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Abstract

This paper deals with the exterior Calderón operator for not necessarily spher-

ical domains. We present a new approach of �nding the norm of the exterior

Calderón operator for a wide class of surfaces. The basic tool in the treatment

is the set of eigenfunctions and eigenvalues to the Laplace-Beltrami opera-

tor for the surface. The norm is obtained in view of an eigenvalue problem

of a quadratic form containing the exterior Calderón operator. The connec-

tion of the exterior Calderón operator to the transition matrix for a perfectly

conducting surface is analyzed.

1 Introduction

The exterior Calderón operator maps the tangential scattered electric surface �eld to
the corresponding magnetic surface �eld. This operator is also called the Poincaré-
Steklov operator, and its discretization is often called the Schur complement. It has
been studied intensively during many years, see e.g., [9, 18,20].

It is related to the Dirichlet-to-Neumann map for the scalar Helmholtz equation.
The exterior Calderón map is instrumental in the analysis of the solution to the
exterior solution of the scattering problem. In fact, it is strongly related to the
solution of the scattering problem by a perfectly conducting (PEC) obstacle, which
is a subject we analyze in Section 5.

The norm of the exterior Calderón operator determines the largest ampli�cation
factor of the surface �elds. This norm speci�es the largest impedance (the quotient
between scattered tangential magnetic and electric �elds) that can exist for a given
scattering geometry. In several numerical implementations of the scattering problem,
such as the Methods of Moments (MoM), the impedance matrix represents the
exterior Calderón operator and this matrix is instrumental for the numerical solution
of the problem. This observation gives a physical interpretation of the value of the
norm of the exterior Calderón operator.

A new way of �nding this norm is presented in this paper. The key ingredient
in this analysis is the set of eigenfunctions to the Laplace-Beltrami operator of the
surface. These eigenfunctions and the corresponding eigenvalues are intrinsic to
the surface and constitute an excellent tool for further analysis; the literature on
this subject of �nding these eigenfunctions and eigenvalues is extensive, see, e.g.,
[4,11,19,28]. Explicit values of the norm of the exterior Calderón operator have only
been obtained for the sphere case [18, 20] and the planar case [3, 9], and we refer
to these bibliographical items for the explicit techniques of computing the norm.
In this paper, we present a new way to explicitly �nd the norm for non-spherical
obstacles. The �nal expression of the norm for a non-spherical obstacle is related to
an eigenvalue problem of a quadratic form containing the exterior Calderón matrix.

An outline of the organization of the contents in this paper is now presented.
In Section 2, the statement of the problem is introduced, the exterior Calderón
operator is de�ned, and the useful integral representation of the scattered �eld is
presented. The intrinsic generalized harmonics (both scalar and vector valued) are
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introduced in Section 3, and these functions are used in Section 4. The general-
ized harmonics developed in Section 3 constitute a great asset, and they serve as a
natural orthonormal basis for the expansion of the surface �elds in many scatter-
ing problems. A matrix representation of the exterior Calderón problem in terms
of the generalized harmonics is presented in Section 4, and this matrix has many
valuable properties that are useful in the solution of the exterior scattering problem.
Section 4 also contains a constructive method to compute the norm of the exterior
Calderón operator for non-spherical obstacles. The connection between the exterior
Calderón operator and the transition matrix of the corresponding perfectly conduct-
ing obstacle is clari�ed in Section 5. The spherical geometry is explicitly treated in
Section 6. The paper is concluded with some �nal remarks in Section 7 and several
appendices where some relevant details of the analysis are presented.

2 Formulation of the scattering problem

In this section, we present the geometry of the problem and the solution of the
scattered �eld in the exterior region.

2.1 Statement of problem (E)

Let Ω be an open, bounded, piecewise smooth1 domain in R3 with simply connected2

boundary Γ. The outward pointing unit normal is denoted by ν̂.3 We denote the
exterior of the domain Ω by Ωe = R3 \Ω, which is assumed to be simply connected.
See Figure 1 for a typical geometry.

The Maxwell equations in the exterior region are given by4 (we adopt the time
convention e−iωt) {

∇×E(x) = ikH(x)

∇×H(x) = −ikE(x)
x ∈ Ωe. (2.1)

The wave number k = ω/c is assumed to be a positive constant, where ω is the
angular frequency of the �elds, and c is the speed of light in the exterior medium.

In the region Ωe, the (scattered) �elds satisfy the time-harmonic Maxwell equa-
tions (2.1) and the Silver-Müller radiation condition at in�nity, and we are looking
for solutions Esc and Hsc in the space Hloc(curl,Ωe).

1i.e., the image of a polyhedron under a C1,1 mapping.
2For non-simply connected boundary, see Remark 4.5.
3Throughout this paper vector-valued quantities are typed in italic boldface (e.g., E and x),

and dyadics (matrices) in roman boldface (e.g., I and Ge). Scalar-valued quantities are typed in
italics (e.g., k). Vectors with unit length have a �hat� or caret (̂) over the symbol.

4We use scaled electric and magnetic �elds, i.e., the SI-unit �elds ESI and HSI are related to
the �elds E and H used in this paper by

ESI(x) =
E(x)
√
ε0ε

, HSI(x) =
H(x)
√
µ0µ

,

where the permittivity and permeability of vacuum are denoted ε0 and µ0, respectively, and the
relative permittivity and permeability of the exterior material are denoted ε and µ, respectively.
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ν̂

Γ

Ωe

Ω

Figure 1: Typical geometry of the scattering problem in this paper. The domain
Ω, its boundary Γ and the exterior Ωe.

The trace operators π and γ on C(Ωe) are given by π(u) = ν̂ × (u|∂Ω× ν̂) and
γ(u) = ν̂ × u|∂Ω, respectively,

5 and in the case that u belongs to Hloc(curl,Ωe),
the �elds have traces on ∂Ω belonging to H−1/2(div,Γ); more precisely we have
(γ(Esc),γ(Hsc)) ∈ H−1/2(div,Γ) × H−1/2(div,Γ), see [21] for the de�nition and
the properties of the trace operators in Hloc(curl,Ωe). For non-smooth domains,
see [7, 8].

The exterior Calderón operator or admittance operator, Ce, is de�ned as the
mapping of the tangential component of the scattered electric �eld to the tangential
component of the scattered magnetic �eld on the boundary of Ω [9]. We use the
solution of a speci�c exterior problem to make the de�nition precise.

Consider the following exterior problem where the trace of the scattered electric
�eld on the boundary is given by a �xed vector m ∈ H−1/2(div,Γ),6

1) (Esc,Hsc) ∈ Hloc(curl,Ωe)×Hloc(curl,Ωe)

2)

{
∇×Esc(x) = ikHsc(x)

∇×Hsc(x) = −ikEsc(x)
x ∈ Ωe

3)


x̂×Esc(x)−Hsc(x) = o(1/x)

or

x̂×Hsc(x) +Esc(x) = o(1/x)

as x→∞

uniformly w.r.t. x̂

4) γ(Esc) = m ∈ H−1/2(div,Γ)

(Problem (E)), (2.2)

where x = |x|. This problem has a unique solution [3, 9, 14], and a brief sketch of
the proof is found in Appendix C.

The following theorem represents the solution to Problem (E):

5Some authors [14] use γt for γ and also use γT = −ν̂ × γ.
6The source m can be interpreted as a magnetic current density.
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Theorem 2.1. Let Esc and Hsc be the solution of Problem (E). Then the �elds
satisfy the integral representations

− 1

ik
∇×

{
∇×

∫
Γ

g(k, |x− x′|)γ(Hsc)(x
′) dS ′

}

+∇×
∫
Γ

g(k, |x− x′|)γ(Esc)(x
′) dS ′ =

{
Esc(x), x ∈ Ωe

0, x ∈ Ω,

and

1

ik
∇×

{
∇×

∫
Γ

g(k, |x− x′|)γ(Esc)(x
′) dS ′

}

+∇×
∫
Γ

g(k, |x− x′|)γ(Hsc)(x
′) dS ′ =

{
Hsc(x), x ∈ Ωe

0, x ∈ Ω,

where the scalar Green function is

g(k, |x− x′|) =
eik|x−x′|

4π |x− x′|
.

The proof of this theorem is found in e.g., [14]. The second (lower) term of the
integral representation, i.e., when x ∈ Ω, is usually called the extinction part of the
integral representation.

2.2 De�nition of the exterior Calderón operator

We now de�ne the exterior Calderón operator Ce. As usual, TL2(Γ) and THs(Γ),
(s ∈ R), denote the trace spaces of elements v in (L2(Γ))3 and (Hs(Γ))3, respectively,
such that ν̂ ·v = 0 on Γ (see also Appendix A). Further, let divΓv denote the surface
divergence, de�ned e.g., in [4, 9, 21, 25]. Then H−1/2(div,Γ) := {v ∈ TH−1/2(Γ) :
divΓv ∈ H−1/2(Γ)}. This is the natural trace space, which occurs in electromagnetic
theory.

De�nition 2.1. The exterior Calderón operator Ce is de�ned as

Ce : m 7→ γ(Hsc), H−1/2(div,Γ)→ H−1/2(div,Γ),

where m = γ(Esc) and the �elds Esc and Hsc satisfy Problem (E) in (2.2).

We notice that the exterior Calderón operator Ce is uniquely de�ned for all
m ∈ H−1/2(div,Γ), since Problem (E) has a unique solution in Hloc(curl,Ωe) ×
Hloc(curl,Ωe) for anym ∈ H−1/2(div,Γ). Details on the space H−1/2(div,Γ) and its
dual space H−1/2(curl,Γ) are given in [9] and [20].

Theorem 2.2. The exterior Calderón operator de�ned in De�nition 2.1 has the
following properties [9]:
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1. Positivity:

Re

∫
Γ

Ce(m) · (ν̂ ×m∗) dS > 0 for allm ∈ H−1/2(div,Γ), m 6= 0, (2.3)

where dS denotes the surface measure of Γ, and the star denotes the complex
conjugation.

2.
(Ce)2 = −I on H−1/2(div,Γ), (2.4)

3. The exterior Calderón operator is a boundedly invertible linear map in the
space H−1/2(div,Γ), and consequently there exist constants 0 < θC ≤ ΘC, such
that

θC‖m‖H−1/2(div,Γ) ≤ ‖Ce(m)‖H−1/2(div,Γ) ≤ ΘC‖m‖H−1/2(div,Γ).

4. The exterior Calderón operator is independent of the material properties inside
the domain Ω.

From Item 2 we conclude that the norm of the exterior Calderón operator satis�es
‖Ce‖H−1/2(div,Γ) ≥ 1, and also that the constants in Item 3 can be chosen as θC =
1/‖Ce‖H−1/2(div,Γ) and ΘC = ‖Ce‖H−1/2(div,Γ). Notice, that if we de�ne the exterior
Calderón operator with an extra imaginary unit (i), the exterior Calderón operator
becomes its own inverse, i.e., Ce : m 7→ γ(iHsc). This is a correction for the π/2
phase shift between the �elds.

2.3 Integral equation approach

The results in Theorem 2.1 can be used to put the exterior Calderón operator in a
surface integral equation setting.

The following theorem is important for the analysis in this paper and proved
in [14, Th. 5.52] (important results are also found in [10,12,27]):

Theorem 2.3. Let Q be a bounded domain such that Γ ⊆ Q.

