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The reasonable man adapts himself to the world;
the unreasonable one persists in trying to adapt
the world to himself. Therefore, all progress
depends on the unreasonable man.

George Bernard Shaw

sammanfattning

Världen är föränderlig. För att kunna överleva måste allt liv kunna
anpassa sig till rådande förhållanden. För cellen, livets minsta enhet, sker
detta bland annat genom reglering av produktionstakten av proteiner,
vilka är de molekyler som utför de flesta grundläggande funktioner.

En speciell klass av proteiner utgörs av så kallade transkriptionsfak-
torer. Dessa slår av eller på en gens produktion av proteiner, genom att
binda till gens position på dna-molekylen. Eftersom dessa transkriptions-
faktorer också själva är proteiner, som produceras av gener som regleras
av andra transkriptionsfaktorer, bildas komplexa nätverk där gener
som producerar denna proteinklass kan sägas interagera med varandra.
Dessa transkriptionsnätverk av genreglering ligger till grund för hur, till
exempel, en växt kan stänga av klorofyllproduktion i avsaknad av ljus.

I praktiken har genregleringsnätverken gått än längre och kan — gi-
vet dagsljusets periodicitet — förutsäga solens upp- och nedgång. I
två artiklar undersöker vi dessa gennätverk med hjälp av matematiska
modeller. I artikel III undersöker vi ett nätverk, specifikt för växten
backtrav, som fungerar som en klocka, med vilken gryning och skymning
kan förutsägas genom oscillationer i specifika proteinkoncentrationer. I
artikel II undersöks mer generella nätverk utan direkt anknytning till
någon specifik organism. I dessa nätverk lagras den genetiska informa-
tionen i en sträng av ettor och nollor, vilken representerar dna-kedjan.
Denna binära sträng tillåts i artikel IV att vara av variabel längd, vilket
försvårar den matchning som är av biologisk relevans vid reproduktion.
Vi undersöker därför olika metoder för att effektivt jämföra två olika
långa binära strängar.

Orelaterat till genreglering ovan, presenteras i artikel I en korrigerad
feluppskattningsformel för parameteranpassning till korrelerad data. När
datapunkter sägs vara korrelerade avses att dessa inte är oberoende av
varandra. Det vill säga, att addera fler punkter, t.ex. genom att göra
fler mätningar, innebär inte nödvändigtvis att vi får mer information
om systemet. Den vanligaste metoden för att anpassa en funktion till
data, minsta kvadratmetoden, kommer däremot att ge sken av att så är
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fallet, och således ge en allt för optimistisk uppskattning av felet. Detta
avhjälper vi genom att introducera en korrigerad feluppskattningsformel
för minsta kvadratmetoden, vars giltighet vi demonstrerar på tre system
där data är benägen att vara korrelerad.
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Tillägnat det som en gång var. . .



It is possible to believe that all the past is but the
beginning of a beginning, and that all that is and has been
is but the twilight of the dawn. It is possible to believe
that all that the human mind has ever accomplished is
but the dream before the awakening. We cannot see, there
is no need for us to see, what this world will be like when
the day has fully come. We are creatures of the twilight.
But it is out of our race and lineage that minds will spring,
that will reach back to us in our littleness to know us
better than we know ourselves, and that will reach forward
fearlessly to comprehend this future that defeats our eyes.
All this world is heavy with the promise of greater things,
and a day will come, one day in the unending succession
of days, when beings, beings who are now latent in our
thoughts and hidden in our loins, shall stand upon this
earth as one stands upon a footstool, and shall laugh and
reach out their hands amid the stars.

H.G. Wells, The discovery of the future (1902)



There is no such things as magic, though there is such
a thing as knowledge of the hidden ways of Nature.

H. Rider Haggard, She (1887)

Introduction

Nature can be understood. This is a realization that we in large part
owe to Aristotle (384–322 bc), a student of Plato. He fathered the field
of biology and made significant contributions to all fields of science of
the era, including physics. The two fields of biology and physics, where
the former is devoted to the study of the living, and the latter to the
inanimate laws of our universe, have generally been kept separated.

In this thesis we investigate biological systems by applying the meth-
ods which have proven so lucrative in the field of physics [1]. This
entails constructing mathematical models which reproduce the observed
behaviour of the system under investigation. To this effort we strive to
“make things as simple as possible, but not simpler” [2], which might
leave a reader with a background in biology wanting for a less idealized
description of the biological systems addressed in this thesis. However,
if we are to understand the inner workings of a (metaphorical) fine
mechanical clock, we have to start with pendulums.

This introduction aims to give the reader a firm footing of the key
concepts touched upon in this thesis, from which he can leap into any
of the articles which are to follow. Our first step illustrates how the
marriage of a biologist’s discovery and a physicist’s endeavours born
the revelation of the smallness of matter, that is necessary for life.

1.1.1 Physics and flowers
In 1827 the Scottish botanist Robert Brown observed, through his
microscope, the irregular motion of particles enclosed by micrometer
sized pollen grains suspended in water [3].1 He initially attributed this to

1 It is worth pointing out that he was not the first to describe the phenomenon
that now bears his name. Dutch physician Jan Ignenhousz observed it with coal
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2 introduction

“the vitality of pollen” [5]; however, the motion persisted undiminished in
the absence of nutrients. Brown found that even ground down inanimate
particles from the Sphinx behaved in this peculiar fashion [6], thus ruling
out the discovery of living “animalcules” [7].

It was shown by theoretical physicist Albert Einstein, in one of his
annus mirabilis papers of 1905 [8], that this was the result of the thermal
motion of the hypothesized molecules, acting in conjunction to displace
the pollen grain at random. He derived the mean square displacement of
a particle undergoing what he coined “Brownian motion”, and provided a
relation which connected the macroscopic observable (diffusion constant)
with the microscopic world, allowing a numerical value to be determined
for both Boltzmann’s constant, and Avogadro’s number. This not only
proved the existence of molecules, but also gave an experimental way to
determine their size, for which the french experimentalist Jean Baptiste
Perrin was awarded the Nobel prize in 1926 [3, 6].

Indeed, it is the very smallness of the molecules, allowing them to act
in enormous numbers, that permits life. The deterministic physical and
chemical laws that are relevant to life rely on the statistical laws that are
valid only for large ensembles. So does the irregular heat movement of
particles give rise to the regular phenomenon of diffusion [9]. However,
in stark contrast to the microscopic disorder, we find the dna molecule.
It contains the recipe for life, held in the hereditary unit of genes. These
give rise to organized events, in spite of the disordered thermal motion
around it.

1.1.2 What is life?
Brown’s experiment with the ground down Sphinx particles raises an
important and difficult question (beyond that of the ethics of archaeo-
logical desecration): what is alive, and what is dead? At one end of the
spectrum we find the inanimate stone statue of aeons past, at the other
we may place our animate selves; we must clearly be alive to pose this
ultimate question to begin with.

If life is the outcome of a continuous process of evolution, then the
boundary between the living and the non-living is a difficult one to
distinguish [10]. A growing crystal or a replicating virus is by most
definitions not considered to be alive, yet they exhibit traits which
we associate with the living [11]. Anyone who has been chased by an

particles on alcohol in 1785 [3], and before him the Roman Lucretius (c. 99 – 55 bc)
described it in a poem [4], see appendix 3.A, p. 45.
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angry bee would consider it to be most alive, even if it is incapable of
reproducing or replicating. However, we can attempt to identify a “least
common denominator” of living systems.

Life is an ordered process which adheres to a set of common re-
quirements. For order to persist, there needs to be an organized plan,
a program, that implements instructions for the parts needed for main-
taining life and how they interact. For the system to be self-sustaining
it needs energy to drive its chemical and physical movement that act
to reverse entropy and keep the system from its equilibrium state of
death. Finally, the system needs to be self-regenerating, and replenish,
to counteract the thermodynamic losses of the processes that instil
order [11]. However, the regeneration does not restore the system to the
exact original state. As we look upon the previous generation, whether
it be our own species or bacteria, we see the cost of time: We age.

Death is a necessity for life, and evolution is its direct consequence.
With time the cumulative changes cause ageing which inches the indi-
vidual ever closer towards its end. The cure is for life to reset itself
by starting over through reproduction. This introduces the need for
the life-instructing program to be passed to the next generation. The
information transfer will be perceptible to imperfections (mutations)
which combined with selection will optimize the species to better serve
the genes as “survival-machines” [12]. We are but vessels for the immor-
tal genes. To this end life comes in many forms, both as single celled
organisms and as multicellular.

