
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Towards Performance Modeling of Speculative Execution for Cloud Applications

Nylander, Tommi; Ruuskanen, Johan; Årzén, Karl-Erik; Maggio, Martina

Published in:
ACM/SPEC International Conference on Performance Engineering Companion (ICPE ’20 Companion)

DOI:
10.1145/3375555.3384379

2020

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Nylander, T., Ruuskanen, J., Årzén, K.-E., & Maggio, M. (2020). Towards Performance Modeling of Speculative
Execution for Cloud Applications. In ACM/SPEC International Conference on Performance Engineering
Companion (ICPE ’20 Companion) https://doi.org/10.1145/3375555.3384379

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 22. Jun. 2024

https://doi.org/10.1145/3375555.3384379
https://portal.research.lu.se/en/publications/f7840eb4-293b-4a92-a034-7ae1c8b82d52
https://doi.org/10.1145/3375555.3384379

Towards Performance Modeling of Speculative Execution for
Cloud Applications

Tommi Nylander, Johan Ruuskanen, Karl-Erik Årzén, Martina Maggio
{tommi,johan.ruuskanen,karlerik,martina}@control.lth.se

Lund University

ABSTRACT
Interesting approaches to counteract performance variability within
cloud datacenters include sendingmultiple request clones, either im-
mediately or after a specified waiting time. In this paper we present
a performance model of cloud applications that utilize the latter
concept, known as speculative execution. We study the popular
Join-Shortest-Queue load-balancing strategy under the processor
sharing queuing discipline. Utilizing the near-synchronized service
property of this setting, we model speculative execution using a
simplified synchronized service model. Our model is approximate,
but accurate enough to be useful even for high utilization scenar-
ios. Furthermore, the model is valid for any, possibly empirical,
inter-arrival and service time distributions. We present preliminary
simulation results, showing the promise of our proposed model.

CCS CONCEPTS
• Computer systems organization → Cloud computing; Re-
dundancy; Reliability.

KEYWORDS
Cloning, Speculative Execution, Cloud Computing, Datacenters
ACM Reference Format:
Tommi Nylander, Johan Ruuskanen, Karl-Erik Årzén, Martina Maggio. 2020.
Towards Performance Modeling of Speculative Execution for Cloud Appli-
cations. In ACM/SPEC International Conference on Performance Engineering
Companion (ICPE ’20 Companion), April 20–24, 2020, Edmonton, AB, Canada.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3375555.3384379

1 INTRODUCTION
Speculative execution is a popular method employed by cloud
providers as a tool for increasing predictability of the execution
time of jobs [3, 7]. Redundancy is introduced by launching copies
of tasks that have been running for an unusually long time. The
general idea is that the unpredictability of task execution times
due to effects such as resource contention or network queues, can
be mitigated by identifying slow running instances and launching
copies that will hopefully complete before the original.

A closely related topic which has recently received increased
attention from researchers is cloning. As explained by Ganesh et

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7109-4/20/04. . . $15.00
https://doi.org/10.1145/3375555.3384379

al. [2], cloning can be seen as a special case of speculative execution
with no speculation time, i.e. all clones are sent immediately. We
refer to [6] for more related work on this topic.

Much of the research on speculative execution have been done
considering the case of straggler mitigation in distributed comput-
ing using big data frameworks such as MapReduce [4]. Here a job is
split into several tasks, and is not considered completed until all, or
a subset, of tasks have been completed. The ultimate response time
of a job is thus highly sensitive to slow running tasks. Modeling
and analysis of such systems often either assume that each server
can only take a single job at a time [8], or that the introduction
of redundancy does not affect the service times of other jobs. An
exception for the latter is the recent contribution of Aktas et al. [1],
which shortly considers the effect of redundancy on the response
time distribution of tasks.

In this work we instead consider the case of replicated cloud
applications subject to independent user requests, and seek tomodel
the behaviour of such systems under speculative execution from a
queuing model perspective. Our approach is dependent on two key
concepts from [6], summarized in the following paragraph.

Near-Synchronized Service. The concept of synchronized ser-
vice was introduced in [6] to simplify modeling of request cloning.
Its full definition is given in [6], but in short, cloning under synchro-
nized service implies that the clone that completes first is the one
that receives the shortest service time. For the processor sharing (PS)
queuing discipline, synchronized service implies that all n request
clones rc1:n of an original request ro experience identical processor
shares across all n servers. As synchronized service is very difficult
to achieve in practice, the concept of near-synchronized service was
further introduced in [6] to model scenarios that include imperfec-
tions such as arrival and cancellation delays. Additionally, it was
shown empirically that the widely used load-balancing strategy
Join-Shortest-Queue (JSQ) provides near-synchronized service for
all request clones rc1:n , when using PS as queuing discipline. This
property is very interesting as it allows for accurate approximate
performance modeling of JSQ cloud applications subject to cloning,
by using a simplified synchronized service model.