1. De�ne the operators L̃, M̃ : H−1/2(div,Γ)→ H(curl, Q), by

(
L̃f
)

(x) = ∇×

∇×
∫
Γ

g(k, |x− x′|)f(x′) dS ′

(
M̃f

)
(x) = ∇×

∫
Γ

g(k, |x− x′|)f(x′) dS ′
x ∈ Q.

These operators are well de�ned and bounded from the space H−1/2(div,Γ) into
the space H(curl, Q).
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2. For f ∈ H−1/2(div,Γ), the �elds F = M̃f and ∇× F = L̃f satisfy

γ(F )|+ − γ(F )|− = f , γ(∇× F )|+ − γ(∇× F )|− = 0.

The notation |± refers to the trace of the �eld taken from the outside (+) or the
inside (−) of Γ, respectively. In particular, F ∈ C∞(R3 \ Γ), and F satis�es
∇× (∇× F )− k2F = 0 in R3 \ Γ. Furthermore, the functions F and ∇×F
satisfy one of the two Silver-Müller radiation conditions

ikx̂× F −∇× F = o(1/x)

or

x̂× (∇× F ) + ikF = o(1/x)

as x→∞,

uniformly w.r.t. x̂.

3. The traces L and M de�ned by
Lf = γ(L̃f)

Mf =
1

2

(
γ(M̃f)

∣∣∣
+

+ γ(M̃f)
∣∣∣
−

)
f ∈ H−1/2(div,Γ),

are bounded from H−1/2(div,Γ) into itself.

4. For f ∈ H−1/2(div,Γ), the �elds F = M̃f and ∇× F = L̃f have traces γ(F )|± = ±1

2
f + Mf

γ(∇× F )|± = Lf .

5. The operator L is the sum L = Î + K of an isomorphism Î from H−1/2(div,Γ)
onto itself and a compact operator K.

6. The operator L̃ can be written as

L̃f = ∇ (SdivΓf) + k2Sf , f ∈ H−1/2(div,Γ),

where the scalar single layer potential operator S is de�ned as

(Sf) (x) =

∫
Γ

g(k, |x− x′|)f(x′) dS ′, x ∈ Γ,

where the surface integral is interpreted as a generalized integral (punctured
surface by a circle). The corresponding vector-valued operator S is denoted by

(Sf) (x) =

∫
Γ

g(k, |x− x′|)f(x′) dS ′, x ∈ Γ,

which is interpreted as the operator S applied to each Cartesian component of
the tangential vector �eld f .
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Theorem 2.4. The exterior Calderón operator satis�es

1

2
Ce(m)−MCe(m) =

1

ik
Lm,

for each m = γ(Esc) ∈ H−1/2(div,Γ), where

Lm = γ (∇ (SdivΓm)) + k2γ (Sm) .

Proof. From the second representation in Theorem 2.1, we get by letting m =
γ(Esc) and Ce(m) = γ(Hsc),

∇×
∫
Γ

g(k, |x− x′|)Ce(m)(x′) dS ′ −

{
Hsc(x), x ∈ Ωe

0, x ∈ Ω

= − 1

ik
∇×

{
∇×

∫
Γ

g(k, |x− x′|)m(x′) dS ′
}
.

We intend to take the trace γ of this equation. In this limit process, the left-hand
side becomes −1

2
Ce(m) + MCe(m), by the the result of Theorem 2.3. This result

holds, irrespectively from which side the limit is taken. The right-hand side has the
limit

− 1

ik
Lm = − 1

ik

{
γ (∇ (SdivΓm)) + k2γ (Sm)

}
, m ∈ H−1/2(div,Γ),

and the result of the theorem follows.

3 Generalized harmonics

The vector spherical harmonics constitute a well-established and important tool
for the expansion of tangential vector �elds on a spherical surface [17]. The main
motivation behind this section is to generalize this tool to include also non-spherical
surfaces.

We start this section by a review of two introduced di�erential operators that act
on scalars and vectors, respectively. For simplicity, we assume that the surface Γ is
simply connected. The eigenfunctions of these operators provide bases for L2(Γ) and
TL2(Γ), respectively. They are well suited for expansion of the traces of solutions
to the Maxwell equations. The spherical surface case yields the well known vector
spherical harmonics, see Appendix B.

The scalar Laplace-Beltrami operator ∆Γ on Γ acting on a scalar �eld f is de�ned
as [21]

∆Γf
def
= divΓ gradΓf = −curlΓ curlΓf, (3.1)

The four intrinsic surface di�erential operators, divΓ, curlΓ,gradΓ, curlΓ are de�ned
in Appendix A.1, see also [4,9,21,25]. The vector Laplace-Beltrami operator ∆Γ on
Γ acting on a tangential vector �eld f is de�ned as

∆Γf
def
= gradΓ divΓf − curlΓcurlΓf .
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The scalar Laplace-Beltrami operator has a countable set of eigenfunctions in
L2(Γ), which we denote {Yn}∞n=1, and they satisfy, see Appendix D and [21]

−∆Γ Yn = k2λnYn. (3.2)

The eigenvalues are all real, positive, and the only possible accumulation point of
the eigenvalues is at in�nity [16,21]. We order the eigenvalues as λ1 ≤ λ2 ≤ . . ., and
normalizing the eigenfunctions {Yn}∞n=1 in L

2(Γ), i.e.,∫
Γ

YnY
∗
n′ dS = δnn′ , (3.3)

we obtain an orthonormal basis in L2(Γ), where, as above, a star ∗ denotes complex
conjugation. Notice that the eigenvalues are scaled with the wave number k2 in order
to have a dimensionless quantity, and moreover the functions Yn have dimension
inverse length, i.e., [m−1].

The following lemma is easily veri�ed with the de�nitions of the scalar and vector
Laplace-Beltrami operators.

Lemma 3.1. If f satis�es
−∆Γ f = Λf,

for some Λ ∈ R, then

−∆Γ curlΓf = Λ curlΓf, −∆Γ gradΓf = Λ gradΓf.

Proof. Start with

−∆Γ curlΓf = −gradΓ divΓ curlΓf + curlΓcurlΓ curlΓf

= curlΓcurlΓ curlΓf = −curlΓ∆Γf = Λ curlΓf.

since divΓcurlΓf ≡ 0. We also have

−∆Γ gradΓf = −gradΓ divΓ gradΓf + curlΓcurlΓ gradΓf

= −gradΓ divΓ gradΓf = −gradΓ∆Γf = Λ gradΓf.

since curlΓgradΓf ≡ 0, and the lemma is proved.

By the use of this lemma, we can construct a set of eigenfunctions to the vector
Laplace-Beltrami operator. In the sequel, unless otherwise stated, we will consider
that τ = 1, 2 and n, n′ ∈ N = {1, 2, 3, . . .}.

De�nition 3.1. The vector generalized harmonics are de�ned as

Y 1n =
1

k
√
λn

curlΓYn, Y 2n =
1

k
√
λn

gradΓYn.

These functions have dimension inverse length, i.e., [m−1].
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Remark 3.1. Note that Y 1n and Y 2n are eigenfunctions to the curlΓcurlΓ and
−gradΓ divΓ operators, respectively. We also observe that Y 1n belongs to the kernel
of the −gradΓ divΓ operator, and that Y 2n belongs to the kernel of the curlΓcurlΓ
operator. Note also that for a simply-connected surface Γ, there is no eigenvalue
λ = 0, see the end of proof of Lemma 3.2.

The following lemma proves that the set {Y τn, τ = 1, 2, n = 1, 2, . . .} is an
orthonormal system on TL2(Γ):

Lemma 3.2. The vector functions Y 1n and Y 2n de�ned in De�nition 3.1 constitute
an orthonormal basis on TL2(Γ), i.e.,∫

Γ

Y τn · Y ∗τ ′n′ dS = δττ ′δnn′ .

The vector functions satisfy

ν̂ × Y τn = (−1)τ+1Y τn, (3.4)

where the dual index τ is 1 = 2 and 2 = 1.
Moreover,

curlΓY τn = kδτ,1
√
λnYn, divΓY τn = −kδτ,2

√
λnYn,

and
−∆Γ Y τn = k2λnY τn.

Proof. We start by noticing that Y 1n and Y 2n′ both are tangential to Γ, by the def-
inition of the operators curlΓ and gradΓ. Equations (3.1), (3.2), (3.3), the relations
〈curlΓu,v〉TL2(Γ) = 〈u, curlΓv〉L2(Γ), 〈divΓu, φ〉L2(Γ) = −〈u,gradΓφ〉TL2(Γ), together
with curlΓgradΓφ = 0, and curlΓu = gradΓu× ν̂ imply∫

Γ

Y 1n · Y ∗1n′ dS =
1

k2
√
λnλn′

∫
Γ

curlΓYn · curlΓY
∗
n′ dS

=
1

k2
√
λnλn′

∫
Γ

YncurlΓcurlΓY
∗
n′ dS = − 1

k2
√
λnλn′

∫
Γ

Yn∆ΓY
∗
n′ dS

=
λn′√
λnλn′

∫
Γ

YnY
∗
n′ dS = δnn′ ,

and∫
Γ

Y 2n · Y ∗2n′ dS =
1

k2
√
λnλn′

∫
Γ

gradΓYn · gradΓY
∗
n′ dS

= − 1

k2
√
λnλn′

∫
Γ

YndivΓgradΓY
∗
n′ dS = − 1

k2
√
λnλn′

∫
Γ

Yn∆ΓY
∗
n′ dS

=
λn′√
λnλn′

∫
Γ

YnY
∗
n′ dS = δnn′ ,
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and∫
Γ

Y 1n · Y ∗2n′ dS =
1

k2
√
λnλn′

∫
Γ

curlΓYn · gradΓY
∗
n′ dS

=
1

k2
√
λnλn′

∫
Γ

YncurlΓgradΓY
∗
n′ dS = 0.

Moreover,

ν̂ × Y 1n =
1

k
√
λn
ν̂ × curlΓYn =

1

k
√
λn
ν̂ × (gradΓYn × ν̂)

=
1

k
√
λn

gradΓYn = Y 2n,

and
ν̂ × Y 2n = ν̂ × (ν̂ × Y 1n) = −Y 1n.

The �nal statements are easily proven by

curlΓY τn = − 1

k
√
λn
δτ,1∆ΓYn = kδτ,1

√
λnYn,

and

divΓY τn =
1

k
√
λn
δτ,2∆ΓYn = −kδτ,2

√
λnYn,

and

−∆Γ Y τn = −gradΓ divΓY τn + curlΓ (curlΓY τn)

= kδτ,2
√
λngradΓ Yn + kδτ,1

√
λncurlΓYn = k2λnY τn,

The completeness of the set of vector generalized harmonics {Y 1n,Y 2n}∞n=1 can
be proved by investigating which f satis�es

〈f ,Y τn〉 = 0, τ = 1, 2, ∀n ∈ N.

If this statement implies f = 0, the set of vector generalized harmonics will be dense
in TL2(Γ). We start with τ = 1, and get

0 = 〈f ,Y 1n〉 =
1

k
√
λn
〈f , curlΓYn〉 =

1

k
√
λn
〈curlΓf , Yn〉, ∀n ∈ N.

