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Abstract 

Compared to other organisms in which the fatty acyl desaturases (FADs) are mostly 
involved in normal cellular lipid metabolism, moth FADs have evolved extensive 
functions in the biosynthesis of sex pheromones. Female moths release species-
specific sex pheromones to attract conspecific males over a long distance for mating. 
Moth FADs are key enzymes producing the great diversity of moth sex pheromones. 
They introduce double bonds in specific positions and with specific geometry in the 
fatty acyl pheromone precursors. 

In this thesis, I use a variety of experimental approaches including isotope 
labelling experiments and heterologous expression of gene candidates to 
characterize several novel FADs involved in pheromone production: The multi-
functional SexiDes5 from the beet armyworm Spodoptera exigua and SlitDes5 from 
the congeneric Spodoptera litura were found to have ∆12 desaturase activities. They 
use palmitic acid to produce (Z)-11-hexadecenoic acid and the subsequently chain-
shortened product (Z)-9-tetradecenoic acid to produce (Z,E)-9,12-tetradecadienoic 
acid. The European grapevine moth, Lobesia botrana was shown to produce its 
major pheromone precursor (E,Z)-7,9-dodecanoic acid by an ∆7 FAD. A pheromone 
gland-specific CsupYPAQ from the rice stem borer Chilo suppressalis was proven 
to have high activity on palmitic acid to produce (Z)-11-hexadecenoic acid. 

The highly evolved moth FADs can be used for production of customized 
pheromone precursors in transformed organisms for a variety of purposes. 
Compared to the current conventional synthetic approach which produces hazardous 
waste during the production process, using semi-synthetic method to produce moth 
pheromones based on plant-derived pheromone precursors are environmentally 
friendly. I investigated the use of several plant platforms to express a suite of 
biosynthetic enzymes for moth pheromone precursor production. By employing the 
Agrobacterium-mediated transformation, I constructed transgenic Nicotiana spp. 
and Camelina lines for production of C12 to C16 chain length pheromone precursors. 
The transformed Nicotiana spp. can produce (Z)-11-hexadecenoic acid, (E)-11-
tetradecenoic acid, (Z)-11-tetradecenoic acid. The best line from N. benthamiana 
produced 17.6% (weight%) of (Z)-11-hexadecenoic acid of total fatty acid in 
vegetative tissue. Also, 7.6% of (E)-9-dodecenoic acid and 6.3% of doubly 
unsaturated (E,E)-8,10-dodecenoic acid of total fatty acids were produced in seeds 
of engineered Camelina plants, implying that a significant amount of pheromone 
precursors might be produced by cultivating these transgenic plants under field 
conditions. 

Knowledge of additional pheromone biosynthetic gene functions can be used to 
improve the possibility and feasibility of synthesizing customized moth pheromones 
in plant factories. A fatty acyl elongase (ELO) combined with a ∆11 FAD is 
considered to provide the fatty acyl pheromone precursors in C. suppressalis. I 
functionally characterized an ELO gene CsupELO4 encoding a protein elongating 
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the major pheromone precursor (Z)-11-hexadecenoic acid into (Z)-13-octadecenoic 
acid, the precursor of a minor pheromone component. This is the first ELO gene 
that has been functionally characterized in Lepidoptera. The fatty acyl-CoA 
pheromone precursors are postulated to be reduced and reoxidized to produce the 
aldehyde pheromone components. I characterized CsupFAR2 from C. suppressalis 
that encodes a fatty acyl reductase (FAR) reducing the major fatty acyl precursors 
into corresponding fatty alcohols, which are converted into the fatty aldehyde 
pheromones by followed-up oxidation. 

Genetically modified plants actually releasing moth pheromones may be used as 
part of a push-pull strategy. I attempted to engineer Nicotiana spp. plants that would 
release (Z)-11-hexadecenol and (Z)-11-hexadecenyl acetate. I cloned the promoter 
CYP71D16, which is a trichome-specific promoter from tobacco Nicotiana 
tabacum, driving the pheromone biosynthetic genes. I surprisingly found that the 
production of (Z)-11-hexadecenol increased from 18 to 70 µg per gram fresh leaf 
when the gene of HarFAR was expressed under CYP71D16 promoter compared to 
a constitutive promoter CaMV35S. However, no pheromone compounds could be 
found in the plant headspace volatiles.  
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Popular science summary 

To avoid serious damage to crops, you should pay attention to the moths that are 
discovered in your field during farming. The female moths lay eggs on the crops 
and the hatched larvae will feed on the crops, causing serious damage. Moths 
heavily rely on sex pheromone to communicate between males and females for 
mating. Pheromones are molecules used for communication between living 
organisms, across the tree of life from bacteria to humans. Female moths emit 
species-specific sex pheromone component blends to attract males of the same 
species over long distances. There are more than 160,000 species described in the 
order Lepidopteran (moths and butterflies). They are among the most damaging 
pests of food and fibre crops, capable of adapting fast and evolving resistance to 
insecticides. Conventional insecticides for pest control do not discriminate between 
pest and other non-target insects and can in many cases be harmful to other 
organisms, including humans, and detrimental to plants that are dependent on 
beneficial insects for pollination. Using pheromones for pest control (such as mass 
trapping and mating disruption) has become an environmentally friendly alternative 
because the pheromones are non-toxic, they have no adverse effects on non-target 
organisms, they do not kill parasitoids or other beneficial insects, and the risks of 
resistance being developed in the pest is small. Even in terms of profit and reduction 
in damage, pheromones often compare favourably to the use of insecticides. The 
global market for pheromone-based control products is currently estimated to more 
than $200 millions. However, current standard approaches to pheromone synthesis 
either require the use of hazardous chemicals or may result in the production of 
hazardous waste by-products, and it is most difficult to modify the double bonds for 
production of unsaturated pheromone precursors. The problems inherent to 
synthetic pheromone production may be overcome by developing an innovative 
green chemistry alternative, minimizing hazards. 

A majority of the identified moth sex pheromone components consists of fatty 
acid derivatives, which are biosynthesized in species-specific pathways involving 
successive enzymes activities. Among the enzymes, fatty acyl desaturases (FADs) 
play an important role to produce the great diversity of sex pheromones between 
species, introducing double bonds in specific positions of the fatty acyl chain to 
form the pheromone skeletons. By benefiting from current development of 
biotechnology and bioengineering, and the functionally characterized pheromone 
biosynthetic gene toolbox, such as FADs, it has now become possible to synthesize 
customized pheromone in transformed organisms efficiently. In this thesis, I 
investigated the use of several plant platforms (tobacco and Camelina) to express a 
suite of biosynthetic enzymes for pheromone precursors production. I established 
several stable transgenic plant lines for the production of high value pheromones, 
ranging from the carbon chain length of C12 to C16, in either leaves or seeds. The 
constructed transgenic plant lines produced a significant amount of pheromone 

13 13



14 

precursors in the greenhouse. This research can be a significant step forward to 
enable pheromone stable production in plant factories. 

In addition to FADs, there are some other important enzymes involved in moth 
pheromone biosynthesis. For example, fatty acyl elongases (ELOs) and acyl-CoA 
oxidases (ACO) are expected to determine the pheromone skeletons when combined 
with FADs. Fatty acyl reductases (FARs) can reduce the pheromone precursors into 
corresponding alcohol pheromones. To improve the possibility and feasibility of 
producing customized moth pheromones in plant factories, more functional genes 
need to be characterized to enlarge the gene toolbox. 

In this thesis, first, I elucidated the sex pheromone biosynthetic pathways of the 
beet armyworm Spodoptera exigua and the European grapevine moth Lobesia 
botrana, which use sex pheromone compounds with two double bonds. Furthermore, 
in order to clarify the molecular mechanism of moth sex pheromone biosynthesis, I 
functionally characterized several genes from three moth species encoding 
corresponding pheromone biosynthetic enzymes, including the genes encoding ELO 
and ACO which are the first time to be reported in Lepidoptera. These findings 
improve the feasibility of using plant factories for large-scale customized 
pheromone production. 
Moreover, the final goal of this green chemistry alternative for pest control is to be 
able to grow the pheromone-releasing plant in the field. Thus, it would be important 
to obtain plants capable of releasing pheromones into the environment. Here, I made 
some effort to explore this possibility with tobacco. I cloned a gene promoter called 
CYP71D16 to drive the pheromone biosynthetic genes in tobacco trichomes. It was 
surprising to find that the pheromone production amount was increased significantly 
compared to the use of a constitutive promoter, however no pheromones could be 
collected from the plant headspace volatiles. 
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Populär sammanfattning på svenska 

För att undvika allvarliga skador på grödor bör man vara uppmärksam på de fjärilar 
som upptäckts i åkrarna. Nattfjärilarrnas honor lägger ägg på grödorna och de 
kläckta larverna kan komma att äta av grödorna och orsaka allvarliga skador. 
Nattfjärilar förlitar sig starkt på sexualferomoner för att kommunicera mellan hanar 
och honor i samband med parningen. Feromoner är molekyler som används för 
kommunikation mellan levande organismer inom hela ”tree of life” från bakterier 
till människor. I allmänhet släpper fjärilshonorna ut artspecifika sexualferomoner 
för att locka till sig hanar av samma art över långa avstånd. Det finns mer än 160 
000 beskrivna arter fjärilar inom insektsordningen Lepidoptera (nattfjärilar och 
dagfjärilar). De är bland de mest betydande skadedjuren i livsmedels- och 
fibergrödor och kan anpassa sig snabbt och utveckla motståndskraft mot insekticider. 
Konventionella insektsbekämpningsmedel skiljer inte på skadedjur och andra 
insekter utan är i många fall skadliga för andra organismer, inklusive människor, 
och även för växter som är beroende av nyttoinsekter för pollinering. Att använda 
feromon för skadedjursbekämpning (genom massfånst och parningsstörning) har 
blivit ett miljövänligt alternativ eftersom feromonerna är icke-toxiska; de har inga 
negativa effekter på andra organismer, de dödar inte parasitoider eller andra 
nyttoinsekter, och riskerna för att resistens utvecklas är små. Även när det gäller 
skördevinst och minskning av skador utfaller feromoner ofta positivt jämfört med 
om insekticider används. Den globala marknaden för feromonbaserade 
bekämpningsmedel beräknas för närvarande till över 200 miljoner dollar. 
Nuvarande standardmetoder för feromonsyntes kräver ofta användning av farliga 
kemikalier under syntesen eller kan resultera i farligt avfall som biprodukt och det 
är svårt att modifiera dubbelbindningarna vid produktion av omättade 
feromonprekursorer. Problemen som är förknippade med syntetisk 
feromonproduktion kan övervinnas genom att utveckla ett innovativt alternativ 
baserat på så kallad grön kemi, samtidigt som riskerna minimeras. 

