

[32] Onai, 2005 1I lhy ll 12:12 wt

[32] Onai, 2005 1I lhy ll 12:12 lux (pcl1-1)

[32] Onai, 2005 6A lux ll 12:12 wt

[32] Onai, 2005 6A lux ll 12:12 lux (pcl1-1)

[32] Onai, 2005 6G lux ll 12:12 wt

[32] Onai, 2005 6G lux ll 12:12 lux (pcl1-1)

[32] Onai, 2005 6G lux ll 12:12 lux-ox

[32] Onai, 2005 7A lux ll 12:12 wt

[32] Onai, 2005 7A lux ll 12:12 lux (pcl1-1)

[32] Onai, 2005 7A lux ll 12:12 lux-ox

[32] Onai, 2005 7B gi ll 12:12 wt

[32] Onai, 2005 7B gi ll 12:12 lux (pcl1-1)

[32] Onai, 2005 7B gi ll 12:12 lux-ox

[32] Onai, 2005 7C toc1 ll 12:12 wt

[32] Onai, 2005 7C toc1 ll 12:12 lux (pcl1-1)

[32] Onai, 2005 7C toc1 ll 12:12 lux-ox

[32] Onai, 2005 7D elf4 ll 12:12 wt

[32] Onai, 2005 7D elf4 ll 12:12 lux (pcl1-1)

[32] Onai, 2005 7D elf4 ll 12:12 lux-ox

[32] Onai, 2005 7E cca1 ll 12:12 wt

[32] Onai, 2005 7E cca1 ll 12:12 lux (pcl1-1)

[32] Onai, 2005 7E cca1 ll 12:12 lux-ox

[32] Onai, 2005 7F lhy ll 12:12 wt

[32] Onai, 2005 7F lhy ll 12:12 lux (pcl1-1)

[32] Onai, 2005 7F lhy ll 12:12 lux-ox

[71] Park, 1999 3A gi ll 12:12 wt, Col

[71] Park, 1999 3A gi ll 12:12 gi-1

[71] Park, 1999 3A gi ll 12:12 gi-2

[71] Park, 1999 3A cca1 ll 12:12 wt, Col

[71] Park, 1999 3A cca1 ll 12:12 gi-1

[71] Park, 1999 3A cca1 ll 12:12 gi-2

[71] Park, 1999 3A lhy ll 12:12 wt, Col

[71] Park, 1999 3A lhy ll 12:12 gi-1

[71] Park, 1999 3A lhy ll 12:12 gi-2

[71] Park, 1999 3B lhy dd 12:12 wt, Col

[71] Park, 1999 3B lhy dd 12:12 gi-1

[71] Park, 1999 3B lhy dd 12:12 gi-2

[71] Park, 1999 3B gi dd 12:12 wt, Col

[71] Park, 1999 3B gi dd 12:12 gi-1

[71] Park, 1999 3B gi dd 12:12 gi-2

[72] Pokhilko, 2012 2A toc1 ld 12:12 wt

[72] Pokhilko, 2012 2A toc1 ld 12:12 cca1;lhy

[72] Pokhilko, 2012 2B lux ld 12:12 wt

[72] Pokhilko, 2012 2B lux ld 12:12 cca1;lhy

[72] Pokhilko, 2012 3C toc1 ld 12:12 cca1;lhy;gi
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[72] Pokhilko, 2012 3C toc1 ld 12:12 cca1;lhy