All living organisms can be categorized into two main branches based
on cell structure. At the simplest we find the small prokaryotes (typ-
ically 1-10 µm in size), such as bacteria, which all lack a membrane
enveloped cell nucleus. The other class is the eukaryotes, which make up
all multicellular life, but does not exclude single cell organisms. Scientist
have adopted a particularly keen liking to a set of model organisms with
desirable traits that are well suited for their probing minds, such as
the organism having short generations, small genetic material, being in
abundant supply, as well as being subjected to the whimsical disdain of
human society, giving scientists free rein. In the following we will touch
upon the prokaryote Escherichia coli (bacteria), as well as the eukary-
otes Arabidopsis thaliana (plant, thale cress), Mus musculus (mammal,
mouse), Neurospora crassa (fungus), and Drosophila melanogaster (in-
sect, fruit fly). The first mentioned from each respective domain shall
also play a part in the papers that are to follow.
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1.2 the gene as the fundamental information unit of life

The information that is necessary to maintain and replicate life needs
a representation for encoding and a reliable system for storage and
copying. At its core, information is stored by simply stringing together
different entities that are not all the same, just like the letters of the
alphabet making up words, or the base two system used by digital
computers, usually represented as ones and zeroes. The cell uses a
similar system where four nucleotides, A (adenine), T (thymine), C
(cytosine), and G (guanine), make a base four system. By attaching
the bases to the sugarphosphate backbone of deoxyribonucleic acid
a long polymer is formed: the dna molecule. The nucleotide bases
pair up by forming hydrogen bonds between A-T (adenine-thymine)
and C-G (guanine-cytosine), thereby creating a complementary cdna
strand which stabilizes the structure and, in addition, acts as a backup
copy [13]. The two strands combine to form a long double helix, which
coils and loops itself multiple time into a chromosome if in a eukaryote,
or a single closed loop if in bacterial prokaryote [13, 14]. In eukaryotes
the entire dna code is contained within the cell nucleus. For humans
the dna packing allows two meters of dna, (3.2 · 109 nucleotides), with
1 nm diameter to fit into the micro meter sized cell nucleus [13]. The
chromosomes are collectively referred to as the genome, as it contains
all the genes, which are the discrete units of hereditary information, as
well as the non-coding regions.

The genome sequence is used as a blueprint to generate the long
chains of amino acids that constitute the protein molecules. The genetic
sequence is read in triplets. A triplet in a coding region is referred to
as a codon, and is interpreted as a “word” that instructs the cell which
amino acid should come next. The amino acids come in twenty different
flavours, and are linked together to a long chain, in the order specified
by the codons, into a protein. With four nucleotides, read in triplets,
there are 43 = 64 possible codons which map to the 20 different possible
amino acids, thus there is a degeneracy: generally several codons map to
the same amino acid. Codons that are similar typically map to the same
amino acid. This redundancy acts as a safeguard against mutations.
However, not all codons are reserved for coding amino acids, as the
boundaries of the coding region are marked by special start and stop
codons.

A gene is a well defined region on the dna, where the genetic infor-
mation between the start codon and stop codon encodes a protein (gene
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product). The start codon is unique, and defines the reference frame of
the genetic code. The triplet following the start codon corresponds to
the first amino acid of the protein to be. If there is a shift of one base
pair, the meaning of all codons following it will subsequently change,
thus we have entered a new reading frame. This means that there are
three distinct reading frames on the dna strand, and an additional three
in the opposite direction on the complementary chain. In theory, one
section of a single dna strand could therefore encode three different
proteins, and its complement yet another three, making in total six
overlapping genes. In reality, the information content of the genome is
sparse, genes are separated by large non-coding intergenic regions, and
only rarely do overlapping reading frames occur.

The information in the dna chain can be read through two different
processes, each serving a different purpose. When a cell divides, the
entire dna is read and copied, resulting in a new identical dna molecule.
This is equivalent to copying a program on the hard drive of a modern
computer. However, if we want to execute the genetic program, the
“wetware”, in order to synthesize a protein, only the region of the dna
chain containing the gene in question needs to be accessed, and loaded
into “memory”. This process of gene expression entails many steps and
differs between prokaryotes and eukaryotes [13], but can be described
in the following (see Figure 1.1):

1. A large protein, rna polymerase (rnap), attaches at a specific
dna-sequence. The double helix is locally uncoiled and opened
by the rnap molecule. As rnap slides downstream, it transcribes
the dna code (80 bp/sec [14]) to a single stranded short lived
(∼ 10 minutes) complementary “working copy” of the dna sequence,
through a 1:1 base pair alignment — except where base T (thymine)
is replaced by U (uracil), and ribose is used as backbone instead
of deoxyribose as in the dna molecule — resulting in the aptly
named messenger rna molecule (mrna) [14]. The genetic program
is now loaded into the “memory”. Transcription stops when rnap
reaches the transcriptional terminator which triggers a release of
the mrna and rnap from the dna-strand [13].

2. The mrna transcript is transported from the nucleus (if in eukary-
ote) to the ribosome, a large protein complex in the cytoplasm of
the cell. Here each codon, between the start codon (AUG) and
the degenerate stop codon (UAA, UGA, or UAG), is translated to
an amino acid which are all chained together to form a protein. In
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E. coli the speed of this process is about 40 amino acids per second,
allowing a full protein to be translated in minutes [14]. The one
dimensional four-letter information stored in the transcript has
now been mapped to a base twenty amino acid sequence that
defines the protein.

3. The protein then folds by exposing its hydrophilic part and en-
veloping its hydrophobic, giving it a complex three dimensional
structure, which defines its function. The nanometer sized protein
is now free to perform its function.

Promotor 
region

Downstream

. . . C T A A T G T A T T A C . . .

. . . G A T T A C A T A A T G . . .

C U A A U G U A U U A C . . .

TF

mRNA

RNAp

TSS

Figure 1.1 Transcription process. Transcription is initiated by transcription
factors (tfs) binding to the promotor region, which recruits rnap binding.
As rnap starts sliding downstream, from the transcriptional start site (tss),
along the uncoiled and opened double helix, it will assemble an mrna molecule
with complementary base pairs, except T is replaced by U. The process stops
when rnap reaches the transcriptional terminator (not shown) and releases
mrna and itself from the strand. The mrna will be transported to the
ribosome where each base triplet (codon), will be translated into a specific
amino acid, that will be assembled into a protein. In the example sequence
shown, the two codons following the start codon (AUG) both code for the
same amino acid Tyrosine. The complementary dna can also be transcribed
in the same way, but in the opposite direction. For example, in order for the
cdna sequence to be expressed, a promotor region would be needed upstream
of it, and a start codon that would define a second reading frame. The
description is simplified compared to present understanding, where the process
differs between eukaryotes and prokaryotes, but the main characteristics are
conserved.

A large part of the genome does not contain any genetic information
and is never expressed. This also applies to the transcribed gene se-
quence, as only a subset of the mrna sequence, the exons, are expressed.
The introns, the region between the exons, is removed, through splicing,
from the transcript prior to translation [13]. Thus the sequence of the
introns have no bearing on the final synthesized gene product.

The genome length and fraction of unexpressed code differs between
species. The genome of prokaryotes, such as E. coli (1 Mbp, i.e. 106

base pairs), typically holds a few thousand genes, while eukaryotes,
like Arabidopsis (142 Mbp) or human (3200 Mbp) both hold some
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30,000 genes [13]. The difference in length is mainly due to the larger
amount of introns and intergenic regions, e.g. only 11% of the genome
is unexpressed in E. coli while the same holds true for 98.5% of the
human genome [13]. This unexpressed code is often referred to as “junk
dna”, but this is a misnomer as it serves as a playground for evolution
of the species by allowing the emergence of new functional genes. For
eukaryotes there does not seem to be any great disadvantage to have
a long genome. The length does not necessarily mean the organism is
more “advanced”. Some species of amoeba have a genome 200 times
longer than that of humans [13].

