LUND UNIVERSITY

TuneR: A Framework for Tuning Software Engineering Tools with Hands-on

Instructions in R

Borg, Markus

Published in:
Journal of software: Evolution and Process

DOI:
10.1002/smr.1784

2016
Document Version:
Early version, also known as pre-print

Link to publication

Citation for published version (APA):

Borg, M. (2016). TuneR: A Framework for Tuning Software Engineering Tools with Hands-on Instructions in R.

Journal of software: Evolution and Process, 28(6), 427-459. https://doi.org/10.1002/smr.1784

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1002/smr.1784
https://portal.research.lu.se/en/publications/84b67024-154d-4c4b-a148-9d36aa98d090
https://doi.org/10.1002/smr.1784

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2015; 00:1-34
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

TuneR: A Framework for Tuning Software Engineering Tools with
Hands-On Instructions in R

Markus Borg*

Dept. of Computer Science, Lund University, Sweden

SUMMARY

Numerous tools automating various aspects of software engineering have been developed, and many of the
tools are highly configurable through parameters. Understanding the parameters of advanced tools often
requires deep understanding of complex algorithms. Unfortunately, sub-optimal parameter settings limit the
performance of tools and hinder industrial adaptation, but still few studies address the challenge of tuning
software engineering tools. We present TuneR, an experiment framework that supports finding feasible
parameter settings using empirical methods. The framework is accompanied by practical guidelines of how
to use R to analyze the experimental outcome. As a proof-of-concept, we apply TuneR to tune ImpRec, a
recommendation system for change impact analysis in a software system that has evolved for more than two
decades. Compared to the output from the default setting, we report a 20.9% improvement in the response
variable reflecting recommendation accuracy. Moreover, TuneR reveals insights into the interaction among
parameters, as well as non-linear effects. TuneR is easy to use, thus the framework has potential to support
tuning of software engineering tools in both academia and industry. Copyright (©) 2015 John Wiley & Sons,
Ltd.

Received ...

KEY WORDS: software engineering tools; parameter tuning; experiment framework; empirical software
engineering; change impact analysis

Tools that increase the level of automation in software engineering are often highly configurable
through parameters. Examples of state-of-the-art tools that can be configured for a particular
operational setting include EvoSuite for automatic test suite generation [1], FindBugs for static
code analysis [2], and MyLyn, a task-oriented recommendation system in the Eclipse IDE [3].
However, the performance of these tools, as well as other tools providing decision support, generally
depends strongly on the parameter setting used [4], often more so than the choice of the underlying
algorithm [5]. The best parameter setting depends on the specific development context, and even
within the same context it might change over time.

Finding feasible parameter settings is not an easy task. Automated tools in software engineering
often implement advanced techniques such as genetic algorithms, dimensionality reduction,
Information Retrieval (IR), and Machine Learning (ML). Numerous studies have explored how tool
performance can be improved by tailoring algorithms and tuning parameters, for example in test data
generation [6], test case selection [7], fault localization [8, 9], requirements classification [10], and
trace recovery [11, 12]. We have previously published a systematic mapping study highlighting the
data dependency of IR-based trace recovery tools [13], and Hall et al. found the same phenomenon
in a systematic literature review on bug prediction, stating that “models perform the best where
the right technique has been selected for the right data, and these techniques have been tuned for
the model rather than relying on default tool parameters” [14]. However, the research community

TE-mail: markus.borg@cs.lth.se
*Correspondence to: Markus Borg, Dept. of Computer Science, Lund University, Box 118, SE-221 00, Lund, Sweden

Copyright © 2015 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]

2 M. BORG

cannot expect industry practitioners to have the deep knowledge required to fully understand the
settings of advanced tools.

Feasible tuning of parameter settings is critical for successful transfer of Software Engineering
(SE) tools from academia to industry. Unfortunately, apart from some work on Search-Based
Software Engineering (SBSE) [15, 16] there are few software engineering publications that
specifically address parameter tuning. One could argue that academia should develop state-of-the-
art tools, and that the actual deployment in different organizations is simply a matter of engineering.
However, we argue that practical guidelines for tuning SE tools, i.e., finding feasible parameter
settings, are needed to support adaptation to industrial practice.

In this paper we discuss ImpRec [17], a Recommendation System for Software Engineering
(RSSE) [18] developed to support Change Impact Analysis (CIA) in a company developing safety-
critical software systems. ImpRec implements ideas from the area of Mining Software Repositories
(MSR) to establish a semantic network of dependencies, and uses state-of-the-art IR to identify
textually similar nodes in the network. The tool combines the semantic network and the IR system
to recommend artifacts that are potentially impacted by an incoming issue report, and presents
a ranked list to the developer. During development of the tool, we had to make several detailed
design decisions, e.g., “how should distant artifacts in the system under study be penalized in the
ranking function?” and “how should we weigh different artifact features in the ranking function to
best reflect the confidence of the recommendations?”. Answering such questions at design time is
not easy. Instead we parametrized several decisions, a common solution that effectively postpones
decisions to the tool user. We have deployed an early version of ImpRec in two pilot development
teams to get feedback [19]. However, we did not want to force the study participants to consider
different parameter settings; instead we deployed ImpRec with a default setting based on our
experiences. The question remains however; is the default setting close to the optimum?

We see a need for tuning guidelines for SE tools, to help practitioners and applied researchers
to go beyond trial and pick-a-winner approaches. We suspect that three sub-optimal tuning
strategies [20, pp. 211][21, pp. 4] dominate tuning of SE tools: 1) ad hoc tuning, 2) quasi-exhaustive
search, and 3) Change One Parameter at a Time (COST) analysis. Ad hoc tuning might be a quick
way to reach a setting, but non-systematic tuning increases the risk of deploying tools that do not
reach their potential, therefore not being disseminated properly in industry. Quasi-exhaustive search
might be possible if the evaluation does not require too much execution time, but it does not provide
much insight in the parameters at play unless the output is properly analyzed. COST analysis is a
systematic approach to tuning, but does not consider the effect of interaction between parameters.

We present TuneR, a framework for tuning parameters in automated software engineering tools.
The framework consists of three phases: 1) Prepare Experiments, 2) Conduct Screening, and 3)
Response Surface Methodology. The essence of the framework lies in space-filling and factorial
design, established methods to structure experiments in Design of Computer Experiments (DoCE)
and Design of Experiments (DoE), respectively. As a proof-of-concept, we apply TuneR to find a
feasible parameter setting for ImpRec. For each step in TuneR, we present hands-on instructions
of how to conduct the corresponding analysis using various packages for R [22], and the raw
data is available on the companion website*. Using TuneR we increase the accuracy of ImpRec’s
recommendations, with regard to the selected response variable, by 20.9%. We also validate the
result by comparing the increased response to the outcome of a more exhaustive space-filling design.

The rest of this paper is structured as follows: Section 1 introduces the fundamental concepts
in DoE and DoCE, and discusses how tuning of SE tools is different. Section 1.3 presents related
work on finding feasible parameter setting for SE tools. In Section 2 we introduce ImpRec, the
target of our tuning experiments. The backbone of the paper, the extensive presentation of TuneR,
interweaved with the proof-of-concept tuning of ImpRec, is found in Section 3. In Section 4,
we report from the exhaustive experiment on ImpRec parameter settings. Section 5 discusses our
results, and presents the main threats to validity. Finally, Section 6 concludes the paper.

*http://serg.cs.lth.se/research/experiment-packages/tuner/

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 3

1. BACKGROUND

This section introduces design of experiments, both of physical and simulated nature, and presents
the terminology involved. Then we discuss how tuning of automated SE tools differ from traditional
experiments. We conclude the section by reporting related work on experimental frameworks and
parameter tuning in software engineering.

1.1. Design of Experiments

Design of Experiments (DoE) is a branch of applied statistics that deals with planning and analyzing
controlled tests to evaluate the factors that affect the output of a process [21]. DoE is a mature
research field, a key component in the scientific method, and it has proven useful for numerous
engineering applications [23]. Also, DoE is powerful in commercialization, e.g., turning research
prototypes into mature products ready for market release [24]. DoE is used to answer questions such
as “what are the key factors at play in a process?”, “how do the factors interact?”, and “what setting
gives the best output?”’.

We continue by defining the fundamental experimental terminology that is used throughout
the paper. For a complete presentation of the area we refer to one of the available textbooks,
e.g., [21], [25], and [20]. An experiment is a series of experimental runs in which changes are made
to input variables of a system so that the experimenter can observe the output response. The input
variables are called factors, and they can be either design factors or nuisance factors. Each design
factor can be set to a specific level within a certain range. The nuisance factors are of practical
significance for the response, but they are not interesting in the context of the experiment.

Dealing with nuisance factors is at the heart of traditional DoE. Nuisance factors are classified
as controllable, uncontrollable, or noise factors. Controllable nuisance factors can be set by the
experimenter, whereas uncontrollable nuisance factors can be measured but not set. Noise factors
on the other hand can neither be controlled nor measured, and thus require more of the experimenter.

The cornerstones in the experimental design are randomization, replication, and blocking.
Randomized order of the experimental runs is a prerequisite for statistical analysis of the response.
Not randomizing the order would introduce a systematic bias into the responses. Replication means
to conduct a repeated experimental run, independent from the first, thus allowing the experimenter
to estimate the experimental error. Finally, blocking is used to reduce or eliminate the variability
introduced by the nuisance factors. Typically, a block is a set of experimental runs conducted under
relatively similar conditions.

[21, pp. 14] lists five possible goals of applying DoE to a process: 1) factor screening, 2)
optimization, 3) confirmation, 4) discovery, and 5) robustness. Factor screening is generally
conducted to explore or characterize a new process, often aiming at identifying the most important
factors. Optimization is the activity of finding levels for the design factors that produce the best
response. Confirmation involves corroborating that a process behaves in line with existing theory.
Discovery is a type of experiments related to factor screening, but the aim is to systematically
explore how changes to the process affect the response. Finally, an experiment with a robustness
goal tries to identify under which conditions the response substantially deteriorates. As the
goal of the experiments conducted in this paper is to find the best response for an automated
software engineering tool by tuning parameters, i.e., optimization, we focus the rest of this section
accordingly.

The traditional DoE approach to optimize a process involves three main steps: 1) factor screening
to narrow down the number of factors, 2) using factorial design to study the response of all
combinations of factors, and 3) applying Response Surface Methodology (RSM) to iteratively
change the setting toward an optimal response [26]. Factorial design enables the experimenter to
model the response as a first-order model (considering main effects and interaction effects), while
RSM also introduces a second-order model in the final stage (considering also quadratic effects).

Different experimental designs have been developed to study how design factors affect the
response. The fundamental design in DoE is a factorial experiment, an approach in which design
factors are varied together (instead of one at a time). The basic factorial design evaluates each design

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

4 M. BORG

factor at two levels each, referred to as a 2¥ factorial design. Such a design with two design factors is
represented by a square, where the corners represent the levels to explore in experimental runs (see
A in Fig. 1). When the number of design factors is large, the number of experimental runs required
for a full factorial experiment might not be feasible. In a fractional factorial experiment only a
subset of the experimental runs are conducted. Fractional factorial designs are common in practice,
as all combinations of factors rarely need to be studied. The literature on fractional factorial designs
is extensive, and we refer the interested reader to discussions by [21] and [20].

All points in the experimental designs represent various levels of a design factor. In DoE, all
analysis and model fitting are conducted in coded units instead of in original units. The advantage
is that the model coefficients in coded units are directly comparable, i.e., they are dimensionless and
represent the effect of changing a design factor over a one-unit interval [21, pp. 290]. We use 1 and
—1 to represent the high and low level of a design factor in coded units.

Factorial design is a powerful approach to fit a first-order model to the response. However, as
the response is not necessarily linear, additional experimental runs might be needed. The first step
is typically to add a center point to the factorial design (cf. B in Fig. 1). If quadratic effects are
expected, e.g., indicated by experimental runs at the center point, the curvature needs to be better
characterized. The most popular design for fitting a second-order model to the response is the
Central Composite Design (CCD) [21, pp. 501] (cf. C in Fig. 1). CCD complements the corners
of the factorial design and the center point with axial points. A CCD is called rotatable if all points
are at the same distance from the center point [27, pp. 50].

RSM is a sequential experimental procedure for optimizing a response (for a complete
introduction we refer the reader to Myers’ textbook [26]). In the initial optimization phase, RSM
assumes that we operate at a point far from the optimum condition. To quickly move toward a
more promising region of operation, the experimenter fits a first-order model to the response. Then,
the operating conditions should be iteratively changed along the path of steepest ascent. When the
process reaches the region of the optimum, a second-order model is fitted to enable an analysis
pinpointing the best point.

DoE has been a recommended practice in software engineering for decades. The approaches
have been introduced in well-cited software engineering textbooks and guidelines, e.g., [28], [29],
and [30]. However, tuning an automated software engineering tool differs from traditional
experiments in several aspects, as discussed in the rest of this section.

1.2. Design of Computer Experiments

DoE was developed for experiments in the physical world, but nowadays a significant amount of
experiments are instead conducted as computer simulation models of physical systems, e.g., during
product development [31]. Exploration using computer simulations shares many characteristics of
physical experiments, e.g., each experimental run requires input levels for the design factors and
results in one or more responses that characterize the process under study. However, there are also
important differences between physical experiments and experiments in which the underlying reality
is a mathematical model explored using a computer.

Randomization, replication, and blocking, three fundamental components of DoE, were all
introduced to mitigate the random nature of physical experiments. Computer models on the other
hand, unless programmed otherwise, generate deterministic responses with no random error [32].
While the deterministic responses often originate from highly complex mathematical models,
repeated experimental runs using the same input data generates the same response, i.e., replication is
not required. Neither does the order of the experimental runs need to be randomized, nor is blocking
needed to deal with nuisance factors. Still, assessing the relationship between the design factors
and the response in a computer experiment is not trivial, and both the design and analysis of the
experiment need careful thought.