[72] Pokhilko, 2012 3D lux ld 12:12 cca1;lhy;gi

[72] Pokhilko, 2012 3D lux ld 12:12 cca1;lhy

[72] Pokhilko, 2012 5A cca1 ld 12:12 wt

[72] Pokhilko, 2012 5A cca1 ld 12:12 toc1

[72] Pokhilko, 2012 5A cca1 ld 12:12 t-ox

[72] Pokhilko, 2012 5B lhy ld 12:12 wt

[72] Pokhilko, 2012 5B lhy ld 12:12 toc1

[72] Pokhilko, 2012 5B lhy ld 12:12 t-ox

[73] Rawat, 2011 4B rve8 pr ll 12:12 wt

[73] Rawat, 2011 6A cca1 ll 12:12 wt Col

[73] Rawat, 2011 6A cca1 ll 12:12 rve8-1

[73] Rawat, 2011 6A cca1 ll 12:12 rve8-ox

[73] Rawat, 2011 6B lhy ll 12:12 wt Col

[73] Rawat, 2011 6B lhy ll 12:12 rve8-1

[73] Rawat, 2011 6B lhy ll 12:12 rve8-ox

[73] Rawat, 2011 6C toc1 ll 12:12 wt Col

[73] Rawat, 2011 6C toc1 ll 12:12 rve8-1

[73] Rawat, 2011 6C toc1 ll 12:12 rve8-ox

[73] Rawat, 2011 6D cca1 ll 12:12 rve8-1;rve8-ox

[73] Rawat, 2011 6E lhy ll 12:12 rve8-1;rve8-ox

[73] Rawat, 2011 6F toc1 ll 12:12 rve8-1;rve8-ox

[73] Rawat, 2011 8C prr5 ll 12:12 wt Col

[73] Rawat, 2011 8C prr5 ll 12:12 rve8-1

[73] Rawat, 2011 8C prr5 ll 12:12 rve8-ox

[73] Rawat, 2011 8D toc1 ll 12:12 wt Col

[73] Rawat, 2011 8D toc1 ll 12:12 rve8-1

[73] Rawat, 2011 8D toc1 ll 12:12 rve8-ox

[73] Rawat, 2011 8G rve8 ll 12:12? Col

[73] Rawat, 2011 8G rve8 ll 12:12? prr9;prr7;prr5

[73] Rawat, 2011 8E prr7 ll 12:12 wt Col

[73] Rawat, 2011 8E prr7 ll 12:12 rve8-1

[73] Rawat, 2011 8E prr7 ll 12:12 rve8-ox

[73] Rawat, 2011 S1A rve8 ll 12:12 Col

[73] Rawat, 2011 S1A rve8 ll 12:12 rve8-ox

[73] Rawat, 2011 S1B rve8 ll 12:12 rve8-1

[74] Sato, 2002 2B gi ll 12:12 wt, Col

[74] Sato, 2002 2B gi ll 12:12 p5-ox 3

[74] Sato, 2002 3 cca1 ll 12:12 wt, Col

[74] Sato, 2002 3 cca1 ll 12:12 p5-ox 3

[74] Sato, 2002 3 lhy ll 12:12 wt, Col

[74] Sato, 2002 3 lhy ll 12:12 p5-ox 3

[74] Sato, 2002 4 prr9 ll 12:12 wt, Col

[74] Sato, 2002 4 prr9 ll 12:12 p5-ox 3

[74] Sato, 2002 4 prr7 ll 12:12 wt, Col

[74] Sato, 2002 4 prr7 ll 12:12 p5-ox 3

[74] Sato, 2002 4 prr5 ll 12:12 wt, Col

[74] Sato, 2002 4 prr5 ll 12:12 p5-ox 3

[74] Sato, 2002 4 prr1 ll 12:12 wt, Col

[74] Sato, 2002 4 prr1 ll 12:12 p5-ox 3

[38] Somers, 2004 9A cca1 ld 12:12 wt

[38] Somers, 2004 9A cca1 ld 12:12 z-ox

[38] Somers, 2004 9A cca1 ld 12:12 ztl-1

[38] Somers, 2004 9A cca1 ld 12:12 ztl-2

[38] Somers, 2004 9A cca1 ld 12:12 ztl-3

[38] Somers, 2004 9A cca1 ld 12:12 wt

[38] Somers, 2004 9A cca1 ll 12:12 wt, Col

[38] Somers, 2004 9A cca1 ll 12:12 wt, C24

[38] Somers, 2004 9A cca1 ll 12:12 ztl-1, C24

[38] Somers, 2004 9A cca1 ll 12:12 ztl-2, C24

[38] Somers, 2004 9A cca1 ll 12:12 ztl-3, Col

[38] Somers, 2004 9A cca1 ll 12:12 z-ox
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Ref. Fig. Reporter Light Mut. wi