1.2.1 Mutation and fidelity of base pairs
Stagnation means death. The ability to adapt to the changes in the envi-
ronment is a requirement for survival. Through accumulating mutations
of the dna a species can evolve to better suit its environment, thereby
improving its survival fitness. The genes are not selected for directly,
but rather through their effect on the phenotype — the resulting traits
and properties of the underlying genotype of the organism [15].

The replication of dna shows a remarkable high fidelity. For life to be
possible, the genetic information must be preserved over generational
time, and at the same time be able to adapt to changing conditions, by
incremental trial-and-error through small changes to the code [16]. The
mutation rate of E. coli is 10−9 per bp and replication, and similar in
eukaryotes [16]. Since most mutations are harmful and lower the fitness
of the organism, the mutation rate is also under evolution. It is lowered
by proof-reading mechanisms [17].

Through a point mutation a single base in the genome is changed. A
point mutation is often neutral, not having any effect on the phenotype,
due to the extent of non-coding regions, as well as the degeneracy of
the codons — similar codons map to the same amino acid. A point
mutation through substitution, (e.g. A to G, C or T), can result in a
missense mutation, meaning that the codon will map to another amino
acid. This is most likely to happen if the first or second base in the
codon is mutated, as the last base pair holds the least information [18].
A mutation can also lead to the creation of a stop codon in the middle
of the gene causing an abrupt stop of transcription.

A point mutation in the form of deletion or insertion of a base can
be a highly intrusive point mutation as in an exon it leads to a frame
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shift , which will change the reading frame of all codons following it, as
they are defined from their first position.

1.3 regulation through transcription networks

The cell is continuously affected by its external and internal environment
and in order to function it must correctly regulate its gene expression
(protein production) in response to different input signals so that the
right genes are expressed at the right time and in the correct tissue.

For a gene to be transcribed, rnap must first bind upstream of it,
to a promotor site. However, the expression rate of an individual gene
is regulated by special dna binding proteins, so called transcription
factors (tfs). Through facilitated diffusion — a combination of a
diffusive three-dimensional random walk in the cytoplasm followed by
a one-dimensional diffusion along the dna — they quickly locate and
bind to their target binding site in the promotor region [19, 20]. From
there their presence modulates the probability of rnap binding to the
promotor, resulting in either less mrna being transcribed (repression)
or more (activation), which will affect the overall concentration of the
protein species in the cell. Repression of the gene expression can be
achieved by a tf blocking rnap from binding to the promotor site, and
activation by a tf recruiting rnap to the promotor site, by lowering
the binding energy of rnap. Usually, transcriptional networks have
comparable number of positive (activating) and negative (repressing)
edges (the interactions connecting two nodes) [14].

The tfs are proteins themselves, and are regulated by each other,
thereby forming a gene regulatory network , where the genes (nodes) are
connected by their transcriptional interaction (edges) into a directed
graph, see Figure 1.2. The network can receive environmental input
signals in the form of small molecules, or protein modifications, which
changes the activity of a tf. This can happen on timescales of ∼
1 msec [14]. Thus a signal feeding into the transcription network changes
a tf causing a modification in the rate of transcription/translation of
the gene products which in turn changes the overall concentration of
the proteins (∼ 1 h) in the cell. Some of the proteins carry out vital
functions like dna repair, metabolite synthesis, etc. while others, being
tfs themselves, feed back to some node (gene) [14].

In this way the network architecture encodes how to perform compu-
tational tasks: it takes an input and processes the information according
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to how nodes are connected and gives an output. This allows the organ-
ism to shut down redundant processes to conserve resources or direct
them where they are needed.

An effective means for the gene to accomplish this is by regulating
its own expression. The most common form of this autoregulation is
negative repression, which allows the transcript level to quickly increase
to its steady state value, and remain stable there. This works much
like the mechanical equivalent to James Watt’s centrifugal governor for
steam regulation [14, 15].

Most genes are regulated by more than one tf. The gene expression
resulting from the interaction at the promotor site, where tfs can block
or promote each other, lends itself to a Boolean description of logic rules.
We can imagine an and-gate, where both tfs are required in order to
switch the gene from an off-state to on-state, or an or-gate where either
one will suffice for the gene to be expressed [21]. Furthermore, one can
have non-Boolean gates such as sum-gate, where each tf binding to the
promotor will increase the transcription rate of the gene [14].

Most tfs regulate more than one gene. The sign of the regulation
mediated by a tf is highly correlated. The tf is either predominantly
repressing or activating its targets. However, the sign of the incoming
edges regulating the tf are less so [14]. This gives valuable information
about how networks are shaped, as we soon shall see.

1.3.1 The structure of functional networks
The different networks of the cell exhibit similarities in both global as
well as local structure. In parallel with the previously described protein–
dna transcription network, there is also an additional protein–protein
and a protein–metabolite network. On a global scale, all three networks
share the same type of out-degree distribution — the number of edges
going out from a node — which follows an approximate power-law,
where a few nodes are more important to the network and have many
edges, while many nodes have only a few [14, 22]. Concerning tf–dna
networks, these show common features across function and species, such
as a high degree of cooperative binding, overlapping gene function, as
well as encompassing a large set of nodes [23].

Biological networks also bear a strong resemblance to engineered
circuits, as they share common design criteria. They must be robust
to random deletion of nodes, as well as be able to operate in noisy
conditions, and manage all conceivable input ranges the network might
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be subjected to [24, 25]. Furthermore, both biological and engineered
networks show strong modularity, with only a few input and output
nodes exposed to the wider network, but high degree of connectivity
among the nodes of the module [24, 26]. This allows a network to adapt
more readily to changing design specifications [26]. Also on the local
scale of the biological network there is similarity to engineered circuits,
by recurring elements, of so called network motifs [25].

Network motifs are small patterns that are found in evolved networks
in far greater abundance than what would be expected from simple
random connections [27]. The motifs are nature’s recurring solution to
frequent regulatory problems. These subgraphs can be though of as
the building blocks of networks. Different network motifs are found in
networks that have different function. Information processing networks,
such as transcriptional networks, have a high frequency of the three node
feed forward loop (ffl) motif [25], where node Z is regulated directly
through X → Z and indirectly through X → Y → Z (see Figure 1.2). If
the direct and indirect paths have the same effect on the target node Z

this coherent ffl acts as a noise filter, capable of ignoring either brief
on-signals, or off-signals, depending on whether X and Y interact with
node Z as and or or gates, respectively [27]. When the direct and
indirect paths differ in net sign (odd number of negative edges) this
incoherent ffl can act as a pulse generator, as the indirect path will
counteract the direct but with a delay [14]. But by what mechanism
have these observed local patterns and global structure of networks
emerged?

X

Y

Z

X

Y

Z

X

Y

Z

Figure 1.2 Three node network motifs. The first two graphs are coherent
feed forward loop (ffl) network motifs, where the direct path from X regu-
lating the target node Z has the same net effect on the target as the indirect
path through the intermediary node Y . The rightmost motif is said to be an
incoherent ffl, where the flat arrow represents repression counteracting the
other activating triangular arrows.
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1.3.2 The construction of a network
The common structure shared by the different networks of the cell,
across a multitude of species, betray the forces by which they were
shaped. The similarity can not be attributed to a common ancestor, as
many of the studied networks are younger than the time of divergence
from the ancestor [23]. It is warranted to ask if the over-abundance of
network motifs and common large scale properties, shared in biological
networks, are a result of their function, or are they simply the outcome
of the evolutionary process? In the case of network motifs, it has been
argued that they might exist due to being the optimal solution given
the functional requirements of the network [14]. However, there are also
indications that motifs are not strongly linked to network function [28].

The evolution of the networks follows the most probable path of least
resistance through evolutionary space. Neutral evolution, that does not
affect the phenotype, can open up new possibilities and remove fitness
barriers, allowing new regions to be explored, under the constraints of
what is permitted by biochemical and physical reactions [23].

The process of gene duplication is the main method for creating new
genes [29]. It allows the original gene to maintain necessary function
while its copy is free to diverge and explore new possibilities. If the gene
has bifunctionality, the duplicates can subfunctionalize, by dividing the
functions of the ancestral gene among them, and in that way become
more specialized [30].