En majoritet av de identifierade feromonkomponenterna hos nattfjärilar består av 
fettsyraderivat, som  produceras via artspecifika biosyntesvägar. Bland enzymerna 
spelar fettsyredesaturaser (FAD) en viktig roll för att producera den stora 
mångfalden av sexualferomoner mellan arter baserat på introduktion av 
dubbelbindningar i specifika positioner i fettsyrans kolkedja för att bilda 
feromonskelettet. Genom att dra nytta av den senaste utvecklingen inom bioteknik 
och bioengineering, och tillgången på gener i verktygslådan, såsom FAD, är det 
möjligt att effektivt syntetisera anpassade feromoner i transformerade organismer. I 
min avhandling undersökte jag användningen av flera växtplattformar (tobak och 
oljedådra) för att uttrycka en serie biosyntetiska enzymer för produktion av 
feromonprekursorer. Jag etablerade flera stabila transgena växtlinjer för produktion 
av feromoner med kolkedjelängder från C12 till C16, både i blad och frön. De 
transgena växtlinjerna producerade en betydande mängd feromonprekursorer när 
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jag odlade dem i växthus. Denna forskning är ett viktigt steg framåt för stabil 
storskalig produktion av feromoner  i växtfabriker. 

Förutom FAD:er finns det några andra viktiga enzymer som är involverade i 
feromonbiosyntes hos fjäriliar. Exempelvis kan fettsyrelelongaser (ELO) och acyl-
CoA-oxidaser (ACO) kombineras med FAD för att modifiera feromonskelettet. 
Fettsyrereduktaser (FAR) kan reducera feromonprekursorerna till motsvarande 
alkoholer. För att förbättra möjligheten och genomförbarheten för att producera 
anpassade fjärilsferomoner i växtfabriker, måste fler gener karakteriseras för att 
komplettera genverktygslådan. 

I min avhandling kartlade jag först biosyntesvägarna för sexualferomonerna hos 
smalvingat lövfly, Spodoptera exigua och vinskottsvecklaren  Lobesia botrana, som 
båda använder sexualferomoner med två dubbelbindningar i kolskelettet. För att 
klargöra den molekyöära mekanismen för biosyntes av fjärilsferomoner, 
karakteriserade jag flera biosyntesgener från tre olika fjärilsarter, inklusive generna 
som kodar för ELO och ACO, vilka här rapporteras för första gången för 
Lepidoptera. Dessa resultat ökar möjligheten att utveckla växtfabriker för 
skräddarsydd feromonproduktion. 
Ett annat annat mål för produktionen av insektsferomoner i växtfabriker skulle 
kunna vara att utveckla väster som avger feromoner vid odling i fält. Jag försökte 
producera genmodifierade tobaksplantor som avgav feromoner. Jag klonade en 
genpromotor som heter CYP71D16 för att reglera produktionen av 
feromonbiosyntetiska gener i tobakstrikom. Trikom är hår på växtens yta. Till vår 
förvåning upptäckte vi att feromonproduktionen ökade mycket jämfört med när en 
en konstitutiv promotor användes. Dock kunde vi inte observera att växternas 
trikomer avgav några feromoner. 
  

1616



17 

������ 

�ÅiĬĵY��ŸEH.9	ů)�ĵT¨ĠŸ�ċÌ&��Ĭĵ�
�
Ņŭ�ŵ�gūů��Y��ÎŪŸű­�ľń+Y��ºŸÎ!�W
ÀĤØŵI�Ĉ�!�wCT4V�ī�­<()ŸrÝQ!�ŸEðŠŸ
�FQ!�ŸE
Ŵ�ò��Î!I�ĈŸå�VÈ�	G!�w�ŵůý
ţń½�øňnI�ĈzP@T�ī/»áŵ�ę��Ÿ¿ūůĚ.,¡`
�nI�ĈĆ(Ÿ�\ħ³ĒČX@ĸů+p3»áŵ9E:[N.9�~
 �âÏ@ŧŖÃţńŶ¨ů/ŗŔŷŸ��u�È��0śºýY�/ŝ
¸Y�Î!Ă�đĀŸ�0Đńšç	1ÐD�ú.ö�ĨğKŵ¢í�Đ
ńš��Ö(Øń/u6½ÃèţńŸ�ć�È�5ģ��+ĤØ¤œ
ý
���u6!�Ÿ	���0�gøňV	ķţńzPőÞ�Ő�Î!ěW
�ďŵţńI�Ĉ8ĭŸ0½Ãè!�%	�Â�ďŸØń0I�ĈÎ!ğ
n���n�$#Ÿ^+Â4I�ĈzPńØġ ŶŃE��ŏŜ/»áđ
Āŷ}�������ŨŵÃZMÉ¥v�I�ĈýØń÷ġÎlĪ���Ÿ
=DŸcZI�Ĉ��3ø=øňVĤĉ­<lY�!Î�óŸ!Î à�
Î!��gĮÎ���ĤØôăŵb�Ÿê�cZI�Ĉ!Î�Ł	{�Ÿ
2.��Ė|­<!ÎJÊŎ�ŘŦŵ 

��3I�Ĉ� à�*®�®K��(Ģ V!Î�İ/�I�ĈZ
wŵ��([ŕ`�ůýnI�ĈĆ(¬VŊŞÚũ!�Ÿ��¿�²ß·
¾Y4�Ů��3ŵ��gŮ�Ÿĩİ/Ů0V�X�@CT�nI�Ĉ(
­'�O
Y4Ÿ��!Î�İ/I�ĈZw�sļŮŸ�O
�¹���
ŊŞÚŉĦ�¡`�ĊČx�İ/�ŉŉ�ļŸ	���+Î!ŉŉ7ļŵ
�ķV9±!�Ďþ/!��à<�1Ð.öŸ���+Â4[B¹��I
�Ĉ�3msÿbŸEĩİ/ŮŸ��ĕ!�w�qË�FÍ-!ÎI�Ĉŵ
��ñ¶S�Ÿ�ŀĜ�E£Â4Ğā/ēĔŬY�Ő��ōĳ`-!Îţ
ńnI�Ĉ��Zwŵ �ÛÙ�ĘÑ�ĳ`��ÿbŐ�l²Ÿ4V�uį
]°@)�!Î	õ��4ª×�I�Ĉŵ �^łÛ�Ő�l²�ÔĄĹÓ
��+!Î���I�ĈZwŸ�ùĥĜ���Ő��ōI�Ĉĳ`!Î�
t
�Æŵ 

ü�ĩİ/ŮŸ"	�gu�t
�Ů�ÄdůýI�Ĉ�!��3ŵ 
ŃEŸŊŞÚĿ\Ů/ŲÿťŮ AŌ­Ů��L´�dĩİ/Ů�'Y4V
!ÎI�Ĉ�ŊŞÚ�łŵŊŞÚ"�Ů�+kŊŞÚ"��m��ŊŞŢŸ
	gţń��Â4ŊŞŢY�uO
�I�ĈĆ(ŵb�Ÿ��«F�Ő�
�ō�!Î;�¡`I�Ĉ���n/�PnŸ��"�
0;�I�Ĉ�
3msÿbzP¹�ŕ`Ÿ+Ś��¦4�¹�ÿbŒŵ  

�U¶S�Ÿ��ÁÇŕ`�æÕ©ů/ņŇyŖ#Ľů�nI�Ĉ!
��3ĴşŸ��¦4�nI�ĈĆ(ç	oõ¡f�ŉŉ�ļ�łŵ��
ŰRunI�Ĉ!��3�()G Ÿ��z�Æ0�gI�Ĉ�3ms�
e�ÿb>�¹�ŕ`ŵ¤œh­ų��Ÿ���î¹�ŕ`�§��ĺµ
I�Ĉ�3msŮ�ÿbŸu�ĺµŊŞÚĿ\Ů/ŲÿťŮ AŌ­Ů�ÿ

17 17



18 

b¹��ŧŖÃţń��ÁA��ãïŵ�gÿb¹��ŕ`�Ò­Ő�I
�Ĉ�ō«Ī�;��éŵ 
ä�ŸÂ4Ő��ō!ÎI�Ĉ4VØń÷ė�*¯Ãè�łÛ,��ĵ

TıaI�Ĉ�Ő�ŵb�ŸE£Ļ¦Ő�kI�Ĉıa���ôă���
�ùt
�ĥĜÜ�ŵ �U¶S�Ÿ�ąÆŀĲ��Ğā�ıaI�Ĉ��
�nŵ �êř���_�CYP71D16�ÿbĶ?)Ÿ+Ť?I�Ĉ!��3
ÿb�Ğāìĝw�zPqËŸdĆ3ëĶ?)moŸÂ4 CYP71D16Ķ?
)�Ő�Î!�;��I�ĈŸj�¼rŐ��č�ŋ.���û�I�Ĉŵ 
  

1818



19 

Aims and objectives of the thesis 

To understand the molecular mechanisms of moth pheromone biosynthesis and 
extension of the synthetic gene pool will be helpful in order to design tailor-made 
production of moth pheromones in transgenic organic factories. One significant aim 
of this thesis is to characterize important enzymes involved in pheromone 
biosynthesis, especially new FADs that are specialized in performing distinct 
functions and providing significant molecular evidence for the study about the 
sequences to functions of FADs. 