[38] Somers, 2004 9B toc1 ll 12:12 wt, C24

[38] Somers, 2004 9B toc1 ll 12:12 wt, Col

[38] Somers, 2004 9B toc1 ll 12:12 ztl-1, C24

[38] Somers, 2004 9B toc1 ll 12:12 ztl-2, C24

[38] Somers, 2004 9B toc1 ll 12:12 ztl-3, Col

[38] Somers, 2004 9B toc1 ll 12:12 z-ox

[38] Somers, 2004 9C elf3 ld 12:12 wt,

[38] Somers, 2004 9C elf3 ld 12:12 z-ox

[38] Somers, 2004 9C elf3 ld 12:12 ztl-1

[38] Somers, 2004 9C elf3 ld 12:12 ztl-2

[38] Somers, 2004 9C elf3 ld 12:12 ztl-3

[38] Somers, 2004 9C elf3 ll 12:12 wt, Col

[38] Somers, 2004 9C elf3 ll 12:12 wt, C24

[38] Somers, 2004 9C elf3 ll 12:12 ztl-1, C24

[38] Somers, 2004 9C elf3 ll 12:12 ztl-2, C24

[38] Somers, 2004 9C elf3 ll 12:12 ztl-3, Col

[38] Somers, 2004 9C elf3 ll 12:12 z-ox

[75] Song, 2005 1B lhy ld 12:12 wt lhy:luc

[75] Song, 2005 1B lhy ld 12:12 det1-1 lhy:luc

[75] Song, 2005 1D lhy pr ld 12:12 wt

[75] Song, 2005 1D lhy pr ld 12:12 det1-1

[75] Song, 2005 4B lhy pr ld 12:12 lhy-1

[75] Song, 2005 4B lhy pr ld 12:12 lhy-1;det1-1

[76] Song, 2012 4C lhy ld 16:8 Col

[76] Song, 2012 4C lhy ld 16:8 elf3-1

[76] Song, 2012 6C lhy pr ld 16:8 elf3-1

[76] Song, 2012 6D lhy pr ld 16:8 wt

[11] Wang, 1998 6 cca1 ll 12:12 wt

[11] Wang, 1998 6 cca1 ll 12:12 c-ox

[11] Wang, 1998 6 lhy ll 12:12 wt

[11] Wang, 1998 6 lhy ll 12:12 c-ox

[23] Wang, 2010 3B toc1 pr ld 12:12 prr5-1

[23] Wang, 2010 3B toc1 pr ld 12:12 wt

[23] Wang, 2010 3D toc1 ld 12:12 prr5-1

[23] Wang, 2010 3D toc1 ld 12:12 wt, tmg

[20] Yakir, 2009 1C cca1 pr ll 14:10 (quantified in gimp)