The sheer duplication of genes leads to an inherent high probability of
network motifs [23, 31]. For instance, a ffl motif (Figure 1.2) could arise
from a duplication event of node Y , followed by divergence where it turns
into the new node Z and receives an extra edge. Indeed, even in networks
with no function, but evolved by duplication, motifs do appear [32].
However, since the tf binding sites are short (∼ 10 bp [14, 19]) they
are easily lost to mutational drift if not explicitly selected for, as a
single point mutation in the binding site can abolish an edge. Gene
duplications offer a conceivable explanation for how almost all genes in
eukaryotes are regulated by more than two tfs, resulting in the high
degree of connectivity observed [23]. Furthermore, through a neutral
process of repeated gene duplication and removal, an approximate
power-law degree distribution can emerge naturally [22]. Duplication of
a whole genome is often followed by divergence and large gene loss [33].

The dna is susceptible to mutations during duplication events. In
the course of cell division, when the cell creates an identical copy
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of itself, the dna is replicated (mitosis), but imperfections can arise.
Duplication errors can be introduced by misalignment during crossover
events, which is the process where two chromosomes, one from each
parent, are “blended” into a single copy (meiosis), lest the number of
chromosomes of a species would double with each new generation. This
is done by creating a copy that, at random crossover points along the
sequence, changes which of the two chromosomes it is duplicating. The
two “parent” chromosomes are aligned at the beginning of the crossover
process, resulting in the blended offspring having the same length and
a complete set of genes, from either parent [13, 34].

1.4 modelling of genetic networks

Gene networks quickly become highly complex structures with increasing
number of nodes, too complicated to intuitively understand. Through
experiments we can start to unravel their intricacies. But to understand
a fine mechanical clock we should not stop at prying it open and investi-
gating its gears and springs; we must venture further by reconstructing
it ourselves. This has been done experimentally, by building small
synthetic gene networks in living cells [35, 36]. Although these systems
are, in themselves, remarkable feats of experimental techniques, they
are limited to a small size and by the currently available experimental
methods. Instead, using mathematical reconstruction and modelling of
gene networks, we shall know no such limitation.

By describing a network mathematically the dynamics of its inter-
actions can be modelled and compared to known experimental data,
followed by model experimentation that yield falsifiable predictions that
can be verified or disproved by experiments. Even though the model is
constructed manually, with preassigned input, the outcome can often
be surprising.

The concentration level of each tf can be seen as describing the current
state of the cell. Through a set of coupled ordinary differential equations
(odes) that describe the change of state variables (tf concentration
levels), X = (X1, . . . , Xn), the dynamics can be solved if the update
function f(X), which describes the interactions, is known:

dX

dt
= f(X). (1.1)

Here each component of X can describe the concentration of a protein
at the current time step. The update function can model the gene



1.4 modelling of genetic networks 13

expression either as a binary Boolean function, being on or off, or as a
continuous process.

The coupled equation system can be solved through numerical inte-
gration, where the system in next time step t+Δt is computed from a
simple Euler step, X(t)−X(t+Δt) ≈ Δtf(X), which follows from a
series expansion of X(t+Δt) [37]. In practice one typically uses higher
order methods, with accuracy equivalent to a 4th order Runge-Kutta,
or better [38].

1.4.1 Law of mass action
We now turn our attention to find the updating function that describes
the system. Through the pioneering work of Norwegian chemist Peter
Waage and his brother-in-law Cato Maximilian Guldberg, the law of
mass action was derived at the end of the 19th century [39]. It describes
a system in dynamical equilibrium such that the forward and backward
reaction rates, kf and kb respectively, are in balance, in the following

A+ B
kf

�
kb

C. (1.2)

The probability of the reactants colliding depends on their concentration,
thus the chemical reaction rate is proportional to the product of (the
mass of) the reactants,

d[A]

dt
= −kf [A][B] + kb[C] =

d[B]

dt
d[C]

dt
= kf [A][B]− kb[C],

where quantity [X] in square brackets denote the concentration of X
in some arbitrary unit. This can be generalized to a system with m

reactants and n−m products

ν1X1 + . . .+ νmXm

kf

�
kb

νm+1Xm+1 + . . .+ νnXn, (1.3)

with stoichiometric coefficients νi defining the number of molecules
of each reactant Xi which is needed for the reaction to occur. The
generalized chemical reaction in eq. (1.3) forms an ode system:

d[Xi]

dt
= −kfνiX

ν1
1 · . . . Xνm

m + kbνiX
νm+1
m+1 · . . . Xνn

n i = 1, . . . ,m

d[Xj ]

dt
= kfνjX

ν1
1 · . . . Xνm

m − kbνjX
νm+1
m+1 · . . . Xνn

n j = m+ 1, . . . , n.
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For chemical equilibrium the ratio of the reaction rates must equal the
chemical equilibrium, thus

keq =
kf
kb

=
[Xm+1]

νm+1 · . . . · [Xn]
νn

[X1]ν1 · . . . · [Xm]νm
.

However, in our transcription networks we are concerned with reactions
where tfs bind to a site on the dna to regulate the production of some
protein, X, without itself being consumed. If the binding tf is an
activator it acts as an enzyme catalysing the reaction, although during
the time it is bound to the dna it can not partake in any other reaction.
We get Michaelis-Menten kinetics [14, 40]:

TF + DNA
kf

�
kb

TF–DNA kc→ TF + DNA +X (1.4)

This gives the equation system:

d[TF]
dt

= −kf [TF][DNA] + (kb + kc)[TF–DNA] (1.5a)

d[TF–DNA]

dt
= kf [TF][DNA]− (kb + kc)[TF–DNA] (1.5b)

d[DNA]

dt
= −d[TF–DNA]

dt
(1.5c)

d[X]

dt
= kc[TF–DNA]. (1.5d)

We assume the first reaction is much faster than the last (kf , kb � kc),
so the reaction is in quasi-equilibrium.2 From the chemical equilibrium
of the intermediate, rate limiting, process and the observation that the
total amount of dna is constant [DNAT] = [DNA] + [TF–DNA], we get

[TF–DNA] = keq[DNA][TF] = (kb + kc)[DNA][DNAT −TF–DNA],

from which we get the probability of the tf being bound to the dna

Pbound =
[TF–DNA]

[DNAT]
=

[TF]
kb+kc

kf
+ [TF]

, (1.6)

which is known as the Michaelis-Menten equation, and is useful for
describing many process in biology [14]. Inserted in eq. (1.5d) this gives
the gene activity , through its production rate of [X]

d[X]

dt
=

Vmax[TF]
KM + [TF]

(1.7)

2 Typically, tf binding to dna reaches equilibrium in seconds [14].
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where we have introduced the Michaelis-Menten constant KM = (kb +

kc)/kf , and Vmax = kc[DNAT] which is the maximum production rate
when [TF] has saturated the system, see Figure 1.3A.
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Figure 1.3 . The resulting modelled production of protein X as function of
concentration of TF. (A) Michaelis-Menten kinetics, eq. (1.7), and (B) Hill
equation, (1.9) for different degrees of cooperativity, n. The production rate
saturates at Vmax.

For gene transcription networks, cooperativity can be a key player.
To model this we require several transcription factors, n in total, to
interact for a reaction to happen,

nTF + DNA
kf

�
kb

nTF–DNA kc→ nTF + DNA +X. (1.8)

resulting in

d[X]

dt
=

Vmax[TF]n

Kn + [TF]n
(1.9)

with Hill coefficient n and Hill constant K, which is the dissociation
equilibrium constant, giving the rate between dna-binding ratio and
dna-unbinding ratio [40]. If cooperativity is not required but merely
assisted, or otherwise not fully understood, the Hill coefficient need not
be integer [40].

Hill functions can describe the production (and its regulation) of a
gene product. If the interactions are not fully understood one usually
fits n and K to experimental data. For this purpose, a least squares
method is commonly used, which we will have reason to get back to in
Section 1.5.
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1.4.2 A three-node network
As an instructive example we now consider the small network in Fig-
ure 1.4A. It consists of three nodes connected in a loop by the same
number of edges. Each component represses the next and is in turn itself
being repressed by the previous. While giving an overview of the system,
the graph representation does not reveal much information on the exact
mechanism of the interactions. Unlike eq. (1.6), the interaction is now
repressive, instead of activating. If X1 is being repressed by X3, its
production will depend on the probability of X3 not being bound:

Pnot-bound = 1− Xn
3

Kn +Xn
3

=
Kn

Kn +Xn
3

. (1.10)

Thus, with a linear degradation term, the three coupled ode equations
can be describe by:

dXi

dt
= ki

Kni
i

Kni
i +Xni

i−1

− diXi, i = 1, 2, 3. (1.11)

Here, the first term is our Hill function, where the production is repressed
as motivated in eq. (1.10). The second term represents the degradation
of Xi. In the absence of production, we are left with simple exponential
decay. We can interpret each component Xi as the concentration of
a tf. Thus eq. (1.11) includes transcription, transport to/from the
nucleus (if in a eukaryote) and translation as a single step.