Design of Computer Experiments (DoCE) focuses on space-filling designs. Evaluating only two
levels of a design factor, as in a 2% factorial design, might not be appropriate when working with
computer models, as it can typically not be assumed that the response is linear [33, pp. 11]. Instead,
interesting phenomena can potentially be found in all regions of the experimental space [21, pp.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 5

A B C
r.\
. . . . e |
DoE . o« e e
N i
. . . . [RN
»
2* Factorial Design FD with Center Point Central Composite Design
D E F
e o ¢ o o - L4
® & o o @ - -*
L)
DOCE * o o 9 0 ° -
¢ e o 0 0 .
¢ e o 0 0 .
Uniform Random Latin Hypercube
G
L I] L J L] []
TuneR |e o o . .
* @ L L] L]

Figure 1. Overview of experimental designs for two factors. Every point represents an experimental setting.

524]. The simplest space-filling designs are uniform design (cf. D in Fig. 1), in which all design
points are spread evenly, and random design (cf. E in Fig. 1). Another basic space-filling design is
the Latin Hypercube design. A two-factor experiment has its experimental points in a latin square
if there is only one point in each row and each column (cf. F in Fig. 1), in line with the solution
to a sudoku puzzle. A Latin Hypercube is the generalization to an arbitrary number of dimensions.
Latin Hypercubes can be combined with randomization to select the specific setting in each cell, as
represented by white points in Figure 1.

Also RSM needs adaptation for successful application to computer experiments. There are caveats
that need to be taken into consideration when transferring RSM from DoE to DoCE. Vining
highlights that the experimenter need some information about starting points, otherwise there is
a considerable risk that RSM ends up in a local optimum [32]. Moreover, bumpy response surfaces,
which computer models might generate, pose difficulties for optimization. Consequently, a starting
point for RSM should be in the neighborhood of an acceptable optimum. Finally, RSM assumes
that there should be only few active design factors. Vining argues that both starting points and the
number of design factors should be evaluated using screening experiments [32], thus screening is
emphasized as a separate phase in TuneR.

1.3. Tuning Automated Software Engineering Tools

DoE evolved to support experiments in the physical world, and DoCE was developed to support
experiments on computer models of physical phenomena. The question whether software is tangible
or intangible is debated from both philosophical and juridical perspectives (see e.g., [34, 35]), but no
matter what, there are differences between software and the entities that are typically explored using
DoE and DoCE. Furthermore, in this paper we are interested in using experiments for tuning* a
special type of software: tools for automated software engineering. We argue that there are two main
underlying differences between experiments conducted to tune automated SE tools and traditional
DoCE. First, automated SE tools are not computer models of an entity in the physical world.
Thus, we often cannot relate the meaning of various parameter settings to characteristics that are
easily comprehensible. In DoCE however, we are more likely to have a pre-understanding of the

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

6 M. BORG

characteristics of the underlying physical phenomenon. Second, a tuned automated SE tool is not
the primary deliverable, but a means to an end. An automated SE tool is intended to either improve
the software under development, or to support the ongoing development process [37]. In DoCE on
the other hand, the simulation experiments tend to be conducted on a computer model of the product
under development or the phenomenon under study.

Consequently, an experimenter attempting to tune an automated SE tool must consider some
aspects that might be less applicable to traditional DoCE. The experimenter should be prepared for
unexpected responses in all regions of the experiment space, due to the lack of connection between
parameters and physical processes. Parameter ranges resulting in feasible responses might exist
anywhere in the experiment space, thus some variant of space-filling designs need to be applied
as in DoCE. However, responses from automated SE tools cannot be expected to behave linearly,
as the response might display sudden steps in the response or asymptotic behavior. While certain
peculiarities might arise also when calibrating physical processes, we believe that they could be
more common when tuning automated SE tools. Other aspects that must be taken into consideration
are execution time and memory consumption. An SE tool is not useful if it cannot deliver its output
in a reasonable amount of time, and it should be able to do so with the memory available in the
computers of the target environment.

When tuning an automated SE tool, we propose that it should be considered a black-box model
(also recommended by [16]). We define a black-box model, inspired by [27, pp. 16], as “a model that
transforms observable input into observable outputs, whereas the values of internal variables and
specific functions of the tool implementation are unobservable”. For any reasonably complex SE
tool, we suspect that fully analyzing how all implementation details affect the response is likely
to be impractical. However, when optimizing a black-box model we need to rely on heuristic
approaches, as we cannot be certain whether an identified optimum is local or global. An alternative
to heuristic approaches is to use metaheuristics (e.g., genetic algorithms, simulated annealing, or
tabu search [38]), but such approaches require extensive tuning themselves.

The main contribution of this paper is TuneR, a heuristic experiment framework for tuning
automated SE tools using R. TuneR uses a space-filling design to screen factors of a black-box SE,
uniform for bounded parameters and a geometric sequence for unbounded parameters as shown in
Figure 1 (G). Once a promising region for the parameter setting has been identified, TuneR attempts
to apply RSM to find a feasible setting. We complement the presentation of TuneR with a hands-on
example of how we used it to tune the RSSE ImpRec.

Several researchers have published papers on parameter tuning in software engineering. As the
internals of many tools for automated SE involve advanced techniques, such as computational
intelligence and machine learning, academic researchers must provide practical guidelines to
support knowledge transfer to industry. In this section we present some of the most related work
on tuning automated SE tools. All tools we discuss implement metaheuristics to some extent,
a challenging topic covered by Birattari in a recent book [39]. He reports that most tuning of
metaheurstics is done by hand and by rules of thumb, showing that such tuning is not only an
issue in SE.

Parameter tuning is fundamental in Search-Based Software Engineering (SBSE) [16, 6]. As SBSE
is based on metaheuristics, its performance is heavily dependent on context-specific parameter
settings. However, some parameters can be set based on previous knowledge about the problem
and the software under test. [6] refer to this as seeding, i.e., “any technique that exploits previous
related knowledge to help solve the testing problem at hand”. They conclude that seeding is valuable
in tuning SBSE tools, and present empirical evidence that the more domain specific information that
can be included in the seeding, the better the performance will be. In line with the recommendations
by Fraser and Arcuri, we emphasize the importance of pre-understanding by including it as a
separate step in TuneR.

*Adjusting parameters of a system is known as calibration when they are part of a physical process, otherwise the activity
is called funing [36].

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 7

[16] recently presented an empirical analysis on how their tool EVOSUITE, a tool for test
data generation, performed using different parameter settings. Based on more than one million
experiments, they show that different settings cause very large variance in the performance
of EVOSUITE, but also that “default” settings presented in the literature result in reasonable
performance. Furthermore, they find that runing EVOSUITE using one dataset and then applying it
on others brings little value, in line with the No Free Lunch Theorem by [40]. Finally, they applied
RSM to tune the parameters of EVOSUITE, but conclude that RSM did not lead to improvements
compared to the default parameter setting. Arcuri and Fraser discuss the unsuccessful outcome of
their attempt at RSM, argue that it should be treated as inconclusive rather than a negative result, and
call for more studies on tuning in SE. Their paper is concluded by general guidelines on how to tune
parameters. However, the recommendations are on a high-level, limited to a warning on over-fitting,
and advice to partition data into non-overlapping training and test sets. The authors also recommend
using 10-fold cross-validation in case only little data is available for tuning purposes. Our work
on TuneR complements the recommendations from Arcuri and Fraser, by providing more detailed
advice on parameter tuning. Also, there is no conflict between the two sets of recommendations, and
it is possible (and recommended) to combine our work with for example 10-fold cross validation.

[41] also worked on parameter tuning in the field of software testing. They developed the software
environment GUIDE to help practitioners use evolutionary computation to solve hard optimization
problems. GUIDE contains both an easy-to-use GUI, and parameter tuning support. GUIDE has
been applied to evolutionary software testing in three companies including Daimler. However, the
parameter tuning offered by GUIDE is aimed for algorithms in the internal evolution engine, and
not for external tools.

[42] highlighted that there are few studies on how to tune tools for feature location using
text retrieval, and argue that it impedes deployment of such tool support. They conducted a
comprehensive study on the effects of different parameter settings when applying feature location
using Latent Dirichlet Allocation (LDA). Their study involved feature location from six open
source software systems, and they particularly discuss configurations related to indexing the source
code. Biggers et al. report that using default LDA settings from the literature on natural language
processing is suboptimal in the context of source code retrieval.

[9] addressed tuning of automated SE tools for fault localization. They also emphasized the
research gap considering tuning of tools, and acknowledged the challenge of finding a feasible
setting for a tool using supervised learning. The paper reports from a large empirical study on 3,172
different classifier configurations, and show that the parameter settings have a significant impact on
the tool performance. Also, Thomas et al. shows that ensemble learning, i.e., combining multiple
classifiers, provides better performance than the best individual classifiers. However, design choices
related to the combination of classifiers also introduce additional parameter settings [43].

[44] discussed different configurations for SE tools supporting trace retrieval, i.e., automated
creation and maintenance of trace links. They propose a machine learning approach, referred to
as Dynamic Trace Configuration (DTC), to search for the optimal configuration during runtime.
Based on experiments with data extracted from three different domains, they show that DTC can
significantly improve the accuracy of their tracing tool. Furthermore, the authors argue that DTC
is easy to apply, thus supporting technology transfer. However, in contrast to TuneR, DTC is
specifically targeting SE tools for trace retrieval.

ImpRec, the tool we use for the proof-of-concept evaluation of TuneR, is a type of automated
SE tool that presents output as a ranked list of recommendations, analogous to well-known IR
systems for web search. Modern search engines apply ranking functions that match the user and
his query with web pages based on hundreds of features, e.g., location, time, search history, query
content, web page title, content, and domain [45]. To combine the features in a way that yields
relevant search hits among the top results, i.e., to tune the feature weighting scheme, Learning-to-
Rank (LtR) is typically used in state-of-the-art web search [46]. LtR is a family of machine learning
approaches to obtain feasible tuning of IR systems [47]. Unfortunately, applying LtR to the ranking
function of ImpRec is not straightforward. The success of learning-to-rank in web search is enabled
by enormous amounts of training data [48], manually annotated for relevance by human raters [49].

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

8 M. BORG

As such amounts of manually annotated training data is not available for ImpRec, and probably not
for other automated SE tools either, TuneR is instead based on empirical experimentation. However,
LtR is gaining attention also in SE, as showed by a recent position paper by [50].

2. IMPREC: AN RSSE FOR AUTOMATED CHANGE IMPACT ANALY SIS

ImpRec is an SE tool that supports navigation among software artifacts [17], tailored for a
development organization in the power and automation sector. The development context is safety-
critical embedded development in the domain of industrial control systems, governed by IEC
61511 [51] and certified to a Safety Integrity Level (SIL) of 2 as defined by IEC 61508 [52]. The
target system has evolved over a long time, the oldest source code was developed in the 1980s.
A typical development project in the organization has a duration of 12-18 months and follows an
iterative stage-gate project management model. The number of developers is in the magnitude of
hundreds, distributed across sites in Europe, Asia and North America.

As specified in IEC 61511 [51], the impact of proposed software changes should be analyzed
before implementation. In the case company, the impact analysis process is integrated with the issue
repository. Before a corrective change is made to resolve an issue report, the developer must store
an impact analysis report as an attachment to the corresponding issue report. As part of the impact
analysis, engineers are required to investigate the impact of a change, and document their findings
in an impact analysis report according to a project specific template. The template is validated by
an external certifying agency, and the impact analysis reports are internally reviewed and externally
assessed during safety audits.

Several questions explicitly ask for trace links [53], i.e., “a specified association between a pair
of artifacts” [54]. The engineer must specify source code that will be modified (with a file-level
granularity), and also which related software artifacts need to be updated to reflect the changes, e.g.,
requirement specifications, design documents, test case descriptions, test scripts and user manuals.
Furthermore, the impact analysis should specify which high-level system requirements cover the
involved features, and which test cases should be executed to verify that the changes are correct,
once implemented in the system. In the target software system, the extensive evolution has created
a complex dependency web of software artifacts, thus the impact analysis is a daunting work task.

ImpRec is an RSSE that enables reuse of knowledge captured from previous impact analyses [53].
Using history mining in the issue repository, a collaboratively created trace link network is
established, referred to as the knowledge base. ImpRec then calculates the centrality measure of
each artifact in the knowledge base. When a developer requests impact recommendations for an
issue report, ImpRec combines IR and network analysis to identify candidate impact. First, Apache
Lucene [55] is used to search for issue reports in the issue repository that are textually similar. Then,
originating from the most similar issue reports, trace links are followed both to related issue reports
and to artifacts that were previously reported as impacted. Each starting point results in a set of
candidate impact (set;). When all sets of candidate impact have been established, the individual
artifacts are given a weight according to a ranking function. Finally, the recommendations are
presented in a ranked list in the ImpRec GUI. For further details on ImpRec, we refer to our previous
publications [17, 19].

This paper presents our efforts to tune four ImpRec parameters, two related to candidate impact
identification, and two dealing with ranking of the candidate impact. Figure 2 presents an overview
of how ImpRec identifies candidate impact, and introduces the parameters START and LEV EL.
By setting the two parameters to high values, ImpRec identifies a large set of candidate impact. To
avoid overwhelming the user with irrelevant recommendations, the artifacts in the set are ranked. As
multiple starting points are used, the same artifact might be identified as potentially impacted several
times, i.e., an artifact can appear in several impact sets. Consequently, the final ranking value of an
individual artifact (ART},) is calculated by summarizing how each set; contributes to the ranking
value:

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 9

LEVEL=2

=~ -," i
L) Issuereport
A 1Areport
~ lIssue—issuelink
~~. IA=Misc. link

Requirement
Il Testspecification
Figure 2. Identification of candidate impact using ImpRec. Two related parameters (with an example setting)

are targeted for tuning: 1) The number of starting points identified using Apache Lucene (ST ART'), and 2)
the maximum number of issue-issue links followed to identify impacted artifacts (LEV EL).