[20] Yakir, 2009 S2 cca1 pr ll 14:10

[20] Yakir, 2009 2E cca1 pr ll 14:10? cca1::cca1-ha-yfp cca1-1

[20] Yakir, 2009 2E cca1 pr dd 14:10? cca1::cca1-ha-yfp cca1-1

[77] Yamashino, 2008 4C cca1 ld 12:12 wt, Col

[77] Yamashino, 2008 4C cca1 ld 12:12 prr9;prr7;prr5

[77] Yamashino, 2008 4D gi ld 12:12 wt, Col

[77] Yamashino, 2008 4D gi ld 12:12 cca1;lhy;toc1

[77] Yamashino, 2008 4D gi ld 12:12 prr9;prr7;prr5

[77] Yamashino, 2008 5B cca1 ld 12:12 wt, Col

[77] Yamashino, 2008 5B cca1 ld 12:12 prr9;prr7;prr5;toc1

[77] Yamashino, 2008 5C gi ld 12:12 wt, Col

[77] Yamashino, 2008 5C gi ld 12:12 cca1;lhy;toc1

[77] Yamashino, 2008 5C gi ld 12:12 prr9;prr7;prr5;toc1

[4] Yu, 2008 3A elf3 ld 8:16 cop1-4

[4] Yu, 2008 3A elf3 ld 8:16 wt

[4] Yu, 2008 3A elf3 ld 16:8 cop1-4

[4] Yu, 2008 3A elf3 ld 16:8 wt

[4] Yu, 2008 3B gi ld 8:16 cop1-4

[4] Yu, 2008 3B gi ld 8:16 wt

[4] Yu, 2008 3B gi ld 16:8 cop1-4

[4] Yu, 2008 3B gi ld 16:8 wt

[4] Yu, 2008 5C e3 pr ld 8:16 cop1-4, Col, nuc

[4] Yu, 2008 5C e3 pr ld 8:16 wt, Col, nuc

[4] Yu, 2008 5C e3 pr ld 16:8 cop1-4, Col, nuc

[4] Yu, 2008 5C e3 pr ld 16:8 wt, Col, nuc

[4] Yu, 2008 5F lhy ld 12:12 wt,
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[4] Yu, 2008 5F lhy ld 12:12 cop1-4

[4] Yu, 2008 5F lhy ld 12:12 e3-ox

[4] Yu, 2008 5F lhy ld 12:12 cop1-4;e3-ox

[4] Yu, 2008 6E gi pr ld 8:16 cop1-4

[4] Yu, 2008 6E gi pr ld 8:16 elf3-8

[4] Yu, 2008 6E gi pr ld 8:16 wt, left panel

[4] Yu, 2008 6E gi pr ld 8:16 wt, right panel

Table III.6 Data used for model fitting. Each row corresponds to a time
course of either mrna (xyz) or protein (xyz pr) concentration in some light
condition, extracted from the listed publications. All time courses were given
a weight wi = 1 unless otherwise specified here. Increased weights were used
where important results were otherwise found to be difficult to reproduce: cca1
oscillations in toc1 [3], ztl protein level in wt and mutants [26], interaction
between elf3 and cca1;lhy [2], period lengthening in prr7;prr9 [30], small effects
of prr7-ox [45], small period shortening in prr9-ox [63], and level changes
and period preservation in prr5-ox [68, 74]. Decreased weights were used for
some dd data where the system became arrhythmic in wt [5]. Experimental
data was obtained in many different light conditions, which were simulated in
the model. ld, ll and dd refers to light/dark, constant light and constant
dark, respectively. Numbers such as 12:12 refer to hours of light and dark
per period during entrainment, and for ld also during measurements. rr is
constant red light, which was simulated as ll. Data were not manipulated in
any way (e.g. stitched, joined or normalized) before entering the costfunction
described in Methods in the main text. All raw data are available from the
website mentioned in main text.
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Parameter Value
m19 0.2
m20 1.8

m21 0.1

m27 0.1
m31 0.3

m33 13

n5 0.23
n6 20

n14 0.1
p6 0.6

p7 0.3

p10 0.2
p12 8

p13 0.7

p14 0.3
p15 3

Table III.5 Constant parameters. These parameters control cP , cop1, ztl
and the ztl-gi complex, and were not included in the optimization process.
Instead, they were taken from P2012 (cP and cop1) or fitted manually (ztl
and ztl-gi).
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IV

In silico evolution has applications in computer science and evolutionary
biology. Although most implementations use genomes of constant length,
variable-length genomes are a natural choice when modelling evolutionary
mechanisms such as copy number and structural variations, or traverse search
spaces of variable or unknown dimensionality. However, such genomes are
costly to manipulate and interpret, especially for performing crossover.