From the completeness of the generalized harmonics Yn (see, e.g., [21]), i.e., from
the fact that 〈g, Yn〉 = 0, ∀n ∈ N renders g = 0, we obtain that curlΓf = 0. In the
above, as well in the following relation, the brackets (〈·, ·〉) denote the suitable inner
product or the appropriate duality pairing between the involved function spaces.
We continue with τ = 2.

0 = 〈f ,Y 2n〉 =
1

k
√
λn
〈f ,gradΓYn〉

= − 1

k
√
λn
〈divΓf , Yn〉, ∀n ∈ N.
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Again, the completeness of the generalized harmonics Yn implies divΓf = 0. How-
ever, a function f , which satis�es curlΓf = divΓf = 0 on a simply connected surface
Γ, is zero [21, p. 206], and the lemma is proved.

4 Trace spaces and the exterior Calderón matrix

4.1 Spectral characterization of trace spaces

We rede�ne (in the spirit of [21]) the pertinent function spaces used frequently in
this paper in terms of the orthogonal bases Yn and Y τn. The generalized Fourier
series of a function f is

f =
∑
n

anYn, an = 〈f, Yn〉L2(Γ),

where convergence is in the L2(Γ) norm (de�ned below). The space L2(Γ) is char-
acterized as

L2(Γ) =

{
f ∈ D′(Γ) :

∑
n

|an|2 <∞

}
,

equipped with the norm

‖f‖2
L2(Γ) =

∑
n

|an|2 ,

and the space Hs(Γ) is characterized as

Hs(Γ) =

{
f ∈ D′(Γ) :

∑
n

(1 + λn)s |an|2 <∞

}
,

equipped with the norm [21, p. 206]

‖f‖2
Hs(Γ) =

∑
n

(1 + λn)s |an|2 .

Similarly, the generalized Fourier series of a tangential vector function f is

f =
∑
τn

aτnY τn, aτn = 〈f ,Y τn〉TL2(Γ),

where convergence is in the TL2(Γ) norm. The space TL2(Γ) is characterized as

TL2(Γ) =

{
f ∈ D′(Γ) :

∑
τn

|aτn|2 <∞

}
,

equipped with the norm

‖f‖2
TL2(Γ) =

∑
τn

|aτn|2 ,



12

and the space THs(Γ) is characterized as

THs(Γ) =

{
f ∈ D′(Γ) :

∑
τn

(1 + λn)s |aτn|2 <∞

}
,

equipped with the norm

‖f‖2
THs(Γ) =

∑
τn

(1 + λn)s |aτn|2 . (4.1)

Remark 4.1. In [21] is this norm de�ned as

‖f‖2
THs(Γ) =

∑
τn

(λn)s |aτn|2 .

which is equivalent with (4.1) as long as the smallest eigenvalue is strictly positive.

The operations of curlΓ and divΓ imply, using Lemma 3.2,

curlΓf =
∑
τn

aτncurlΓY τn = k
∑
n

√
λna1nYn,

and
divΓf =

∑
τn

aτndivΓY τn = −k
∑
n

√
λna2nYn.

Note that only one of Y 1n and Y 2n survives the respective di�erentiation. This mo-
tivates the following rede�nition of the involved spaces in terms of the corresponding
suitable norms.

De�nition 4.1. We de�ne H−1/2(div,Γ) and H−1/2(curl,Γ) as

H−1/2(div,Γ) =
{
f ∈ TH−1/2(Γ), divΓf ∈ H−1/2(Γ)

}
,

equipped with the norm

‖f‖2
H−1/2(div,Γ) =

∑
τn

(1 + λn)τ−3/2 |aτn|2 ,

and
H−1/2(curl,Γ) =

{
f ∈ TH−1/2(Γ), curlΓf ∈ H−1/2(Γ)

}
,

equipped with the norm

‖f‖2
H−1/2(curl,Γ) =

∑
τn

(1 + λn)τ−3/2 |aτn|2 .

We also employ the weighted space `−1/2(div) de�ned by

`−1/2(div) =

{
aτn ∈ C :

∑
τn

(1 + λn)τ−3/2 |aτn|2 <∞

}
.

We notice that the spaces `−1/2(div) and H−1/2(div,Γ) are equivalent in the sense
that f ∈ H−1/2(div,Γ) if and only if its Fourier coe�cients aτn ∈ `−1/2(div). We
have the following Parseval type of identity
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Lemma 4.1. Let u,v ∈ L2(Γ) with expansions
u =

∑
τn

eτnY τn

v =
∑
τn

hτnY τn,

then
〈u,v〉L2(Γ) =

∑
τn

eτnh
∗
τn.

Proof. The proof follows the proof of the orthogonality of the vector generalized
harmonics in Lemma 3.2.

Remark 4.2. Let u ∈ H−1/2(div,Γ) and v ∈ H−1/2(curl,Γ). The two norms are
explicitly given as

‖u‖2
H−1/2(div,Γ) =

∑
n

1√
1 + λn

|e1n|2 +
∑
n

√
1 + λn |e2n|2 ,

and
‖v‖2

H−1/2(curl,Γ) =
∑
n

√
1 + λn|h1n|2 +

∑
n

1√
1 + λn

|h2n|2 ,

respectively. A duality pairing between the spaces H−1/2(div,Γ) and H−1/2(curl,Γ)
yields

〈u,v〉H−1/2(div,Γ),H−1/2(curl,Γ) = 〈u,v〉L2(Γ)

Lemma 4.2. Let u ∈ H−1/2(div,Γ) and v ∈ H−1/2(curl,Γ) with expansions
u =

∑
τn

eτnY τn

v =
∑
τn

hτnY τn,

then
‖u‖2

H−1/2(div,Γ) = ‖ν̂ × u‖2
H−1/2(curl,Γ) =

∑
τn

(1 + λn)τ−3/2 |eτn|2 ,

and
‖v‖2

H−1/2(curl,Γ) = ‖ν̂ × v‖2
H−1/2(div,Γ) =

∑
τn

(1 + λn)τ−3/2 |hτn|2 .

Proof. The proof follows from the construction of the vector generalized harmonics
in De�nition 3.1 and Lemma 3.2.
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4.2 The exterior Calderón matrix

For simplicity, we assume that the surface Γ is simply connected.7

Any m ∈ H−1/2(div,Γ) ∩ TL2(Γ) has a convergent Fourier expansion in terms
of Y τn, i.e.,

m =
∑
τn

eτnY τn, eτn = 〈m,Y τn〉TL2(Γ) =

∫
Γ

m · Y ∗τn dS, (4.2)

Using Riesz representation, anym ∈ H−1/2(div,Γ) has a generalized Fourier expan-
sion in terms of the same basis as (4.2), where eτn ∈ `−1/2(div).

With the solution of Problem (E), the image of the exterior Calderón map
Ce(m) ∈ H−1/2(div,Γ) has an expansion

Ce(m) = γ(Hsc) = i
∑
τn

hτnY τn, hτn = −i〈γ(Hsc),Y τn〉TL2(Γ), (4.3)

and hτn ∈ `−1/2(div). Note the bar over the index τ , which denotes the dual index
in τ (1 = 2 and 2 = 1), and an extra factor of i. The reason for this choice is that
the expansion coe�cients of the magnetic surface �eld then has a simple relation to
the corresponding coe�cients of the electric surface �eld.

Remark 4.3. We note that the expansion in (4.2) is a Helmholtz-Hodge decompo-
sition of the elements m in H−1/2(div,Γ) (and similarly of H−1/2(curl,Γ)) and that
the L2-projection can be interpreted as a duality pairing between H−1/2(div,Γ) and
H−1/2(curl,Γ), see Remark 4.2.

The mapping `−1/2(div) 3 eτn 7→ hτn ∈ `−1/2(div) is a realization of the exterior
Calderón operator. To every set of coe�cients eτn there exists a unique set of
coe�cients hτn, and this association de�nes a linear relation between eτn 7→ hτn
manifested by a matrix C (the exterior Calderón matrix) and

hτn =
∑
τ ′n′

Cτn,τ ′n′eτ ′n′ . (4.4)

The explicit form of the matrix is

Cτn,τ ′n′ = −i〈Ce(Y τ ′n′),Y τn〉TL2(Γ). (4.5)

By the use of Lemma E.1 in Appendix E, we conclude that the exterior Calderón
matrix C is invertible in `−1/2(div).

Lemma 4.3. The exterior Calderón matrix Cτn,τ ′n′ = −i〈Ce(Y τ ′n′),Y τn〉TL2(Γ) de-
�ned by (4.4) and (4.5) satis�es∑

τ ′′n′′

Cτn,τ ′′n′′Cτ ′′n′′,τ ′n′ = δττ ′δnn′ ,

and its inverse is
C−1
τn,τ ′n′ = Cτn,τ ′n′ .

7For the generalization of the analysis to not simply connected surfaces, see Remark 4.5.
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Proof. The lemma is a consequence of (Ce)2 = −I on H−1/2(div,Γ), the expansions
in (4.2), (4.3), and the map (4.4). We have

m = −Ce (Ce(m)) , ∀m ∈ H−1/2(div,Γ),

or due to continuity of the exterior Calderón operator∑
τn

eτnY τn = −i
∑
τn

hτnC
e (Y τn) = −i

∑
τn

∑
τ ′n′

Cτn,τ ′n′eτ ′n′C
e (Y τn)

=
∑
τn

∑
τ ′n′

∑
τ ′′n′′

Cτn,τ ′n′eτ ′n′Cτ ′′n′′,τnY τ ′′n′′ =
∑
τn

∑
τ ′n′

∑
τ ′′n′′

Cτ ′′n′′,τ ′n′eτ ′n′Cτn,τ ′′n′′Y τn,

since by (4.3) and (4.4)

Ce (Y τn) = i
∑
τ ′′n′′

Cτ ′′n′′,τnY τ ′′n′′ . (4.6)

Orthogonality then implies

eτn =
∑
τ ′n′

∑
τ ′′n′′

Cτ ′′n′′,τ ′n′Cτn,τ ′′n′′eτ ′n′ ,

or, since eτn is arbitrary∑
τ ′′n′′

Cτn,τ ′′n′′Cτ ′′n′′,τ ′n′ =
∑
τ ′′n′′

Cτ ′′n′′,τ ′n′Cτn,τ ′′n′′ = δτ,τ ′δn,n′ .

which ends the proof.

Moreover, we have

Lemma 4.4. The matrix

1

2i

{
(−1)τCτn,τ ′n′ − (−1)τ

′
C∗τ ′n′,τn

}
,

is positive de�nite.

Proof. The exterior Calderón operator satis�es (2.3)

Re

∫
Γ

Ce(m) · (ν̂ ×m∗) dS > 0 for allm ∈ H−1/2(div,Γ)m 6= 0.

Insert the expansions of m and Ce(m), see (4.2) and (4.3). We obtain

Re i
∑
τn

∑
τ ′n′

hτne
∗
τ ′n′

∫
Γ

Y τn · (ν̂ × Y ∗τ ′n′) dS

︸ ︷︷ ︸
=δττ ′δnn′ (−1)τ ′+1

= Re i
∑
τn

(−1)τ+1hτne
∗
τn > 0,
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where we used ν̂ × Y τ ′n′ = (−1)τ
′+1Y τ ′n′ , see (3.4) in Lemma 3.2. This implies

Im
∑
τn

∑
τ ′n′

e∗τn(−1)τCτn,τ ′n′eτ ′n′ > 0, ∀eτn ∈ `−1/2(div) not all eτn = 0.

