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ABSTRACT 19 

The late Ludlow Lau Event was a severe biotic crisis in the Silurian, with resurgent microbial 20 
facies and faunal turnover rates otherwise only documented with the “big five” mass extinctions. This 21 
asynchronous late Silurian marine extinction event preceded an associated positive carbon isotope 22 
excursion, the Lau CIE, although a mechanism for this temporal offset remains poorly constrained. Here 23 
we report thallium isotope data from locally reducing late Ludlow strata within the Baltic Basin to 24 
document the earliest onset of global marine deoxygenation. The initial expansion of anoxia coincides 25 
with the onset of the extinction and therefore precedes the Lau CIE. Additionally, sulfur isotope data 26 
record a large positive excursion parallel to the Lau CIE, interpreted to indicate a major increase in pyrite 27 
burial associated with the widely documented carbon isotope excursion. This suggests a possible global 28 
expansion of euxinia (anoxic and sulfidic water-column) following deoxygenation. These data are the 29 
most direct proxy evidence of paleo-redox conditions that link the known extinction to the Lau CIE 30 
through the progressive expansion of anoxia, and most likely euxinia, across portions of the late Silurian 31 
oceans. 32 

 33 
INTRODUCTION 34 
 High rates of evolutionary turnover and severe, punctuated extinctions of marine taxa were a 35 
hallmark of the Silurian (e.g., Jeppsson, 1998; Crampton et al., 2016). This interval occurred during the 36 
transition from the Late Ordovician icehouse to Devonian greenhouse worlds when a dynamic ocean-37 
atmosphere system oscillated between cool and warm conditions (e.g., Jeppsson, 1998). Recurrent 38 
extinctions in graptolites and conodonts were associated with the transitions between the alternating 39 
climate states, the most notable being the globally-documented late Ludlow Lau extinction (Jeppsson, 40 
1998; Calner, 2005; Crampton et al., 2016). This extinction was first recognized using conodonts from 41 
carbonate platform successions (termed the Lau event; e.g. Jeppsson and Aldridge, 2000) and then in 42 
graptolite studies of deeper-water shale sequences (termed the Kozlowskii event; Koren’, 1993; Urbanek, 43 
1993), herein referred to as the Lau/Kozlowskii extinction (LKE). The LKE is at least the tenth largest 44 
extinction event in Earth history with ~ 23% loss of genera (e.g., Bond and Grasby, 2017 and references 45 
therein). In addition to conodonts and graptolites, it affected a wide range of marine taxa including 46 
brachiopods (Talent et al., 1993), fishes (Eriksson et al., 2009), and acritarchs (Stricanne et al., 2006). 47 
Extinctions of individual taxonomic groups are asynchronous, with documented extinctions in benthic 48 
and nektonic groups preceding the planktic organisms (e.g., Munnecke et al., 2003; Stricanne et al., 2006; 49 
Calner, 2008). The LKE shares similar characteristics to the “big five” mass extinctions such as the 50 
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survival of disaster fauna and a resurgence of microbially-mediated sedimentary facies (e.g., Talent et al., 51 
1993; Jeppsson, 2005; Calner, 2005, 2008; Eriksson et al., 2009).  52 

Despite the magnitude and complexity of the LKE, its mechanistic underpinnings are not well-53 
constrained. An expansion of reducing conditions has been implicated as a potential driver of the 54 
observed temporal-stepwise extinction (e.g. Munnecke et al., 2003; Stricanne et al., 2006). This 55 
hypothesis is also used to explain the possibility of extensive burial of organic carbon, resulting in the 56 
Lau positive carbon isotope excursion (CIE; e.g. Saltzman, 2005), but this cannot explain the temporal 57 
offset between the LKE and the Lau CIE. Further, organic carbon burial can be affected by other factors 58 
(e.g., Canfield, 1994). Variations in eustatic sea level and carbonate weathering rates have also been 59 
invoked as a potential mechanism for driving positive CIEs (e.g., Hirnantian CIE; Kump et al., 1999). 60 
However, a global expansion of reducing conditions provides a kill mechanism and can be tested using 61 
combined traditional and novel paleo-redox proxies.  62 

This study investigates the relationship between the LKE and Lau CIE in the context of changing 63 
marine redox conditions in upper Silurian (Ludfordian Stage) strata from the Baltic Basin. In order to 64 
reconstruct the evolution of global marine redox conditions we measured thallium (Tl) isotopes, 65 
manganese (Mn) concentrations, and pyrite sulfur isotopes (δ34Spyr) from a distal shelf/slope setting 66 
(Latvia) and carbonate-associated sulfate (CAS) sulfur isotopes (δ34SCAS) from a shallow shelf setting 67 
(Gotland, Sweden; Fig. 1). This multi-proxy, multi-lithology approach aims to establish a first-order link 68 
between the fossil record of stepwise extinction, carbon burial, and the progression from more oxygenated 69 
to more reducing conditions in the late Silurian seas. 70 