Here, we compare different crossover methods for variable-length linear
genomes. Qualities used for comparison are the ability of the crossover to
retain homologous features in the parental genomes, cpu time consumption
and performance in a toy evolutionary model.

We find that existing methods are not fully optimized, neither in terms of
quality of the offspring nor computation time. Crossover of variable-length
genomes is computationally expensive, but can accelerate evolution when
other steps such as fitness evaluation are also expensive, which is often the
case. We show that simple heuristics can improve the overall performance
compared to earlier methods, and outline directions for further improvements.
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iv.1 introduction

Evolutionary experiments are costly and time-consuming. One alterna-
tive way to perform experiments in evolutionary biology is a computa-
tional approach, where instead of biochemical organisms, instantiations
of a virtual model are subjected to iterative reproduction, mutation
and selection. This simulated evolution allows us to study the general
process of evolution, of which life on earth is a special case.
When generalizing results obtained from in silico experiments to

biological evolution, or to evolution in general, one has to be mindful
of the limitations and general properties of the model. For example,
many existing models use genome representations with high information
density. While computationally efficient and easily interpretable, it does
not leave room for the exploration of neutral networks, inhibiting neutral
evolution and thus changing the evolutionary dynamics of the system.
In addition, in order to investigate the evolution of genome structure,
the model must be rich enough to accommodate insertions and deletions
as well as concepts such as synteny, modularity, sequence motifs, and
copy numbers. Linear genomes of variable length do not impose fixed
information densities or structures, and are a natural setting to model
genome structure dynamics close to how it is understood in biology. They
can also be of use in computer science, to traverse search spaces with
variable or unknown dimensionality [1, 2]. Despite their potential, few
past experiments have featured genomes of variable length, possibly due
to their computationally expensive reading and manipulation, especially
when performing crossover.

Herein, we compare existing and new methods for crossover of variable-
length linear genomes consisting of binary digits, both in an artificial
setting of randomly generated genomes with a given similarity, and
in an experimental setting during a toy evolution. The comparison is
based on three properties: the ability of the crossover to match real
homologous sequences, cpu time consumption, and the success of the
algorithm to produce sensible high-fitness offspring (i.e. the number of
generations needed to reach a certain fitness level).

We hope that our method, and general approach, can be used in future
research seeking to unravel the mechanisms governing the evolution
of genomic structure and other evolutionary concepts which require
variable-length genome representations. In addition, we hope that it
can be of use in novel approaches to evolutionary computation.
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iv.2 methods

iv.2.1 Crossover algorithms
Several crossover methods exist for digital genomes of constant size. In
evolutionary algorithms, popular choices include one-point, two-point,
multiple-point and uniform crossover for genomes [3]. Each algorithm
creates two new complementary sequences that together contain all
the sequence information from their parents. Usually, only one of the
two siblings is retained for selection. Similar strategies can be used for
genomes of variable length, but the added difficulty for variable-length
genomes is to know where to align the crossover points. The crossover
should construct offspring with a high expected fitness by recombining
genomic structures unique to each parent, while keeping the homologous
information present in both.
One solution is to align the two parental genomes using a sequence

alignment algorithm, prior to choosing the crossover points. Aligned lo-
cations (not including gaps) can then serve as possible sites for crossover
points in the same way as in sequences of constant length. Because the
appropriate number of crossover points should increase with genome
length, it is natural to give each aligned bit the same probability of
acting as a crossover point. Many alignment methods exist (for review,
see [4]). Because it is simple and theoretically well-founded, we chose
to use the Hirschberg algorithm with an affine gap penalty as described
by Myers and Miller [5, 6]. This is an adaptation of the traditional
Needleman-Wunsch that lowers the memory complexity from O(N2) to
O(N) while retaining the O(N2) time complexity. Our implementation
uses a binary alphabet, where alignments are scored +1 for a match,
−5 for a mismatch, and an affine gap penalty of −20 to open and −3

to extend. These numbers, though largely arbitrary, were selected to
produce results in agreement with a manual alignment.