The output concentration over time of each component, for a set of
parameters (see table 3.1, p. 47), can be made to oscillate (Figure 1.4B).
We shall have cause to return to the fundamental traits needed for a
system to exhibit such properties. A similar network, consisting of three
proteins in a closed loop, each repressing the next, was built in a real
cell and borough to oscillate in a similar manner [36].

1.5 model fitting

In order to evaluate a model, we compare its prediction to data represent-
ing the very system that the model aims to describe. Models often have
free parameters that need to be determined by fitting them to data. This
involves minimizing the deviation of the observations y = (y1, . . . , yN )T ,
at corresponding measurement points x = (x1, . . . , xN )T , with the es-
timating function f(x;λ) = (f(x1;λ), . . . , f(xN ;λ))T , with respect to
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Figure 1.4 A three node network. (A) The network is connected in a loop,
where each edge represses the next. (B) The output from each node, normalized
to unity, oscillates with time, for suitable parameters chosen in eq. (1.11).

the K parameters λ = (λ1, . . . ,λK)T . This can be summarized as
minimizing the residuals

Δ(λ) = y − f(x;λ). (1.12)

The two main methods for determining the optimal model parameter
estimators are the least squares method and the maximum likelihood
method. The following derivations are adapted from van den Bos [41].

1.5.1 Least squares method
One of the standard methods for fitting a model to data is the least
squares method. It can be defined from the weighted least squares
minimization criterion [41]

χ2(λ) = ΔT (λ)RΔ(λ), (1.13)

where R is a known positive definite (N × N) weighting matrix. If
this matrix is diagonal, eq. (1.13) is reduced to χ2(λ) =

�N
i=1 riiΔ

2
i (λ),

which becomes an ordinary least squares method if rii = 1 ∀i, with
minimization criterion: χ2 = ΔTΔ.

At the stationary point, where λ = λ is the estimator of the unknown
true parameters λ that we seek, the gradient of eq. (1.13) is the null
vector and defines K normal equations for the least squares criterion:

∂χ2(λ)

∂λk
= −2

fT (x;λ)

∂λk
RΔ(λ) = 0, k = 1, . . . ,K, (1.14)

and likewise for the ordinary least squares, but with weights given by
the unit matrix.
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When the expectation model is linear, the expectation of the observ-
able may be written as

�y� = f(x;λ) = Xλ, (1.15)

where X is a known nonsingular (N × K) matrix independent of λ.
From this it follows that the least squares criterion, eq. (1.13), becomes

χ2(λ) = (y −Xλ)TR (y −Xλ)

= yTRy − λTXTRy − yTRXλ+ λTXTRλ

= yTRy − 2λTXTRy + λTXTRλ,

(1.16)

which leads to the normal equations

∂χ2(λ)

∂λ
= −2XTRy + 2XTRXλ = 0, k = 1, . . . ,K. (1.17)

Thus we get XTRXλ = XTRy from which we find our estimating
parameters

λ = (XTRX)−1XTRy ≡ Ay, (1.18)

where in the last step we defined, for convenience, the matrix A. Next,
taking the expectation value of our parameter estimator, results in

�λ� = �Ay� = A�y� = AXλ = λ, (1.19)

where we used eq. (1.15), and from eq. (1.18) we note that AX is the
unit matrix. Thus, if the assumption of the linearity of the estimating
model is correct, and that the weighting matrix is know, the weighted
least squares estimator is an unbiased estimator, free of systematic
errors.

To get an estimate of the nonsystematic errors in the parameter fit, we
can determine its covariance matrix. First we note: λ−�λ� = A(y−�y�),
thus

cov(λ,λ) = �(λ− �λ�)(λ− �λ�)T �
= �A(y − �y�)(y − �y�)TAT �
= A�(y − �y�)(y − �y�)T �AT

= ACAT ,

(1.20)
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or when written explicitly, from eq. (1.18), and using the symmetry of
the matrices R and (XTRX)−1:

cov(λ,λ) = (XTRX)−1XTRCRX(XTRX)−1. (1.21)

We see that the parameter (co)variance depends on the measurement
points X, the covariance C of the observable y and the choice of
weighting matrix R.3 The variance for the weighted linear least squares
method is minimized by the choice R = C−1, which yields a covariance
of the estimated parameters as [41]:

cov(λ,λ) = (XTC−1X)−1, (1.22)

with error of the estimated parameters as the diagonal elements.

1.5.2 Maximum likelihood method
Provided that the probability density function of the observable y and
its dependence on the parameters λ are known, then the maximum
likelihood method is applicable. The method has several desirable
traits, such as, under general conditions, λ − λ tending to a normal
distribution with increasing observations, with zero mean and minimal
(co)variance [41]. The likelihood function is based on the joint probability
distribution of the observations where the fixed exact parameters λ are
replaced with independent variables λ, and the probability is parametric
in the observations,

p(y;λ). (1.23)

The maximum likelihood estimator of λ are the parameters, λ, that
maximizes the likelihood function, or alternatively, that maximizes the
log-likelihood function:

q(y;λ) = ln p(y;λ). (1.24)

For the most probable parameters, λ = λ, the gradient of q is equal to
the null vector, and we get K likelihood equations:

∂q(y;λ)

∂λk
= 0, k = 1, . . . ,K. (1.25)

3 The result of eq. (1.21) is alluded to in paper I as “eq. 5.253 of van den Bos [41]”,
which we there extend into the nonlinear regime.
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If the observations y are independent stochastic variables their likelihood
function may be written on the form

p(y;λ) =

N�

i

pi(yi;λ) (1.26)

and log-likelihood

q(y;λ) =

N�

i

qi(yi;λ). (1.27)

If the observables are normally distributed, as often is the case due
to the central limit theorem [42, 43], the log-likelihood function is

q(y;λ) = ln

�
1

(2π)N/2
√
detC

exp

�
−1

2
ΔT (λ)C−1Δ(λ)

��

= −N

2
ln(2π)− 1

2
ln(detC)− 1

2
ΔT (λ)C−1Δ(λ),

(1.28)

from which we get K likelihood equations by demanding that the
gradient is equal to the null vector at the stationary point

∂fT (λ)

∂λk
C−1Δ(λ) = 0, k = 1, . . . ,K. (1.29)

For jointly normally distributed observations, the weighted least squares
estimator is the same as the maximum likelihood estimator, eq. (1.14),
with the inverse covariance of the observables as weighting matrix,
provided C does not depend on the unknown parameters. From eq. (1.29)
it follows, in the same way as for the weighted linear least squares, that
the estimator of a linear model is unbiased.

1.6 the circadian clock

We live in a world of periodic change. Hence, most life has evolved
endogenous mechanisms which can accurately predict the diurnal cycle,
and respond in anticipation of dawn and dusk, rather than react to the
periodic environmental changes after they occur [44].

By predicting when a cell function is needed, resources can be directed
towards that aim, and likewise conserved when not needed, thereby
improving the survival ability. Both mammals and plants show improved
health and survival fitness when their internal clock is synchronized
with the environment [45–47]. It is also found that arrhythmic plants
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grow far worse than plants with a clock with the wrong period [47]. In
this thesis we will focus on the circadian clock (from Latin: circa diem,
meaning approximately daily) of plants.

The earliest written observation of circadian clocks originates from
the fourth century bc. At that time, Aristotle had encouraged his
student, Alexander the Great, to defeat Persia, and to be “a hegemon
(leader) of Greeks and a despot to the barbarians, to look after the
former as after friends and relatives, and to deal with the latter as with
beasts or plants” [48]. It was during Alexander’s the campaign in Tylos
(modern Bahrain) that Androsthenes made note of the leaf movement
of the Tamarind tree which tracked the motion of the sun. Close to
two millennia came to pass before the discovery, in 1729 by french
astronomer de Marian, that the rhythmic leaf movement persisted also
for plants held in constant darkness. Yet another century later came
the realization that these are not exactly 24 h periodic, but circadian,
indicating that the plant is not just using external environmental signals
but indeed has an internal clock [44].