Contributions.Using the near-synchronization property of JSQ
under PS, we (i) derive a novel performance model for replicated
cloud applications subject to speculative execution; (ii) assuming
Poisson arrivals, use existing results from queuing theory to obtain
an approximate yet accurate expression for the average response
time; and (iii) empirically demonstrate the potential of our model
through simulations.

2 MODEL
We consider performance modeling of a cloud application repli-
cated overm homogeneous servers, modeled using the PS queuing

https://doi.org/10.1145/3375555.3384379
https://doi.org/10.1145/3375555.3384379

s1
0

0.2
0.4
0.6
0.8
1

Service Time

(a) Original service time CDF F 0
r

s1

Service Time

F 1a
F 1b
F 1c

(b) Three intermediate CDFs

s1

Service Time

(c) Resulting service time CDF F 1
r

s1 s2

Service Time

(d) Resulting service time CDF F 2
r

Figure 1: Speculative cloning for an example scenario S2 = {s1, s2}. From F 0r at s1, three intermediate CDFs are formed using
equations (2)-(4). Then F 1c is added to F 0r at s1 according to Eq. (1) to form F 1r . The procedure is then repeated at s2 to form F 2r .

discipline with service rate µ. User requests ro with rate λ enter at
the load balancer, leading to a system utilization ρ = λ/(mµ). The
requests are dispatched to the servers using the JSQ strategy, that
always chooses the least occupied server. We do not assume any
specific distributions, however, for simplicity we require the service
times to be independent and identically distributed (i.i.d.) across all
m servers. When a specified amount of service time has been pro-
cessed for an original request ro , a speculative clone r is is dispatched
to a unique server, again using JSQ. This server system under JSQ
and PS was shown in [6] to provide near-synchronized service,
while our modeling approach is performed assuming synchronized
service. Our derived performance metrics, including utilization ρ
and average response time T , are thus approximate.

Define si as the service time when the speculative clone r is is
dispatched to the server system and Sn = {s1, s2, . . . , sn } as the
ordered set of the service times of all speculative cloning instances
with si−1 ≤ si . Denote by F (x) the cumulative distribution function
(CDF), and F 0r as the original service time CDF. Using Theorem 2
in [6], the following iterative formula (1) can be used to determine
the resulting service time CDF Fnr for the speculation scenario Sn :

F ir (x) =


F 0r (x), x ≤ s1
F 0r (s1) + (1 − F 0r (s1)) · F

1
c (x), s1 < x ≤ s2

...

F i−1r (si) + (1 − F i−1r (si)) · F
i
c (x), si < x

(1)

with the intermediate CDF F ic (x) determined as

F ia (x) = F i−1r (x |si < x) (2)

F ib (x) = F 0r (x − si) (3)

F ic (x) = 1 − (1 − F ia (x)) · (1 − F ib (x)). (4)

The algorithm is visualized in Figure 1 for an example scenario S2.
From (1), we can calculate the new average service rate µ(Sn) for a
scenario using n speculative clones as

µ(Sn) =

(∫ ∞

0
(1 − Fnr (x))dx

)−1
. (5)

We define the service factor fµ (Sn) as the normalized increase of
µ(Sn) compared to the original µ(S0) = µ:

fµ (Sn) =
µ(Sn)

µ
. (6)

To model the changes to the server system load, we need to consider
the amount of speculative clones sent for each original request ro
and the time they spend in the system. We define the speculation
factor f ip for a speculative clone at time si as the probability f ip =

1 − F ir (si) that the clone is sent. Furthermore, we define the sojourn
factor f is for a speculative clone sent at time si as its time spent in
the system compared to the original request ro

f is =

∫ ∞

si
(1 − Fnr (x |si < x))dx∫ ∞

0 (1 − Fnr (x))dx
. (7)

Now we define the arrival factor fλ(Sn) for the total contributions
to system load from all n speculative clones as

fλ(Sn) = 1 +
n∑
i=1

f ip · f is . (8)