To lower the time consumption of the alignment process for crossover,
we implemented a simple heuristic method for quickly breaking down
the alignment problem, under the assumption that the parental genomes
are usually highly similar. This recursive heuristic algorithm extracts
three substrings of length 64 bits, centred at one, two and three quarters
of one of the genomes. For each of these three subsequences, the other
genome is scanned for matching regions with a Hamming distance ≤ 20.
If at least two of the three yield a well-defined best match (lowest
Hamming distance), and if the matches occur in the correct order
without overlap, the two genomes are cut in the corresponding positions
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and the pieces are aligned by recursion. If these conditions are not met,
or if the genomes are shorter than 256 bits, the method falls back on
the Hirschberg algorithm.

An alternative method was proposed by Hutt and Warwick, inspired
by the chi structure of chromosomes during meiosis in biology [2]. Their
synapsing method finds and aligns the longest common subsequence
of the two parental genomes (a synapse). This is recursively repeated
on the left and right sides of the synapse, until no longest common
subsequence above a specified threshold length can be found. This
results in an alternating pattern of synapses, where both parental
genomes are identical, and unaligned regions, where they are not. The
bits contained in synapses are used as possible crossover points in a
multi-point crossover, exchanging the unaligned regions in between. In
our implementation, the minimum synapse length was set to 3 bits. For
both the synapsing crossover and the alignment-based methods, each
aligned bit had a probability of 0.02 to serve as a crossover point.

iv.2.2 Benchmark evolution
Ultimately, what defines a good crossover is its ability to produce high-
fitness offspring and accelerate evolution. While the potential of any
crossover to do so is strongly dependent on the genome structure, we
chose to compare the evolutionary dynamics resulting from different
crossover methods in a toy evolution model that we think is representa-
tive of many interesting and useful situations. Similar models have been
used in literature (e.g., [7, 8]). The genomes and their relation to the
phenotype and evolution target are structured enough to allow crossover
to combine useful building blocks of both parents’ genomes, and complex
enough to present a complex dynamical genomic structure [7].
In the model, we choose to represent each individual’s phenotype

as a function f : [0, 1] → R, described by a sum of triangular basis
functions. Each gene in the genome codes for an isosceles triangle of
height h ∈ [−1, 1] and base b ∈ (0, 1], which rests on the x axis centred
at a point s ∈ [0, 1]. A gene is defined by a start sequence (110011),
followed by three sets of ten bits each for the parameters h, b and s.
These are encoded as binary integers which are then rescaled to the
relevant ranges. A gene can be recognized anywhere in the genome,
except inside another gene. The phenotype is calculated by summing the
triangles represented by all genes. The fitness function, F , is defined by
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the distance of the phenotype to the target function g(x) = sin(6 · 2πx),
measured as the L2 norm, F = −

∫ 1

0
(f(x)− g(x))2dx.

Selection is effected by a tournament method. In each generation,
two random individuals are chosen, and the one with the lowest fitness
is removed from the population. It is replaced by a new individual
generated either through crossover (with probability pX) or mutation
(with probability 1− pX). In either case, parents are picked by taking
the individual with the highest fitness from a random sample of two.
For crossover, the two parents must be distinct.

In the case of mutation, one of three operators is executed: substitu-
tion (probability 0.8), deletion (probability 0.1), or insertion (probability
0.1). During substitution, each bit in the genome is flipped with proba-
bility 0.001. During deletion or insertion, a random sequence section
of random length l, drawn from a power law distribution proportional
to l−2 (not longer than the length of the genome), is removed from
the sequence or is repeated in a random genomic location. A similar
power law distribution for the size of insertions and deletions has been
observed in nature [9].

iv.3 results

As an initial comparison, we view each crossover method as a sequence
alignment. Figure IV.1A-B shows the alignment score thus obtained.
By design, the Hirschberg method gives the globally optimal value. Our
heuristic algorithm also performs optimally, unless the two parents are
highly divergent; thus the heuristic is highly similar to the Hirschberg
method in most cases. However, the alignment score is not a good
measure of success for crossover. Aside from being arbitrary, it is a
poor proxy for the evolutionary history of divergent sequences, and it
does not measure the properties of the resulting offspring. Specifically,
the synapsing method is not optimized as an alignment algorithm and
produces an excessive number of small gaps, resulting in low alignment
scores.