(1)

Z ALPHA x cent, + (1 — ALPHA) * sim,,

Weight(ART,) =
cight() 1+ links « PENALTY

ART,€Eset;

where PENALTY is used to penalize distant artifacts and ALPH A is used to set the relative
importance of textual similarity and the centrality measure. sim, is the similarity score of the
corresponding starting point provided by Apache Lucene, cent, is the centrality measure of art,
in the knowledge base, and links is the number of issue-issue links followed to identify the artifact
(no more than LEV EL — 1). The rest of this paper presents TuneR, and how we used it to tune
START, LEVEL, PENALTY ,and ALPHA.

3. TUNER: AN EXPERIMENT FRAMEWORK AND A HANDS-ON EXAMPLE

This section describes the three phases of TuneR, covering 11 steps. For each step in our framework,
we first describe TuneR in general terms, and then we present a hands-on example of how we tuned
ImpRec. Figure 3 shows an overview of the steps in TuneR.

3.1. Phase 1: Prepare Experiments

Successful experimentation relies on careful planning. The first phase of TuneR consists of four
steps: A) Collect Tuning Dataset, B) Choose Response Metric, C) Identify Parameters and Ranges,
and D) Aggregate Pre-Understanding. All four steps are prerequisites for the subsequent Screening
phase.

3.1.1. A) Collect Tuning Dataset Before any tuning can commence, a dataset that properly
represents the target environment must be collected. The content validity of the dataset refers to
the representativeness of the sample in relation to all data in the target environment [56]. Thus,
to ensure high content validity in tuning experiments, the experimenter must carefully select the
dataset, and possibly also sample from it appropriately, as discussed by [57]. Important decisions
that have to be made at this stage include how old data can be considered valid and whether the data
should be preprocessed in any way. While a complete discussion on data collection is beyond the
scope of TuneR, we capture some of the many discussions on how SE datasets should be sampled
and preprocessed in this section.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOI: 10.1002/smr

10 M. BORG

Phase 1: Prepare Experiments

B. Choose C. Identify D. Aggregate
Tuxﬁcgl:tzts of mefp- Response == Parameters [Pre- ESV:::?E
¢ Metric and Ranges Understanding 9

I

Phase 2: Conduct Screening

A. Design B — Exh Parameter
e rill N . Run N FitLow- | xhaustive » Setting
SEpace_Flllmg Experiment Order Models > Search
xperiment
A
1 Phase 3: Response Surface Methodology
A. Factorial B. Iterate Along C.cCDand D. Evaluate
Designand FO [==Prl Steepest i = Stationary
SO Model .
Model Ascent Point

Figure 3. Overview of TuneR. The three phases are depicted in gray boxes. Dotted arrows show optional
paths.

In many software development projects, the characteristics of both the system under
development [58] and the development process itself [59] vary considerably. If the SE tool is
intended for such a dynamic target context, then it is important that the dataset does not contain
obsolete data. For example, [60] discuss the dangers of using old data when estimating effort in
software development, and the difficulties in knowing when data turns obsolete. [43] show the
practical significance on time locality in automated issue assignment, i.e., how quickly the prediction
accuracy deteriorates with old training data for some projects.

Preprocessing operations, such as data filtering, influence the performance of SE tools. [61]
even warn that variation in preprocessing steps might be a major cause of conclusion instability
when evaluating SE tools. [62] discuss some considerations related to previous work on publicly
available NASA datasets, and conclude that the importance of preprocessing in general has not
been acknowledged enough. Regarding filtering of datasets, [63] show how filtering outliers can
improve prediction of issue resolution times, a finding that has also been confirmed by [64]. Thus,
if the SE tools will be applied to filtered data, then the dataset used for the tuning experiment should
be filtered as well. Another threat to experimentation with tools implementing machine learning is
the dataset shift problem, i.e., the distribution of data in the training set differs from the test set. [65]
discuss how dataset shift relate to conclusion instability in software engineering prediction models,
and presents strategies to alleviate it.

The tuning dataset does not only need to contain valid data, it also needs to contain enough of it. A
recurring approach in SE is to evaluate tools on surrogate data, e.g., studying OSS development and
extrapolating findings to proprietary contexts. Sometimes it is a valid approach, as [66] have shown
in a comparative study of 24 OSS systems and 21 proprietary software systems. They conclude
that the variation among the two categories is as big as between them, and, at least for certain
software metrics, that there often exist OSS systems with characteristics that match proprietary
systems. Several SE experiments use students as subjects, and [67] show that it is a feasible approach
under certain circumstances. However, the validity of experimenting on data collected from student

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 11

Jan 2000 Jul 2010 Jan 2012
Training Set Test Set
L |
jv
= Re@20
W= —_—
ImpRec

Knowledge Base

Figure 4. Composition of the ImpRec tuning dataset into training and test sets. The knowledge base is
established using issue reports from Jan 2000 to Jul 2010. The subsequent issue reports are used to simulate
the ImpRec response, measured in Rc@20.

projects is less clear, as discussed in our previous survey [68]. Another option is to combine data
from various sources, i.e., complementing proprietary data from different contexts. [69] recently
highlighted some risks of this approach, based on a cross-company software maintenance dataset as
an example. They performed a statistical analysis of the dataset, and exemplified how easy it is to
detect spurious relationships between totally independent data.

As ImpRec was developed in close collaboration with industry, and is a tool tailored for a specific
context, the data used for tuning must originate from the same environment. We extracted all
issue reports from the issue repository, representing 12 years of software evolution in the target
organization [17]. As the issue reports are not independent, the internal order must be kept and
we cannot use an experimental design based on cross-validation. Thus, as standard practice in
machine learning evaluation, and emphasized by [16], we split the ordered data into non-overlapping
training and test sets, as presented in Figure 4. The training set was used to establish the knowledge
base, and the test set was used to measure the ImpRec performance. The experimental design
used to tune ImpRec is an example of simulation as presented by [70], i.e., we simulate the
historical inflow of issue reports to measure the ImpRec response. Before commencing the tuning
experiments, we analyzed whether the content of the issue reports had changed significantly over
time. Also, we discussed the evolution of both the software under development, and the development
processes, with engineers in the organization. We concluded that we could use the full dataset for
our experiments, and we chose not to filter the dataset in any way.

The next step in TuneR is to choose what metric to base the tuning on. TuneR is used to
optimize a response with regard to a single metric, as it relies on traditional RSM, thus the
response metric needs to be chosen carefully. Despite mature guidelines like the Goal-Question-
Metric framework [71], the dangers of software measurements have been emphasized by several
researchers [72, 73, 74]. However, we argue that selecting a metric for the response of an SE tool
is a far more reasonable task than measuring the entire software development process based on a
single metric. A developer of an SE tool probably already knows the precise goal of the tool, and
thus should be able to choose or invent a feasible metric. Moreover, if more than one metric is
important to the response, the experimenter can introduce a compound metric, i.e., a combination of
individual metrics. On the other hand, no matter what metric is selected, there is a risk that naively
tuning with regard to the specific metric leads to a sub-optimal outcome, a threat further discussed
in Section 3.3.

Regarding the tuning of ImpRec, we rely on the comprehensive research available on quantitative
IR evaluation, e.g., the TREC conference series and the Cranfield experiments [75]. In line with
general purpose search systems, ImpRec presents a ranked list of candidates for the user to consider.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOI: 10.1002/smr

12 M. BORG

Consequently, it is convenient to measure the quality of the output using established IR measures for
ranked retrieval. The most common way to evaluate the effectiveness of an IR system is to measure
precision and recall. Precision is the fraction of retrieved documents that are relevant, while recall
is the fraction of relevant documents that are retrieved. As there is a trade-off between precision and
recall, they are often reported pairwise. The pairs are typically considered at fixed recall levels (e.g.,
0.1...1.0), or at specific cut-offs of the ranked list (e.g., the top 5, 10, or 20 items) [76].

We assume that a developer is unlikely to browse too many recommendations from ImpRec.
Consequently, we use a cut-off point of 20 to disregard all recommendations below that rank.
While it is twice as many as the standardized page-worth output from search engines, CIA is a
challenging task in which practitioners request additional tool support [77, 19], and thus we assume
that engineers are willing to browse additional search hits. Also, we think that engineers can quickly
filter out the interesting recommendations among the top 20 hits.

Several other measures for evaluating the performance of IR systems have been defined. A
frequent compound measure is the F-score, a harmonized mean of precision and recall. Other
more sophisticated metrics include Mean Average Precision (MAP) and Normalized Discounted
Cumulative Gain (NDCG) [76]. However, for the tuning experiments in this paper, we decide to
optimize the response with regard to recall considering the top-20 results (Rc@20).

3.1.2. C) Identify Parameters and Specify Ranges for Normal Operation The third step of Phase
1 in TuneR concerns identification of parameters to vary during the tuning experiments. While
some parameters might be obvious, maybe as explicit in settings dialogs or configuration files, other
parameters can be harder to identify. Important variation points may be hidden in the implementation
of the SE tool, thus identifying what actually constitutes a meaningful parameter can be challenging.

Once the parameters have been identified, the experimenter needs to decide what levels should
be used. A first step is, in line with standard DoE practice [20, pp. 213], to identify what range
represents “normal operation” for each parameter. Parameter variations within such a range should
be large enough to cause changes in the response, but the range should not cover so distant values
that the fundamental characteristics of the tool are altered. For some parameters, identification of
the normal range is straightforward because of well-defined bounds, e.g., a real value between 0 and
1 or positive integers between 1 and 10. For other parameters, however, it is possible that neither
the bounds nor even the sign is known. Parameters can also be binary or categorical, taking discrete
values [20, pp. 208].

Regarding ImpRec, Section 2 already presented the four parameters ALPHA, PENALTY,
START, and LEV EL. However, also the search engine library Apache Lucene is highly
configurable. But as configuring Lucene is complex, see for example [55, Ch. 2], and since the
default setting yielded useful results in our previous work on issue reports [78], we choose to
consider it as a black box with fixed parameters in this study, i.e., we use the default setting. The
other four parameters of ImpRec on the other hand, do not have any default values, thus we must
continue by specifying ranges for normal operation.

Table I shows how we specify the ranges for normal operation for the four parameters. ALPH A
represents the relative importance between textual similarities and centrality measures, i.e., it is a
bounded real value between O and 1, and we consider the full range normal. ST ART is a positive
integer, there must be at least one starting point, but there is no strict upper limit. We consider
200 to be the upper limit under normal operation, as we suspect larger values to generate imprecise
recommendations and too long response times. LEV EL and PEN ALTY both deal with following
links between issue reports in the knowledge base. Analogous to the argumentation regarding
START, we suspect that assigning LEV EL a too high value might be counter-productive.
LEV EL must be a positive integer, as 1 represents not following any issue-issue links at all.
We decide to consider [1, 10] as the range for LEV E'L under normal operation. PENALTY
downweighs potential impact that has been identified several steps away in the knowledge base, i.e.,
impact with a high level. The parameter can be set to any non-negative number, but we assume that a
value between 0 and 5 represents normal operation. Already the level 5 would make the contribution
of distant issue reports practically zero, see Equation 1.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 13

Table I. The four parameters studied in the tuning experiment, and the values that represent their range for
normal operation.

Parameter Type of range Normal range
ALPHA Non-negative bounded continuous | [0-1]
PENALTY | Non-negative continuous [0-5]

START Positive discrete [1-200]
LEVEL Positive discrete [1-10]

3.1.3. D) Aggregate Pre-Understanding Successful tuning of an SE tool requires deep knowledge.
The experimenter will inevitably learn about the tool in the next two phases of TuneR, but probably
there are already insights before the experimentation commences. In line with the view of [79,
pp- 75], we value this pre-understanding as fundamental to reach deep understanding. The pre-
understanding can provide the experimenter with a shortcut to a feasible setting, as it might suggest
in what region the optimal setting is located. To emphasize this potential, TuneR consists of a
separate step aimed at recapitulating what has already been experienced.

The development of ImpRec was inspired by test-driven development [80], thus we tried
numerous different parameter settings in test cases during development. By exploring different
settings in our trial runs during development, an initial parameter tuning evolved as a by-product of
the tool development. While we performed this experimentation in an ad hoc fashion, we measured
the output with regard to Rc@20, and recorded the results in a structured manner. Recapitulating our
pre-understanding regarding the parameters provides the possibility to later validate the outcome of
the screening in Phase 2 of TuneR.

The ad hoc experiments during development contain results from about 100 trial runs. We
explored ALPH A ranging from 0.1 to 0.9, obtaining the best results for high values. START had
been varied between 3 and 20, and again high values appeared to be a better choice. Finally, we
had explored LEVEL between 3 and 10, and PENALTY between O and 8. Using a high LEVEL
and low PENALTY yielded the best results. Based on our experiences, we deployed ImpRec in
the organization using the following default setting: ALPHA = 0.83, START =17, LEVEL =
7T, PENALTY = 0.2 (discussed in depth in another paper [19]). The default setting yields a
response of Rc@20=0.41875, i.e., about 40% of the true impact is delivered among the top-20
recommendations. We summarize our expectations as follows:

e The ranking function should give higher weights to centrality measures than textual similarity
(0.75 < ALPHA < 1)

Many starting points benefit the identification of impact (ST ART > 15)

Following related cases several steps away from the starting point improves results
(LEVEL > 5)

We expect an interaction between LEV EL and PEN ALTY , i.e., that increasing the number
of levels to follow would make penalizing distant artifacts more important

Completing an experimental run takes about 10-30 s, depending mostly on the value of
START.

Phase 2 in TuneR constitutes three steps related to screening. Screening experiments are
conducted to identify the most important parameters in a specific context [26, pp. 6] [20, pp. 240].
Traditional DoE uses 2 factorial design for screening, using broad values (i.e., high and low values
within the range of normal operation) to calculate main effects and interaction effects. However, as
explained in Section 1.3, space-filling design should be applied when tuning SE tools. The three
screening steps in TuneR are: A) Design Space-Filling Experiment, B) Run Experiment, and C) Fit
Low-Order Models. Phase 2 concludes by identifying a promising region, i.e., a setting that appears
to yield a good response, a region that is used as input to Phase 3.