 71 
GEOLOGIC SETTING  72 

The Baltic Basin was located in a tropical, epicratonic seaway on the southern margin of the 73 
paleocontinent Baltica (e.g., Eriksson and Calner, 2008; Fig. 1; Fig. DR1). In the late Silurian, the 74 
northern and eastern edges of the basin were delineated by rimmed carbonate shelves with parallel facies 75 
belts ranging from lagoonal deposits in the north to deep-shelf shales and marls in the south, deepening 76 
towards the Rheic Ocean (Eriksson and Calner, 2008). The Uddvide-1 drill core and nearby outcrops on 77 
the island of Gotland, Sweden are predominantly carbonates from the shallow shelf area of the basin (for 78 
more details see Eriksson and Calner, 2008). The Priekule-20 drill core from southwestern Latvia is 79 
predominantly shales and marls from a correlative deep shelf setting (details in Kaljo et al., 1997).  80 

 81 
METHODS AND RESULTS 82 
 Two study localities were analyzed for 13C records, organic or inorganic (micrite), to investigate 83 
carbon cycle dynamics. Pyrite sulfur was extracted from shale samples using a widely accepted chromium 84 
reduction method, and CAS was extracted from carbonates following standard methods. Full details of all 85 
analytical methods are given in the GSA Data Repository1. Sulfur isotopes were analyzed to investigate 86 
global pyrite burial (34SCAS) and the potential imprints on local signatures (34Spyr). Sedimentary Tl 87 
isotopes (205Tl = [(Rsample/Rreference)-1] × 104) have been used to investigate the earliest onset of global 88 
marine deoxygenation during Mesozoic CIEs (Ostrander et al., 2017; Them et al., 2018). During Mn-89 
oxide precipitation, Tl is adsorbed with a large positive isotope fractionation, thus leaving seawater 90 
isotopically lighter (as reviewed in Nielsen et al., 2017). Precipitation and burial of Mn-oxides require 91 
oxic bottom-water conditions, the expanse of which represents the dominant seawater control of Tl-92 
isotope composition on time scales < ~5 million years (Nielsen et al., 2017; Owens et al., 2017). The 93 
global seawater Tl-isotope signal is recorded in euxinic marine settings and in anoxic waters with sulfide 94 
near the sediment-water interface from basins that are well-connected to the open ocean (Owens et al., 95 
2017). Consequently, reconstructing the Tl isotope composition of late Silurian seawater provides 96 
evidence for initial changes in global marine oxygenation by tracking the burial flux of Mn-oxides 97 
relative to the extinction, CIE, and additional redox proxies (e.g., Ostrander et al., 2017; Them et al., 98 
2018). Importantly, a large Tl isotope fractionation is not associated with the burial of other Mn-bearing 99 
minerals (e.g., sulfides, carbonates). Constraining locally reducing conditions using an independent 100 
geochemical proxy is necessary to interpret Tl isotopes as a temporal seawater signature and to avoid 101 
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contamination via local Mn-oxides (Owens et al., 2017). Low total Mn concentrations [Mn] are indicative 102 
of locally reducing conditions (e.g. Boyer et al., 2011) and, thus, utilized in this study. 103 

The Lau CIE is documented in 13Ccarb and 13Corg records from the outer shelf setting (Fig. 2A), 104 
with values increasing within the upper part of the Bohemograptus bohemicus tenuis-Neocucullograptus 105 
kozlowskii zones, reaching peak values of +5.7‰ and -23.5‰, respectively, in the Nova Beds of the 106 
Dubysa Formation (Fm). The 13C records return to baseline values in the overlying Engure Fm. There is 107 
a positive ~40‰ excursion in 34Spyr data (baseline values ~-22‰ shift to peak values of up to ~+15‰) 108 
that coincides with the Lau CIE within the upper Nova Beds and basal Engure (Fig. 2B). [Mn] are low 109 
throughout the section with average values of 363 and 552 ppm in the lower to middle Dubysa and 110 
Engure, respectively (Fig. 2C). The 205Tl record shows baseline values in the lower to middle Dubysa of 111 
-4.1 to -4.6 (Fig. 2D). This is followed by a positive excursion in 205Tl values that peaks at -2.6 and 112 
averages -3.3 throughout the rest of the drill core.  113 
 The Lau CIE is also documented in both 13Ccarb and 13Corg records from the inner shelf 114 
carbonates (Fig. 3A), with values beginning to rise in the upper När Fm and peaking in the overlying Eke 115 
Fm (Icriodontid Zone) at +7.5‰ and -24.0‰. Within the Burgsvik Sandstone, 13Ccarb values decline to 116 
~+4.0‰, while 13Corg values increase to -22.9‰, which is followed by a return to peak 13Ccarb values of 117 
+7.5‰ in the overlying Burgsvik Oolite (Ozarkodina snajdri Zone). The overlying Hamra Fm and 118 
Sundre Fm record the falling limb of the CIE, but not post-excursion baseline values. There is a positive 119 
~30‰ excursion in the 34SCAS record (Fig. 3B), with initial values ~+11‰ in the När that rise through 120 
the Eke to values of ~+22‰. The 34SCAS values then continue rising through Burgsvik Oolite, Hamra, 121 
and Sundre to +40.6‰.  122 
 123 
DISCUSSION  124 