In order to better compare the ability of the crossovers to propagate
genetic information shared by the two parents, we measured the fraction
of homologous bits that were consistently inherited after crossover.
More precisely, for each method, we performed a large set of crossovers,
each resulting in a pair of complementary offspring. In each case,
one of the parents was a copy of the other, mutated to some degree.
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With the exception of bits involved in insertion or deletion, each bit in
either parental genome can be matched uniquely to an unchanged or
substituted bit in the other, resulting in a set of homologous bit pairs.
Here, homology is used in the biological sense, i.e. sequence features
that are shared because they descend from the same ancestral original.1

Figure IV.1C-D shows the fraction of such homologous pairs that were
divided evenly among the two complementary offspring. That is, both
homologous offspring should have exactly one of the two homologous
bits.

All methods preserve a large fraction of the existing homology when
the parental sequences are similar. In general, the Hirschberg method
outperforms the other two methods in this regard. The heuristic method
performs similarly unless the parents are highly dissimilar; in particular,
insertions of duplicated genetic material will increase the risk of misiden-
tifying the cutting points for the heuristic algorithm. For dissimilar
sequences, the synapsing method preserves much less homology than
the alignment-based methods. It should be noted that 10% sequence
divergence is high and unlikely to occur often during most evolutionary
experiments; in nature, organisms with such dissimilarity are unlikely
to produce fertile offspring.
To assess the performance of these methods in practical computa-

tion, we compared their cpu usage. Figure IV.2 shows cpu cost as a
function of genome length and sequence dissimilarity. The heuristic
and synapsing methods are much faster than Hirschberg, which has
quadratic complexity. The computational cost of the Hirschberg and
synapsing alignment methods do not depend strongly on the similarity
between the parental sequences. In contrast, the heuristic method is
fast for similar genomes, but breaks down when the parents are highly
dissimilar, as it increasingly falls back on the Hirschberg method. For
most applications, sequence divergence is usually low and the heuristic
method is approximately twice as fast as the synapsing method.

Finally, we compared the ability of the crossovers to perform successful
sexual reproduction in a model evolutionary experiment. Figure IV.3A
shows the progression of the increasing fitness of the population over
time. The results of the heuristic alignment and synapsing methods are
similar. Note that, in this experiment, evolution is faster with crossover
than without. Figure IV.3B gives the speed of evolution for different