3.1.4. A) Design a Space-Filling Experiment The first step in Phase 2 in TuneR deals with
designing a space-filling screening experiment. The intention of the screening is not to fully analyze

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

14 M. BORG

how the parameters affect the response, but to complement the less formal pre-understanding. Still,
the screening experiment will consist of multiple runs. As a rule of thumb, [36] approximate that
the number of experimental runs needed in a DoCE screening is ten times the number of parameters
involved.

Several aspects influence the details of the space-filling design, and we discuss four considerations
below. First, parameters of different types (as discussed in Phase 1, Step B) require different
experimental settings. The space of categorical parameters can only be explored by trying all
levels. Bounded parameters on the other hand can be explored using uniform space-filling designs
as presented in Section 1.2. Unbounded parameters however, at least when the range of normal
operation is unknown, requires the experimenter to select values using other approaches. Second,
our pre-understanding from Phase 1, Step D might suggest that some parameters are worth to
study using more fine-granular values than others. In such cases, the pre-understanding has already
contributed with a preliminary sensitivity analysis [81, pp. 189], and the design should be adjusted
accordingly. Third, the time needed to perform the experiments limits the number of experimental
runs, in line with discussions on search budget in SBSE [82]. Certain parameter settings might
require longer execution times than others, and thus require a disproportional amount of the search
budget. Fourth, there might be known constraints at play, forcing the experimenter to avoid certain
parameter values. This phenomenon is in line with the discussion on unsafe settings in DoE [20, pp.
254].

Unless the considerations above suggest special treatment, we propose the following rules-of-
thumb as a starting point:

e Restrict the search budget for the screening experiment to a maximum of 48 h, i.e., it should
not require more than a weekend to execute.

e Use the search budget to explore the parameters evenly, i.e., for an SE tool with ¢ parameters,
and the search budget allows n experimental runs, use v/n values for each parameter.

e Apply a uniform design for bounded parameters, i.e., spread the parameter values evenly.

e Use a geometric series of values for unbounded parameters, e.g., for integer parameters
explore values 2¢, i =0, 1, 2, 3, 4 ...

When screening the parameters of ImpRec, we want to finish the experimental runs between two
workdays (4 PM to 8 AM, 16 h) to enable an analysis of the results on the second day. Based on our
pre-understanding, we predict that on average four experimental runs can be completed per minute,
thus about 3,840 experimental runs can be completed within the 16 h search budget. As we have
four parameters, we can evaluate about /3, 840 ~ 7.9 values per parameter, i.e., 7 rounded down.

Table II shows the values we choose for screening the parameters of ImpRec. ALPHA is a
relative weighting parameter between 0 and 1. We use a uniform design to screen ALPH A, but
do not pick the boundary values to avoid divisions by zero. PENALTY is a positive continuous
variable with no upper limit, and we decide to evaluate several magnitudes of values. A penalty of 8
means that the contribution of distant artifacts to the ranking function is close to zero, thus we do not
need to try higher values. START and LEV E L are both positive discrete parameters, both dealing
with how many impact candidates should be considered by the ranking function. Furthermore, our
pre-understanding shows that the running time is proportional to the value of START. As we do
not know how high values of ST ART are feasible, we choose to evaluate up to 512, a value that
represents about 10% of the full dataset. Exploring such high values for LEV E'L does not make
sense, as there are no such long chains of issue reports. Consequently, we limit LEV EL to 64,
already a high number. In total, this experimental design, constituting 3,430 runs, appears to be
within the available search budget.

When the design of the screening experiment is ready, the next step is to run the experiment.
To enable execution of thousands of experimental runs, a stable experiment framework for
automatic execution must be developed. Several workbenches are available that enable reproducible
experiments, e.g., frameworks such as Weka [83] and RapidMiner [84] for general purpose machine
learning and data mining, and SE specific efforts such as the TraceLab workbench [85] for
traceability experiments, and the more general experimental Software Engineering Environment

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 15

Table II. Screening design for the four parameters ALPHA, PENALTY, START, and LEVEL.

Parameter #Levels | Values

ALPHA 7 0.01,0.17, 0.33, 0.5, 0.67, 0.83, 0.99
PENALTY |7 0.01,0.1,0.5,1,2,4,8

START 10 1,2,4,8,16, 32, 64, 128, 256, 512
LEVEL 7 1,2,4,8, 16,32, 64

(eSSE) [86]. Furthermore, the results should be automatically documented as the experimental runs
are completed, in a structured format that supports subsequent analysis.

We implement a feature in an experimental version of ImpRec that allows us to execute a
sequence of experimental runs. Also, we implement an evaluation feature that compares the ImpRec
output to a ‘gold standard’ (see the ‘static validation’ in our parallel publication [19] for a detailed
description), and calculates established IR measures, e.g., precision, recall, and MAP at different
cut-off levels. Finally, we print the results of each experimental run as a separate row in a file of
Comma Separated Values (CSV). Listing 1 shows an excerpt of the resulting csv-file, generated
from our screening experiment. The first four columns show the parameter values, and the final
column is the response measured in Rc@20.

Listing 1: screening.csv generated from the ImpRec screening experiment.

alpha, penalty, start, level, resp
0.01, 0.01, 1, 1, 0.059375

0.01, 0.01, 1, 2, 0.078125

0.01, 0.01, 1, 4, 0.1125

0.01, 0.01, 1, 8, 0.115625

0.01, 0.01, 1, 16, 0.115625

(3,420 additional rows)

0.99, 8, 512, 4, 0.346875
0.99, 8, 512, 8, 0.315625
0.99, 8, 512, 16, 0.31875
0.99, 8, 512, 32, 0.321875
0.99, 8, 512, 64, 0.328125

3.1.5. C) Fit Low-order Polynomial Models The final step in Phase 2 of TuneR involves analyzing
the results from the screening experiment. A recurring observation in DoE is that only a few factors
dominate the response, giving rise to well-known principles such as the ‘80-20 rule’ and ‘Occam’s
razor’ [87, pp. 157]. In this step, the goal is to find the simplest polynomial model that can be used to
explain the observed response. If neither a first nor second-order polynomial model (i.e., linear and
quadratic effects plus two-way interactions) fits the observations from the screening experiment, the
response surface is complex. Modelling a complex response surfaces is beyond the scope of TuneR,
as it requires advanced techniques such as neural networks [26, pp. 446], splines, or kriging [88].
If low-order polynomial models do not fit the response, TuneR instead relies on quasi-exhaustive
space-filling designs (see Fig. 3). We discuss this further in Section 4, where we use exhaustive
search to validate the result of the ImpRec tuning using TuneR.

When a low-order polynomial model has been fit, it might be possible to simplify it by removing
parameters that do not influence the response much. The idea is that removal of irrelevant and noisy
variables should improve the model. Note, however, that this process known as subset selection in
linear regression, has been widely debated among statisticians, referred to as “fishing expeditions”
and other derogatory terms (see for example discussions by [89] and [90, pp. 8]). Still, when tuning
an SE tool with a multitude of parameters, reducing the number of factors might be a necessary step
for computational reasons. Moreover, working with a reduced set of parameters might reduce the
risk of overfitting [91]. A standard approach is stepwise backward elimination [92, pp. 336], i.e., to
iteratively remove parameters until all that remain have a significant effect on the response. While
parameters with high p-values are candidates for removal [93, pp. 277], all such operations should

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

ORI W —

16 M. BORG

be done with careful consideration. We recommend visualizing the data (cf. Fig. 5 and 6), and trying
to understand why the screening experiment resulted in the response. Also, note that any parameter
involved in interaction or quadratic effects must be kept.

To fit low-order polynomial models for ImpRec’s response surface, we use the R package
rsm [94], and the package visreg [95] to visualize the results. Assuming that screening.csv has
been loaded to screening, Listing 2 and 3 fit a first-order and second-order polynomial model,
respectively.

Listing 2: Fitting a first-order polynomial model with rsm [94]. The results are truncated.

> FO_model <— rsm(resp ~ FO(alpha, penalty, start, level), data=screening)

> summary (FO_model)

Call:

rsm(formula = resp ~ FO(alpha, penalty, start, level), data = screening)
Estimate Std. Error t value Pr(>|t])

(Intercept) 2.4976e—01 4.2850e—03 58.2855 <2e—16 *x*x

alpha 4.9432e—-02 5.7393e—-03 8.6129 <2e—16 *x*x

penalty 8.8721e—04 7.0248e—04 1.2630 0.2067

start 1.2453e—04 1.2052e—-05 10.3327 <2e—16 *x*x

level 6.9603e—05 8.8805e—05 0.7838 0.4332

Signif. codes: 0 ’xxx’ 0.001 ’xx> 0.01 ’x” 0.05 *.” 0.1 > 1

Multiple R—squared: 0.05076, Adjusted R—squared: 0.04965

F—statistic: 45.79 on 4 and 3425 DF, p—value: < 2.2e¢—16

Analysis of Variance Table

Response: resp

Df Sum Sq Mean Sq F value Pr(>F)
FO(alpha, penalty, start, level) 4 2.234 0.55859 45.789 < 2.2e-16
Residuals 3425 41.782 0.01220
Lack of fit 3425 41.782 0.01220

Pure error

0

0.000

The second order model fits the response better than the first order model; the lack of fit sum
of squares is 29.1841 versus 41.782 (cf. Listing 3:62 and Listing 2:25). Moreover, Listing 3:44-
47 show that the parameters PENALTY, START, and LEV EL have a quadratic effect on
the response. Also, interaction effects are significant, as shown by alpha:start, penalty:start, and
start:level (cf. Listing 3:38-43). Figure 5 visualizes* how the second order model fits the response,
divided into the four parameters. As each data point represents an experimental run, we conclude
that there is a large spread in the response. For most individual parameter values, there are
experimental runs that yield an Rc@20 between approximately 0.1 and 0.4. Also, in line with
Listing 3, we see that increasing ST ART appears to improve the response, but the second order
model does not fit particularly well.

Listing 3: Fitting a second-order polynomial model with rsm [94]. The results are truncated.

> SO_model <— rsm(resp ~ SO(alpha, penalty, start, level), data=screening)

> summary (SO_model)

Call :

rsm(formula = resp ~ SO(alpha, penalty, start, level), data = screening)
Estimate Std. Error t value Pr(>|t])

(Intercept) 2.1502e—-01 6.1700e—03 34.8493 < 2.2e—16 *xx

alpha 2.6868e—02 1.8997e-02 1.4143 0.1573604

penalty 4.1253e—03 2.4574e-03 1.6787 0.0932935 .

start 1.2814e—03 4.1704e—-05 30.7247 < 2.2e—16 =*xx

level 1.2045e—-03 3.2053e—-04 3.7579 0.0001742 sx*=x

alpha:penalty —4.5460e—04 1.7894e—03 —0.2541 0.7994640

alpha:start 3.3458e—-04 3.0698e—05 10.8993 < 2.2e—16 *xx

*R command: > visreg(SO_model)

Copyright © 2015 John Wiley & Sons, Ltd.
Prepared using smrauth.cls

J. Softw. Evol. and Proc. (2015)

DOI: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS

17

alpha:level 5.5608e—05 2.2620e—-04 0.2458 0.8058257
penalty:start 3.3783e—06 3.7573e—06 0.8991 0.3686588
penalty :level 6.7390e—05 2.7687e¢—05 2.4340 0.0149839 =«
start:level —4.9485e—06 4.7499e—-07 —10.4182 < 2.2e—16 =xx
alpha”2 —1.1659e—02 1.7181e—02 —0.6786 0.4974522
penalty "2 —5.8485e—-04 2.7071e—04 —2.1604 0.0308128 =
start”2 —2.5851e—06 7.3816e—08 —35.0212 < 2.2e—16 sxxx
level "2 —1.2702e—05 4.4041e—06 —2.8840 0.0039508 =xx
Signif. codes: 0 ’xxx’ 0.001 ’xx 0.01 ’x” 0.05 ’.” 0.1 > 1
Multiple R—squared: 0.337, Adjusted R—squared: 0.3342

F—statistic : 124 on 14 and 3415 DF,

Analysis of Variance Table

p—value: < 2.2e—16

Response: resp

Df Sum Sq
FO(alpha, penalty, start, level) 2.2343
TWI(alpha, penalty, start, level) 2.0014
PQ(alpha, penalty, start, level) 4 10.5963
Residuals 3415 29.1841
Lack of fit 3415 29.1841
Pure error 0.0000

Mean Sq F
0.55859
0.33356
2.64907
0.00855
0.00855

value Pr(>F)

65.363 < 2.2e-16
39.032 < 2.2e-16
309.983 < 2.2e-16

Listing 3 suggests that all four parameters are important when modelling the response surface.
The statistical significance of the two parameters ST ART and LEV EL is stronger than for
ALPHAand PENALTY . However, ALPH A is involved in a highly significant interaction effect
(alpha:start in Listing 3:39). Also, the quadratic effect of PEN ALTY on the response is significant
(penalty™2 in Listing 3:45). Consequently, we do not simplify the second order model of the ImpRec
response by reducing the number of parameters.

Copyright © 2015 John Wiley & Sons, Ltd.
Prepared using smrauth.cls

J. Softw. Evol. and Proc. (2015)
DOI: 10.1002/smr

18 M. BORG

| N ;
0.4 - 0.4 7 |
_—

@ 03 = 03
= © — ———]
2 S
8 i ' Qo
¥~ 024 — 02

0.1 - ' o1

0 2 4 6 8
penalty
04
3
=
D 03
———
> | et
=
Y
02
! !
01 4 o - i
T T T T T T T T T T T T T
0 100 200 300 400 500 0 10 20 30 40 50 60
start level

Figure 5. Visualization of the second order model using visreg [95].

Figure 6 displays boxplots of the response per parameter, generated with ggplot2* [96]. Based on
the boxplots, we decide that a promising region for further tuning appears to involve high ALPH A
values, ST ART between 32 and 128, and LEV EL = 4. The parameter value of PENALTY
however, does not matter much, as long as it is not too small, thus we consider values around
1 promising. An experimental run with the setting ALPHA = 0.9, PENALTY =1,START =
64, LEV EL = 4 gives a response of Rc@20=0.46875, compared to 0.41875 for the default setting.
Thus, this 11.9% increase of the response confirms the choice of a promising region.