Rewrite the imaginary part explicitly and change summation indices. We get

1

2i

∑
τn

∑
τ ′n′

e∗τn

{
(−1)τCτn,τ ′n′ − (−1)τ

′
C∗τ ′n′,τn

}
eτ ′n′ > 0

∀eτn ∈ `−1/2(div) not all eτn = 0,

which proves the lemma.

Theorem 4.1. The norm of the exterior Calderón operator in H−1/2(div,Γ) is
determined by the square root of the largest eigenvalue of the Hermitian matrix
P = D−1/2C†D−1CD−1/2, i.e., the matrix

Pτn,τ ′n′ =
∑
τ ′′n′′

(1 + λn)−τ/2+3/4C∗τ ′′n′′,τn (1 + λn′′)
−τ ′′+3/2Cτ ′′n′′,τ ′n′ (1 + λn′)

−τ ′/2+3/4 ,

where the diagonal matrix D is

Dτn,τ ′n′ = δnn′δττ ′ (1 + λn)τ−3/2 .

Proof. The norms of the trace of the scattered electric and magnetic �eld are

‖γ(Esc)‖2
H−1/2(div,Γ) =

∑
τn

(1 + λn)τ−3/2 |eτn|2 ,

and

‖γ(Hsc)‖2
H−1/2(div,Γ) =

∑
τn

(1 + λn)τ−3/2 |hτn|2 =
∑
τn

(1 + λn)−τ+3/2 |hτn|2 ,

or in short-hand matrix notation

‖γ(Esc)‖2
H−1/2(div,Γ) = e†De, ‖γ(Hsc)‖2

H−1/2(div,Γ) = h†D−1h,

where e and h are the column vectors of the coe�cients eτn and hτn, respectively,
and the matrixD is de�ned above. The Hermitian conjugate of these column vectors
are denoted e† and h†. The norm of the exterior Calderón operator in H−1/2(div,Γ)
can then be formed, viz.,

‖Ce‖2
H−1/2(div,Γ) = sup

e

(Ce)†D−1(Ce)

e†De
= sup

e

e†D1/2
(
D−1/2C†D−1CD−1/2

)
D1/2e

e†D1/2D1/2e
.

This is a quadratic form and the largest eigenvalue of D−1/2C†D−1CD−1/2 deter-
mines the norm.
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ν̂

Γ

Sa

B(a)

a

ν̂

Figure 2: The spherical surface Sa and the domain Ω.

4.3 Calculation of the exterior Calderón matrix

The goal now is to �nd an explicit representation of the exterior Calderón matrix
Cτn,τ ′n′ in terms of the geometry of the surface Γ. A number of lemmata and
propositions guide us.

Denote by Sr the sphere of radius r centered at the origin, see Figure 2. The
restriction of γ(M̃f) to Sr de�nes an operator Ar : H−1/2(div,Γ)→ H−1/2(div, Sr).
The explicit expression of the operator is, for f ∈ H−1/2(div,Γ)

f 7→ (Arf) (x) = x̂×

∇× ∫
Γ

g(k, |x− x′|)f(x′) dS ′

 , x ∈ Sr, (4.7)

where the radius 0 < r < R, R = minx′∈Γ |x′|.
De�ne the radius a ∈ (0, R) such that the functions ψl(ka) 6= 0 and ψ′l(ka) 6= 0

for all l = 1, 2, . . ., where ψl(z) are the Riccati-Bessel functions [17, 22]. This is
always possible for small enough ka > 0.

Lemma 4.5. The operator Aa : H−1/2(div,Γ) → H−1/2(div, Sa), de�ned by (4.7),
is compact and injective with dense range.

Proof. The kernel of the operator Aa is continuous (analytic in the variable x) and
hence Aa is compact. The operator is injective if we can prove that

(Aaf) (x) = 0, ∀x ∈ Sa ⇒ f = 0.

To accomplish this, de�ne

F (x) = ∇×
∫
Γ

g(k, |x− x′|)f(x′) dS ′, x ∈ R3 \ Γ.
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By assumption, γ(F ) = 0 on Sa (the same limit from both sides). We proceed by
proving that the only f that satis�es this condition is f = 0.

Let B(a) denote the ball, centered at the origin, of radius a, see Figure 2. The
function F (x) satis�es, see Theorem 2.3

∇× (∇× F (x))− k2F (x) = 0, x ∈ R3 \ Γ,

therefore also in the ball B(a). Inside the ball B(a), the �eld F (x) has an expansion
in regular spherical vector waves vn(kx), de�ned byv1n(kx) = xjl(kx)Y 1n(x)

v2n(kx) =
1

k
∇× (xjl(kx)Y 1n(x)) ,

(4.8)

where jl(kx) is the spherical Bessel function of the �rst kind [23], and Y τn(x) are
vector harmonics for the sphere (vector spherical harmonics), see Appendix B. Due
to orthogonality of the vector spherical harmonics, and the choice of a such that
ψl(ka) 6= 0 and ψ′l(ka) 6= 0 for all l = 1, 2, . . ., the expansion coe�cients of this
expansion are all zero. Therefore, the interior boundary value problem has a unique
solution F (x) = 0, x ∈ B(a). By analyticity, F (x) = 0 for all x ∈ Ω [24]. As a
consequence, the traces γ(F )|− = 0 and γ(∇× F )|− = 0. By Theorem 2.3, we
also conclude that γ(∇× F )|+ = 0.

As a function of x ∈ Ωe, ∇× F (x) satis�es the correct radiation conditions at
in�nity and γ(∇× F )|+ = 0 on Γ. Due to unique solvability of the exterior problem
(Problem (E)), ∇ × F (x) = 0 in Ωe. Since F = k−2∇ × (∇ × F ), F (x) = 0 in
Ωe, and, consequently, γ(F )|+ = 0. Finally, the jump condition on the trace of F
shows, see Theorem 2.3

0 = γ(F )|+ − γ(F )|− = f .

This proves the injectivity of the operator Aa.
To prove that the range is dense, and for this purpose, we de�ne the adjoint

operator A†a : H−1/2(curl, Sa) → H−1/2(curl,Γ) of Aa w.r.t. to the dual spaces
(H−1/2(div,Γ), H−1/2(div, Sa)). The explicit form of the adjoint operator is

(
A†ag

)
(x) = −ν̂(x)×

ν̂(x)×
∫
Sa

∇′g(k, |x− x′|)×
[
x̂′ × g(x′)

]
dS ′


= ν̂(x)× (B(x̂× g)) (x), x ∈ Γ,

where (use ∇g(k, |x− x′|) = −∇′g(k, |x− x′|))

(Bg) (x) = −ν̂(x)×
∫
Sa

∇′g(k, |x− x′|)× g(x′) dS ′

= ν̂(x)×

∇× ∫
Sa

g(k, |x− x′|)g(x′) dS ′

 , x ∈ Γ.
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We now prove that A†a is injective, i.e., B is injective, namely

(Bg) (x) = 0, x ∈ Γ ⇒ g = 0.

To this end assume that (Bg) (x) = 0, x ∈ Γ, and similarly as above, de�ne the
function

F̃ (x) = ∇×
∫
Sa

g(k, |x− x′|)g(x′) dS ′, x ∈ R3 \ Sa,

so that by assumption, γ(F̃ )|± = (Bg) (x) = 0 on Γ (same limit from both sides).

The function F̃ (x) satis�es

∇× (∇× F̃ (x))− k2F̃ (x) = 0, x ∈ R3 \ Sa.

Moreover, the function satis�es the appropriate radiation condition at in�nity and
γ(F̃ )|+ = 0 on Γ. The uniqueness of the exterior scattering problem (Problem (E)),

F̃ (x) = 0, x ∈ Ωe, and by analyticity, F̃ = 0 also outside Sa.

As above, by Theorem 2.3, the curl of F̃ has a continuous tangential component
at Sa. The interior problem is uniquely solvable, since ψl(ka) 6= 0 and ψ′l(ka) 6= 0 for

all l = 1, 2, . . ., which implies that F̃ (x) = 0, x ∈ B(a). The tangential components

of F̃ (x) have a jump discontinuity on Sa, Theorem 2.3.

0 = x̂× F̃ (x)
∣∣∣
+
− x̂× F̃ (x)

∣∣∣
−

= g(x), x ∈ Sa.

This proves the injectivity of the operator B, and, consequently, that the operator
Aa has a dense range, since N(A†a) = R(Aa)

⊥ [6, p. 241].

Lemma 4.6. The expansion coe�cients eτn and hτn, see (4.2), (4.3), and (4.4),
are related by ∑

τ ′n′

Aτn,τ ′n′hτ ′n′ =
∑
τ ′n′

Aτn,τ ′n′eτ ′n′ , (4.9)

where the dimensionless matrix Aτn,τ ′n′ is de�ned as

Aτn,τ ′n′ = k

∫
Γ

uτn · Y τ ′n′ dS. (4.10)

The bar over the index τ denotes the dual index in τ (1 = 2 and 2 = 1).

Here uτn(kx) are the radiating spherical vector waves, de�ned byu1n(kx) = xh
(1)
l (kx)Y 1n(x)

u2n(kx) =
1

k
∇×

(
xh

(1)
l (kx)Y 1n(x)

)
,

(4.11)

where h
(1)
l (kx) is the spherical Hankel function of the �rst kind [23], see also Ap-

pendix B. The matrix Aτn,τ ′n′ plays a central role in the procedure of calculating
the norm of the exterior Calderón operator and it deserves a thorough study. This
is done in Proposition 4.1 and Theorem 4.2 below.
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Proof. The extinction part of Theorem 2.1 reads

∇×
∫
Γ

g(k, |x− x′|)γ(Hsc)(x
′) dS ′

= − 1

ik
∇×

{
∇×

∫
Γ

g(k, |x− x′|)γ(Esc)(x
′) dS ′

}
, x ∈ Ω.

Introduce the Green dyadic for the electric �eld in free space [17]

Ge(k,x− x′) =

(
I3 +

1

k2
∇∇

)
g(k, |x− x′|) =

(
I3 +

1

k2
∇′∇′

)
g(k, |x− x′|),

where I3 is the unit dyadic in R3. Consequently, the extinction part is

∇×
∫
Γ

Ge(k,x− x′) · γ(Hsc)(x
′) dS ′

= − 1

ik
∇×

{
∇×

∫
Γ

Ge(k,x− x′) · γ(Esc)(x
′) dS ′

}
, x ∈ Ω.

(4.12)

In fact, the curl on Ge(k,x− x′) gives ∇×Ge(k,x− x′) = ∇× (I3g(k, |x− x′|)),
which veri�es (4.12).

The Green dyadic for the electric �eld is [17, (7.24) on p. 370]

Ge(k,x− x′) = ik
∑
τn

v∗τn(kx<)uτn(kx>)

= ik
∑
τn

uτn(kx>)v∗τn(kx<), x 6= x′,
(4.13)

where x< (x>) is the position vector with the smallest (largest) distance to the
origin, i.e., if x < x′ then x< = x and x> = x′. The de�nition of the spherical
vector waves is given in Appendix B, and a star ∗ denotes complex conjugate.
This expansion is uniformly convergent in compact (bounded and closed) domains,
provided x 6= x′ in the domain [15,20].