The plant circadian clock is remarkably robust despite the many chal-
lenges it faces. It relies on biochemical reactions, yet it is able to operate
under a wide range of temperature fluctuations (∼ 20 degrees) [49]. The
clock is entrained by using the light as its main zeitgeber (German: time
giver) to match its phase with the environment. Usually, one measures
the state of the clock from the zeitgeber time (zt), marking the time
of when light is turned on. To prevent the clock from resetting in the
middle of the day, the response to the light input is time-dependent,
or gated ; meaning its importance is primarily during dawn and dusk,
since there is no seasonal information in light variation in the middle
of the day [44, 49]. In the absence of its main input the clock can be
entrained by as little as a two degree temperature fluctuation, or even
by changes in the sugar solution it grows on in the laboratory [50, 51].

The importance of the clock is demonstrated by the sheer scope of
genes that are regulated by it. In Arabidopsis roughly a third of the
genes are directly regulated by the clock and up to 89% show diurnal
rhythm, be that from cyclic external environmental stimuli, like light
or temperature, or independent of environment [49, 52]. Among the
many processes controlled by the clock we find both photosynthesis
and enzyme activity. There is also a strong overrepresentation of genes
regulating stress response as well as hormones like auxin, which is a
plant growth hormone [44, 49, 53]. The clock predicts seasonal changes
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by comparing the external photoperiod with its internal state. This
allows the clock to control fragrance emission, germination [44], and
flowering [54–57], furthermore, at the onset of winter the plant can
pre-treat its cells to withstand cold [58].

To investigate the direct benefit of a clock, experimentalists have
created mutant plants, by removing genes to partially change the clock
mechanism. Plants with a normal 24 hour period (T24) clock grow better
(fixate more carbon, and contain more chlorophyll) when subjected to a
matching period of light/dark cycle [47]. Likewise, both short-period
mutants (T20), and long-period mutants (T28) perform best when
their respective environment matches their free running period — their
intrinsic period when subjected to constant light or constant dark, in
order to not be reset by dawn and dusk [47].

1.6.1 What makes the clock tick?
The circadian clock stems from oscillations of protein concentrations in
cells. A three-node system, e.g. Figure 1.4, is the smallest network that
exhibits stable oscillations [59]. There are several additional require-
ments on a network for oscillations to emerge. First, a negative feedback
loop is required for the system to bring itself back to its starting point.
This makes the system converge to a limit cycle, where the variable set
is repeated in a cyclic manner, forming a closed loop in phase space.
Additionally, the system needs to retain a memory of its past states, to
avoid convergence to a steady state. This is achieved by introducing a
time delay by components acting indirectly on their targets, together
with balancing the timescales of the processes. Furthermore, the rate
laws must be sufficiently non-linear to destabilize the system from its
stable state [59].

Oscillations of protein concentrations can be experimentally resolved
for individual cells, each having its own autonomous clock, needing no
external input to persist [40]. The genes of each cell are rhythmically
expressed as a result of the regulatory interactions encoded in the
transcription network. The cells need not share phase information
between each other [60]; different tissues can have different phase, but
the main clock in mammals stem from the protein oscillation in cells of
the hypothalamus [52].

The circadian gene network is diverse across different domains of
life. The transcription factors which constitute the core clock genes
in eukaryotes like the fungus Neurospora crassa (frq and wc), the
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plant Arabidopsis thaliana (cca1 and toc1), the insect Drosophila
melanogaster (per and tim), and the mammal Mus musculus (bmal1
and period) are not shared, indicating the clock has developed inde-
pendently across taxa [61, 62].4

Although different in execution, the gene networks share common
design principles. Through the trial-and-error process of rewiring and
tinkering nature seem to converge on the same solution [24]. Each
implementation of a period predicting circuit consist of a gene network
with transcriptional and translational interaction with feedback loops
(ttfl) for generating robust oscillations with correct period, phase and
amplitude [59, 61]. The multiple feedback loops and light input of
the ttfl network allows it to track both dawn and dusk, as well as
withstand seasonal changes in day length, and input noise [49, 63].

However, it has been shown that the clock of prokaryotic cyanobacteria
does not only rely on a ttfl, but also on a post transcription-translation
oscillator (pto). The two oscillators are mainly independent of each
other, but combined give a robust clock [60]. Even more intriguing is
the discovery of circadian oscillations in eukaryote cells such as found
in human red blood cells [64], which lack a cell nucleus and therefore
have no means for a ttfl circuit. Alternative means for oscillations
have also been identified in algae [65].

Recent investigations indicate that a pto proto-clock is preserved
across all probed phylogenetic domains. It has been found that a
separate post translational clock is shared in prokaryote bacteria, as well
as in eukaryotes such as mouse, fruit fly, and fungus. It manifests itself
through oscillations in the oxidation level of a protein (peroxiredoxin). If
either the ttfl or pto clock of the organism is disabled, the remaining
one will continue unabated, although at a different phase [61, 62]. The
advantage of having two separate clocks could be higher resistance to
stochastic molecular noise, and a pto based clock gives stability during
the metabolic stress and dilution at high cell division rates [52, 60].

1.6.2 The transcriptional clock in Arabidopsis
The clock in the plant Arabidopsis thaliana, known under the common
name “thale cress”,5 or the more descriptive one: “mouse-ear cress”, has
been the focus of much research over the past decades. Through an

4 It is worth pointing out that although the period gene is homologous in mouse
and fruit fly, they appear to have different functions [62].

5 Known as Backtrav in Swedish, Vårskrinneblom in Norwegian, Gåsemad in Danish,
and Schaumkressen in German.
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iterative process of experimentation and modelling, its inner workings
has been probed ever further. The models recreate existing data, and
make predictions for where no data yet exists, that the experimentalists
then can verify or refute. The experimentalists typically measure time
series of clock gene expression in wild type (wt) plants, which have all
genes fully functional, and compare these to mutant plants where one,
or several, genes have been “knocked out” rendering them effectively
non-functional [66]. Also partially working mutant plants can yield
important clues to decipher the intricate workings of the gene regulatory
network.

The initial Arabidopsis circadian clock model started as a simple
system with two genes, each having three components (mrna, cytoso-
lic and nucleic protein), connected in a loop with feedback.6 This
first model, conceived in 2005 by Locke et al. [67, 68], treated the
two closely related morning expressed genes circadian clock asso-
ciated 1 (cca1) and late elongated hypocotyl (lhy) as a single
node [69–71], which represses the evening expressed gene timing of
cab expression 1 (toc1), which in turn regulates cca1/lhy and
thus closes the loop [66]. It is believed that cca1 and lhy need to
form a homodimer or heterodimer in order to bind to dna [72] where
they typically act as repressors [73]. In spite of the close relation of
the two morning genes, they are only partially redundant, as loss of
either one will affect the clock by shortening the period, in an additive
manner [74, 75].

It was long believed that toc1 activates cca1 transcription [67, 68,
76]. In a toc1 loss-of-function mutant7 the levels of mrna of both
cca1 and lhy is low; however, this is also the case for when toc1
is over-expressed, resulting in a drastic increase of the toc1 mrna
concentration, and consequently the toc1 protein [66]. The confusion
was cleared when it was found that toc1 binds to dna and can regulate
the cca1/lhy expression directly [77], by repression [78].

The early two-component clock model, consisting of cca1/lhy and
toc1, was extended by including more genes to account for period
lengthening and shortening by mutants of genes defined in the model [66].
Among them were the pseudo response regulators 9,7,5 (prr9,
prr7, prr5), which, together with toc1 (also known as prr1), form

6 For a schematic overview, see Figure III.S1, p. 161.
7 We here use the same notation as used for Arabidopsis where genes are written in

cursive and its gene product (protein) in upright; in addition, if it is the (functional)
wild type it is written in uppercase, and if mutant in lowercase.
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a “prr wave” by their sequential expression starting with prr9 in the
morning [79]. Each component in the wave can bind to dna [77] to
repress cca1/lhy [80], thereby helping to turn off the earlier expressed
morning genes [81]. Since cca1/lhy regulate the prrs, the loop is
closed [81].