The second major aim of this thesis work is finding synthetic biology methods to 
further demonstrate the technical and commercial feasibility of insect pheromone 
production in plant factories by stable transformation. The proposed strategy has the 
potential to become an economically sound part of many integrated pest 
management (IPM) programs. The concept of using transient expression of the 
necessary and sufficient genes for production of common moth pheromone 
compounds in Nicotiana benthamiana has been proven in a previous study (Ding et 
al. 2014). This synthetic biology strategy is a “green chemistry”-alternative, which 
aims for a novel and cost-effective way of producing moderate to large quantities 
of pheromones with high purity and a minimum of waste. Synthetic biology can be 
explained as the studies to take the rational design principles of engineering and 
apply them to the modification and manipulation of living organisms (Gibbs 2004). 
This has resulted in the construction of increasingly complex genetic circuits and 
rewired pathways, although the manual construction of these circuits can often be a 
time-intensive task with complex optimization required (Cloney 2016).  

The thesis is divided into two major parts, the characterization of novel genes 
involved in pheromone biosynthesis (Paper I, II, III) and the construction of gene 
cassettes for insect pheromone production in plant (Paper IV, V). The objective of 
the first part is deciphering the molecular mechanism of pheromone biosynthesis in 
three moth species that are notorious pests, i.e., Spodoptera exigua (Paper I), 
Lobesia botrana (Paper II), and Chilo suppressalis (Paper III). The second part is 
dedicated to design, build and assemble an integrated biological system for insect 
pheromone manufacture in plant factories. In this part, I aim to produce stable lines 
of transformed plants for the production of C14 and C16 (Paper IV) and C12 (Paper 
V) insect pheromone precursors. For the purpose of optimizing the plant factories, 
storage and release of pheromone compounds from the modified plants is 
investigated. 
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Introduction 

Lepidoptera fatty acyl desaturases 

The membrane-bound fatty acyl desaturases (FADs) belong to a superfamily of 
oxygen-dependent membrane di-iron-containing enzymes that includes a conserved 
three-histidine motif, coordinating two iron ions in the protein active center 
(Behrouzian and Bruist 2002). The enzymes catalyze the removal of hydrogen from 
a fatty acyl chain at a specific position resulting in the introduction of double bonds 
into the chain in ‘E’ or ‘Z’ configuration by desaturation reaction. Unlike the FADs 
in mammals, plants and protists that are active in normal cellular lipid synthesis, the 
Lepidoptera FADs have evolved extensively into different functions involved in 
producing the great diversity of moth pheromones (Knipple et al. 1998; Knipple et 
al. 2002; Liu et al. 2002; Roelofs et al. 2002; Jeong et al. 2003; Liénard et al. 2010; 
Tupec et al. 2017). 

Since the 1980s, a variety of enzyme activities of moth FADs has successively 
been reported (Arsequell et al. 1990; Bjostad and Roelofs 1981; 1983; Foster and 
Roelofs 1988, 1996; Löfstedt and Bengtsson 1988; Martinez et al. 1990; Zhao et al. 
1990). Based on the preference of substrates and product differences, particularly 
the position of the double bond introduced, the moth FADs can be divided into four 
subfamilies (Tocher et al. 1998) (Box 1). 
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Over the last three decades, genes encoding corresponding FADs have been 
characterized via heterologous expression systems, e.g., Δ5 FAD in Ctenopseustis 
obliquana and C. herana (Hagström et al. 2014), a Δ6 FAD in Antheraea pernyi 
(Wang et al. 2010), several Δ9 FADs from a range of moth species (Liu et al. 2002; 
Liu et al. 2004; Rodríguez et al. 2004; Rosenfield et al. 2001), a Δ10 FAD in 
Planotortrix octo (Hao et al. 2002), a Δ11 FAD in Trichoplusia ni which is the first 
discovered FAD (Knipple et al. 1998), a Δ11/Δ13 multifunctional FAD in 
Thaumetopoea pityocampa (Serra et al. 2007), Δ14 FAD in Ostrinia species 
(Roelofs et al. 2002), and a terminal FAD in Operophtera brumata (Ding et al. 
2011), a multifunctional ∆11/∆12 FADs in two Spodoptera moths (Fig. 1) (Paper 
I), etc. It is known that moth FADs have evolved multiple functions that introduce 
conjugated double bonds (Moto et al. 2004; Matouškovà et al. 2007; Serra et al., 
2006), and produce a triple bond by sequential action (Serra et al. 2007). Still, in 
many cases, the FADs were reported to use same substrate but the products have 
strikingly different stereochemistry (Hao et al. 2002; Liu et al. 2004; Buçek et al. 
2015). 

Name Definition Reference
First desaturase        insert double bond into the 

saturated fatty acyl chain
Most of the identified moth
desaturases belong to this group, 
∆10, ∆11, ∆13 desaturases, 
including a conserved metabolic ∆9 
FAD present in all eukaryotes (Liu 
et al., 1999; Paper III); 

Omega desaturase introduce double bond into the 
position between an existing
double bond and the methyl end 

A terminal FAD from Operophtera
brumata (Ding et al., 2011); multi-
functional desaturases from two
Spodoptera moths (Paper I)

Front-end desaturase introduce double bond into the 
position between an existing
double bond and the carboxylic
end 

∆4, ∆5, ∆6, and bifunctional
∆6/sphingolipid ∆8 desaturases
(Hashimoto et al., 2008). ∆7 
desaturases in Lobesia botrana
(Paper II)

Sphingolipid desaturase present solely to the biosynthesis 
of sphingolipid

sole function is the sphingolipid ∆4 
desaturase (Ternes et al., 2002)

Membrane-bound Desaturase subfamily

BOX 1
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Figure 1. Pictures of the moth species that have been studied of sex pheromone biosynthesis in this thesis. 

The Lepidoptera FADs fall into different groups in the phylogenetic tree (Fig. 2). 
The ∆9 (C16 > C18) clade with a preference for palmitic acid, and the ∆9 (C18 > C16) 
clade with a preference for stearic acid and contain mostly metabolic FADs for 
maintaining the fluidity of cell membranes. The ∆11/∆10/∆9/bifunctional clade 
comprises pheromone biosynthetic FADs. The ∆5/∆6, and ∆14 clade FADs active 
in pheromone biosynthesis have a mixture of different signature motifs. In addition, 
the ∆9 (C14-C26) clade FADs have preferences ranging from myristic acid to long 
chain (C16) fatty acids and are evolved to produce pheromone compounds as well. 
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Figure 2. Phylogenetic tree of desaturases. The desaturases tree was constructed by using Lepidoptera 
desaturases with amino acid sequences. The predicted desaturase genes studied in Paper I, II, III, IV, V are marked 
by triangle, hollow triangle, round, rhombus and square spots, respectively.
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Moth pheromones 

The name of “Pheromone” comes from “Pherein” and “Hormon” of Greek origin, 
means “to carry and to excite” (Wyatt 2003). In 1959, the first moth (Insecta, 
Lepidoptera) pheromone bombykol (E,Z)-10,12-hexadecadien-1-ol was described 
from the silk moth Bombyx mori (Butenandt et al. 1959). Pheromones are a subclass 
of semiochemicals that are used by the individuals of the same species to 
communicate with each other. Pheromone-mediated behaviors are crucial in 
animals from insects to mammals and contribute significantly to reproductive 
isolation (Wyatt 2003; Smadja and Butlin 2009). In many branches in the tree of 
life, from yeast (Michaelis and Herskowitz 1988) to elephants (Rasmussen et al. 
1997) pheromones are used. However, insects are definitely the masters of chemical 
communication, and most of them heavily depend on pheromones for a wide range 
of different behaviours (Jurenka 2004; Lamprecht et al. 2008). 