Apply (4.13) to (4.12) for an x inside the inscribed sphere of Γ and use the dual
property of the spherical vector waves, i.e.,

∇× vτn(kx) = kvτn(kx), ∇× uτn(kx) = kuτn(kx).

We get

ik2
∑
τn

v∗τn(kx)

∫
Γ

uτn(kx′) · γ(Hsc)(x
′) dS ′

= −k2
∑
τn

v∗τn(kx)

∫
Γ

uτn(kx′) · γ(Esc)(x
′) dS ′, x ∈ Ω.
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Orthogonality of the vector spherical harmonics on the inscribed sphere implies∫
Γ

uτn · γ(Hsc) dS = i

∫
Γ

uτn · γ(Esc) dS, ∀n, τ = 1, 2. (4.14)

Insert the expansion of the �eld in their Fourier series, (4.2) and (4.3), and we obtain∑
τ ′n′

hτ ′n′

∫
Γ

uτn · Y τ ′n′ dS =
∑
τ ′n′

eτ ′n′

∫
Γ

uτn · Y τ ′n′ dS, ∀n, τ = 1, 2,

which is identical to the statement in the lemma.

Remark 4.4. Equation (4.14) in Lemma 4.6 allows a simple proof of Item 2 of
Theorem 2.2.

Integration by parts gives an alternative form of the matrix Aτn,τ ′n′ , see (4.10)
and use De�nition 3.1.

Aτn,1n′ =
1√
λn′

∫
Γ

(curlΓπ(uτn))Yn′ dS, ∀n, τ = 1, 2,

and

Aτn,2n′ = − 1√
λn′

∫
Γ

(divΓπ(uτn))Yn′ dS, ∀n, τ = 1, 2.

Proposition 4.1. The mapping

aτn 7→
∑
τ ′n′

Aτn,τ ′n′aτ ′n′ ,

is injective, where the matrix Aτn,τ ′n′ is de�ned in (4.10).

Proof. We prove the proposition by showing∑
τ ′n′

Aτn,τ ′n′aτ ′n′ = 0, ∀n, τ = 1, 2,

implies that aτn = 0 for τ = 1, 2 and all n.
Multiply this relation with v∗τn(kx), where x lies inside the inscribed sphere of

the scatterer, and sum over τ and n. We obtain, see (4.13)

1

ik

∫
Γ

Ge(k,x− x′) · a(x′) dS ′ = 0, ∀x inside the inscribed sphere,

where
a =

∑
τn

aτnY τn.
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Now consider the vector-valued function

A(x) =

∫
Γ

Ge(k,x− x′) · a(x′) dS ′, x ∈ R3 \ Γ,

which is de�ned everywhere in R3 \ Γ. This function is, by de�nition, zero inside
the inscribed sphere of the scatterer. By analyticity, the function A(x) = 0 for all
x ∈ Ω [24]. As a consequence, the traces γ(A)|− = 0 and γ(∇×A)|− = 0.

The vector �eld A(x) satis�es

∇× (∇×A(x))− k2A(x) = 0, x ∈ R3 \ Γ.

Moreover, A(x) satis�es the correct radiation conditions at in�nity. Due to unique
solvability of the exterior problem, A(x) = 0 in the entire exterior region Ωe. As a
consequence, the traces γ(A)|+ = 0 and γ(∇×A)|+ = 0.

The curl of A(x) is

F (x) = ∇×A(x) = −
∫
Γ

∇′g(k, |x− x′|)× a(x′) dS ′, x ∈ R3 \ Γ,

The trace of F (x) has a jump discontinuity on Γ, see Theorem 2.3.

0 = γ(∇×A)|+ − γ(∇×A)|− = γ(F )|+ − γ(F )|− = a, x ∈ Γ.

and consequently, by orthogonality of the vector generalized harmonics, aτn = 0,
which implies the injectivity of the mapping above.

To simplify the analysis in the theorem below, we introduce a special notation
for the matrix with dual τ indices. To this end, de�ne the matrix

Aτn,τ ′n′ = Aτn,τ ′n′ ,

Theorem 4.2. The exterior Calderón matrix C can be approximated by

Cα
τn,τ ′n′ =

∑
τ ′′n′′

∑
τ ′′′n′′′

(αI + A
†
A)−1

τn,τ ′′n′′A
∗
τ ′′′n′′′,τ ′′n′′Aτ ′′′n′′′,τ ′n′ ,

for adequately small α > 0, where † denotes the Hermitian conjugated matrix. In
shorthand matrix notation Cα = (αI + A

†
A)−1A

†
A.

Proof. The expansion coe�cients eτn and hτn are related by, see (4.9)∑
τ ′n′

Aτn,τ ′n′hτ ′n′ =
∑
τ ′n′

Aτn,τ ′n′eτ ′n′ , (4.15)

This equation consists of a countable set of linear equations, the solution of which
may be used to express hτn in terms of eτn, thus providing a matrix form represen-
tation of the exterior Calderón operator in terms of the chosen basis of generalized
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harmonics. Assuming the invertibility of the matrix Aτn,τ ′n′ , we write the equation
as, see Appendix F

hτn =
∑
τ ′n

∑
τ ′′n′′

A
−1

τn,τ ′′n′′Aτ ′′n′′,τ ′n′eτ ′n′ ,

so that Ce admits the matrix representation

Cτn,τ ′n′ =
∑
τ ′n

∑
τ ′′n′′

A
−1

τn,τ ′′n′′Aτ ′′n′′,τ ′n′ ,

In shorthand matrix notation C = A
−1
A, where C is the exterior Calderón matrix.

However, by the de�nition of the matrix operator A and the connection of the
spherical vector waves uτ,n with the Green dyadic for the electric �eld, see left-hand
side of (4.12) and (4.7), we see that A, and therefore also A, is related to a compact
operator; hence A is not expected, in general, to be invertible and, even if it were, it
would lead to an ill-posed problem which could not provide a well de�ned numerical
scheme.

We may, however, resort to a Tikhonov regularization approach of the solution
of (4.15), which leads to a, well-suited for numerical approaches, approximation of
the exterior Calderón operator. According to the theory of the Tikhonov regular-
ization, see [16, Ch. 16], the regularized approximate solution of (4.15) is

hατn =
∑
τ ′′n′′

∑
τ ′′′n′′′

(αI + A
†
A)−1

τn,τ ′′n′′A
∗
τ ′′′n′′′,τ ′′n′′Aτ ′′′n′′′,τ ′n′eτ ′n′ , α > 0,

or in shorthand matrix notation hα = (αI+A
†
A)−1A

†
Ae, which leads to an approx-

imation of C by Cα, where

Cα :=
∑
τ ′′n′′

∑
τ ′′′n′′′

(αI + A
†
A)−1

τn,τ ′′n′′A
∗
τ ′′′n′′′,τ ′′n′′Aτ ′′′n′′′,τ ′n′ , α > 0,

or in shorthand matrix notation Cα = (αI + A
†
A)−1A

†
A. The invertibility of the

matrix αI + A
†
A is easily obtained by the Lax-Milgram Lemma, since the regular-

ization term αI introduces coercivity into the problem and the numerical inversion
can be performed in terms of a variational approach related to the minimization
problem

min
z∈`−1/2(div)

α‖z‖2
`−1/2(div)

+ 〈A†Az, z〉`−1/2(div).

The behavior as α→ 0 follows the general case setting of [16, Chap. 16].

4.4 The �nite dimensional problem

This section contains a generalization of the result presented in [13] for a spherical
surface to a general surface Γ. Denote

SN =

{
fN : fN =

N∑
τn

aτnY τn, aτn = 〈f ,Y τn〉TL2(Γ)

}
.
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We de�ne the orthogonal projection PN : H−1/2(div,Γ) → H−1/2(div,Γ) where
f 7→ fN = PNf in the H−1/2(div,Γ) inner product.

The following proposition holds:

Proposition 4.2.

PNf → f in H−1/2(div,Γ) as N →∞,

and
‖(I −PN)f‖H−1/2(div,Γ) ≤ λ

−(s+1/2)/2
N ‖f‖Hs(div,Γ),

holds for any s ≥ −1/2, where

‖f‖2
Hs(div,Γ) =

∑
τn

(1 + λn)s+τ−1 |aτn|2 .

Proof. The convergence

PNf → f in H−1/2(div,Γ) as N →∞,

is a consequence of the generalized Fourier transform properties.
We estimate for every s ≥ −1/2

‖(I −PN)f‖2
H−1/2(div,Γ) =

∑
n>N
τ=1,2

(1 + λn)τ−3/2 |aτn|2

=
∑
n>N
τ=1,2

(1 + λn)−s−1/2 (1 + λn)s+τ−1 |aτn|2

≤ (1 + λN)−s−1/2
∑
n>N
τ=1,2

(1 + λn)s+τ−1 |aτn|2 ≤ λ
−s−1/2
N ‖f‖2

Hs(div,Γ).

Remark 4.5. The analysis can be extended for the case of non-simply-connected
surfaces Γ, by extending the proposed orthonormal basis with the �nite-dimensional
basis of the kernel of the Laplace-Beltrami operator on Γ, see [21, p. 206].

5 Connection to the transition matrix for a PEC

obstacle

Scattering by a perfectly conducting obstacle (PEC) with bounding surface Γ is
related to the exterior Calderón operator Ce. This section develops and clari�es
this connection.

The transition matrix (T-matrix), Tτn,τ ′n′ , connects the expansion coe�cients of
the incident �eld Einc, with sources in Ωe and the scattering Esc in terms of the
regular spherical vector waves, vτn(kx), and the radiating spherical vector waves,
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uτn(kx), respectively. The de�nition of the spherical vector waves is given in Ap-
pendix B. Speci�cally,

Einc(x) =
∑
τn

aτnvτn(kx), Esc(x) =
∑
τn

fτnuτn(kx),

where the regular and radiating spherical vector waves, vτn and uτn, are de�ned
in (4.8) and (4.11), respectively, see also Appendix B, and where the expansion
coe�cients fτn and aτn are related as

fτn =
∑
τ ′n′

Tτn,τ ′n′aτ ′n′ .

The expansion of the incident �eld is absolutely convergent, at least, inside the
inscribed sphere of the PEC obstacle,8 and the expansion of the scattered �eld
converges, at least, outside the circumscribed sphere of the PEC obstacle. The
transition matrix completely characterizes the scattering process.

The following theorem shows that when the exterior Calderón operator is known,
the transition matrix for a PEC obstacle is obtained by some simple operations:

Theorem 5.1. The transition matrix for a PEC obstacle, Tτn,τ ′n′, with bounding
surface Γ and the corresponding exterior Calderón matrix, Cτn,τ ′n′, is:

Tτn,τ ′n′ = i
∑
τ ′′n′′

{
Wτn,τ ′′n′′Vτ ′n′,τ ′′n′′ + Vτ ′n′,τ ′′n′′

∑
τ ′′′n′′′

Cτ ′′′n′′′,τ ′′n′′Wτn,τ ′′′n′′′

}
,

where the dimensionless matrices Wτn,τ ′n′ and Vτn,τ ′n′ are

Wτn,τ ′n′ = k

∫
Γ

v∗τn · Y τ ′n′ dS, Vτn,τ ′n′ = k

∫
Γ

γ(vτn) · Y ∗
τ ′n′

dS.