The multiple feedback loops confer the clock redundancy against
gene loss. In order to render the clock arrhythmic, multiple genes need
to be knocked-out, such as the triple mutant prr5;prr7;prr9 [82], or
cca1;lhy;toc1 [83]. Nonetheless, a non-functional early flowering 4
(elf4) gene stops all oscillation of toc1, cca1, and lhy in the absence
of rhythmic light, as this evening expressed gene is required for acti-
vating the morning genes [84, 85]. The elf4 transcript represses toc1
and another gene, lux arrhythmo (lux), which is required for the
expression of elf4 itself [86]. If either lux or the gene early flow-
ering 3 (elf3) is over-expressed, they can counteract the detrimental
effect of the elf4 mutant [87]. Both elf3 and elf4 target the promotor
region of prr9 [87, 88], where also lux has a binding site [87, 89]. The
three genes have similar phenotypic effects [87], and are believed to
form a multiprotein evening complex (ec), where elf3 tether elf4 and
lux together, as they do not interact directly [86]. Through ec, elf3
represses many genes together with elf4 during the night, among them
prr9, to which lux helps it bind [87, 89]. Furthermore, it is found that
both lux and the gene nox help the formation of the ec [90]. The
latter is regulated negatively by cca1 [91], as is the former [92, 93].

In addition, there are yet other genes that play a part in regulating
components of the clock, but are not yet included in any models, such
as cca1 hiking expedition (che) which binds to the promotor region
of cca1 and decreases its activity when in high concentration [94], and
early bird (ebi) which interacts with another clock controlled protein,
zeitlupe (ztl), through a not yet fully understood mechanism [95].

1.6.3 Post translational circadian regulation in Arabidopsis
There are several components of the clock in Arabidopsis that are subject
to post translational modifications. An early gene to be included in
the models was gigantea (gi) [68]. It is not regarded to encode for
a transcription factor, but it is believed to be cyclically regulated by
toc1, and stabilize the oscillation of ztl [96], that in turn will regulate
both toc1 and prr5 proteins [97, 98] (but no other prr [99]), by
marking toc1 [97] and prr5 [100] for degradation. The gi protein is
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also repressed by lhy [93] and elf4 [85], and degraded by the protein
constitutive photomorphogenic 1 (cop1), which acts in this regard
with elf3 [101].

Localization of a protein in the cell can provide the means of regulating
transcription. This can be achieved by controlling how much transcript
is released from the nucleus into the cytoplasm, where it would be
translated into a working protein [13]. Conversely, if a protein is a tf,
it will not be able to function (if in eukaryote) unless it is located in
the nucleus where the dna molecule resides. In Arabidopsis toc1 is
transported into the nucleus by prr5 [102], by forming a dimer which
helps toc1 accumulate in the nucleus [103], where it is protected from
degradation from ztl, which is only found in the cytosol [96].
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Von allem Geschriebenen liebe ich nur Das, was Einer
mit seinem Blute schreibt. Schreibe mit Blut: und du
wirst erfahren, dass Blut Geist ist.
Freidrich Nietzsche, Also sprach Zarathustra (1891)

Summary of Publications

The articles that follow are here presented in the context of this intro-
duction. The articles are independent of each other, but can be divided
into three fields: functional fitting to correlated data (paper I); a model
of the circadian clock in the plant Arabidopsis thaliana (paper III),
and transcriptional networks, represented as strings of bits (paper II
and IV).

2.1 on model fitting to correlated data

Despite the many years that have come to pass since the discovery and
explanation of Brownian motion, it still remains an active area of both
experimental and theoretical research. The advent of super-resolution
microscopy, capable of resolving individual particles of the cell, with
unprecedented quality [1, 2], has a great potential for increasing our
understanding of biological processes, e.g. following a single mrna
from transcription to translation to a protein is almost within our
reach [3]. In particle tracking experiments, one typically takes the
squared displacement of the fluorescently tagged particle over time and
averages over many trajectories, to get the mean square displacement
(msd) as a function of time. One then extracts model parameters such
as diffusion constants, by functional fitting using some standard method
like least squares (ls) which minimizes the residuals.

However, in this setting, the error estimation of the fitted parameters
of the ls method will generally be orders of magnitude too optimistic, as
the ls method is not valid when applied to correlated data, like trajectory
data. The correlation is apparent when considering two neighboring
sampling points for an individual trajectory. If the displacement is
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larger than the mean at that point, it is likely to still be for the next
point. Thus more frequent measurements do not necessarily increase
the accuracy of the parameter estimation as much as the ls method
lets on. A maximum likelihood method (ml) does little to alleviate
the problems of ls fitting, as it is associated with numerical instability
when inverting the covariance matrix of the observable. In addition,
the parameter estimate of the ml method is also subject to a strong
bias in the parameter estimation itself. In paper I we highlight this
problem, that seems to have gone largely unnoticed in the particle
tracking community. We provide a new correlation corrected error
estimation formula for the otherwise robust ls method, making it valid
also for nonlinear models. We demonstrate the improvement of the new
method on three prototypical systems: one linear system describing
ordinary Brownian motion, and two nonlinear subdiffusive systems with
weaker time dependence than Brownian motion [3]. We also derive
an expression for the bias of the ml method, valid to first order, and
evaluate both first and second order jackknife bias reduction procedures
applied to ml fitted parameters.

Furthermore, we introduce a Brownian motion adapted ls method,
which uses the exact covariance matrix for Brownian motion as basis
for its weighting matrix for the ls method. We find that the variance
of the estimated parameters is smaller than what was found for the
correlation corrected ls method, but at the cost of increased bias of the
parameter estimation itself.

Contribution
M.A.L. and T.A. conceived the idea of the project. All authors con-
tributed to the conceptual design of the cls method. I wrote all software
and performed all simulations, under supervision by T.A. I also pre-
pared all figures. I wrote the manuscript together with T.A., with input
from A.I. and M.A.L. The new error estimation formula (with and
without jackknife) was derived by T.A, and M.A.L. derived the bias
correction prediction for Brownian motion with input from me and T.A.
A.I. suggested the use of jackknife for ml fitting. T.A. coordinated the
project.
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2.2 on what shapes transcriptional networks

In paper II we set out to further our understanding of what shapes
the structure of transcriptional networks. As previously touched upon,
in section 1.3.1, it is currently unclear what underlying mechanisms
give rise to the many structural similarities of gene regulatory networks.
It can be argued that the similarities are a result of networks being
exposed to similar mutations, or alternatively, that network function
requires them to have certain structural properties. Selection and large-
scale gene duplication events [4] can explain the shared properties of
gene regulatory networks [5, 6]. In order to explore how mutation and
selection together shape networks, we develop a model of transcriptional
networks that we can subject to evolution, either neutral or towards
some function. The evolution can be restricted to just point mutations
and crossover, or also encompass gene duplication.

In greater detail, we represent gene regulatory regions and tfs as
sequences of ones and zeros, 256 or 32 bits, respectively. The binding of
tfs to dna is determined by the number of mismatching bits between
their sequences, and the regulatory action of the tfs depends on their
position on the dna relative to the transcriptional start site (tss). Half
of the possible tf binding site positions are downstream of the tss and
will block rnap from binding to the dna, effectively disallowing any
expression of the gene. Any tf binding upstream of the tss will act as
an activator. The network is built up of genes (nodes) producing tfs,
which bind to other genes to regulating them (edges). By the binding of
multiple tf species to a regulatory region, complex logic combinatorics
arise from cooperative and exclusive interactions. The model allows a
variable number of genes.

The total transcription rate of a gene depends on the probability for
rnap to bind and initiate transcription. This is computed from the
distribution of statistical weights for all possible binding states. This
representation of gene interactions is then used to evolve networks with
one of two possible functions. Either solve a majority decision task,
where the network must determine the state of the majority of the seven
binary input nodes, or act as an internal clock by using periodic input to
generate a timely gene expression. Networks are also allowed to evolve
neutrally, constrained to have the same structure (number of nodes,
edges and degree distribution) as their evolved functional counterpart.