Female moths emit species-specific pheromone component blends that attract 
conspecific males over a long-distance, and this kind of pheromone is called sex 
pheromone. Approximately 75% of known moths use Type I sex pheromone 
compounds, which are C10-C18 fatty acid (FA) derivatives including mainly acetates, 
alcohols or aldehydes (Löfstedt et al. 2016). The second most common type, Type 
II pheromones, are used by ca. 15% of the moth species. Type II pheromone 
compounds comprise polyunsaturated hydrocarbons and their epoxy derivatives 
with longer straight chains (C17-C25) (Conner et al. 1980; Löfstedt and Kozlov 1997; 
Ando et al. 2004). The Type I sex pheromone compounds are generally produced in 
a specialized tissue named the pheromone gland that is commonly located between 
the 8th and 9th abdominal segments of the female moths (Fig. 3) (Percy 1987; Raina 
et al. 2000; Ma et al. 2003; Ando et al. 2004). Other identified moth sex pheromone 
compounds are methyl-branched long chain (C17-C23) saturated or unsaturated 
hydrocarbons, and functionalized hydrocarbons (Type III) (Löfstedt et al. 2016). 
Also, short-chain secondary alcohols and ketones (Type 0) have been reported not 
only in Lepidoptera but also in the sister group Trichoptera, therefore to be 
considered as the most ancient form of moth pheromones (Visser 1986; Löfstedt 
and Kozlov 1997; Löfstedt et al. 2016), produced in glands of the 5th abdominal 
sternite (Löfstedt et al. 1994). 
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Figure 3. A typical female moth pheromone gland. Reprinted from Xia et al. (2015). 

The biosynthetic pathways of moth pheromones 

The general biosynthetic pathways for Type I pheromones from palmitic acid may 
include chain elongation or shortening, interspersed with desaturation steps to place 
double bonds in specific positions. Once the chain is completed, the final steps 
involve adjustment of the terminal functional group (Löfstedt et al. 2016). 
Biosynthetic pathways for Type II pheromones usually start from linoleic or 
linolenic acids. In the oenocytes, different chain lengths may be produced and 
additional double bonds can be introduced similar to the biosynthesis of the Type I 
pheromone compounds. The final steps involve decarboxylation to provide odd-
numbered chains or oxidation followed by decarboxylation and decarbonylation to 
produce even-numbered chains. The hydrocarbon products are then transported to 
the pheromone gland for release directly or after epoxidation (Löfstedt et al. 2016). 
My thesis is focused on studies of Type I pheromones. 

Identification of genes encoding Type I sex pheromone 
biosynthetic enzymes 

Most Lepidopteran sex pheromones share a common progenitor that is de novo 
synthesized from acetyl-CoA via fatty acid synthesis in the PG (Foster 2005). The 
biosynthesis starts by acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) 
catalyzing the saturated fatty acid precursor malonyl-CoA from acetyl-CoA in the 
first committed biosynthesis step (Volpe and Vagelous 1973; Pape et al. 1988). 
Fatty-acid metabolism enzymes perform desaturation, chain-shortening by β-
oxidation, chain-elongation, and functional group modifications by reduction, 
acetylation or oxidation to finally produce the pheromone components (Strandh et 

1. Ovipositor

2. Pheromone gland
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al. 2008) (Fig. 4). Different combinations of these enzymes can produce unique 
species-specific pheromone blends in different species. The genes encoding two 
classes of essential enzymes involved in moth pheromone synthesis have been 
mostly functionally identified. Firstly, the gene encoding FADs that introduce 
double bonds in selected positions of the carbon chains are most extensively studied 
(Knipple et al. 2002), and has been described in “Lepidoptera fatty acyl desaturases”. 

 

Figure 4. Type I pheromone biosynthetic pathways.   

Secondly, the genes encoding fatty-acyl reductases (FAR), responsible for reducing 
fatty acids to alcohols with different substrate specificities, have been functionally 
characterized in a few moth species, such as pgFAR-Z/E in O. nubilalis (Lassance 
et al. 2010), pgFAR in B. mori (Moto et al. 2003) and pgFAR in C. suppressalis 
(Fig. 1) (Paper III). 

Other important genes postulated to be involved in moth pheromone production 
remain to be characterized, including  

- the genes encoding acetyl-CoA acetyltransferases, which catalyze the 
conversion of fatty alcohol into acetate ester (Clinkenbeard et al. 1973);  

- the genes encoding acyl-CoA oxidases, which are responsible for lipid 
metabolism by catalyzing the conversion of acyl-CoA into trans-2-enoyl-
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ACC
ATP

ACP, NAD(P)H

FAS

Palmitic acid (16:0)/Stearic acid (18:0)

Desaturation/ß-oxidation/Elongation
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Reduction/Oxidation

Type I Pheromone Components
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CoA during fatty acid β-oxidation, and two novel ACO genes have been 
reported in L. botrana (Fig. 1) (Paper II);  

- the genes encoding alcohol oxidases, which are responsible for converting 
fatty alcohols into aldehydes;  

- the genes encoding elongation of very long chain fatty acid proteins (ELO), 
which catalyze the reaction of the long-chain fatty acids elongation cycle, 
and the first lepidoteran ELO gene has been reported in C. suppressalis (Fig. 
1) (Paper III); 

- the genes encoding fatty acid transport proteins, which are integral 
membrane-bound proteins found in both the plasma membrane and 
endoplasmic reticulum, several of which facilitate the uptake and activation 
of exogenous long chain fatty acids (Stahl 2004; DiRusso et al. 2005; Black 
and DiRusso 2007; Anderson and Stahl 2013);  

- the genes encoding acyl-CoA binding proteins, which bind acyl-CoA esters 
with high specificity and affinity, and are thought to act as intracellular 
transporters of acyl-CoA esters between different enzymatic systems 
(Mogensen et al. 1987; Burton et al. 2005; Færgeman et al. 2007). 

Application of moth pheromones for pest control 

Lepidoptera is a big order of insects that contains more than 160,000 described moth 
and butterfly species, and estimated 250,000 species including undescribed species 
in the whole world (Heppner 1991; Nieukerken et al. 2011). Among the most 
damaging pests of food and fiber crops, the moths are the super-criminal, and this 
is also due to the moths’ capability of adapting fast and evolving resistance to 
insecticides (Simmons et al. 2010). It should be noticed that conventional 
insecticides will not only hurt the pests but are also harmful to other non-target 
insects, including insects beneficial for pollination or plant protection. Apart from 
this, in many cases the traditional insecticides are detrimental to humans regarding 
aspects of food safety and environment injure (Brittain and Potts 2011). 

Due to the variety of problems caused by conventional pesticides, synthetic 
pheromones emerged as an alternative for insect control by monitoring or disruption 
of pheromone communication in pest insects with many advantages (Wyatt 2003). 
Moth pheromones are environmentally friendly and non-toxic, they have no adverse 
effects on non-target organisms and are not harmful to parasitoids or other beneficial 
insects. In addition, the risks of resistance being developed in the pest are relatively 
small. Even in terms of profit and reduction in damage, pheromones often compare 
favourably to the use of insecticides. For example, protecting cabbage from 
diamondback moth by pheromone was both cheaper, $62 compared to $123 per ha, 
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and more profitable, ca $800 compared to $456 per ha than by insecticides (Reddy 
and Guerrero 2000). Nowadays, there are tons of synthetic pheromones produced 
for application and it is estimated to be about $200 millions pheromone-based 
control products consumed in the global market (Weatherston and Stewart 2002). 

Plants as factories for pheromones production 

Since the techniques for genetically engineering of plants were developed in the 
early 1980s, numerous research projects have focused on utilizing transgenic plants 
to produce high-value recombinant proteins or compounds (Boehm 2007; Karg and 
Kallio 2009; Lienard et al. 2007; Ma et al. 2005; Mett et al. 2008;). During the past 
20 years, producing insect pheromones or their biosynthetic precursors in 
genetically modified plant factories has been attempted. A moth pheromone 
precursor was produced in Nicotiana tabacum by the introduction of a moth 
desaturase (Nešněrová et al. 2004), and an aphid alarm pheromone was produced 
from endogenous plant sesquiterpene by expression of a (E)-β-farnesene synthase 
in Arabidopsis (Beale et al. 2006). Moreover, Ding et al. (2014) proved that transient 
expression of genes coding for consecutive pheromone biosynthetic steps in N. 
benthamiana, resulted in production of biologically active multi-component sex 
pheromones. The activity of the acetylated sex pheromone mixtures from the fatty 
alcohol fractions produced by the genetically modified plants have the same activity 
for trapping of male small ermine moths Yponomeuta evonymella and Y. padella 
compared to conventionally produced synthetic pheromones (Ding et al. 2014). 
These studies have demonstrated that it is feasible to produce highly attractive and 
species-specific moth pheromones in genetically modified plants. 

The potential advantages of using plant-based expression systems include the 
ability to produce complex proteins that require post-translational modifications, 
avoiding the possibility of introducing human pathogens during the manufacturing 
process, and the capability to amplify production efficiently and cost-effectively 
(Ma et al. 2005; Boehm 2007; Liénard et al. 2007; Mett et al. 2008; Karg and Kallio 
2009). 

Fatty acids and triacylglycerol biosynthesis in plants 

In plants, de novo fatty acid biosynthesis takes place in plastids (Ohlrogge et al. 
1979), which are double-membrane organelles in plant cells. It starts from the 
condensation of acetyl-coenzyme A (CoA) and malonyl-acyl carrier protein (ACP) 
by the β-ketoacyl-ACP synthase (KAS) to produce a four-carbon β-ketoacyl-ACP, 
which are elongated by sequential condensation of two carbon units from malonyl-
ACP by the co-operation of enzymes of fatty acid synthase (FAS) (Fig. 5) (Schultz 

29 29



30 

and Ohlrogge 2001; Voelker and Kinney 2001). Termination of plastid fatty acid 
chain elongation is catalyzed by fatty acyl-ACP thioesterases (FATs), which 
hydrolyze acyl chains from ACP to free fatty acids (FFAs). The FFAs are then 
transported through the plastid and activated to CoA esters, which are assembled 
into glycerolipids and polar lipids (PL) at the endoplasmic reticulum (ER) (Fig. 5), 
where further modifications such as desaturation, hydroxylation, elongation, etc., 
occur as well. 