We summarize the results from screening the ImpRec parameters as follows:

e Centrality values of artifacts are more important than textual similarity when predicting
impact (ALPH A close to 1). Thus, previously impacted artifacts (i.e., artifacts with high
centrality in the network) are likely to be impacted again.

e The low accuracy of the textual similarity is also reflected by the high parameter value of
ST ART'; many starting points should be used as compensation.

e Regarding LEV EL and PEN ALTY we observe that following a handful of issue-issue links
is beneficial, trying even broader searches however is not worthwhile.

*R commands for the ST ART parameter:
> start_box < — ggplot(screening, aes(factor(start), resp))
> start_box + geom_boxzplot()

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOTI: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 19

0.5- 0.5
04-‘ ‘ ‘ ‘ ‘ 0.4
003" 503"
w w
o o
0.2- 0.2
0.1- 0.1-

001 047 033 05 067 083 099 001 01 05 1 2 4 8

factor(alpha) factor(penalty)
0.5- 0.5
. \
& .
af? N 003
(/2] . w
o i 1)
t

0.2- | 0.2

owim 0.1
1 2 4

8 16 32 64 128 256 512 1 4 8 16 32 64
factor(start) factor(level)

o
N -

Figure 6. Value of the response for different parameter settings. Note that the x-axis is only linear in the first
plot (ALPH A).

e Also, severely penalizing distant artifacts does not benefit the approach, i.e., most related
issues are meaningful to consider.

e A promising region, i.e., a suitable start setting for Phase 3, appears to be around ALPHA =
0.9, PENALTY =1,START =64, LEVEL = 4.

3.2. Phase 3: Apply Response Surface Methodology

The third phase in TuneR uses RSM to identify the optimal setting. The first part of RSM is an
iterative process. We use a factorial design to fit a first-order model to the response surface, and
then gradually modify the settings along the most promising direction, i.e., the path of the steepest
ascent. Then, once further changes along that path do not yield improved responses, the intention is
to pin-point the optimal setting in the vicinity. The pin-pointing is based on analyzing the stationary
points of a second-order fit of that particular region of the response surface, determined by applying
an experiment using CCD (cf. Fig. 1). We describe Step A and B (i.e., the iterative part) together in
the following subsection, and present Step C and D in the subsequent subsections.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOTI: 10.1002/smr

20 M. BORG

When applying RSM, an important aspect is to use an appropriate coding transformation. The
way the data are coded affects the results of the steepest ascent analysis. If all coded variables in
the experiment vary over the same range, typically -1 and 1, each parameter gets an equal share in
potentially determining the steepest ascent path [94]. for example, unless the scaling factors are all
equal, the path of steepest ascent obtained by fitting a model to the raw predictor values will differ
from the path obtained in the coded units, decoded to the original scale.

Iteration of the first two steps is intended to quickly move toward the optimum. To find the
direction, we design an experiment using 2* factorial design and fit a first-order model of the
response surface. The factorial design uses the outcome from Phase 2 as the center point, and for
each parameter, we select a high value and a low value, referred to as the factorial range [20].
Selecting a feasible factorial range is one of the major challenges in RSM, another one is to select
an appropriate step size.

Selecting a suitable factorial range for a computer experiment is a bit different than for a physical
experiment. In traditional DoE, a too narrow range generates a factorial experiment dominated by
noise. While noise is not a threat in experiments aimed at tuning SE tools, a too narrow range will
instead not show any difference in the response at all. On the other hand, the range can also be
too broad, as the response surface might then be generalized too much. [20] reports that selecting
extreme values is a common mistake in DoE, and suggests selecting 25% of the extreme range as a
rule-of-thumb. Since the number of tuning experiments typically is not limited in the same way as
physical experiments, it is possible to gradually increase the factorial range until there is a difference
in the response.

The factorial experiment yields the direction of the steepest ascent, but the next question is how
much to adjust the setting in that direction, i.e., the step size. Again we want the difference to be
large enough to cause a change in the response in a reasonable amount of experiments, but not so
large that we move over an optimum. A good decision relies on the experimenter’s understanding
of the parameters involved in the SE tool. Otherwise, a rule-of-thumb is to choose a step size equal
to the value of the largest coefficient describing the direction of the steepest ascent [97].

For tuning ImpRec, we decide to fit a first-order model in the region: ALPHA =
0.94+0.05, PENALTY =1+0.5,START =64+ 4, LEVEL = 4+ 1. Our experience from the
screening experiments suggests that these levels should result in a measurable change in the
response. Table 11T shows the 2 factorial design we apply, and the results from the 16 experimental
runs. We report the experimental runs in Yates’ standard order according to the DoE convention,
i.e., starting with low values, and then alternating the sign of the first variable the fastest, and the
last variable the slowest [21, pp. 237]. Finally, we store the table, except the coded variables, in
rsml_factorial.csv. Listing 4 shows the analysis of the results, conducted in coded variables. The
standard coding transformation from a natural variable v to a coded variable v¢ in DoE is [20, pp.
245]:

vy, — center,,

A7 @)

Ve =

where A, is the factorial range of v,, and center, is its center point. For the four parameters of
ImpRec, the coding is presented in Listing 4 on line 2.

Listing 4 reveals that 1 and z3 (i.e., ALPH A and ST ART in coded values) affect the response
the most. As visualizing the response surface in more than two variables is difficult, Figure 7 shows
the contour plot* wrt. 21 and x3, generated using visreg [95]. Our experiments suggest that higher
responses can be achieved if we increase ALPH A and START, and decrease PENALTY and
LEV EL. We decide to use the step size provided by the direction of the steepest ascent in original
units, as it already constitutes actionable changes to the parameters (cf. Listing 4:95). Table IV
shows the experimental results when gradually changing the ImpRec settings in the direction:
(40.046,—0.0223, +1.338, —0.111). Note that START and LEV EL are integer parameters and
thus rounded off accordingly (highlighted in italic font), and that ALPH A has a maximum value
of 1 (or 0.99 for practical reasons). We observe that the response continuously improves until step

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 21

Table III. First RSM iteration, 2% factorial design for the four parameters ALPHA, PENALTY, START,

and LEVEL.
Coded variables Natural variables
Exp.Run | x1 | x2 | x3 | x4 | ALPHA | PENALTY | START | LEVEL Resp.
1 -1 -1 -1 -1 0.85 0.8 60 3 0.468750
2 1] -11]-11]-1 0.95 0.8 60 3 0.481250
3 11 -1 -1 0.85 1.2 60 3 0.468750
4 1 1 |-1]-1 0.95 1.2 60 3 0.478125
5 -1 -1)1] -1 0.85 0.8 68 3 0.478125
6 1 (-1 1/]-1 0.95 0.8 68 3 0.484375
7 11 1] -1 0.85 1.2 68 3 0.475000
8 1 1 1] -1 0.95 1.2 68 3 0.484375
9 -1 -1 -1 1 0.85 0.8 60 5 0.471875
10 1] -1 -1 1 0.95 0.8 60 5 0.478125
11 -1 -1 1 0.85 1.2 60 5 0.471875
12 1 1 |-11]1 0.95 1.2 60 5 0.478125
13 -1 -1)1 1 0.85 0.8 68 5 0.468750
14 1]1-11]1 1 0.95 0.8 68 5 0.484375
15 -1 1 1 1 0.85 1.2 68 5 0.468750
16 1 1 1 1 0.95 1.2 68 5 0.481250

10 (in bold font in Table IV). Two additional steps in the same direction confirm the decreased

response.
f(x1, x3)
1.0
05 /’
< 00 /]
0.5
10 T T T
1.0 05 0.0 0.5 1.0
x1

B o482

0.480
0.478
0476
0474

0.472
&= 0470

Figure 7. Contour plot displaying the two most important parameters (ALPHA and START) in coded
variables, generated using visreg [95]. We have added an arrow showing the direction of the steepest ascent.

Listing 4: Using rsm [94] to find the direction of the steepest ascent.

> rsml <— read.csv(”rsml_factorial.csv”)

> rsml_coded <— coded.data(rsml, x1~(alpha —0.9)/0.05,
x27(penalty —1)/0.2, x37(start —64)/4, x4 (level —4)/1)

> rsml_model <— rsm(resp "FO(x1, x2, x3, x4), data=rsml_coded)
> summary (rsml_model)

Call:
rsm(formula = resp ~ FO(x1, x2, x3, x4), data = rsml_coded)

Estimate Std. Error t value Pr(>|t])

*R command: > visreg(rsml_model,” z1”,”23”)

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)

Prepared using smrauth.cls

DOI: 10.1002/smr

22 M. BORG

Table IV. Iterative exploration along the direction of the steepest ascent. The tenth step, presented in bold
font, results in a decreased response. Values in italic font are rounded off to the nearest integer value.

Step | ALPHA | PENALTY | START | LEVEL Resp.
0 0.9 1 64 4 0.46875
1 0.946456 0.977701 65.33793 | 3.888506 | 0.471875
2 0.992912 0.955402 66.67586 | 3.777012 | 0.4875
3 0.99 0.933104 68.01379 | 3.665518 | 0.4875
4 0.99 0.910805 69.35172 | 3.554024 | 0.4875
5 0.99 0.888506 70.68965 | 3.442529 | 0.490625
6 0.99 0.866207 72.02758 | 3.331035 | 0.49375
7 0.99 0.843908 73.36551 | 3.219541 0.5
8 0.99 0.821609 74.70344 | 3.108047 | 0.50625
9 0.99 0.799311 76.04137 | 2.996553 | 0.50625
10 0.99 0.777012 77.37929 | 2.885059 | 0.49375
11 0.99 0.754713 78.71722 | 2.773565 | 0.490625
12 0.99 0.732414 80.05515 | 2.662071 | 0.490625

(Intercept) 0.47636719 0.00069429 686.1210 < 2.2e—16 sx*x

x1 0.00488281 0.00069429 7.0328 2.175e—05 sxx

x2 —0.00058594 0.00069429 —0.8439 0.41668

x3 0.00175781 0.00069429 2.5318 0.02788 =

x4 —0.00058594 0.00069429 —0.8439 0.41668
Signif. codes: 0 ’xx+’ 0.001 ’xx” 0.01 ’x” 0.05 ’.” 0.1 > 1
Multiple R—squared: 0.8389, Adjusted R—squared: 0.7804

F—statistic: 14.32 on 4 and 11 DF, p-—value: 0.0002442
Analysis of Variance Table

Response: resp

Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2, x3, x4) 4 0.00044189 1.1047e¢—04 14.324 0.0002442
Residuals 11 0.00008484 7.7130e—06
Lack of fit 11 0.00008484 7.7130e—-06
Pure error 0 0.00000000

Direction of steepest ascent (at radius 1):
x1 x2 x3 x4
0.9291177 —0.1114941 0.3344824 —0.1114941

Corresponding increment in original units:
alpha penalty start level
0.04645588 —0.02229882 1.33792946 —0.11149412

The second iteration starts where the first ended, i.e., using the tenth step in Table IV as its center
point. The parameter ALPH A is already at its maximum value, thus we focus on PENALTY,
START, and LEV EL. We decide to use the following factorial ranges: PENALTY = 0.80 +
0.04, START =78 +2, and LEVEL = 34 1. Table V shows the corresponding 2* factorial
experiment. We store the table, except the coded variables, in rsm2_factorial.csv. Listing 5 shows
the analysis of the results, including the coding transformation of the parameters.

Listing 5 shows that the direction of the steepest ascent involves changing the value of ST ART
and LEV EL, but not PENALTY . We also know that the setting (0.99,0.80, 76, 3) yields 0.50625
(cf., step 9 in Table IV). Table VI shows the results from iteratively moving from this setting along
the direction of the steepest ascent. As we do not observe any increases in the response when
changing the two integer parameters ST ART and LEV EL, we conclude that this ImpRec setting
is in the region of the maximum. In the next TuneR step, the goal is to pin-point the exact position
of the stationary point.

Listing 5: Second RSM iteration, using rsm [94] to find a new direction of the steepest ascent.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

Table V. Second RSM iteration, 2% factorial design for the three parameters PENALTY, START, and

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS

LEVEL.
Coded variables Natural variables

Exp.Run | 21 | 22 | 23 | PENALTY | START | LEVEL Resp.
1 -1 -1 -1 0.76 76 2 0.465625
2 1| -1 -1 0.84 76 2 0.5
3 -1 1 -1 0.76 80 2 0.4625
4 1 1 -1 0.84 80 2 0.490625
5 -1 -1 1 0.76 76 4 0.465625
6 1| -1 1 0.84 76 4 0.5
7 -1 1 1 0.76 80 4 0.4625
8 1 1 1 0.84 80 4 0.490625

23

Table VI. Iterative exploration along the new direction of the steepest ascent. No changes result in an
increased response, indicating that the current ImpRec setting is close to the optimum. Values in italic font
are rounded off to the nearest integer value.

Step | ALPHA | PENALTY | START | LEVEL | Resp.
0 0.99 0.80 76 3 0.50625
1 0.99 0.80 75.60777 | 3.980581 0.5
2 0.99 0.80 75.21554 | 4.961161 0.5
3 0.99 0.80 74.8233 | 5.941742 | 0.48125
4 0.99 0.80 74.43107 | 6.922323 | 0.45625

> rsm2 <— read.csv(”’rsm2_factorial.csv”)

> rsm2_coded <— coded.data(rsm2,

x3 (start —78)/2,

> rsm2_model <— rsm(resp "FO(x2, x3, x4),

x4~ (level —3)/1)

> summary (rsm2_model)

Call:

rsm(formula = resp ~ FO(x2, x3, x4), data = rsm2_

Estimate Std.