The [Mn] from the Latvia deep shelf setting (Fig. 2C) are all below the average crustal values and 125 
suggest depleted local Mn deposition, and therefore locally reducing conditions throughout the studied 126 
interval (Boyer et al., 2011). Cross-plotting [Mn] and Tl isotopes shows no significant correlation (Fig. 127 
DR2I). Thus, it is unlikely that local Mn-oxide burial has influenced the Tl-isotope seawater signature. 128 
The observed positive shift in Tl isotopes from ~-4.6 to -2.6 begins within the Ludfordian B. bohemicus 129 
tenuis graptolite biozone (Fig. 2D) and signifies a decline in the global burial of Mn-oxides. The 130 
reduction in Mn-oxide burial is likely due to significant bottom-water deoxygenation as anaerobic 131 
microbial metabolisms kept pace with carbon export, reducing bottom water oxidants such as oxygen and 132 
Mn-oxides, but not yet reducing enough to increase widespread organic carbon preservation and burial 133 
(e.g., Ostrander et al., 2017; Them et al., 2018). This early onset of deoxygenation coincides with the 134 
initial phase of extinction (e.g., brachiopods, fish, and conodonts) that predates the Lau CIE (Fig. 4; e.g. 135 
Calner, 2008). Extinctions in these nektonic and benthic taxa coincide with the rising limb of the positive 136 
Tl-isotope excursion, which begins ~ 8 m before the Lau CIE. This suggests that deoxygenation and 137 
subsequent spread of anoxia was responsible for the initial phases of extinction in fauna living at/near the 138 
sediment-water interface and within deeper waters ~175 to 270 kyr prior to the Lau CIE (see GSA Data 139 
Repository for calculations). For the first time in the Paleozoic, this stratigraphic relationship of 140 
extinction/turnover, and C- and Tl-isotopes is observed. A similar progression of events has been 141 
suggested for two Mesozoic oceanic anoxic events or OAEs (Ostrander et al., 2017; Them et al., 2018), 142 
but with varying magnitudes and durations. 143 

The positive C- and S-isotope excursions (Figs. 2 and 3) are consistent with transient increases in 144 
the amount of reduced C and S buried globally as organic matter, pyrite, and possibly organic sulfur 145 
compounds (e.g., Gill et al., 2011; Owens et al., 2013; Raven et al., 2019). Sea level may also have been a 146 
contributing, but secondary, factor to the Lau CIE (see GSA Data Repository for further discussion). This 147 
suggests the Lau CIE began as export and burial of organic carbon to the seafloor outpaced consumption 148 
via remineralization, which was likely dependent on a sufficiently large portion of shelf and other marine 149 
environments being affected by deoxygenation and expansion of anoxia. The excess organic matter 150 
available fueled microbial sulfate reduction (MSR) and ultimately increased pyrite burial as MSR-151 
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produced H2S reacted with reactive iron minerals in sulfidic environments. The burial fractions of 152 
reduced C and S were preferentially enriched in 12C and 32S due to fractionations associated with 153 
biological processes, and the remaining seawater was enriched in 13C and 34S. Euxinic conditions possibly 154 
expanded into a greater portion of the oceans at the onset of the Lau CIE as denoted by positive 155 
excursions in 34Spyr and 34SCAS (Fig. 2B, 3B). This onset of euxinia temporally coincides with the 156 
second wave of extinctions that affected planktic groups (i.e., ~75% loss in biodiversity of graptolites) 157 
and the rising limb of the CIE (Fig. 4A). Phytoplankton (i.e. acritarchs) actually increased in abundance 158 
immediately prior to and during the rising limb of the Lau CIE (Stricanne et al., 2006) as reducing 159 
conditions expanded, likely due to a lack of predation as zooplankton and larger marine taxa experienced 160 
earlier extinctions. Acritarchs finally declined with an associated ~95% drop in abundance during the 161 
peak of the CIE just before the global extent of euxinia reached a maximum, which is inferred by the 162 
rising limb nearing the peak of the 34SCAS values. 163 