Notice that Wτn,τ ′n′ and Vτn,τ ′n′ are related, i.e., Vτn,τ ′n′ = (−1)τ+1W ∗
τn,τ ′n′ .

Proof. For a given incident �eld Einc, the boundary condition on the surface Γ is
γ(Einc +Esc) = 0, which implies

γ(Esc) = −γ(Einc).

The trace of the scattered magnetic �eld on Γ is

γ(H) = γ(H inc +Hsc) = γ(H inc)−Ce(γ(Einc)).

The expansion coe�cients of the scattered electric �eld for a PEC surface, fτn,
are [17, (9.3) on p. 481]

fτn = −k2

∫
Γ

v∗τn · γ(H) dS = −k2

∫
Γ

v∗τn · {γ(H inc)−Ce(γ(Einc))} dS.

8More precisely, the convergence is guaranteed inside the largest inscribable ball not including
the sources of the incident �eld.
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Inserting the expansions of the incident �elds, we obtain an explicit form of the
transition matrix, viz.,

Tτn,τ ′n′ = k2

∫
Γ

v∗τn · {iγ(vτ ′n′) + Ce(γ(vτ ′n′))} dS,

where we also used the explicit form of the trace of the incident magnetic and electric
�elds

H inc(x) = −i
∑
τn

aτnvτn(kx), Einc(x) =
∑
τn

aτnvτn(kx).

The regular spherical vector wave γ(vτn) has a Fourier series expansion in Y τn.

kγ(vτn) =
∑
τ ′n′

Vτn,τ ′n′Y τ ′n′ , Vτn,τ ′n′ = k

∫
Γ

γ(vτn) · Y ∗
τ ′n′

dS,

and (4.6) yields

Ce (Y τn) = i
∑
τ ′′n′′

Cτ ′′n′′,τnY τ ′′n′′ .

Combine these expansions

kCe (γ(vτn)) = i
∑

τ ′n′,τ ′′n′′

Vτn,τ ′n′Cτ ′′n′′,τ ′n′Y τ ′′n′′ = i
∑

τ ′n′,τ ′′n′′

Vτn,τ ′n′Cτ ′′n′′,τ ′n′Y τ ′′n′′ .

These expressions lead to

Tτn,τ ′n′

= ik
∑
τ ′′n′′

∫
Γ

v∗τn ·

{
Vτ ′n′,τ ′′n′′Y τ ′′n′′ + Vτ ′n′,τ ′′n′′

∑
τ ′′′n′′′

Cτ ′′′n′′′,τ ′′n′′Y τ ′′′n′′′

}
dS.

If we denote

Wτn,τ ′n′ = k

∫
Γ

v∗τn · Y τ ′n′ dS,

we get in matrix notation

Tτn,τ ′n′ = i
∑
τ ′′n′′

{
Wτn,τ ′′n′′Vτ ′n′,τ ′′n′′ + Vτ ′n′,τ ′′n′′

∑
τ ′′′n′′′

Cτ ′′′n′′′,τ ′′n′′Wτn,τ ′′′n′′′

}
,

which proves the theorem.

6 The spherical geometry � an explicit example

The spherical geometry is well-known and, so far, the only known geometry, where
we can test the theory analytically. In this section, we apply the results above to a
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sphere of radius r. The eigenvalues for the sphere are9 λn = l(l + 1)/(kr)2, and the
vector spherical harmonics Y τn(x), see [17] and Appendix B.

For the sphere, the matrix A is diagonal. Speci�cally,

Aτn,τ ′n′ = δnn′δττ ′

{
ξl(kr), τ = 1

ξ′l(kr), τ = 2,

and

Cτn,τ ′n′ = δnn′δττ ′


ξl(kr)

ξ′l(kr)
, τ = 1

ξ′l(kr)

ξl(kr)
, τ = 2,

where ξl(z) = zh
(1)
l (z) is the Riccati-Hankel function [17, 22]. Notice the result of

Lemma 4.3, i.e.,
C−1
τn,τ ′n′ = Cτn,τ ′n′ .

Moreover,

Pτn,τ ′n′ = δnn′δττ ′


(1 + λn)

∣∣∣∣ξl(kr)ξ′l(kr)

∣∣∣∣2 , τ = 1

(1 + λn)−1

∣∣∣∣ξ′l(kr)ξl(kr)

∣∣∣∣2 , τ = 2,

which is, apart from a di�erent normalization, in agreement with [18], see Figure 3.
The static limit of the exterior Calderón operator for a spherical geometry is of

interest. We have

lim
kr→0

Pτn,τ ′n′ = δnn′δττ ′


l + 1

l
, τ = 1

l

l + 1
, τ = 2,

and consequently limkr→0‖Ce‖H−1/2(div,∂Br) =
√

2.
We can also check the validity of Lemma 4.4.

(−1)τCτn,τ ′n′ = δnn′δττ ′


−ξl(kr)
ξ′l(kr)

, τ = 1

ξ′l(kr)

ξl(kr)
, τ = 2.

9We here adopt the standard indexing of the eigenvalues λn of the spherical harmonics, where
n = {l,m}, l = 1, 2, . . ., m = −l,−l + 1, . . . , l − 1, l.
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2 4 6 8 10

1

2

3

4

l = 1 l = 2 l = 3

κ = kx

‖Ce‖H−1/2(div,∂Bx)

Figure 3: The norm of the exterior Calderón operator ‖Ce‖H−1/2(div,∂Bx) for a sphere
of radius x is depicted. The dashed blue lines depict the function P1l,1l for l = 1, 2, 3.

Therefore,

1

2i

{
(−1)τCτn,τ ′n′ − (−1)τ

′
C∗τ ′n′,τn

}
= δnn′δττ ′


− Im

ξl(kr)

ξ′l(kr)

Im
ξ′l(kr)

ξl(kr)

= −iδnn′δττ ′


−ξl(kr)ψ

′
l(kr)− ξ′l(kr)ψl(kr)
|ξ′l(kr)|

2

ξ′l(kr)ψl(kr)− ξl(kr)ψ′l(kr)
|ξl(kr)|2

= δnn′δττ ′


1

|ξ′l(kr)|
2 , τ = 1

1

|ξl(kr)|2
, τ = 2,

by the use of ξ∗l (kr) = 2ψl(kr) − ξl(kr) and the Wronskian for the Riccati-Bessel
functions ψl(z)ξ′l(z)−ψ′l(z)ξl(z) = i [17]. Obviously, this matrix is positive de�nite.

We also illustrate the result in Theorem 5.1 with a sphere of radius r. From
above, we have

Cτn,τ ′n′ = δnn′δττ ′


ξl(kr)

ξ′l(kr)
, τ = 1

ξ′l(kr)

ξl(kr)
, τ = 2.

Moreover, we have

Vτn,τ ′n′ = δnn′δττ ′

{
ψl(kr), τ = 1

−ψ′l(kr), τ = 2,
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and

Wτn,τ ′n′ = δnn′δττ ′

{
ψl(kr), τ = 1

ψ′l(kr), τ = 2.

where ψl(z) = zjl(z) is the Riccati-Bessel function [17, 22]. The transition matrix
becomes

Tτn,τ ′n′ = iδnn′δττ ′


−ψl(kr)ψ′l(kr) + ψl(kr)ψl(kr)

ξ′l(kr)

ξl(kr)
, τ = 1

ψl(kr)ψ
′
l(kr)− ψ′l(kr)ψ′l(kr)

ξl(kr)

ξ′l(kr)
, τ = 2,

which by the use of the Wronskian for the Riccati-Bessel functions

ψl(z)ξ′l(z)− ψ′l(z)ξl(z) = i,

simpli�es to

Tτn,τ ′n′ = −δnn′δττ ′


ψl(kr)

ξl(kr)
, τ = 1

ψ′l(kr)

ξ′l(kr)
, τ = 2,

in agreement with the result of Mie scattering [17].

7 Conclusions

This paper deals with a novel approach to compute the exterior Calderón oper-
ator, and, in particular, the computation of its norm in the space H−1/2(div,Γ).
This operator is instrumental in the understanding of the scattering problem. The
approach is constructive, and employs the eigenfunctions of the Beltrami-Laplace
operator of the surface. These functions are intrinsic to the surface, and constitute
the natural orthonormal set for a matrix representation of the operator. The norm
of the operator is explicitly given as the largest eigenvalue of a quadratic form that
contains this representation of the exterior Calderón operator. The paper is closed
by an investigation of the connection between the exterior Calderón operator and
the transition matrix of the same perfectly conducting surface. In a future paper,
the numerical behavior of the suggested algorithm is intended to be conducted. The
results of the present work can be used for treating di�erent challenging problems,
including a new natural coupling formulation between integral equations and �nite
elements, in the spirit of the results introduced by Ammari and Nédélec in [1]; see
also [2].

Acknowledgements

To pursue this work, the Royal Physiographic Society of Lund, Sweden, has �nan-
cially supported the stay for one of the authors (GK) in Athens. This support is
gratefully acknowledged.



30

Appendix A Function spaces

In this appendix, we list the various function spaces used in this paper. Let Ω be
an open, bounded domain in R3 with a piecewise smooth boundary ∂Ω, see [4].

The space C(Ω) is the space of continuous functions in Ω. We also use C0(Ω)
which consists of all uniformly continuous functions, which are zero at the boundary.
The space C∞(Ω) is the space of in�nitely continuously di�erentiable functions in
Ω, and C∞0 (Ω) are the functions in this space with compact support in Ω, which we
also denote D(Ω).

Several function spaces with square integrable functions are used in this paper.
The basic space is given by functions u (x 7→ u(x)) de�ned on Ω ⊂ R3 → C

L2(Ω)
def
=

{
u Lebesgue integrable in Ω,

∫
Ω

|u|2 dv <∞

}
,

with scalar product and norm

〈u, v〉L2(Ω) =

∫
Ω

uv dv, ‖u‖L2(Ω) =

{∫
Ω

|u|2 dv

}1/2

,

where bar denotes the complex conjugate. Similarly for vector-valued spaces we
have the scalar product

〈u,v〉L2(Ω) =

∫
Ω

u · v dv,

and the norm

‖u‖L2(Ω) =

{∫
Ω

|u|2 dv

}1/2

,

where · and | · | denotes the Euclidean scalar product and norm in C3, respectively.
We also de�ne the function spaces{

H(div,Ω)
def
=
{
u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)

}
H(curl,Ω)

def
=
{
u ∈ L2(Ω) : ∇× u ∈ L2(Ω)

}
,

which are Hilbert spaces with norms
‖u‖H(div,Ω) =

(
‖u‖2

L2(Ω) + ‖∇ · u‖2
L2(Ω)

)1/2

‖u‖H(curl,Ω) =
(
‖u‖2

L2(Ω) + ‖∇ × u‖2
L2(Ω)

)1/2

.

The curl and the divergence are de�ned in the weak sense as{
〈∇ × u,φ〉L2(Ω) = 〈u,∇× φ〉L2(Ω), ∀φ ∈ D(Ω)

〈∇ · u, φ〉L2(Ω) = −〈u,∇φ〉L2(Ω), ∀φ ∈ D(Ω).
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In the exterior region, we de�ne spaces of locally integrable functions as{
Hloc(div,Ωe)

def
=
{
u ∈ D′(Ωe) : ξu ∈ H(div,Ωe),∀ ξ ∈ D(R3)

}
Hloc(curl,Ωe)

def
=
{
u ∈ D′(Ωe) : ξu ∈ H(curl,Ωe),∀ ξ ∈ D(R3)

}
,

where Ωe = R3 \ Ω and D′(Ωe) is the space of distributions with �nite support in
Ωe.