Error t value

x27(penalty —0.80)/0.04,

data=rsm2_coded)

coded)

Pr(>|t])

(Intercept) 4.7969e—01 7.8125e—04 614 4.222e—11 =xx
x2 6.7465e—18 7.8125e—04 0 1.00000
x3 —3.1250e—-03 7.8125e—-04 —4 0.01613 =
x4 1.5625e—02 7.8125e—-04 20 3.688e—05 xxx
Signif. codes: 0 ’xxx’ 0.001 ’xx 0.01 ’x” 0.05 ’.” 0.1 > 1
Multiple R—squared: 0.9905, Adjusted R—squared: 0.9833
F—statistic: 138.7 on 3 and 4 DF, p—value: 0.0001695
Analysis of Variance Table
Response: resp

Df Sum Sq Mean Sq F value Pr(>F)
FO(x2, x3, x4) 3 0.00203125 0.00067708 138.67 0.0001695
Residuals 4 0.00001953 0.00000488
Lack of fit 4 0.00001953 0.00000488
Pure error 0 0.00000000

Direction of steepest ascent

x2

x3

4.233906e—16 —1.961161e—01

(at radius

1):
x4

9.805807e—-01

Corresponding increment in original units:
penalty start level
0.0000000 —0.3922323 0.9805807

Copyright © 2015 John Wiley & Sons, Ltd.
Prepared using smrauth.cls

J. Softw. Evol. and Proc. (2015)
DOI: 10.1002/smr

24 M. BORG

Table VII. Central composite design for the two parameters ST ART and LEV E L. Values in italic font are
rounded off to the nearest integer value.

Coded variables Natural variables
Exp. Run 3 x4 START | LEVEL Resp.

1 -1 -1 72 2 0.453125
2 1 -1 80 2 0.4625
3 -1 1 72 4 0.490625
4 1 1 80 4 0.490625
5 0 0 76 3 0.50625
6 -1.414 0 70.344 3 0.490625
7 +1.414 0 81.656 3 0.48125
8 0 -1.414 76 4.414 0.5

9 0 +1.414 76 1.586 0.465625

3.2.1. C: CCD and a Second-order Polynomial Model The final step in RSM is to fit a second-order
polynomial model to the region close to the maximum, and to locate the stationary point. The most
popular design for fitting a second-order model is CCD [21, pp. 501] (cf. C in Fig. 1). In traditional
DokE, it is recommended to conduct three to five experimental runs at the center point. When tuning
an SE tool, we do not need more than one, thus the only choice for the experimental design is the
distance of the axial runs. As presented in Figure 1, we recommend a rotatable design, i.e., that all
settings in the tuning experiment should be at the same distance from the center point.

In the CCD experiment for tuning ImpRec, we focus on the two parameters ST ART and
LEVEL. Listing 5:134 shows that these two parameters dwarf PENALTY in this region.
Furthermore, the parameter ALPH A is already at its maximum value. Table VII shows the CCD
experiment and the corresponding responses. We store the table, except the coded variables, in
ced.csv. Listing 6 shows the analysis of the results, including the coding transformation of the
parameters. In the final step in Phase 3 of TuneR, the outcome of the CCD experiment is analyzed.

Listing 6: Using rsm [94] to fit a second-order model of the response surface in the vicinity of the
optimal response.

> ccd <— read.csv(”ccd.csv”)

> ccd_coded <— coded.data(ccd, x37(start —76)/2, x4 7 (level —3)/1)

> ccd_model <— rsm(resp~SO(x3, x4), data=ccd_coded)
> summary (ccd_model)
Call:
rsm(formula = resp ~ SO(x3, x4), data = ccd_coded)
Estimate Std. Error t value Pr(>|t])

(Intercept) 0.50614821 0.00268418 188.5672 4.745e—09 sx*x
x3 —0.00027574 0.00068784 —0.4009 0.7090065
x4 0.01666667 0.00163740 10.1788 0.0005247 xxx
x3:x4 —0.00117188 0.00100270 —1.1687 0.3074152
x3"2 —0.00223432 0.00039648 —5.6354 0.0048794 =«x
x4"2 —0.02310668 0.00268905 —8.5929 0.0010078 xx
Signif. codes: 0 ’xxx’ 0.001 ’xx’ 0.01 ’x” 0.05 ’.” 0.1 > 1
Analysis of Variance Table
Response: resp

Df Sum Sq Mean Sq F value Pr(>F)
FO(x3, x4) 2 0.00166925 0.00083463 5.1884e+01 0.001378
TWI(x3, x4) 1 0.00002197 0.00002197 1.3659e+00 0.307415
PQ(x3, x4) 2 0.00137822 0.00068911 4.2838e+01 0.001990
Residuals 4 0.00006435 0.00001609
Lack of fit 3 0.00006435 0.00002145 4.4547e¢+429 1.101e—15
Pure error 1 0.00000000 0.00000000
Stationary point of response surface:

Copyright © 2015 John Wiley & Sons, Ltd.
Prepared using smrauth.cls

J. Softw. Evol. and Proc. (2015)
DOI: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 25

x3 x4
—0.1573278 0.3646356

Stationary point in original units:
start level
75.685344 3.364636

Eigenanalysis:
$values
[1] —0.002217888 —0.023123113

$vectors

[,1] [,2]
x3 —0.9996068 0.0280393
x4 0.0280393 0.9996068

3.2.2. D: Evaluate Stationary Point The purpose of the previous TuneR step was to locate a
stationary point in the vicinity of the optimal setting. The stationary point can either represent a
maximum response, a minimum response, or a saddle point. The nature of the stationary point is
given by the signs of the eigenvalues: for a maximum response all are negative, and for a minimum
response all are positive. Thus, if the eigenanalysis resulted in a maximum point, the tuning
experiments have resulted in a pin-pointed optimal setting for the SE tool. If the eigenvalues have
different signs on the other hand, then the CCD experiment located a saddle point. The experimenter
should then perform ridge analysis [98], i.e., conducting additional experimental runs following the
ridge in both directions.

Regarding the stationary point identified for the tuning of ImpRec, it is located close to
START =76, LEVEL = 3 as shown in Listing 6:170. The eigenanalysis gives that it represents
a maximum point (cf. Listing 6:174). Figure 8 shows a visualization* using visreg [95] of the
response surface in this region. visualizes the response surface in this region, confirming that a
setting representing a maximum response has been identified. Thus, we conclude the parameter
tuning of ImpRec as follows: ALPHA = 0.99, PENALTY = 0.80, START =76, LEVEL = 3.
Using the new parameter setting of ImpRec, we obtain Rc@20 = 0.50625 compared to Rc@20 =
0.41875 using the default settings of ImpRec (ALPHA = 0.83, PENALTY = 0.2, START =
17, LEVEL = 7). Applying TuneR has thus improved the Rc@20 for ImpRec by 20.9% on this
particular dataset.

3.3. Evaluate the Setting

The final activity in TuneR is to perform an evaluation of the new parameter setting. Optimization
based on a single response metric might result in a far too naive perspective, thus a more
holistic analysis must be employed to determine the value of the new parameter setting. Numbers
typically do not cover all aspects of a studied phenomenon [99], and there is a risk that the
experimenter pushes the setting too much based on quantitative metrics, squeezing percentages
without considering overall values of the process the SE tool is intended to support. The final activity
of TuneR aims at taking a step back, and considering the bigger picture.

Figure 9 shows a comparison of the ImpRec evaluation using the default setting (dashed line) and
the tuned setting (solid line). The four subplots show the cut-off, N, of the ranked output list on the
x-axis, and the following IR measures:

A: Precision, displaying the decrease that is characteristic to IR evaluations [100].
B: Recall, including the target metric for the tuning experiments: Rc@20.

C: F;-score, the (balanced) harmonic mean of recall and precision.

D: MAP, an IR measure that combines recall with the performance of ranking.

The evaluation reveals that while the tuning has resulted in increases with regard to recall (cf.
Fig. 9, subplot B), the improvements have been paid by other metrics. Indeed, TuneR has increased

*R command: > visreg2d(ced-model,” 37,7 z4” , plot.type = " persp”)

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

26 M. BORG

Ry
B R
LU
RN
AR,
LTI

N
T
A\ “‘_

i

Figure 8. Visualization of the response surface wrt. 23 and z4, i.e., START and LEV EL in coded variables.
ALPHA and PENALTY are fixed to 0.99 and 0.80, respectively. f(x3, x4) shows the response.

the target metric Rc@20 by 20.9%. Moreover, the response for higher N is even higher, reaching as
high as 0.544 for Rc@43-50 (an increase by 27.0%). However, at low N the default setting actually
reaches a higher recall, and first at Rc@11 the tuned setting becomes becomes better. To further add
to the discussion, the three subplots A, C, and D all show that the default setting outperforms the
tuned setting. For MAP@N, the difference between the default setting and the tuned setting actually
increases for large N.

The evaluation of the tuned parameter setting for ImpRec, and the identified trade-off, show the
importance of the final step in TuneR. It is not at all clear from Figure 9 whether the new parameter
setting would benefit an engineer working with ImpRec. While we have carefully selected the
response metrics, the trade-off appears to be bigger than expected. Not only is the trade-off between
recall and precision evident, but also the trade-off within Rc@N; only after the cut-off N = 11
the recall benefits from the new setting. Our work is an example of a purely quantitative in silico
evaluation, conducted as computer experiments without considering the full operational context of
ImpRec [101]. To fully understand how switching between the two settings affect the utility [102]
of ImpRec, human engineers actually working with the tool must be studied. We report from such
an in situ study in another paper [19], in which we deployed ImpRec in two development teams in
industry, one with the default setting and one with the tuned setting.

4. TUNING IMPREC USING EXHAUSTIVE SEARCH

If the screening experiments of TuneR (Phase 2) fails to identify actionable regularities in the
response surface, i.e., there is considerable lack of fit for both first and second-order models, the
experimenter might decide to design an experiment of a more exhaustive nature. However, as an
exhaustive amount of experimental runs is likely to be computationally expensive, a first try should
be to investigate if a low-order polynomial model fit for the promising part of the response surface.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 27

[=]
w

Precision
(=]
o
(o]
Recall
(=]
w

o
o
[
o
[}
o
IS
o
w
o
o-
o
N
o
w
o
S
o
4]
o

o
o

F-score

o
o
al

o
[
=]

40

o
[
[=]

N

30 40 10

N N

B
o
o
o

10

o-

Figure 9. Comparison of ImpRec output with default settings (dashed line) and tuned settings (solid line).
Subplots clockwise from the first quadrant: Recall@N, MAP@N, F;-score @N, and Precision@N.

If that is the case, Phase 3 could still be applicable in that specific region of the response surface.
Otherwise, at least if the set of critical parameters has been reduced, a more exhaustive space-filling
design (i.e., a brute force approach [103]) might be the remaining option to find a tuned setting. The
purpose of this section is twofold. First, we present the design of a fine-granular space-filling design
for tuning ImpRec. Second, the result of the exhaustive search acts as a proof-of-concept of TuneR,
as we compare the results to the outcome from Phase 3.

For tuning of ImpRec, we design a uniform space-filling design. Table VIII shows the levels we
explore in the experimental runs. The screening experiment described in Section 3.1.3 shows that
ALPH A appears to be more important than PEN ALTY, thus we study it with a finer granularity.
START and LEV EL are both positive integer parameters, and we choose to explore them starting
from their lowest possible values. As the nature of the issue-issue links is unlikely to result in issue
chains longer than five, setting the highest value to 9 is already a conservative choice. The potential
of large ST ART on the other hand is less clear, but Figure 6 suggests that values between 16 and
128 result in the best Re@20. However, large ST ART require infeasible execution times, thus we
restrict the parameter to 90 for practical reasons.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

28

M. BORG

Table VIII. Uniform space-filling design for exhaustive approach to tuning of ImpRec. The design requires
187,110 experimental runs, compared to 3,430 in the screening experiment (cf. Table II).

Parameter #Levels | Values

ALPHA 21 0.01, 0.05, 0.10, 0.15, ..., 0.95,0.99
PENALTY | 11 0.01,0.5,1,1.5,...,5

START 90 1,2,3,...,90

LEVEL 9 1,2,...,9

Table IX. Top 10 results from the exhaustive experiment. The third column shows how many different

settings that yield the response.

Rc@20 #Settings
1 | 0.5375 12
2 10534375 | 72
3 1053125 | 60
4 1 0.528125 | 72
5 10525 108
6 | 0.521875 | 238
7 | 051875 | 96
8 | 0.515625 | 120
9 | 05125 238
10 | 0.509375 | 83

Table IX shows the best results from running the exhaustive tuning experiments. In total, the

experiments required 1,253 hours (about 52 days) to complete on a desktop computer®, with an
average of 24 s per experimental run. The best result we obtain in the exhaustive experiments is
Rc@20=0.5375, a response we get from 12 different settings, a value that is 6.2% better than what
we found using the three main phases of TuneR (Rc@20=0.50625). By looking at the 12 settings
yielding Rc@20=0.5375, we note that START = 51 and LEV EL = 3 provide the best results.
However, regarding the two remaining parameters, the pattern is less clear; ALPH A varies from
0.6t00.99, and PEN ALTY is either at low range (0.5 or 1.5) or at high range (4.5 or 5). Figure 10
summarizes the exhaustive experiment by presenting the distribution of responses per setting, as
well as the execution times.

15000 -

10000-

#settings

1000-

750-

#setlings

ad
OI*] |j|2 |"|I_’_3. I:II_‘. 0-5

Rc@20

(=]
|

2‘0 ”.IO _’Il:l 5'0

time (s)

Figure 10. Distribution of results from the exhaustive experiment. The y-axes show the number of settings
that resulted in the output. The left figure displays Rc@20, and the right figure shows the execution time.

*Intel Core i5-2500K quad-core CPU 3.30 GHz with § GB RAM.

Copyright © 2015 John Wiley & Sons, Ltd.
Prepared using smrauth.cls

J. Softw. Evol. and Proc. (2015)
DOI: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 29

5. DISCUSSION

Finding feasible parameter settings for SE tools is a challenging, but important, activity. SE tools
are often highly configurable through parameters, but there is typically no silver bullet; there is not
one default parameter setting that is optimal for all contexts. However, often advanced approaches
are implemented in state-of-the-art SE tools. As a result of the tools’ inherent complexity, academic
researchers have published numerous papers on how to improve tool output by trying different
settings and tuning internal algorithms. Consequently, SE tool developers cannot expect end users
to understand all the intricate details of their implementations. Instead we argue that applied
researchers need to provide guidelines to stimulate dissemination of SE tools in industry, i.e., to
support transfer of research prototypes from academia to industry.