In developing seeds, the flux of acyl chains in the ER eventually leads to 
esterification on all three positions of glycerol to form triacylglycerol (TAG) (Fig. 
5). The low polarity of TAG is thought to result in the accumulation of this lipid 
between bilayer leaflets leading to the budding of storage organelles termed oil 
bodies (Raclot 1997). 

 

Figure 5. Simplified fatty acid synthesis and TAG assemble pathways in plants. 

Fatty acyl-ACP thioesterases (FATs) 

According to different substrate preferences, FATs are classified into two families, 
FatA and FatB (Jones et al. 1995; Salas and Ohlrogge 2002). FatAs generally have 
activities on C18 saturated or unsaturated fatty acyl-ACP, while FatBs are 
responsible for releasing C16 acyl chain (Sinchez et al. 2010). FatA orthologues 
show high activity upon Z9-18-ACP substrate, of which the substrate specificities 
are similar among different species (Hawkins and Kridl 1998; Knutzon et al. 1992). 
While FatB enzymes can be further classified into two subclasses, the first is FatB1 
that has generally preference for 16:0-ACP, and the second is FatB2 that prefer 
short- and medium-chain saturated acyl-ACPs (Rodríguez et al. 2014). 

FATs are the key enzymes to determine which fatty acids are exported to the 
cytosol and subsequently incorporated into further glycerolipids biosynthesis 
(Voelder TA et al. 1996). To date, a variety of specific FAT genes have been 
functionally demonstrated to effectively modify oil profile in transgenic plants 
(Salas and Ohlrogge 2002). The engineered fatty acids by FAT genes range from 
short-chain to long-chain. For instance, e.g., overexpression of FatB2 originally 
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from California bay laurel (Umbellularia californica) in Brassica napus and 
Camelina seeds increased the lauric acid level in the total fatty acids (mol%) from 
negligible level to 58% (Voelker et al. 1996) and 29% (Kim et al. 2015), 
respectively; FatB2 from Cuphea palustris overexpressed in N. benthamiana leaf 
boosts the production of myristic acid a hundred times (Ding et al. 2014); B. napus 
introduced by FatB1 from Cuphea species produced 34% palmitic acid of total fatty 
acids (mol%) (Jones et al. 1995). Interest in the use of FATs in lipid biotechnology 
has led to a very active research on their different forms coming from various 
sources (Mandal et al. 2000; Othman et al. 2000; Serrano et al. 2005; Ghosh et al. 
2007). 

Metabolic pathway of medium-chain fatty acid synthesis in plant  

Medium-chain fatty acids (MCFAs) range from ethanthic acid (C6:0) to myristic 
acid (C14:0), which are important for a variety of industrial productions, such as 
cosmetics, detergents, soaps, surfactants, lubricants, etc (Knaut and Richtler 1985; 
Dyer et al. 2008). The synthesis of MCFAs is a variation on typical de novo fatty 
acid synthesis that takes place in plants that produces primarily C16 and C18 fatty 
acids. In nature, only a few plants are MCFAs-rich. Therefore, engineered pathways 
are usually applied to generate MCFAs in non-MCFA-enriched plants. 

The MCFA enriched plants are mostly from the tropics, e.g. palm kernel (Elaeis 
guineensis Jacq.) contains ca. 50 (mol) % of lauric acid and 18% of myristic acid of 
total fatty acids, respectively, as well as coconut (Cocos nucifers L.). The seeds from 
the temperate Cuphea genus also produce high amounts of MCFAs (Graham and 
Kleiman 1992; Graham 1998), of which C. pulcherrima can yield more than 90% 
of C8:0, and C. viscosissima accumulates 25% of C8:0 and 64% of capric acid 
(C10:0). Therefore, Cuphea species have been a suitable genetic resource to isolate 
FAT genes for MCFA production. Establishing oilseed crop lines for MCFA 
production by introducing Cuphea FAT genes have been confirmed to be a useful 
approach (Dehesh et al. 1996a, b; Leonard et al. 1997; Slabaugh et al. 1998; 
Filichkin et al. 2006). 

For purposes of increasing MCFA content, divergent FatB enzymes were 
characterized and transgenically investigated, predominantly focusing on the 
engineering of lauric acid (C12:0) (Eccleston and Ohlrogge 1998; Knutzon et al. 
1999; Voelker et al. 1992; Reynolds et al. 2017). In plants, the biosynthesis of 
MCFA is a variation on typical de novo fatty acid synthesis that generates primarily 
C16 and C18 fatty acids. Chain-lengths of fatty acids are primarily determined by 
acyl-ACP thioesterases, in including FatB thioesterases that typically release C16 
acyl chains from de novo fatty acid biosynthesis (Li-Beisson et al. 2013). Variant 
forms of FatB, found in selected plant species, are able to release fatty acids of chain 
lengths shorter than C16, as demonstrated by transgenic expression in seeds (Pollard 
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et al. 1991; Jones et al. 1995; Voelker 1996; Tjellström et al. 2013; Kim et al. 2015). 
In previous study, a FatB gene UcTE from California bay laurel (Umbellularia 
californica) was found to have high activity for production of 12:0 in rapeseed 
(Brassica napus) (Voelker et al. 1992). When the MCFAs are exported into the 
cytoplasm from the plastid in oilseeds, they become available for incorporation into 
TAG, which is formed most directly by the Kennedy pathway enzymes of glycerol-
3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase
(LPAAT) and diacylglycerol acyltransferase (DGAT) continuously (Thelen and
Ohlrogge 2002; Cahoon et al. 2007; Dyer et al. 2008; Kim et al. 2015a). A recent
report showed that the co-expression of a variant FatB thioesterase with LPAT in
Camelina seeds, the MCFA accumulation was improved (Kim et al. 2015a).

Plant platforms for pheromone production 

In this thesis, I worked on three different plant platforms: N. tabacum, N. 
benthamiana and Camelina sativa for pheromone production. 

N. tabacum is also called cultivated tobacco which is an herbaceous plant and it
is only found in cultivation. N. tabacum is the most commonly grown plant in the 
Nicotiana genus. It is commercially grown in many countries and the leaves are 
used to produce tobacco. The height of matured tobacco plants is between 1 and 2 
meters. The leaves vary in size and the lower leaves are the largest with a length of 
up to 60 cm. N. benthamiana is a close relative of N. tabacum, and the mature plants 
show a big variation in height, ranging from as tall as 1.5 meters to shorter than 200 
mm. In our greenhouse, the height of N. benthamiana was about 300 mm. The two
Nicotiana species are both favourable to work with in metabolic engineering aiming
at production of pheromone compounds as they have relatively short production
times, large area of leaves to output volatiles and are relatively easy to grow in
controlled growth conditions. In addition, there is less concern about contaminating
food supplies as they are not food crops.

Camelina was chosen as the oilseed production platform for our studies because 
it is limited use as a food crop and is considered an ideal system for rapid 
introduction and evaluation of fatty acid and other oil-related traits (Iskandarov et 
al. 2014). Foremost, transgenes can easily be introduced into Camelina using a 
simple Agrobacterium-based method (Lu and Kang 2008), and it has a relatively 
short life cycle that allows up to three generations in a year for evaluation of 
engineered traits (Bansal and Durrett 2016). Camelina is also closely related to 
Arabidopsis thaliana, with a wealth of transgenic and genomic data for optimizing 
endogenous biosynthetic pathways for production of desired oil traits in seeds that 
typically are 30% to 40% oil by weight (Nguyen et al. 2013). 
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In many plants, trichomes are tiny specialized hair structures for secondary 
metabolite production and release. For instance, biosynthesis of the diterpenes takes 
place in trichome heads, where secretory vesicles and cells are located (Fig. 6) 
(Kandra and Wagner 1988; Duke 1994; Guo et al. 1995). CYP71D16 was confirmed 
as a trichome-specific promoter leading the downstream gene to be specifically 
expressed in plant trichome (Wang et al. 2002). To explore the possibility of 
releasing moth pheromones from Nicotiana leave’s trichome cells, a N. tabacum 
trichome specific promoter pCYP71D16 was used for driving pheromone 
biosynthetic gene expression. 

 

Figure 6.  Graphs of plant trichomes. 
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General Methodology 

Labelling experiment 

Isotopic labelling was the technique used to identify moth pheromone biosynthetic 
pathways by tracking the passage of an isotope through the metabolic pathways in 
this thesis. The deuterium-labelled precursors were separately dissolved in 
dimethylsulphoxide (DMSO) (Bjostad and Roelofs 1983; Yamaoka et al. 1984) and 
topically applied to the female abdominal tip where the pheromone gland is located. 
After incubation of a half to several hours, pheromone glands were excised and 
extracted (Bjostad and Roelofs 1984), and the samples could be analyzed by gas 
chromatography/mass spectrometry (GC/MS) (Christie 1998) (Fig. 7). The double 
bond positions in the fatty acid chain were confirmed by dimethyl disulfide (DMDS) 
derivatization (Dunkelblum et al. 1985). 

 

Figure 7. Experimental workflow of in vivo isotopic labelling experiment performed in this thesis. 