In both the Gotland and Latvia δ34S records, peak excursion values post-date the corresponding 164 
peak δ13C values in the Lau CIE. The offset in these records suggests that organic carbon burial fueled 165 
high MSR rates, but may also be related to differences in oceanic residence times and/or continued pyrite 166 
burial post-CIE (e.g., Owens et al., 2013). The falling limb of the δ34Spyr record also lags the falling limb 167 
of the CIE, perhaps indicating the continued consumption of previously exported organic carbon after the 168 
termination of the burial event, which is corroborated by Tl isotopes not returning to baseline values (cf., 169 
Them et al., 2018). Regardless of the C-S offset and isotopic magnitudes, these large-magnitude S-isotope 170 
excursions that span ~ 1 Myr require a reduction in the marine sulfate reservoir, which was likely 171 
significantly lower than modern seawater (e.g., Gill et al., 2011).   172 

 173 
CONCLUSIONS 174 

The integrated paleontological and geochemical records suggest a stepwise extinction for the 175 
LKE was associated with the progressive expansion of reducing marine conditions. Increased anoxic and 176 
euxinic conditions likely shoaled from deeper shelf/slope areas to shallow platform settings during the 177 
Lau CIE. Our Tl-isotope data provide detailed evidence for expanding marine deoxygenation in the 178 
interval that preceded the Lau CIE, coinciding with the initial phase of extinction. This was followed by 179 
global C- and S-isotope perturbations that coincide with continued marine extinction. This study 180 
highlights the role of oxygen depletion (i.e., non-sulfidic anoxia) near the onset of biotic change and 181 
provides a mechanism for the previously documented stepwise extinction event. The progressive 182 
expansion of oceanic anoxia leading to euxinia is a potential mechanism for extinction due to significant 183 
stress on marine ecosystems (Meyer and Kump, 2008), which might be similar to at least two Mesozoic 184 
OAEs. More broadly, this study indicates that global marine redox dynamics were a major driver in the 185 
evolution of the late Silurian biosphere, and potentially other Paleozoic biotic crises. The multi-proxy 186 
redox approach provides a more holistic global view of redox changes and supports recent evidence 187 
suggesting prevelant low oxygen conditions in the upper oceans of the Paleozoic (Lu et al., 2018). 188 
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 292 
Figure 1. Paleogeographic reconstruction of the late Silurian Baltic Basin region (modified from Blakey 293 
Europe Series, Silurian ca. 425 Ma; https://www2.nau.edu/rcb7/). Locations of the Gotland, Sweden 294 
localities and the Latvian Priekule-20 drill core are marked by yellow stars. Detailed discussion of 295 
correlation and biostratigraphy of the two localities can be found in the GSA Data Repository1. 296 
 297 

 298 
 299 
Figure 2. Geochemical data from the Priekule-20 drill core, near Priekule, Latvia. Graptolite biozones 300 
after Kaljo et al. (1997). The Lau/Kozlowskii extinction interval is shaded in yellow. Panel A: Carbonate 301 
and organic carbon isotope data. Panel B: Pyrite sulfur isotope data. Panel C: Manganese concentration 302 
data with the dashed line representing average crustal values. Panel D: Thallium isotope data plotted with 303 
2 error bars. 304 
 305 
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 306 
  307 
Figure 3: Geochemical data from the Uddvide-1 drill core and nearby outcrops on Gotland, Sweden. 308 
Conodont biozones after Jeppsson (2005). The Lau/Kozlowskii extinction interval is shaded in yellow. 309 
Panel A: Carbonate and organic carbon isotope data. Panel B: Carbonate associated sulfate (CAS) sulfur 310 
isotope data.  311 
 312 

 313 
 314 
Figure 4: Summary figure of biotic, geochemical, and oceanographic events in the late Silurian that 315 
culminated in the LKE and Lau CIE. (A) Biotic data for acritarch (Stricanne et al., 2006), graptolite 316 
(Manda et al., 2012), conodont (Calner, 2008), fish (Eriksson et al., 2009), and brachiopod (Talent et al., 317 
1993) extinctions. (B) Carbonate carbon isotope record. (C) Thallium isotope record indicating increased 318 
oceanic anoxia. (D) CAS sulfur isotope record suggesting increased euxinia; dashed portions are 319 
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expected, but currently unconstrained trends. € Depiction of the biotic and marine redox changes 320 
throughout the Gorstian and Ludfordian. Stars mark ~ positions of U-Pb zircon dates on K-bentonite ash 321 
beds from Podolia, Ukraine (Cramer et al., 2015). Construction of this figure detailed in the GSA Data 322 
Repository1. 323 
 324 
1GSA Data Repository item 201Xxxx, including analytical methods, geochemical data, and cross plots, is 325 
available online at www.geosociety.org/pubs/ft20XX.htm, or on request from editing@geosociety.org or 326 
Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 327 