An established approach to improve processes is to use experiments. However, traditional DoE
was developed for physical processes, much different from the application of SE tools. In this paper
we introduced TuneR, a framework for tuning SE tools, using a combination of space-filling designs
and RSM. Several researchers have presented advice and guidelines on how to tune various SE
tools, but they typically address a specific family of tools, e.g., SBSE [16, 6], evolutionary software
testing [41], LDA for feature location [42], and trace retrieval [44]. TuneR is instead a general
framework, that can be applied for most types of SE tools.

As a proof-of-concept, and as a demonstration of TuneR’s ease of use, we presented a detailed
step-by-step tuning of the RSSE ImpRec. Using TuneR we obtain a considerable increase in the
response variable of ImpRec, even though we considered the default setting already good enough for
tool deployment in industry (see our industrial case study for further details [19]). We selected the
default setting™ based on ad hoc tuning during development of ImpRec, but using TuneR resulted in
a 20.9% higher response, i.e., an improvement from Rc@20=0.41875 to Rc@20=0.50625. Thus,
in contrast to the Arcuri and Fraser’s inconclusive results from tuning an SBSE tool [16], we
demonstrate that RSM can be a component in successful tuning of SE tools.

Applying TuneR to tune an SE tool provides insights beyond what a feasible parameter setting.
Thanks to the screening phase, TuneR identifies the most important parameters, both in terms of
main effects and interaction effects. Especially interaction effects is missed when tuning tools using
less structured experimental designs, e.g., COST analysis and ad hoc tuning [20, pp. 211][21, pp.
4]. During tuning of ImpRec, we found that two interactions were significant: 1) positive interaction
between ALPH A and ST ART, and 2) negative interaction between ST ART and LEV EL. Thus,
if a high number of issue reports are used as starting points, then the ranking function should give
more weight to the centrality measure than the textual similarity. Furthermore, if the number of
starting points is high, then the number of links to follow in the knowledge base should be decreased.

Although resulting in a considerable improvement in the response, we found that the tuned
setting’ obtained from TuneR still was not optimal. Using exhaustive experiments, we identified
settings that yield even higher responses, reaching as high as Rc@20=0.5375. However, running
exhaustive experiments come at a high computational cost, and it is not certain that there is enough
return on investment. In our example, we used more than 50 days of computation time for the
exhaustive experiments, in total conducting 187,110 experimental runs, to find a 6.2% higher
response (Rc@0=0.5375) compared to the TuneR setting. Furthermore, we explored only four
parameters in the exhaustive experiments. For other SE tools the number of parameters might be
higher, and the combinatorial explosion would quickly lead to infeasible exhaustive experimental
designs. To mitigate this problem, the screening phase of TuneR could be used to identify the
dominating parameters, in line with common practice in traditional DoE [21, 20].

The exhaustive experiments revealed 12 different settings yielding the top response. A clear
pattern in the 12 settings was found; to obtain the best results, START and LEV EL were set
to 51 and 3, respectively. At the same time however, ALPHA and PENALTY could be set to
several different combinations of values. Based on the screening phase of TuneR, we concluded

*Default setting: ALPHA = 0.83, PENALTY =0.2,START =17, LEVEL =7
TTuned setting: ALPHA = 0.99, PENALTY = 0.80,START =76, LEVEL =3

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

30 M. BORG

that ALPH A should be set to high values, as “centrality values are more important than textual
similarity, i.e., previously impacted artifacts are likely to be impacted again” (see Section 3.1.5). In
hindsight, with the knowledge obtained from the exhaustive experiment, it appears that early fixing
ALP H Ato0.99 was not necessarily the right decision, as high responses apparently can be obtained
for a range of ALPH A values. Experimentation is an iterative process, and the experimenter’s
knowledge gradually increases. Based on the updated understanding of ALPH A, a next step could
be to do another TuneR screening focusing on 0.6 < ALPH A < 0.99.

We acknowledge two main threats to the validity of the tuned ImpRec setting we obtain
through TuneR. First, there is always a threat that focusing on a single response metric might
be an oversimplification, as discussed in Section 3.1.1. In Section 3.3, we show that while the
tuned setting leads to an improved response in Rc@20, with regard to most other metrics we
study in the evaluation of the new setting, the output was better for the default setting. Whether
Rc@20 is the best target metric is not certain, even though we posit that it reflects an important
quality aspect of ImpRec, resulting in maximization of true impact among a manageable amount
of recommendations. An alternative response metric could be MAP@20, also reported in the
evaluation in Section 3.3, a metric that also considers the ranking of the true output among the
top-20 recommendations. We stress that it is important to validate the response metric from the
start, otherwise TuneR will move the setting in a direction that does not bring value.

Second, while we carefully selected four parameters for the tuning experiments, there might be
additional important parameters at play. For example, the IR approach we apply in ImpRec could be
adjusted in numerous ways, yet we consider the involved variation points as fixed. Apache Lucene,
the integrated IR solution, is highly configurable, but as we have successfully used it for a similar
task before (duplicate detection of issue reports [78]), we made the assumption that it performs well
out-of-the-box. Other potentially useful approaches related to IR, which we did not explore in this
paper, is to perform further preprocessing, e.g., stop word removal, stemming, and dimensionality
reduction. However, as TuneR resulted in an increased response, also close to what the exhaustive
experiment yielded, we argue that our selection of parameters was valid.

Furthermore, there are also some threats to the validity of the overall TuneR framework. While
our goal when developing TuneR was to present a framework generally applicable to tuning of
SE tools, the external validity [30] of the approach is still uncertain. We have only presented one
single proof-of-concept, i.e., the tuning of the RSSE ImpRec, thus we need to conduct additional
tuning experiments, with other SE tools, to verify the generalizability. We plan to continue evolving
TuneR, and two involved activities we particularly want to focus on improving are: 1) guidelines
regarding parameter subset selection when fitting low-order polynomial models during screening
(Section 3.1.5), and 2) the step size selection in the RSM phase (Section 3.2). Finally, we argue
that TuneR is easy to use, especially since we present hands-on examples in R, but the only way to
validate the usability is by letting others try the framework.

6. CONCLUSION

In this paper we have presented TuneR, an experiment framework for tuning Software Engineering
(SE) tools. TuneR build on methods from Design of Experiments (DoE) and Design of Computer
Experiments (DoCE), two established fields with numerous successful applications in various
engineering disciplines [23]. However, both DoE and DoCE have been developed to address
experiments on phenomena with a representation in the physical world, either directly (DoE) or
indirectly through computer models (DoCE). We have discussed how tuning of SE tools is different
from traditional experimentation, and how TuneR combines space-filling designs and factorial
designs to identify a feasible parameter setting.

As a proof-of-concept, we applied TuneR to tune ImpRec, a recommendation system for change
impact analysis, to a specific proprietary context. For all TuneR steps, we have provided detailed
instructions on how to analyze the experimental output using various R packages. Using TuneR,
we increased the accuracy of the ImpRec recommendations by 20.9% with regard to recall among
the top-20 candidates. To validate the tuned setting, we also applied a more exhaustive space-filling

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOL: 10.1002/smr

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 31

design, trying in total 187,110 parameter settings. We found parameter settings yielding a 6% higher
response, but running the experiment required more than 50 days of computation time. Thus, we
consider the proof-of-concept successful, as TuneR resulted in a similar response in a fraction of the
time.

A major threat when tuning an SE tool is that the selected response metric, i.e., the target for
optimization, does not fully capture the overall value of the tool. Optimizing a response might come
at a price; increases in one metric might be paid by decreases in other metrics. The tuning of ImpRec
is an example of this trade-off, and we show how precision, F;-score, and mean average precision
decrease with the new tuned setting. Even recall at lower cut-off points, i.e., when considering ten
or fewer recommendations from ImpRec, yields decreased results with the tuned parameter setting.
From this observation, we stress the importance of carefully selecting the response metric, and to
properly evaluate the consequences of the tuned parameter setting, before deploying the tuned SE
tool.

ACKNOWLEDGEMENT

This work was funded by the Industrial Excellence Center EASE - Embedded Applications Software
Engineering™.

REFERENCES

1. Fraser G, Arcuri A. EvoSuite: Automatic Test Suite Generation for Object-oriented Software. Proc. of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, 2011;
416-419.

2. Ayewah N, Hovemeyer D, Morgenthaler J, Penix J, Pugh W. Using Static Analysis to Find Bugs. IEEE Software
2008; 25(5):22-29.

3. Kersten M, Murphy G. Using Task Context to Improve Programmer Productivity. Proc. of the 14th International
Symposium on Foundations of Software Engineering, 2006; 1-11.

4. Baz M, Hunsaker B, Brooks P, Gosavi A. Automated Tuning of Optimization Software Parameters. Technical
Report, Dept. of Industrial Engineering, University of Pittsburgh 2007.

5. Lavesson N, Davidsson P. Quantifying the Impact of Learning Algorithm Parameter Tuning. Proc. of the 21st
National Conference on Artificial Intelligence, 2006; 395-400.

6. Fraser G, Arcuri A. The Seed is Strong: Seeding Strategies in Search-Based Software Testing. Proc. of the 5th
International Conference on Software Testing, Verification and Validation, 2012; 121-130.

7. LiZ, Harman M, Hierons R. Search Algorithms for Regression Test Case Prioritization. Transactions on Software
Engineering 2007; 33(4):225-237, doi:10.1109/TSE.2007.38.

8. Abreu R, Zoeteweij P, van Gemund A. An Evaluation of Similarity Coefficients for Software Fault Localization.
Proc. of the 12th Pacific Rim International Symposium on Dependable Computing, 2006; 39-46.

9. Thomas S, Nagappan M, Blostein D, Hassan A. The Impact of Classifier Configuration and Classifier Combination
on Bug Localization. Transactions on Software Engineering 2013; 39(10):1427-1443.

10. Casamayor A, Godoy D, Campo M. Identification of Non-Functional Requirements in Textual Specifications: A
Semi-Supervised Learning Approach. Information and Software Technology 2010; 52(4):436—445.

11. Zou X, Settimi R, Cleland-Huang J. Improving Automated Requirements Trace Retrieval: A Study of Term-Based
Enhancement Methods. Empirical Software Engineering 2010; 15(2):119-146.

12. Oliveto R, Gethers M, Poshyvanyk D, De Lucia A. On the Equivalence of Information Retrieval Methods for
Automated Traceability Link Recovery. Proc. of the 18th International Conference on Program Comprehension,
2010; 68-71.

13. Borg M, Runeson P. IR in Software Traceability: From a Bird’s Eye View. Proc of the 7th International Symposium
on Empirical Software Engineering and Measurement, 2013; 243-246.

14. Hall T, Beecham S, Bowes D, Gray D, Counsell S. A Systematic Literature Review on Fault Prediction
Performance in Software Engineering. Transactions on Software Engineering 2012; 38(6):1276-1304, doi:
10.1109/TSE.2011.103.

15. Feldt R, Nordin P. Using Factorial Experiments to Evaluate the Effect of Genetic Programming Parameters. Proc.
of the 3rd European Conference on Genetic Programming, 2000; 271-282.

16. Arcuri A, Fraser G. Parameter Tuning or Default Values? An Empirical Investigation in Search-based Software
Engineering. Empirical Software Engineering 2013; 18(3):594-623.

17. Borg M, Runeson P. Changes, Evolution and Bugs - Recommendation Systems for Issue Management.
Recommendation Systems in Software Engineering, Robillard M, Maalej W, Walker R, Zimmermann T (eds.).
Springer, 2014; 477-509.

18. Robillard M, Walker R. An Introduction to Recommendation Systems in Software Engineering. Recommendation
Systems in Software Engineering, Robillard M, Maalej W, Walker R, Zimmermann T (eds.). Springer, 2014; 1-11.

*http://ease.cs.Ith.se

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOTI: 10.1002/smr

32

M. BORG

19. Borg M, Wnuk K, Regnell B, Runeson P. Supporting Change Impact Analysis Using a Recommendation System
- An Industrial Case Study in a Safety-Critical Context. Submitted to a journal 2015; .

20. Dunn K. Design and Analysis of Experiments. Process Improvement Using Data. 294-34b8 edn., 2014; 207-288.
URL learnche.mcmaster.ca/pid/PID.pdf.

21. Montgomery D. Design and Analysis of Experiments. 8th edn., Wiley, 2013.

22. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, 2008. URL http://www.R-project.org.

23. Ilzarbe L, Alvarez M, Viles E, Tanco M. Practical Applications of Design of Experiments in the Field of
Engineering: A Bibliographical Review. Quality and Reliability Engineering International 2008; 24(4):417-428.

24. Nandagopal M, Gala K, Premnath V. Improving Technology Commercialization at Research Institutes: Practical
Insights from NCL Innovations. Proc. of the Innovation Educators’ Conference, 2011.

25. Box G, Hunter S, Hunter W. Statistics for Experimenters: Design, Innovation, and Discovery. 2nd edn., Wiley,
2005.

26. Myers R, Montgomery D, Anderson-Cook C. Response Surface Methodology: Process and Product Optimization
Using Designed Experiments. Wiley, 2009.

27. Kleijnen J. Low-Order Polynomial Regression Metamodels and Their Designs: Basics. Design and Analysis of
Simulation Experiments. Springer, 2008; 15-71.

28. Basili V, Selby R, Hutchens D. Experimentation in Software Engineering. Transactions on Software Engineering
1986; 12(7):733-743.

29. Pfleeger S. Experimental Design and Analysis in Software Engineering. Annals of Software Engineering 1995;
1(1):219-253.

30. Wohlin C, Runeson P, Host M, Ohlsson M, Regnell B, Wesslén A. Experimentation in Software Engineering: A
Practical Guide. Springer, 2012.