Cloning and plasmid constructs for assays 

Amplification of genes was performed by PCR either from cDNA templates 
synthesized from total RNA (Paper I) or genome DNA extracted directly from plant 
materials (for trichome specific promoter pCYP71D16, of which the results are not 
yet complete and compiled in manuscript form). For some genes of the unavailable 
biological source in our lab, I ordered the custom DNA synthesized by Invitrogen. 
(Paper III-V). All the genes contain the Gateway® cloning site attB (Gateway 
cloning system, Invitrogen) and were subsequently cloned to Gateway® entry vector 
in first step by BP reaction. For constructing co-expression clones, the Phusion PCR 
(Atanassov et al. 2009) was performed by putting two fragments that containing 
several dozens of homologue sequence bases and the DNA polymerase together. 
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After hybridizing of the two fragments, the recombined sequence was cloned to 
Gateway® vector. The expression clones in this thesis were also constructed by 
using Gateway® method (Katzen 2007). After the entry clones were confirmed by 
sequencing (Schuster 2007), all of them were sub-cloned to a destination vector by 
LR reaction with different multigene combinations for a variety of purposes.  

Functional assays 

In this thesis, we have used three platforms for gene functional characterization. 
One was the yeast expression system (Fig. 8a). I used yeast expression vectors of 
pYEX-CHT and pYES52 for the functional assays. The expression clones contained 
FADs were introduced into the double deficient ole1/elo1 strain (MATa elo1::HIS3 
ole1::LEU2 ade2 his3 leu2 ura3) of the yeast Saccharomyces cerevisiae, while the 
expression clones contained FARs were introduced into the INVSc strain of yeast 
S.c. (MATa HIS3 LEU2 trp1-289 ura3-52). The transformation of yeasts was 
carried out using the S.c. easy yeast transformation kit (Life technologies). The 
detailed protocol was described in Paper I and III. 

The second platform for gene functional assay was the plant transient expression 
system. I used N. benthamiana as the plant platform for gene expression (Fig. 8b). 
The plant expression clones in pXZY393 vector containing the target genes were 
first introduced into Agrobacterium tumefaciens GV3101 strain (MP90RK) by 
electroporation (1700 V mm-1, 5 ms, Eppendorf 2510). Meanwhile, a viral silencing 
suppressor protein P19 was introduced into the same A. tumefaciens strain as well 
in order to inhibit the transgene silencing of the host cells and extend transgene 
expression over a longer period of time with a higher degree of expression (Voinnet 
et al. 2003). Subsequently the transformed A. tumefaciens was incubated for several 
days until the culture concentration was high enough for infiltration of N. 
benthamiana. The infiltration experiment was carried out by using a 1 mL syringe 
without needle, containing the A. tumefaciens cells, to inject the lower side of a 
suitable four-week-old N. benthamiana leaf, with a gentle squeeze on the plunger 
and modest pressure on the leaf using a finger. The detailed protocol was written in 
Paper III. 

The last platform we used for gene functional assay was the insect cell expression 
system. The expression construct for candidate gene in the BEVS donor vector 
pDEST8 was made by LR reaction. Recombinant bacmids were made according to 
instructions for the Bac-to-BacTM system given by the manufacturer Invitrogen 
using DH10MEmBacY (Geneva Biotech). Baculovirus generation was done using 
Sf9 cells (Invitrogen), Ex-Cell 420 medium (Sigma) and baculoFECTIN II (OET). 
The detailed protocol was written in Paper II. 
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Figure 8. Yeast (a) and Nicotiana benthamiana transient (b) expression system applied in the thesis studies. 
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Leaf disc transformation via Agrobacterium 

The method of Agrobacterium-mediated leaf disc transformation (Clemente et al. 
2006) was used for Nicotiana spp. stable transformation (Fig. 9). First, the A. 
tumefaciens culture containing the construct was incubated at 30 ºC in LB medium 
supplemented with suitable antibiotics, until the optical density (A600nm) can be 
adjusted to 0.9-1. Plant material was obtained from 4-5 weeks old Nicotiana plants 
grown under sterile conditions on MS medium (Murashige and Skoog 1962) in a 
climate chamber. Subsequently, the transgenic lines were obtained by 
Agrobacterium-mediated leaf-disc transformation. Leaf discs (20 mm x 20 mm) 
were cut out and incubated 5 min in an A. tumefaciens solution, dried with sterile 
napkin paper and transferred to Petri dishes with MS medium (Horsch el al. 1985). 
After 2-3 days incubation in darkness, leaf discs were transferred to selection 
medium. Then after 2-3 weeks of incubation, the callus produced on the leaf edges 
were transferred to shoot-inducing medium. After 2-3 weeks of incubation, the 
shoots were transferred to root-inducing medium. The shoots were finally 
transferred into soil and grown in greenhouse until maturity. The detailed protocol 
is written in Paper IV. 

 

Figure 9. Experimental Workflow of Agrobacterium-mediate leaf-disc stable transformation. 
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Floral dip transformation via Agrobacterium 

The method of Agrobacterium-mediated floral dip transformation was used for 
Camelina stable transformation (Fig. 10). The constructed expression vectors were 
introduced into Agrobacterium tumefaciens strain GV3101 (MP90RK) by 
electroporation (1700Vmm-1, 5 ms, Eppendorf 2510). The transformed 
Agrobacterium cells were grown on solid LB medium supplemented with 
antibiotics (50 mg/L rifampicin, 50 mg/L gentamicin and 50 mg/L spectinomycin) 
after incubating at 30°C for 36 h. Afterwards, a single clone from each expression 
clone was incubated in 2 mL liquid LB medium with suitable antibiotics as 
described above at 30°C for 36 h. Then the Agrobacterium solution was transferred 
to 30 mL medium for a 36 h incubation, and after that, the solution was transferred 
to 1 L medium for a 24 h incubation. Subsequently, the five weeks old Camelina 
plants were then transformed (Lu and Kang 2008) by the floral dip/vacuum 
infiltration method as described in Liu et al. (2012). After eight to ten weeks, the 
seeds were collected and sown in soil, and herbicide was used to select the 
transformants. The detailed protocol was written in Paper V. 

 

Figure 10. Experimental Workflow of Agrobacterium-mediate floral dip stable transformation. 
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Figure 11. Experimental Workflow of Agrobacterium-mediated floral dip stable transformation. 

Lipid analysis 

In order to analyze the gene functions in transformed yeast, insect cells and plants, 
as well as to detect the pheromone precursor production in Nicotiana spp. leaves 
and Camelina seeds, the lipid analysis was performed. For the lipid analysis, first 
the pheromone gland tissues (Paper I), yeast cells (Paper I and III), insect cells 
(Paper II) or plant leaves (Paper III-V) were extracted by chloroform:methanol 
(2:1 v:v) at room temperature overnight. For fatty acids (pheromone precursors) 
analysis, this was followed by base-methanolysis and transesterification as 
previously described (Dunkelblum and Kehat 1987) to convert all fatty acids to their 
corresponding methyl esters. The products were then recovered in n-heptane prior 
to GC/MS analysis. While the samples for pheromone compounds such as alcohol, 
aldehyde and acetate analysis were followed by adding n-heptane to re-dissolve the 
compounds after the total lipid dryness by nitrogen, which were then transferred to 
new glass vials for GC/MS analysis. The seed fatty acids extraction and 
methanolysis was performed directly by adding 2% sulphuric acid in methanol and 
incubated at 90ºC for 1 h, and then water and n-heptane were added to extract the 
fatty acid methyl ester products prior to GC/MS analysis (Paper V). 
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Headspace volatile collection 

To perform the experiment of plant headspace volatile collection, the equipment 
was set up as shown in below. For the use of air flow to collect dynamic headspace 
volatile, the experiment was carried out as described in Raguso and Pellmyr (1998). 
For the use of solid phase micro extraction (SPME) to collect volatile, the 
experiment was performed as described in Centini et al. (1996). 

 

Figure 12. Equipment for leaf volatile collection. a) a dynamic headspace technique using air flow. b) solid phase micro 
extraction (SPME) technique. 
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Results and discussion 

Labelling experiments reveal new FADs activities (Paper I and 
II) 

Tracking the pheromone biosynthetic pathways of S. exigua and L. botrana by 
isotope-labelling experiment, we confirmed an unusual ∆12 (Paper I) and a novel 
∆7 (Paper II) desaturation activity to be involved, respectively. In the S. exigua, the 
in vivo labelling experiment showed that deuterium atoms from [16,16,16-2H3] 
hexadecanoic acid (D3–16:acid) were incorporated into all the detected acetates and 
alcohols, including (Z)-11-hexadecenyl acetate (Z11-16:OAc), (Z)-11-hexadecenol 
(Z11-16:OH), (Z)-9-tetradecenyl acetate (Z9-14:OAc), (Z)-9-tetradecenol (Z9-
14:OH), (Z,E)-9,12-tetradecadienoic acetate (Z9,E12-14:OAc) and (Z,E)-9,12-
tetradecadienol (Z9,E12-14:OH) (Fig. 13), as well as into the corresponding 
FAMEs, i.e., methyl (Z)-11-hexadecanoate (Z11-16:Me), methyl (Z)-9-
tetradecenoate (Z9-14:Me), methyl (Z,E)-9,12-tetradecadienoate (Z9,E12–14:Me) 
and methyl myristate (14:Me) (Fig. 12). Notably, when non-labeled (Z)-9-
tetradecenoic acid (Z9-14:acid) was applied to the pheromone gland, the amount of 
Z9,E12-14:OAc increased significantly. In contrast, when [14,14,14-2H3] 
tetradecanoic acid (D3-14:acid) and (E)-12-[14,14,14-2H3] tetradecenoic acid (D3-
E12–14:acid) were applied, label incorporation was not detected in any of the above 
components. These results confirm that the production of major pheromone 
component Z9,E12-14:OAc in S. exigua starts from palmitic acid and a Δ11 FADs 
acts on palmitic acid to produce Z11-16:acid, which is then chain-shortened to Z9-
14:acid, followed by the second desaturation at the Δ12 position to form Z9,E12-
14:OAc (Fig. 14). This pathway is in line with previous study of S. littoralis 
(Jurenka, 1997). 
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Figure 13. Incorporation of deuterium labels into (a, c) pheromone gland components and (b, c) fatty acyl precursors 
in Spodoptera exigua. Reprinted from Paper I. 