A.1 Surface spaces, trace and lifting operators

On the boundary, we have the L2 spaces

L2(Γ) =

{
u :

∫
Γ

|u|2 dS <∞

}
,

where dS denotes the surface measure of Γ. For the vector-valued functions, we
have 

L2(Γ) =

{
u :

∫
Γ

|u|2 dS <∞

}

TL2(Γ) =

{
u : u · ν̂ = 0 and

∫
Γ

|u|2 dS <∞

}
,

where ν̂ is the outward pointing unit normal to Γ. The scalar products and norms
are

〈u, v〉L2(Γ) =

∫
Γ

uv∗ dS, ‖u‖L2(Γ) =

{∫
Γ

|u|2 dS

}1/2

,

and

〈u,v〉L2(Γ) =

∫
Γ

u · v∗ dS, ‖u‖L2(Γ) =

{∫
Γ

|u|2 dS

}1/2

,

With our assumptions on Ω and Γ, there exists a unique linear continuous map
γ0 : H1(Ω)→ L2(Γ), such that for any u ∈ H1(Ω)∩C(Ω) one has γ0(u) = u|Γ. The
function γ0(u) is called the trace of u on Γ. Note that γ0 is not onto L

2(Γ).
Now, de�ne

H1/2(Γ) := γ0(H1(Ω)).

This is a Banach space for the norm de�ned by

‖u‖H1/2(Γ) =

∫
Γ

|u(x)|2 dSx +

∫
Γ

∫
Γ

|u(x)− u(y)|2

|x− y|4
dSx dSy .

The second term (double integral) is the so-called Gagliardo semi-norm in the par-
ticular case we are considering (i.e., n = 3, s = 1/2, p = 2).
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In view of the above, one has the following de�nitions

H1
0 (Ω) = {u : u ∈ H1(Ω) and γ0(u) = 0} ,

H−1(Ω) = (H1
0 (Ω))′ ,

and
H−1/2(Γ) = (H1/2(Γ))′ ,

where by prime is denoted the dual space.
For important properties related to the above spaces, we refer to [4, 9]. We just

note here that

(i) H1/2(Γ) ⊂ L2(Γ) ⊂ H−1/2(Γ), where the injections are compact.

(ii) For u ∈ H(div,Ω) it holds that ν̂ · u ∈ H−1/2(Γ) and the map u 7→ ν̂ · u is
linear and continuous.

Using (ii) (which is an important result, due to Jacques-Louis Lions and Enrico
Magenes, of the late 1960's), we note that even though, as mentioned above, elements
u of L2(Ω) do not necessarily have a trace on the boundary, nevertheless ν̂ ·u makes
sense, if, additionally, ∇ · u is also in L2(Ω).

The appropriate trace spaces which we use in this paper are H−1/2(div,Γ) and
H−1/2(curl,Γ) de�ned by{

H−1/2(div,Γ)
def
=
{
u ∈ H−1/2(Γ), ν̂ · u = 0, divΓu ∈ H−1/2(Γ)

}
H−1/2(curl,Γ)

def
=
{
u ∈ H−1/2(Γ), ν̂ · u = 0, curlΓu ∈ H−1/2(Γ)

}
,

where the surface divergence, divΓ, and the surface curl, curlΓ, are de�ned by duality
and restriction, see [9, 21, 25]{

〈divΓu, φ〉L2(Γ)
def
= −〈u,gradΓφ〉TL2(Γ), ∀φ ∈ D(Γ)

curlΓu
def
= ν̂ · (∇× u)|Γ,

(A.1)

and the surface gradient, gradΓ, is de�ned by the orthogonal projection of ∇ on the
surface Γ, i.e., gradΓφ = π(∇φ), where π is de�ned in Theorem A.1 below. Notice
that the surface curl operator, curlΓ, provides a scalar quantity. We can de�ne a
vector valued curl operator acting on scalars,

curlΓu
def
= gradΓu × ν̂,

alternatively by duality

〈curlΓu,v〉TL2(Γ)
def
= 〈u, curlΓv〉L2(Γ), ∀v ∈ D2(Γ).

(A.2)

The space H−1/2(div,Γ) is de�ned as the completion of the tangential �elds in H1(Γ)
w.r.t. the norm

‖m‖2 = ‖m‖2
H−1/2(Γ) + ‖∇Γ ·m‖2

H−1/2(Γ),

With the assumptions made on the boundary Γ, the space H−1/2(curl,Γ) is the dual
of H−1/2(div,Γ), i.e.,

(
H−1/2(div,Γ)

)′
= H−1/2(curl,Γ). In [9, Lemma 4, p. 34], we

have the following result
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Lemma A.1. For any u ∈ H(curl,Ω) holds

curlΓπ(u) = −divΓ (ν̂ × u|Γ) = −divΓ (γ(u)) .

It follows that, see [9, Corollary 2, p. 38], for v ∈ H−1/2(curl,Γ) we have

curlΓv = −divΓ (ν̂ × v) ,

which implies that if curlΓπ(u) ∈ H−1/2(Γ) then divΓ (γ(u)) ∈ H−1/2(Γ) as well, or
in other words,

‖π(u)‖H−1/2(curl,Γ) = ‖γ(u)‖H−1/2(div,Γ),

and if divΓπ(u) ∈ H−1/2(Γ) then curlΓ (γ(u)) ∈ H−1/2(Γ) and

‖π(u)‖H−1/2(div,Γ) = ‖γ(u)‖H−1/2(curl,Γ).

The following theorem is proved in [21]:

Theorem A.1. 1. The trace mapping π : H(curl,Ω)→ H−1/2(curl,Γ), that as-
signs to any u ∈ H(curl,Ω) its tangential component ν̂×(u×ν̂), is continuous
and surjective from H(curl,Ω) onto H−1/2(curl,Γ). That is

‖π(u)‖H−1/2(curl,Γ) ≤ Cπ‖u‖H(curl,Ω), ∀u ∈ H(curl,Ω).

2. The trace mapping γ : H(curl,Ω)→ H−1/2(div,Γ), that takes u ∈ H(curl,Ω)
to its (rotated) tangential component ν̂ ×u, is continuous and surjective from
H(curl,Ω) onto H−1/2(div,Γ). That is

‖γ(u)‖H−1/2(div,Γ) ≤ Cγ‖u‖H(curl,Ω), ∀u ∈ H(curl,Ω).

3. In both cases, a continuous lifting with zero divergence for these trace op-
erators in H(curl,Ω) exists. More precisely, there exists an operator R :
H−1/2(div,Γ)→ H(curl,Ω) such that for everym ∈ H−1/2(div,Γ) there exists
a u ∈ H(curl,Ω) satisfying γ(u) = m, and

‖R(m)‖H(curl,Ω) ≤ C‖m‖H−1/2(div,Γ), ∀m ∈ H−1/2(div,Γ),

and similarly from H−1/2(curl,Γ) to H(curl,Ω), corresponding to the π-trace.

4. For any u,v ∈ H(curl,Ω), the following Stokes' formula holds:

〈∇ × u,v〉L2(Ω) − 〈u,∇× v〉L2(Ω) = 〈γ(u),π(v)〉L2(Γ).
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Appendix B Spherical vector waves

The spherical harmonics Yn(x) are de�ned as

Yn(x) =
1

x

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ,

in terms of the spherical angles θ (polar angle) and φ (azimuthal angle) of the unit
vector x̂. The associated Legendre function is denoted Pm

l (cos θ). The index n is a
multi-index for the integer indices l = 0, 1, 2, 3, . . .,m = −l,−l+1, . . . ,−1, 0, 1, . . . , l.
Note, the extra factor 1/x in the de�nition of the spherical harmonics, which makes
the spherical harmonics orthonormal on the sphere of radius x.

The vector spherical harmonics are de�ned by, cf. [5, 17]
Y 1n(x) =

∇S2Yn(x)× x̂√
l(l + 1)

Y 2n(x) =
∇S2Yn(x)√
l(l + 1)

,

where ∇S2 is the nabla-operator on the unit sphere.
The radiating solutions to the Maxwell equations in vacuum are de�ned as (out-

going spherical vector waves)
u1n(kx) =

ξl(kx)

k
Y 1n(x̂)

u2n(kx) =
1

k
∇×

(
ξl(kx)

k
Y 1n(x̂)

)
.

Here, we use the Riccati-Bessel functions ξl(kx) = kxh
(1)
l (kx), where h

(1)
l (kx) is the

spherical Hankel function of the �rst kind [23]. These vector waves satisfy

∇× (∇× uτn(kx))− k2uτn(kx) = 0, τ = 1, 2,

and they also satisfy the Silver-Müller radiation condition [10, 17]. Another repre-
sentation of the de�nition of the vector waves is

u1n(kx) =
ξl(kx)

k
Y 1n(x)

u2n(kx) =
ξ′l(kx)

k
Y 2n(x) +

√
l(l + 1)

ξl(kx)

k2x
Yn(x).

A simple consequence of these de�nitions is
u1n(kx) =

1

k
∇× u2n(kx)

u2n(kx) =
1

k
∇× u1n(kx).
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In a similar way, the regular spherical vector waves vτn(kx) are de�ned [5, 17].v1n(kx) = xjl(kx)Y 1n(x)

v2n(kx) =
1

k
∇× (xjl(kx)Y 1n(x)) ,

where jl(kx) is the spherical Bessel function of the �rst kind [23].

Appendix C Variational solvability of Problem (E)

In order to solve Problem (E), we �rst obtain a variational formulation. By mul-
tiplying ∇ × Hsc(x) = −ikEsc(x) with a test function ψ ∈ H0(curl; Ωe), which
consists of the functions u in Hloc(curl,Ωe) such that γ(u) = 0, with compact sup-
port, integrating over Ωe, using Green identities and then substituting Hsc using
∇×Esc(x) = ikHsc(x), we obtain the variational formulation of problem (E): Find
Esc ∈ Hloc(curl,Ωe) satisfying γ(Esc) = m ∈ H−1/2(div,Γ) and the Silver-Müller
boundary conditions at in�nity such that∫

Ωe

[∇×Esc(x) · ∇ ×ψ(x)− k2Esc(x) ·ψ(x)]dx = 0, ∀ψ ∈ H0(curl; Ωe). (C.1)

Since γ : Hloc(curl,Ωe) → H−1/2(div,Γ) is onto, there exists a U ∈ H(curl,Ωe)
such that γ(U) = m. We now express the solution of (C.1) as Esc = E0 + U,
where E0 ∈ H0(curl; Ωe). Substituting this Ansatz in (C.1), we obtain the following
variational problem for E0: Find E0 ∈ H0(curl; Ωe) such that∫

Ωe

[∇×E0(x) · ∇ ×ψ(x)− k2E0(x) ·ψ(x)]dx

= −
∫

Ωe

[∇×U · ∇ ×ψ(x)− k2U(x) ·ψ(x)]dx, ∀ψ ∈ H0(curl; Ωe). (C.2)

Furthermore (see Corollary p. 37 in [9]), U can be chosen so that ∇ · U = 0,
so that ∇ · E0 also vanishes, by which we conclude that (C.2) is equivalent to
the vector Helmholtz equation, with homogeneous tangential boundary condition.
The unique solvability of this problem is obtained in terms of the sequilinear form
〈∇×u,∇×v〉−k2〈u,v〉 for u, v ∈ H0(curl; Ωe), for k such that k

2 is not an eigenvalue
of −∆, with the considered boundary conditions (for details see Theorem 5.60 in [14]
or Theorem 6, p. 107 in [9]).