We noted differences between networks depending on their function.
Networks performing the clock function were strongly biased towards
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negative edges and strong cooperativity among the tfs. This is expected,
as the clock needs negative feedback and nonlinearity for robust oscilla-
tions [7]. The majority decision system favoured positive regulation and
and logic in the interactions of binding sites. For tfs with two binding
sites in the same regulatory region, the number that had ambiguous
regulation (one repressing and one activating) behaved like expected
for a random process in the neutrally evolved networks. However, in
both our functional networks, and in data from E. coli, such ambiguity
was reduced. This result holds regardless of whether we allow gene
duplication or not.

When looking at the sign of each tf’s regulatory action in the network
as a whole, we found that both neutral and evolved networks follow the
random expectation in the absence of gene duplication as an evolutionary
step. However, when allowing gene duplication, tfs in both neutral and
functional networks evolved to specialize to act predominately as either
global repressors or activators. The main observed difference between
the two different types of functional networks lies in their Boolean logic
rules governing the gene regulation. The majority decision networks
were rich in and gates while the clock had comparatively many nor
gates. Furthermore, the networks differed in their distribution of number
of inputs to the logic rules, as well as their typical structure.

Contribution
The model was conceived and developed in collaboration with C.T. and
C.P. The software was developed in close collaboration with C.T., with
whom I also co-wrote the manuscript. I also contributed to making plots
and computer code for data analysis. Experiments and data analysis
were done together with C.T.

2.3 on transcriptional activation
in the circadian clock

In paper III we set out to model the circadian clock network of Arabidop-
sis thaliana. We used a system of odes that describe the transcription
and translation of the genes. Our starting point was an earlier model by
Pokhilko et al. [8], which we made heavy modifications to. For instance,
we assumed most regulatory interaction to be mostly repressing [7],
much like our example system in section 1.4.2 or what was found for our
clock network in paper II. We also abolished the sequential activation
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for generating the prr wave, and instead modelled it as each component
turning off its predecessor. Furthermore, we added two newly discovered
clock genes, the night expressed nox [9] and the morning expressed
reveille 8 [10, 11]. The latter acts as the sole activator within in our
clock network.

For our modelling procedure we developed a data driven approach.
This meant culling time course measurement data from published ex-
periments, resulting in over 11,000 extracted data points from 800 time
courses in 150 different mutants and light conditions. Our model uses
simulated annealing to minimize a cost function that fits both profile
shape and level of the simulated expression of all variables to all data
in all conditions simultaneously.

Contribution
I compiled all experimental time course data used in the fitting, by
extracting 11,000 data points, by hand, from published articles. I went
through the corpus of published experimental findings in the field of
Arabidopsis. C.T. designed the software, but I made contributions, such
as code for generating plots, and model optimization. I performed the
simulations. I co-wrote the article with C.T., and prepared the figures.

2.4 on algorithms for an efficient crossover

To investigate mechanisms of evolution, we need a representation of
the genome for it to act on. Therefore, we implement a model with
a variable-length linear genome, that will allow relevant operations
such as mutations and gene duplications. In our model, the genome
is able to get longer, by insertion of duplicated sequences, or shorter,
by deletion. This enables better exploration of evolutionary space by
providing ample room for neutral evolution on the genome. However,
using a variable-length genome makes meaningful crossover operations
challenging. A viable offspring needs a complete set of the genes shared
between its parents, and a combination of the features that are unique
to either one. We solve this by aligning the parental genomes to identify
the homologous regions, and use these shared sequences as potential
crossover points.

The alignment can be made using a global alignment method, such as
the Hirschberg algorithm [12], but this is computationally demanding.
Another method exists for performing crossover operations: by aligning
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the longest identical sequences (“synapses”), the regions in between
can be exchanged [13]; however, the method assumes high sequence
similarity, which might not be fulfilled in evolutionary simulations. We
compared these two methods, together with our own heuristic alignment
method. The methods were assessed through three different measures:
cpu time consumption, the ability for the crossover algorithm to align
homologous sequences, and the performance of the offspring in a simple
evolutionary setting.

In more detail, our model represents the genome as a single string
of bits. In the evolutionary simulations, a gene is identified by a start
sequence, which is an arbitrary predetermined six bit pattern, and
the following three groups of ten bits are read as integers, giving the
height, width, and position of triangles whose area should sum up to
approximate a sinusoidal function, which is how we map genotype to
phenotype.

We find that our heuristic method aligns sequences as well as the
theoretically optimal Hirschberg algorithm, as long as the parental
sequences are not extremely divergent. The cpu time consumption
scales more favourably for our heuristic algorithm as the genome length
grows, than it does for the Hirschberg method. For low sequence
divergence, the heuristic algorithm is approximately twice as fast as the
synapsing method. We find that with crossover operations, the fitness
increases faster with fewer generations, than it does without crossovers.
Thus crossover operations are especially beneficial when evaluating time
consuming fitness functions, resulting in an overall lower computational
cost.

Contribution
I developed the model for encoding the network as a single bitstring
together with C.T., and collaborated on implementing the synapsing
algorithm with A.M., H.Å. and C.T. I prepared the figures, took part in
discussions on sequence alignment, and contributed to the manuscript
together with the co-authors. C.T. ran all simulations and generated
the data.
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In search of Truth the hopeful zealot goes,
but all the sadder turns, the more he knows

H.P. Lovecraft

Appendices

Herein, we collect information deemed outside the scope of the main
text, as we do not want to risk leading the reader astray.

3.a excerpt from “on the nature of things”

It has been argued by many that things were better in the days of
yore. Indeed, gone are the days when science was written on verse, as
was done by Roman natural philosopher Titus Lucretius Carus, c. 99 –
55 bc [1].

In his poem, De rerum natura, divided into six books, he describes
the principles of atomism. He strives to explain the world through
natural laws rather than the will of gods. In the second book, he
describes how dust particles, dancing in the sunlight, are the result
of collisions of many small atoms having an impact on an hierarchy
of larger particles, finally resulting in the movements of objects large
enough for our perception [2].

The following is an excerpt, as translated by William Ellery Leonard
(1876–1944), from On the nature of things:

For us thin air and splendour-lights of the sun.
And many besides wander the mighty void–
Cast back from unions of existing things,
Nowhere accepted in the universe,
And nowise linked in motions to the rest.
And of this fact (as I record it here)
An image, a type goes on before our eyes
Present each moment; for behold whenever
The sun’s light and the rays, let in, pour down
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Across dark halls of houses: thou wilt see
The many mites in many a manner mixed
Amid a void in the very light of the rays,
And battling on, as in eternal strife,
And in battalions contending without halt,
In meetings, partings, harried up and down.
From this thou mayest conjecture of what sort
The ceaseless tossing of primordial seeds
Amid the mightier void–at least so far
As small affair can for a vaster serve,
And by example put thee on the spoor
Of knowledge. For this reason too ’tis fit
Thou turn thy mind the more unto these bodies
Which here are witnessed tumbling in the light:
Namely, because such tumblings are a sign
That motions also of the primal stuff
Secret and viewless lurk beneath, behind.
For thou wilt mark here many a speck, impelled
By viewless blows, to change its little course,
And beaten backwards to return again,
Hither and thither in all directions round.
Lo, all their shifting movement is of old,
From the primeval atoms; for the same
Primordial seeds of things first move of self,
And then those bodies built of unions small
And nearest, as it were, unto the powers
Of the primeval atoms, are stirred up
By impulse of those atoms’ unseen blows,
And these thereafter goad the next in size:
Thus motion ascends from the primevals on,
And stage by stage emerges to our sense,
Until those objects also move which we
Can mark in sunbeams, though it not appears
What blows do urge them.
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3.b on the repressilator

The parameter values used for generating our three-component repressi-
lator.

Parameter Value Parameter Value
k1 5.50 d1 2.23
k2 0.36 d2 2.32
k3 15.47 d3 1.00
K1 0.11 n1 3.46
K2 0.38 n2 3.84
K3 0.0027 n3 3.79

Table 3.1 Parameter values. The parameter set used for bringing the three
component network described in section 1.4.2 to a limit cycle.

references

1. P. Collinder, Nordisk familjebok, encyklopedi och konversationslexikon,
vol. 14. Förlagshuset norden AB Malmö, 4 ed., 1953.

2. Lucretius, On The Nature of Things, vol. 785 of Project Gutenberg.
P.O. Box 2782, Champaign, IL 61825-2782, USA: Project Gutenberg,
1997.