 

Figure 14. Biosynthetic pathway for sex pheromone of Spodoptera exigua. Reprinted from Paper I. 
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Deuterium labelled D3-16:acid, D3-14:acid, (Z)-11-[13,13,14,14,14,-2H3] 
tetradecenoic acid (D5-Z11-14:acid), (Z)-9-[12,12,12-2H3] dodecenoic acid (D3-Z9-
12:acid) and [12,12,12-2H3] dodecanoic acid (D3-12:acid) were topically applied to 
the pheromone glands of L. botrana to track the biosynthetic pathway. The results 
showed that deuterium atoms from D3-16:acid were incorporated into all the 
pheromone components, including (Z)-9-dodecenyl acetate (Z9-12:OAc), (E,Z)-
7,9-dodecadienol (E7,Z9-12:OH) and (E,Z)-7,9-dodecadienyl acetate (E7,Z9-
12:OAc) (Fig. 15). In the fatty acyl compounds analysis, deuterium atoms from D3-
16:acid were incorporated into methyl palmitate (16:Me), 14:Me, methyl (Z)-11-
tetradecanoate (Z11-14:Me), methyl lauritate (12:Me) and methyl (E,Z)-7,9-
dodecadienoate (E7,Z9-12:Me). Application of D3-14:acid showed the same 
incorporation results as observed for D3-16:acid, whereas no label incorporation was 
found from D3-14:acid into 16:acid. Labels from D5-Z11-14:acid were incorporated 
into Z9-12:OAc, E7,Z9-12:OH and E7,Z9-12:OAc (Fig. 15b), as well as into Z9-
12:Me and E7,Z9-12:Me intermediates (Fig. 15a). Additionally, labels from D3-Z9-
12:acid were extremely highly incorporated into E7,Z9-12:OAc and incorporated 
into Z9-12:OAc and E7,Z9-12:OH as well (Fig. 15-16). In contrast, when D3-
12:acid was applied, label incorporation was not detected in any of the above 
mentioned compounds (Fig. 15). The incorporation of deuterium labels from D3-
Z9-12:acid into E7,Z9-12:OAc, E7,Z9-12:OH, and E7,Z9-12:Me (Fig. 16) strongly 
suggests an elusive Δ7 desaturation on Z9-12:acid to form the major pheromone 
precursor E7,Z9-12:acid in L. botrana. 

Figure 16. (a) Incorporation of deuterium labels from (Z)-9-[12,12,12-2H3] dodecenoic acid (D3-Z9-12:acid) into  
pheromone gland components  in Lobesia botrana. (b)  Biosynthesis pathway for fatty acyl intermediate of L. botrana. 
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Functional assays of novel FAD genes (Paper I, II and III) 

Here, I report several novel FAD genes with a variety of functions. First, involving 
the ∆12 desaturation activity, two unusual ∆11/∆12 FAD genes SexiDes5 and 
SlitDes5 were characterized in S. exigua and the congeneric S. litura, with the same 
functions using palmitic acid and the subsequently chain-shortened product (Z)-9-
tetradecenoic acid (Z9-14:acid) as substrates to produce (Z,E)-9,12-tetradecadienoic 
acid (Z9,E12-14:acid), respectively (Paper I). A ∆11 FAD gene Lbo_PPTQ from 
L. botrana can produce important pheromone intermediate Z11-14:acid from 
myristic acid (Paper II). C. suppressalis utilizes (Z)-11-hexadecenal (Z11-16:Ald) 
as its major pheromone component. By heterologous expression in yeast and plants, 
a ∆11 FAD gene CsupYPAQ presents very high substrate specificity to palmitic acid 
for production of (Z)-11-hexadecenoic acid (Z11-16:acid) with great activity. 
Another FAD gene CsupKPSE from C. suppressalis has preference for C16. It is 
interesting, however, that CsupKPSE switches the preference for C16 to C18 to form 
oleic acid when the culture nutrition was limited (Paper III). 

The predicted ER retention signature motif in ∆11/∆12 FADs SexiDes5, SlitDes5, 
and ∆11 FAD CsupYPAQ is “LPAQ”, “LPSQ”, and “YPAQ” respectively. It is 
noticed that the motif difference in FADs is to some extent related to the functions, 
e.g., FADs within the “KPSE” group are ∆9 desaturases having preference for C16, 
while the “NPVE” group are mainly modifying C18 (Rosenfield et al. 2001; Liu et 
al. 2002; Liu et al. 2004; Rodríguez et al. 2004). The “xxxQ” are most likely to be 
the Δ11, Δ10 and multi-functional FADs and a few exceptions are ∆9 FADs, which 
are exclusively involved in pheromone biosynthesis (Knipple et al. 1998; Hao et al. 
2002; Serra et al. 2007; Xia et al. 2015). The Δ6 and Δ14 groups contain a mixture 
of different signature motifs from the Δ9 and Δ11 groups, and their biological 
functions are diverged from ∆9, and ∆11 FADs (Roelofs et al. 2002; Wang et al. 
2010). On the other hand, there were some exceptions to the “motif” signal 
hypothesis. For example, Ding et al. (2016) reported that one amino acid at the 
cytosolic carboxyl terminus of the protein (258E), which is outside of the motif 
region, is critical for the ‘Z’ activity of the Choristoneura rosaceana FAD. In this 
thesis study, SexiDes5 and SlitDes5 were showing same functions in the 
yeastalthough with different ER motifs. The motif of CsupYPAQ has only one 
amino acid different from SexiDes5. However, CsupYPAQ is highly specific to 
palmitic acid (Paper III), whereas SexiDes5 can form a variety of products with 
wide preferences for both saturated and unsaturated fatty acids (Paper I). Thus, 
making mutations at different sites for these unique FADs could be a possible 
approach to explore the relationship between sequences and functions of FADs. 
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Production of pheromone precursors in plants (Paper IV and V) 

Many functionally diversified FADs were characterized by previous studies, 
making it possible to design tailor-made pheromone precursor production in 
engineered plants. In this thesis, N. tabacum,  N. benthamiana and C. sativa were 
successfully transformed to obtain stable transgenic lines producing pheromone 
precursors. 

The successful production of several insect sex pheromone precursors in N. 
tabacum and N. benthamiana by stable transformation was demonstrated in this 
study. Levels of up to 17.6% Z11-16:acid in the total fatty acids was achieved. All 
of the transformed plastid FatBs and FADs were functionally active in producing 
pheromone precursor in both Nicotiana species. This is the first report of Z/E11-
14:acid production in a plant by stable transformation. The performance of Z11-
16:acid production in N. benthamiana was better than in N. tabacum. The average 
value of Z11-16:acid production in T0 N. tabacum was 0.2%  whereas in T0 N. 
benthamiana it was 1.8%. The best N. benthamiana transgenic line #025 produced 
as high as 13.6% of Z11-16:acid of the total fatty acids in T2 plants (Fig. 17), which 
is much higher than the production amount reported from Nešnerová et al. 2004, 
claiming that 6% of Z11-16:acid of total fatty acids was produced in their transgenic 
N. tabacum NtD15B line. The quantity of Z11-16:acid in the form of methyl ester 
in N. benthamiana determined to be 335 µg per gram fresh leaf is also higher, 
compared to 32 µg per gram of N. tabacum fresh leaf in Nešnerová et al. 2004. The 
results suggest that N. benthamiana has potential to be more efficient than N. 
tabacum as a plant factory for Z11-16:acid production. In the report of Ding et al. 
2014, 381µg per gram fresh leaf of Z11-16:acid was produced in N. benthamiana 
by transient expression, which is a massive overexpression of exogenous genes over 
a few days that ignores the health of the plant. Here, the production of 335 µg per 
gram leaf of Z11-16:acid by stable transformation shows the ability of vegetative 
material to function with the expression of CpuFatB1 and Atr∆11 and yield 
compounds over development, providing the potential for further commercial 
production. 

 

Figure 17. Percentage of palmitic acid (16:0) and (Z)-11-hexadecenoic acid (Z11-16:acid) of total fatty acids in T1 plant 

#025-16 leaves during different development stages of plant. 
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To investigate the feasibility of a “plant factory production” in Camelina, we 
established four different types of transformant lines by using different exogenous 
gene cassettes (Paper V). In the regenerated Camelina seeds, the mono-unsaturated 
E9-12:acid with small amount of (Z)-9-dodecenoic acid (Z9-12:acid) and 
diunsaturated E8,E10-12:acid were produced in all the four types of transformant 
lines (Fig. 18). Camelina was genetically modified for production of E8,E10-
12:acid via stable integration of gene cassettes using Agrobacterium-mediated floral 
dip transformation. This is the first report on production of di-unsaturated 
pheromone precursors in plants. Furthermore, the production amount of 6.3% of 
E8,E10-12:acid of total fatty acids is quite high. Because the oil content of the 
Camelina seeds, on a dry weight basis, is typically between 35 to 45% and the yields 
of Camelina are in a range of 336 to 2240 kg of seeds per hectare (Moser 2010). 
This means that 7.4 to 63.5 kg (minimum to maximum) of E8,E10-12:acid might be 
produced by cultivating our best Camelina line. Moreover, in this study we also 
investigated four strategies for optimization of the plant factory for production of 
E8,E10-12:acid. We demonstrated that co-expression of the desaturase with P19 
and multiple gene copies can increase the production of C12 pheromone precursors 
significantly. Also, it was confirmed that stably expressing P19 regulated by the 
seed-specific napin promoter would not cause observable harm of plant 
development. 