Appendix D The Laplace-Beltrami operator and its

eigenvalue problem

Let (M, g) be a compact smooth manifold without boundary, g being the Rieman-
nian metric. On M we may de�ne the Lebesgue space L2(M), as

L2(M) = {u : M → R :

∫
M

|u|2 dµg <∞},
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where µg is the Riemann canonical measure µg =
√
g dµLd where µLd is the Lebesgue

measure on Rd. The function space L2(M) is a Hilbert space for the scalar produce

〈u, v〉L2(M) =

∫
M

uv∗ dµg.

We may further de�ne Sobolev spaces on M . In particular, we may de�ne the
Sobolev space H1(M) by H1(M) := C∞(M), with respect to the norm ‖ · ‖H1

de�ned by ‖u‖2
H1 = ‖u‖2

L2 + ‖∇u‖2
L2 , where ∇u denotes the gradient on (M, g).

This is a Hilbert space as well, for the scalar product

〈u, v〉H1 = 〈u, v〉L2 + 〈∇u,∇v〉L2 .

This Sobolev space satis�es a version of the Rellich-Kondrachev embedding theorem,

Theorem D.1. If (M, g) is compact then the embeddings H1(M) ↪→ L2(M) are
compact.

We now consider the Laplace-Beltrami operator on the manifold (M, g), de�ned
as ∆gf := div(∇f) or in terms of a local chart φ : U ⊂M → Rd of M as

∆gf =
1
√
g

∑
j,k

∂

∂xj

(
√
ggjk

∂

∂xk
(f ◦ φ−1)

)
,

where g = det gjk and g
jk = g−1

jk .
We now consider the so called closed spectral problem (a compact manifold

without boundary is called closed), which consists of �nding λ ∈ R such that there
exist u ∈ C∞(M), u 6= 0 for which

∆gu = λu.

Theorem D.2. The following assertions hold true [19]

1. The spectrum and the point spectrum of L := −∆g coincide and consist of a
real in�nite sequence

0 ≤ λ1 ≤ λ2 ≤ . . . ,

such that λk → ∞ as k → ∞, and the eigenfunctions uk ∈ H1(M) and are
also analytic.

2. Each eigenvalue has �nite multiplicity and the eigenspaces corresponding to
each eigenvalue are L2-orthogonal. If we denote by E(λk) the eigenspace cor-
responding to the eigenvalue λk, then⊕

k≥1

E(λk) = L2(M),

where the closure is taken for the L2(M) norm.
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The second assertion of the above theorem implies that the eigenfunctions of the
operator L := −∆g form a complete orthonormal basis for the space L2(M).

We sketch a variational proof of the above theorem following [19].

Proof. Given f ∈ H1(M)′, consider the problem of �nding u ∈ L2(M) such that

−∆gu+ u = f.

Using Green identity and the density of C∞(M) in H1(M), this can be expressed
in weak form as the problem of �nding u ∈ H1(M) such that

a(u, v) = 〈f, v〉H1(M)′,H1(M), ∀ v ∈ H1(M),

where a : H1(M)×H1(M)→ R is the bilinear form

a(u, v) = 〈u, v〉H1(M).

By its de�nition in terms of an inner product this bilinear form is continuous and
coercive, so by a standard application of the Lax-Milgram lemma there exists a
unique solution of the above equation uf ∈ H1(M). De�ning the mapping T :
L2(M)→ H1(M) by f 7→ uf =: T (f) we see that T = (−∆g+I)−1, and furthermore
by the Rellich-Kontrachev embedding we note that T is a compact operator. By the
Fredholm theorem there exists a sequence of real numbers µk > 0, such that

(−∆g + I)−1uk = Tuk = µkuk, (D.1)

with uk ∈ L2(M), µk → 0 as k →∞, and furthermore {uk}k∈N forms an orthonormal
basis of L2(M). However, (D.1) implies that

−∆guk = λkuk,

with λk = 1− 1
µk
.

Let us mention that in the case of the n-sphere

Sn := {(x1, x2, · · · xn+1) :
n+1∑
j=1

x2
j = 1}

in Rn+1, there is a metric, induced by the standard metric on Rn+1, and a Laplace
operator ∆S, arising from ∆ on Rn+1, as

∆Sf = ∆f̃ |Sn , f̃(x) := f

(
x

|x|

)
.

Regarding the eigenvalues of −∆S it is known that these are [26, Theorem 22.1 and
Corollary 22.1(a)]

λk = k (k + n− 1) , k = 0, 1, 2, · · · ,
with the multiplicity of λk being

m(λk) =

(
n+ k

n

)
−
(
n+ k − 2

n

)
,

where, as usual,
(
n+k
n

)
:= (n+k)!

n! k!
.
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Appendix E Proof of the invertibility of the matrix

representation

Lemma E.1. Let T : H → H be a bounded linear and invertible operator and
de�ne the in�nite dimensional matrix A = (Anm), de�ned by Anm = 〈Ten, em〉,
where {en}n∈N is an orthonormal basis of the Hilbert space H. Then the matrix At

is invertible, where At denotes the transpose of the matrix A.

Proof. Since T is invertible for every v ∈ H there exists a unique u ∈ H such that
Tu = v. Let v =

∑
n vnen, for {vn} ∈ `2. Since the solution of Tu = v exists in H,

it also has an expansion of the form u =
∑

n unen, for some {un} ∈ `2. Using this
expansion, we rewrite Tu = v as

T

(∑
n

unen

)
=
∑
n

un(Ten) =
∑
n

vnen. (E.1)

Let us call Ten = an ∈ H, so that an admits an expansion as

an =
∑
m

〈Ten, em〉em =
∑
m

Anmem. (E.2)

Introducing (E.2) into (E.1) we conclude that∑
n

un

(∑
m

Anmem

)
=
∑
n

vnen,

which upon rearranging can be expressed as∑
m

∑
n

Anmunem =
∑
n

vnen,

and by interchanging n with m leads to∑
n

∑
m

Amnumen =
∑
n

vnen.

Projecting on the basis, we then conclude that∑
m

Amnum = vn ∀n ∈ N. (E.3)

Since {vn} ∈ `2 is arbitrary, the above considerations lead us to the conclusion that
the in�nite system of linear equations (E.3) admits a unique solution {um} ∈ `2 for
every {vn} ∈ `2, hence the matrix At is invertible.

An example of the application of the lemma in this appendix is the invertibility
of the exterior Calderón matrix Cτn,τ ′n′ in (4.5). To be explicit, due to the linearity
and invertibility of T

u =
∑
n

unen = T−1

(∑
n

vnen

)
=
∑
n

vn(T−1en). (E.4)
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Let us de�ne bn = T−1en ∈ H, so that bn admits an expansion as

bn =
∑
m

〈T−1en, em〉em =
∑
m

Bnmem. (E.5)

Introducing (E.5) into (E.4) we conclude that

∑
n

unen =
∑
n

vn

(∑
m

Bnmem

)
,

which upon rearranging can be expressed as∑
m

∑
n

Bnmvnem =
∑
n

unen,

and by interchanging n with m leads to∑
n

∑
m

Bmnvmen =
∑
n

unen.

Projecting on the basis, we then conclude that∑
m

Bmnvm = un ∀n ∈ N. (E.6)

Comparing (E.3) with (E.6) we conclude

(At)−1 = Bt = 〈T−1em, en〉. (E.7)

Appendix F The in�nite matrices A and A

The compactness of the integral operator de�ned with the Green function as kernel
shows the matrix A is not expected to be invertible. This appendix develops the
details on this subject.

Initially, we consider the operator equations∑
τ ′n′

Aτn,τ ′n′aτ ′n′ = bτn, τ = 1, 2, n ∈ N = 1, 2, . . . . (F.1)

or in shorthand notation Aa = b, where the matrix A is de�ned in Lemma 4.6, viz.,

Aτn,τ ′n′ = k

∫
Γ

uτn · Y τ ′n′ dS.

The vectors aτn and bτn are assumed to belong to the space `−1/2(div).
We want to identify these operator equations as discretizations, in a proper

orthogonal base, of appropriate integral equations.
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Consider any point x inside the inscribed sphere S of the scatterer. Multiply
the equation (F.1) by iv∗τn(kx) and sum over τ = 1, 2 and over all n. Recalling the
de�nition of the components Aτn,τ ′n′ , we obtain∑

τn

∑
τ ′n′

ik

∫
Γ

v∗τn(kx)uτn(kx′) · (aτ ′n′Y τ ′n′(x
′)) dS ′ = i

∑
τn

bτnv
∗
τn(kx).

Recall the representation of Green dyadic for the electric �eld, see (4.13), and we
obtain ∫

Γ

Ge(k,x− x′) · f(x′) dS ′ = g(x), ∀x ∈ S, (F.2)

where S is the inscribed sphere and
f(x′) =

∑
τ ′n′

aτ ′n′Y τ ′n′(x
′)

g(x) = i
∑
τn

bτnv
∗
τn(kx).

So in order to solve Aa = b, construct the function g(x) = i
∑

τn bτnv
∗
τn(kx), solve

the integral operator equation (F.2) to obtain f and then expand the solution in
generalized harmonics to obtain aτn. The compactness of the integral operator
de�ned with the Green dyadic for the electric �eld as kernel shows the matrix A is
not expected to be invertible.

We now consider Aa = b, which in coordinate form is∑
τ ′n′

Aτn,τ ′n′aτ ′n′ = bτn, τ = 1, 2, n ∈ N = 1, 2, . . . .

where

Aτn,τ ′n′ = Aτn,τ ′n′ = k

∫
Γ

uτn · Y τ ′n′ dS.

Consider any point x inside the inscribed sphere S of the scatterer. Multiply
the equation (F.1) by iv∗τn(kx) and sum over τ = 1, 2 and over all n. Recalling the
de�nition of the components Aτn,τ ′n′ , we obtain∑

τn

∑
τ ′n′

ik

∫
Γ

v∗τn(kx)uτn(kx′) · (aτ ′n′Y τ ′n′(x
′)) dS ′ = i

∑
τn

bτnv
∗
τn(kx).

Recall the representation of Green dyadic for the electric �eld, see (4.13), and we
obtain ∫

Γ

Ge(k,x− x′) · f(x′) dS ′ = g(x), ∀x ∈ S, (F.3)

where S is the inscribed sphere and
f(x′) =

∑
τ ′n′

aτ ′n′Y τ ′n′(x
′)

g(x) = i
∑
τn

bτnv
∗
τn(kx).
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So to solve Aa = b, one can construct the function g(x) = i
∑

n(bτnv
∗
τn(kx), solve

the integral operator equation (F.3) to obtain f and then expand the solution in
generalized harmonics to obtain aτn.
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