1 In our system, insertions can also result in paralogy, i.e. sequences that share
a common history through duplication inside the same genome. This kind of
homology is not considered here.
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crossover probabilities. Again, the two methods perform similarly, with
the convergence time minimized around pX = 0.3. However, faster
convergence in number of generations is offset by the computational
cost of the crossover (Figure IV.3C). In our simple benchmark evolution,
most calculations are trivial and crossover is the most time-consuming
step. In contrast, most applications have complex fitness functions that
are often much more costly to compute. In that case, faster convergence
speed in number of generation means fewer fitness evaluations and lower
computational cost overall. This is illustrated in Figure IV.3D, where
the heuristic alignment method is the fastest by a narrow margin.
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Figure IV.1 Comparison of alignments and crossovers. (A-B) The quality
of alignment between a random genome of length 5000 bits and a mutated
version thereof, for global alignment with the Hirschberg method (red squares)
and the heuristic described in the text (black circles). For comparison, the
synapsing method is also included, treating unsynapsed regions as gaps (blue
triangles), or as aligned (with mismatches) when they are the same length and
shorter than 21 bits (green diamonds). (C-D) The fraction of homologous pairs
of bits in the parent genomes that are present in both offspring genomes, for
various levels of sequence dissimilarity between the parents. The methods were
examined using only point mutations (A, C) or a 40:1:1 mix of point mutations,
insertions and deletions (B, D). Sequence divergence here measures the fraction
of bits affected by mutation. Data from 400 genomes and mutated partners,
each crossed over 100 times (in C-D). Error bars indicate the standard error
of the mean.
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Figure IV.2 Run time of genome alignment. (A-B) The time required
to align two genomes of given length for crossover using the Hirschberg
method (red squares), the heuristic alignment method (black circles) and the
synapsing crossover method (blue triangles) on an Intel Core i7 processor.
The two genomes were separated by point mutations affecting 5% of the bits.
O(N2) and O(N lnN) scaling is indicated by short and long dashed gray
lines, respectively. (C-D) The relationship between sequence similarity and
the required cpu time for the different crossover methods. The sequence
divergence between the two parental genomes is defined as the fraction of bits
affected by mutation. The mutations used were only point mutations (A, C)
or a 40:1:1 mixture of point mutations, insertions and deletions (B, D). Error
bars indicate the standard error of the mean.
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Figure IV.3The effect of crossover in optimization. (A) Fitness of the best
individual in each generation, using the heuristic alignment crossover method
(solid line) or synapsing crossover (blue points) with crossover probability
pX = 0.3, compared with evolution without crossovers (dashed line). (B) The
number of generations needed to reach a high fitness (F = −30), as a function
of the crossover probability, pX , for the heuristic alignment method (black
circles) and synapsing crossover (blue triangles). The Hirschberg method
was excluded due to its computational cost. For this specific system, the
optimal crossover rate for optimization is around pX = 0.3. (C) The amount
of cpu time needed to reach fitness F = −30 on an Intel Core i7 processor.
Despite lowering the number of generations needed, crossover increases the
total required cpu time. (D) The same as (C), for a hypothetical experiment
where the computational cost of fitness evaluation is drastically increased
from 0.1 to 15 msec per evaluation. In this case, the optimal crossover rate
is a compromise between the cost of crossovers and the decreased number of
generations needed to reach the target fitness.
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iv.4 discussion

From these results, we conclude that alignment-based methods are a
good basis for creating crossover algorithms. The Hirschberg alignment
produces high-quality offspring that retain the homologous features
present in both parents, while also recombining unique features.
Synapsing is outperformed in several ways by the alignment-based

methods. The results from Figure IV.1 suggest that synapsing is much
less likely to retain the original properties of the parental genomes.
In our benchmark evolution experiment, synapsing is also slower than
the heuristic method. One potential problem with synapsing is that
it only considers local comparisons between the two parental genomes,
not the greater context. As the number of mutations separating the
two genomes grows, the longest common subsequence is shortened and
there is an increased risk of synapsing two unrelated parts. However,
different crossover can also confer different qualitative behaviour on the
evolutionary dynamics, other than simply influencing the speed, which
may be useful or interesting in some contexts. For example, the inability
of the synapsing crossover to retain shared homologous sequences from
both parents when they are dissimilar may result in a spontaneous
similarity selection, reproductive isolation, or genomic restructuring
events.

Both approaches leave a lot of room for improvement. The quick and
dirty heuristic presented here has a significantly lower computation time
than the Hirschberg method, at low cost in performance. It is likely
that other heuristics can further improve on alignment-based crossover.
For the synapsing method, we expect that it can be improved by using a
less rigid and faster local alignment algorithm to find suitable synapses,
rather than the longest common subsequence.
In the future, we believe that research in new types of evolutionary

dynamics and new genome representations, together with the contin-
ued increase in computation power, will make more complex in silico
evolution possible. Such experiments may use our findings to select or
develop a suitable crossover algorithm.
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All this he saw, for one moment breathless and intense,
vivid on the morning sky; and still, as he looked, he lived;
and still, as he lived, he wondered.

Kenneth Grahame, The Wind in the Willows (1908)
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