 

Figure 18. Comparison of mean percentage of E9-12:acid and E8,E10-12:acid of total methylated fatty acid between 

four strategies. a) analyzed from pooled 25 seeds of each transformant; b) analyzed from 15 individual seeds from most 

productive plant of each strategy. 
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New platform for functional assay of pheromone biosynthetic 
genes (Paper III) 

In this thesis, a new concept for molecular mechanism exploration of pheromone 
biosynthesis is provided, which is using N. benthamiana transient expression 
platform. The idea emerged from the principle of plant factories. Transient 
expression of various insect genes in plant leaves as factories for pheromone 
production has been demonstrated for a couple of years (Ding et al. 2014), but 
utilizing this platform for gene function studies has never been explored. In this 
study, we confirm that the plant transient expression system is efficient and useful. 

In paper III, we use plants as a platform for functional characterization of the C. 
suppressalis biosynthetic gene candidates in order to compare the results to the yeast 
expression system. The observed functions of these genes in yeast and plant are 
similar and complementary. For instance, it is interesting that CsupKPSE showed 
C18>C16 substrate preference when oleic acid was absent in ole1/elo1 yeast. 
However, in the plant, CsupKPSE shows its preference on C16>C18 because the leaf 
does not lack oleic acid. The phylogenetic analysis indicated that CsupKPSE 
belongs to the C16>C18 clade. This implies that CsupKPSE can adjust its function to 
produce oleic acid similar to the function of ancestral metabolic desaturase when 
the nutrition is limited. Therefore, expression of desaturase genes in plant leaves for 
identification of different functions has the advantage of avoiding the problem of 
supplemented nutrition inference, especially for ∆9 desaturase identification. A 
FAR gene CsupFAR2 expressed low activity in yeast, while in plants it shows very 
high activity. Because the plant lipids are different from yeast, it offers an alternative 
way for gene function studies. The pgFAR CsupFAR2 showed additional minor 
activities on polyunsaturated fatty acids of linoleic acid and α-linolenic acid in N. 
benthamiana, which has never been reported in previous FAR function studies. 
Moreover, the algae ELO IgalASE1 elongated linoleic acid (18:2) and α-linolenic 
acid (18:3) to eicosadienoic acid (20:2) and eicosatrienoic acid (20:3) in N. 
benthamiana, show the same function as reported in yeast S. cerevisiae expression 
system (33), indicating that heterologous expression of ELO in plant leaves for 
functional characterization is reliable and feasible. 

New ACO, ELO and FAR findings (Paper II and III) 

The specific skeleton of an unsaturated fatty acyl chain is generally produced by 
combination of FAD and ELO or ACO. Among the functionally characterized 
pheromone biosynthetic genes in L. botrana and C. suppressalis, there were two 
novel ACO genes Lbo_31670, Lbo_49602 (Paper II) and a first reported ELO gene 
CsupELO4 (Paper III) showing functions. The former two genes encoding two 
acyl-CoA oxidases that may produce Z9-12:acid by chain shortening of Z11-14:acid. 
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The later gene encoding an elongase may produce Z13-18:acid, an immediate 
precursor of a pheromone component in C. suppressalis. 

We also functionally characterized a new FAR gene (Paper III) from C. 
suppressalis, CsupFAR2 that shows very high activity to Z11-16:acid, producing 
corresponding Z11-16:OH. It also has other minor activity with C16-C18 fatty acids, 
similar to HarFAR from Helicoverpa armigera (Hagström et al. 2012; 2013), but 
having more specific activities on Z11-16:acid. The high activity and substrate 
specificity of CsupFAR2 suggests it to be a valuable candidate for further 
pheromone production in both yeast and plant factories. 

Increase the production amount of pheromone compounds- 
trichome specific promoter 

A long-term vision is to produce genetically modified plants that eventually can be 
used in intercropping as natural dispensers of pheromones and as part of a push-pull 
(Cook et al. 2007) strategy, providing an innovative and environmentally friendly 
approach for pest management. Production of a high yield of pheromones in plants 
by stable transformation is still challenging. With the purpose of producing fatty 
alcohols or acetates especially for releasing these compounds from the leaf, a 
trichome specific promoter derived from N. tabacum was cloned and used for FAR 
and ATF gene expression. 

In moths, after the immediate acyl-CoA precursors are produced, FAR can 
catalyze the reduction of acyl-CoA into fatty alcohols, which either are used as 
pheromones for some moth species, or in some other moths, converted to 
corresponding acetates after trans-acetylation by ATFs. Therefore, in order to 
explore the possibility of releasing pheromone alcohol and acetate in transformed 
plants, the FAR gene HarFAR and the ATF gene ATF1 was constructed with a 
trichome specific promoter CYP71D16, respectively, producing the pheromones 
Z11-16:OH and Z11-16:OAc (Fig. 19). 

 

Figure 19. Scheme of constructed vectors for a) Z11-16:OH and b) Z11-16:OAc production in Nicotiana spp. 
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CYP71D16 was confirmed as a trichome-specific promoter leading the downstream 
gene to be specifically expressed in plant trichomes (Wang et al. 2002). After 3-5 
days, the infiltrated N. benthamina plant expressing HarFAR controlled by 
CYP71D16 promoter produced 70 µg Z11-16:OH in per gram fresh leaf, while the 
plant expressing HarFAR drived by CaMv35S promoter only produced a tiny 
amount of Z11-16:OH (Fig 20). The same combination of CpFatB1, Atr∆11 and 
HarFAR drived by 35S promoter were also tested in the study of Ding et al. 2014, 
which reported 18 µg Z11-16:OH in per gram fresh leaf was produced. Also, ATF1 
controlled by CYP71D16 expressing in the plant produced much more Z11-16:OAc 
than 35S (Fig. 20). This result suggested that CYP71D16 promoter can increase the 
pheromone production amount significantly compared to 35S promoter.    However, 
until now, no pheromone compounds from the plant headspace volatiles was 
collected. 

 

Figure 20. Expression of HarFAR and ATF1 with pCYP71D16 promoter or 35S promoter.  
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Conclusions and perspectives 

In this Ph.D. project, the first contribution is that we characterized several key 
pheromone biosynthetic genes in the serious pest species, including two beet 
armyworm Spodoptera species (Paper I), European grapevine moth L. botrana 
(Paper II) and the rice stem borer C. suppressalis (Paper III). We enriched the 
functional pheromone biosynthetic gene database. These findings will not only help 
understanding the mechanisms of pheromone biosynthesis, but will also provide 
many putative candidates for pheromone production in bio-factories. 

In the perspective of utilizing results from basic science for application, the 
second contribution of this thesis is that we established several stable transgenic 
plant lines for pheromone precursors production, ranging from the carbon chain 
length of 12 (Paper V) to 16 (Paper IV), either in the leaves or seeds. This is the 
first report on an extended production of pheromone precursors (C12 and C14) over 
generations in plants. We confirm that N. benthamiana is a suitable platform for 
stable production of C16 pheromone precursors. We also established productive 
Camelina line for di-unsaturated C12 pheromone precursor production. Up to 6.3% 
of E8,E10-12:acid of total fatty acids was achieved. Because the oil content of the 
Camelina seeds, on a dry weight basis, is typically between 35 to 45% and the 
Camelina yields anywhere are from 336 to 2240 kg of seeds per hectare, which 
means 7.4 to 63.5 kg (minimum to maximum) of E8,E10-12:acid might be produced 
by cultivating our best Camelina line. 

A further aim is to enable stable production of final pheromone components in 
bio-factories, which remains to be explored. First, increasing the pheromone 
precursor production to provide more substrate for pheromone biosynthesis is one 
of the possible approaches. How to increase the precursor production, for instance 
by elevating the TAG accumulation in plant cells, needs further efforts. Our long-
term goal is to design the “tailor-made” production of any moth pheromone in stably 
transformed plants. However, much remains unknown about the molecular 
mechanisms underlying the pheromone biosynthesis. The identification of genes 
encoding pheromone biosynthesis enzymes is a crucial step in ensuring the 
compatibility of bio-factories. Prior to this thesis, only FAD and FAR genes have 
been functionally characterized, but we now have found several functional genes 
encoding ACOs (Paper II) and ELO that were involved in pheromone biosynthesis 
(Paper III). We also developed the plant platform for insect gene functional 
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characterization, contributing an efficient way for further fatty acid metabolic and 
pheromone biosynthesis studies. 

Ultimately, plant factory for pheromone production could be used in a “push-pull” 
strategy for pest control, which is using pheromones that act to make the protected 
resource unattractive to the pests (push) while luring them toward an attractive 
source (pull) from where the pests are subsequently removed. This requires that the 
plants can release pheromones into the atmosphere which is still challenging. We 
intended to accomplish this by using a trichome-specific promoter CYP71D16 to 
drive pheromone biosynthetic genes. It was surprising to find that this strategy 
increased the pheromone production amount quite substantially. However, no 
detectable pheromone compounds were collected from the plant headspace volatiles. 
To understand the mechanism of volatile release could be the next step to go forward. 
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