31. Lalit Narayan K, Mallikarjuna Rao K, Sarcar M. Computer Aided Design and Manufacturing. Prentice-Hall, 2008.

32. Vining G. Adapting Response Surface Methodology for Computer and Simulation Experiments. The Grammar of
Technology Development, Tsubaki H, Yamada S, Nishina K (eds.). Springer, 2008; 127-134.

33. Fang K, Li R, Sudjianto A. Design and Modeling for Computer Experiments. CRC Press, 2006.

34. Moon K. The Nature of Computer Programs: Tangible? Goods? Personal Property? Intellectual Property?
European Intellectual Property Review 2009; 31(8):396-407.

35. Berry D. The Philosophy of Software: Code and Mediation in the Digital Age. Palgrave Macmillan, 2011.

36. Levy S, Steinberg D. Computer Experiments: A Review. Advances in Statistical Analysis 2010; 94(4):311-324.

37. Fisher A. CASE: Using Software Development Tools. 2nd edn., Wiley, 1991.

38. Ansari N, Hou E. Computational Intelligence for Optimization. Springer, 2012.

39. Birattari M. Tuning Metaheuristics - A Machine Learning Perspective. Springer, 2009.

40. Wolpert D, Macready W. No Free Lunch Theorems for Optimization. Transactions on Evolutionary Computation
1997; 1(1):67-82.

41. Da Costa L, Schoenauer M. Bringing Evolutionary Computation to Industrial Applications with GUIDE. Proc. of
the 11th Annual Conference on Genetic and Evolutionary Computation, 2009; 1467-1474.

42. Biggers L, Bocovich C, Capshaw R, Eddy B, Etzkorn L, Kraft N. Configuring Latent Dirichlet Allocation Based
Feature Location. Empirical Software Engineering 2014; 19(3):465-500.

43. Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson P. Automated Bug Assignment: Ensemble-based
Machine Learning in Large Scale Industrial Contexts. Under revision in Empirical Software Engineering 2015; .

44. Lohar S, Amornborvornwong S, Zisman A, Cleland-Huang J. Improving Trace Accuracy Through Data-driven
Configuration and Composition of Tracing Features. Proc. of the 9th Joint Meeting on Foundations of Software
Engineering, 2013; 378-388.

45. Zaragoza H, Najork M. Web Search Relevance Ranking. Encyclopedia of Database Systems, Liu L, Oszu T (eds.).
Springer, 2009; 3497-3501.

46. Macdonald C, Santos R, Ounis I. The Whens and Hows of Learning to Rank for Web Search. Information Retrieval
2013; 16(5):584-628.

47. Liu T. Learning to Rank for Information Retrieval. Springer, 2011.

48. Sculley D. Large Scale Learning to Rank. Proc. of the Workshop on Advances in Ranking at the 23rd NIPS
Conference, 2009; 1-6.

49. Vaidhyanathan S. The Googlization of Everything: (And Why We Should Worry). University of California Press,
2012.

50. Binkley D, Lawrie D. Learning to Rank Improves IR in SE. Proc. of the 30th International Conference on Software
Maintenance and Evolution, 2014; 441-445.

51. International Electrotechnical Commission. IEC 61511-1 ed 1.0, Safety Instrumented Systems for the Process
Industry Sector. 2003.

52. International Electrotechnical Commission. IEC 61508 ed 1.0, Electrical/Electronic/Programmable Electronic
Safety-Related Systems. 2010.

53. Borg M, Gotel O, Wnuk K. Enabling Traceability Reuse for Impact Analyses: A Feasibility Study in a Safety
Context. Proc. of the 7th International Workshop on Traceability in Emerging Forms of Software Engineering,
2013.

54. Gotel O, Cleland-Huang J, Huffman Hayes J, Zisman A, Egyed A, Griinbacher P, Dekhtyar A, Antoniol G, Maletic
J, Méder P. Traceability Fundamentals. Software and Systems Traceability, Cleland-Huang J, Gotel O, Zisman A
(eds.). Springer, 2012; 3-22.

55. McCandless M, Hatcher E, Gospodnetic O. Lucene in Action. 2nd edn., Manning Publications, 2010.

56. Urbano J. Information Retrieval Meta-Evaluation: Challenges and Opportunities in the Music Domain. Proc. of
the 12th International Society for Music Information Retrieval Conference, 2011; 597-602.

57. Seiffert C, Khoshgoftaar T, Van Hulse J, Folleco A. An Empirical Study of the Classification Performance of
Learners on Imbalanced and Noisy Software Quality Data. Information Sciences 2014; 259:571-595.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)

Prep

ared using smrauth.cls DOTI: 10.1002/smr

learnche.mcmaster.ca/pid/PID.pdf
http://www.R-project.org

58.

59.
60.

TUNER: A FRAMEWORK FOR TUNING SOFTWARE ENGINEERING TOOLS 33

Mens T. Introduction and Roadmap: History and Challenges of Software Evolution. Software Evolution, Mens T,
Demeyer S (eds.). Springer, 2008; 1-11.

Madachy R. Software Process Dynamics. Wiley, 2007.

Shepperd M, Schofield C, Kitchenham B. Effort Estimation Using Analogy. Proc. of the 18th International
Conference on Software Engineering, 1996; 170-178.

61. Menzies T, Shepperd M. Special Issue on Repeatable Results in Software Engineering Prediction. Empirical
Software Engineering 2012; 17(1-2):1-17.

62. Shepperd M, Song Q, Sun Z, Mair C. Data Quality: Some Comments on the NASA Software Defect Datasets.
Transactions on Software Engineering 2013; 39(9):1208-1215.

63. Lamkanfi A, Demeyer S. Filtering Bug Reports for Fix-Time Analysis. Proc. of the 16th European Conference on
Software Maintenance and Reengineering, 2012; 379-384, doi:10.1109/CSMR.2012.47.

64. AbdelMoez W, Kholief M, Elsalmy F. Improving Bug Fix-Time Prediction Model by Filtering Out Outliers.
Proc. of the Ist International Conference on Technological Advances in Electrical, Electronics and Computer
Engineering, 2013; 359-364.

65. Turhan B. On the Dataset Shift Problem in Software Engineering Prediction Models. Empirical Software
Engineering 2012; 17(1-2):62-74.

66. Robinson B, Francis P. Improving Industrial Adoption of Software Engineering Research: A Comparison of
Open and Closed Source Software. Proc. of the International Symposium on Empirical Software Engineering
and Measurement, vol. 21, 2010; 1-10.

67. Host M, Regnell B, Wohlin C. Using Students as Subjects - A Comparative Study of Students and Professionals
in Lead-Time Impact Assessment. Empirical Software Engineering 2000; 5(3):201-214.

68. Borg M, Wnuk K, Pfahl D. Industrial Comparability of Student Artifacts in Traceability Recovery Research - An
Exploratory Survey. Proc. of the 16th European Conference on Software Maintenance and Reengineering, 2012;
181-190.

69. Tsunoda M, Ono K. Pitfalls of Analyzing a Cross-Company Dataset of Software Maintenance and Support.
Proc. of the 15th International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2014; 1-6.

70. Walker R, Holmes R. Simulation - A Methodology to Evaluate Recommendation Systems in Software
Engineering. Recommendation Systems in Software Engineering, Robillard M, Maalej W, Walker R, Zimmermann
T (eds.). Springer, 2014; 301-327.

71. Basili V. Software Modeling and Measurement: The Goal/Question/Metric Paradigm. Technical Report CS-TR-
2956, University of Maryland 1992.

72. Dekkers C, McQuaid P. The Dangers of Using Software Metrics to (Mis) Manage. IT Professional 2002; 4(2):24—
30.

73. Kaner C, Bond W. Software Engineering Metrics: What Do They Measure and How Do We Know? Proc. of 10th
International Symposium on Software Metrics, 2004.

74. Brown M, Goldenson D. Measurement and Analysis: What Can and Does Go Wrong? Proc. of the 10th
International Symposium on Software Metrics, 2004; 131-138.

75. Voorhees E. TREC: Experiment and Evaluation in Information Retrieval. MIT Press, 2005.

76. Manning C, Raghavan P, Schiitze H. Introduction to Information Retrieval. Cambridge University Press, 2008.

77. de la Vara J, Borg M, Wnuk K, Moonen L. Survey on Safety Evidence Change Impact Analysis in Practice:
Detailed Description and Analysis. Technical Report 18, Simula Research Laboratory 2014.

78. Borg M, Runeson P, Johansson J, Mintyld M. A Replicated Study on Duplicate Detection: Using Apache Lucene
to Search Among Android Defects. Proc. of the 8th International Symposium on Empirical Software Engineering
and Measurement, 2014.

79. Gummesson E. Qualitative Methods in Management Research. SAGE Publications, 1999.

80. Beck K. Test-Driven Development: By Example. Addison-Wesley, 2003.

81. Santner T, Williams B, Notz W. The Design and Analysis of Computer Experiments. Springer, 2003.

82. Harman M. The Current State and Future of Search Based Software Engineering. Proc. of the Future of Software
Engineering, 2007; 342-357.

83. Frank E, Hall M, Holmes G, Kirkby R, Pfahringer B, Witten I, Trigg L. Weka - A Machine Learning Workbench
for Data Mining. Data Mining and Knowledge Discovery Handbook, Maimon O, Rokach L (eds.). Springer, 2005;
1305-1314.

84. Hofmann M, Klinkenberg R ((eds.)). RapidMiner: Data Mining Use Cases and Business Analytics Applications.
Chapman & Hall/CRC Press, 2013.

85. Keenan E, Czauderna A, Leach G, Cleland-Huang J, Shin Y, Moritz E, Gethers M, Poshyvanyk D, Maletic
J, Huffman Hayes J, et al.. TraceLab: An Experimental Workbench for Equipping Researchers to Innovate,
Synthesize, and Comparatively Evaluate Traceability Solutions. Proc. of the 34th International Conference on
Software Engineering, 2012; 1375-1378.

86. Travassos G, dos Santos P, Neto P, Biolchini J. An Environment to Support Large Scale Experimentation in
Software Engineering. Proc. of the 13th International Conference on Engineering of Complex Computer Systems,
2008; 193-202.

87. Kleijnen J. Screening Designs. Design and Analysis of Simulation Experiments. Springer, 2008; 157-173.

88. Jones D. A Taxonomy of Global Optimization Methods Based on Response Surfaces. Journal of Global
Optimization 2001; 21(4):345-383.

89. Lukacs P, Burnham K, Anderson D. Model Selection Bias and Freedman’s Paradox. Annals of the Institute of
Statistical Mathematics 2010; 62(1):117-125.

90. Miller A. Subset Selection in Regression. CRC Press, 2002.

91. Andersen C, Bro R. Variable Selection in Regression - A Tutorial. Journal of Chemometrics 2010; 24(11-12):728-
737.

92. Rencher A. Methods of Multivariate Analysis. Wiley, 2002.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)

Prepared using smrauth.cls DOTI: 10.1002/smr

98.
99.
100.

101.

102.

103.

M. BORG

. Teetor P. R Cookbook. O’Reilly Media, 2011.
. Lenth R. Response-Surface Methods in R, Using rsm. Journal of Statistical Software 2009; 32(7):1-17.
. Breheny P, Burchett W. Visualization of Regression Models Using visreg. Technical Report, University of

Kentucky 2013. URL http://web.as.uky.edu/statistics/users/pbreheny/publications/
visreg.pdf.

. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer, 2009.
. Bartz-Beielstein T, Lasarczyk C, Preuss M. The Sequential Parameter Optimization Toolbox. Experimental

Methods for the Analysis of Optimization Algorithms, Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M
(eds.). Springer, 2010; 337-362.

Neddermeijer G, van Oortmarssen G, Piersma N, Dekker R. A Framework for Response Surface Methodology for
Simulation Optimization. Proc. of the 32nd Conference on Winter Simulation, 2000; 129-136.

Malterud K. The Art and Science of Clinical Knowledge: Evidence Beyond Measures and Numbers. The Lancet
2001; 358(9279):397-400.

Buckland M, Gey F. The Relationship between Recall and Precision. Journal of the American Society for
Information Science 1994; 45(1):12-19.

Borg M, Runeson P, Brodén L. Evaluation of Traceability Recovery in Context: A Taxonomy for Information
Retrieval Tools. Proc. of the 16th International Conference on Evaluation & Assessment in Software Engineering,
2012; 111-120.

Avazpour I, Pitakrat T, Grunske L, Grundy J. Dimensions and Metrics for Evaluating Recommendation Systems.
Recommendation Systems in Software Engineering, Robillard M, Maalej W, Walker R, Zimmermann T (eds.).
Springer, 2014; 245-273.

Nievergelt J. Exhaustive Search, Combinatorial Optimization and Enumeration: Exploring the Potential of Raw
Computing Power. Proc. of the 27th Conference on Current Trends in Theory and Practice of Informatics, 2000;
18-35.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOTI: 10.1002/smr

http://web.as.uky.edu/statistics/users/pbreheny/publications/visreg.pdf
http://web.as.uky.edu/statistics/users/pbreheny/publications/visreg.pdf

	1 Background
	1.1 Design of Experiments
	1.2 Design of Computer Experiments
	1.3 Tuning Automated Software Engineering Tools

	2 ImpRec: An RSSE for Automated Change Impact Analysis
	3 TuneR: An Experiment Framework and a Hands-on Example
	3.1 Phase 1: Prepare Experiments
	3.1.1 A) Collect Tuning Dataset
	3.1.2 C) Identify Parameters and Specify Ranges for Normal Operation
	3.1.3 D) Aggregate Pre-Understanding
	3.1.4 A) Design a Space-Filling Experiment
	3.1.5 C) Fit Low-order Polynomial Models

	3.2 Phase 3: Apply Response Surface Methodology
	3.2.1 C: CCD and a Second-order Polynomial Model
	3.2.2 D: Evaluate Stationary Point

	3.3 Evaluate the Setting

	4 Tuning ImpRec Using Exhaustive Search
	5 Discussion
	6 Conclusion