Finally, the load factor fρ (Sn) can then be defined as

fρ (Sn) =
fλ(Sn)

fµ (Sn)
. (9)

fρ (Sn) > 1 thus means that speculative cloning under scenario
Sn results in an increase of the original system load ρ(S0) = ρ,
whereas fρ (Sn) < 1 represents a decrease. Also, we can define the
modeled utilization of scenario Sn as

ρ(Sn) = fρ (Sn) · ρ. (10)

Equation (10) is very useful as it allows us to determine stability
for the scenario Sn by studying if ρ(Sn) < 1. Note that the arrival
factor fλ(Sn) > 1 does not imply an increase in the arrival rate
of original requests ro , i.e. λ(Sn) = λ(S0) = λ for all n. Instead, it
represents the contributions to the system load from all speculative
clones. We model this as a decrease in the number of available
serversm(S0) =m as

m(Sn) =
m

fλ(Sn)
. (11)

As a result,m(Sn) ∈ R+ is defined as a positive real number. Note
that for non-speculative cloning (with all clones sent at si = 0),
fλ(Sn) and m(Sn) assume integer values. The clone-to-clusters
model in [6], which divides n servers intom clusters thus fits as a
special case in our speculative execution model.

To be able to get explicit response time measures, we need to
assume Poisson arrival rates for λ(Sn). This allows us to utilize the

0.4 0.6 0.8
0.98

0.99

1

1.01

1.02

Utilization ρ(Sn)

ρ
(S

n
)s
im

/ρ
(S

n
)

S1 S2 S3

(a) Simulated vs modeled ρ(Sn).

0.4 0.6 0.8
0.85

0.9

0.95

1

1.05

Utilization ρ(Sn)

T
(S

n
)s
im

/T
(S

n
)

(b) Simulated vs modeled T (Sn).

0.4 0.6 0.8
0.8

0.9

1

1.1

1.2

Utilization ρ(S0)

T
(S

n
)s
im

/T
(S

0)
si
m

(c) Speculation scenarios Sn vs S0.

Figure 2: Simulation results using 20 repeated runs with 106 requests. Confidence intervals are tight and left out for readability.

very accurate (within 2-3%) approximate response time model for
JSQ under PS from [5]. It provides average response times T (Sn)
from the inputs (i) arrival rate λ(Sn); (ii) service rate µ(Sn); and
(iii) number of serversm(Sn).

Using a simplified synchronized service approach, we are thus
able to approximately model utilization, stability and average re-
sponse times for a replicated cloud application under a speculation
scenario Sn , assuming a JSQ+PS setup. The model accuracy is a po-
tential issue that is examined in the next section. Another drawback
with our approach is that it might be complicated to implement
triggering of speculative clones at processed service times si as
these can be cumbersome to keep track of in a real system.

3 EVALUATION
We evaluate our model using a discrete-event simulator, based on
the cloning-simulator from [6] but extended with support for
speculative execution.We use Poisson arrivals and our service times
are distributed as Pareto (Type 1, shape=2.1, scale=0.5). We simulate
usingm = 10 servers under system loads ρ(Sn) from 0.3 to 0.9 and
consider three different speculation scenarios: (i) S1 = {1.5}; (ii)
S2 = {0.7, 1.0}; and (iii) S3 = {0.3, 0.6, 0.9} (all units in seconds).

Figure 2 shows our preliminary results. In Figure 2a, the simu-
lated system utilization ρ(Sn)sim is normalized against our modeled
ρ(Sn). The results are very close to 1 for all scenarios and loads,
which points towards that our model is very accurate at predicting
utilization and stability. Figure 2b shows the results of the simulated
average response times T (Sn)sim normalized against our modeled
T (Sn). As can be seen, the accuracy of our model is very high for
low to medium loads for all three speculation scenarios. However,
for higher loads our model accuracy is worse (but still reasonable)
for the more complicated scenarios. A probable explanation is that
the service is further away from synchronization here. The final
Figure 2c shows the results of the simulated average response times
T (Sn)

sim for the speculation scenarios normalized againstT (S0)sim,
where no speculation is present. A value below 1 indicates that the
speculation scenarios are beneficial, and as can be seen all three
scenarios perform well for low loads. Scenario S1 distinguishes
itself from the the other two by actually outperforming the no spec-
ulation case at all system loads. The reason is that its load factor
fρ (S1) is below 1, i.e. it always decreases the system load. This is
very interesting as it can be shown, using techniques from [6], that

standard cloning (all si = 0) under this particular Pareto distribu-
tion is only beneficial for low loads. Speculative execution thus has
the potential to be more useful than cloning under high loads.

4 CONCLUSION
We have presented a novel model of a replicated cloud applica-
tion subject to speculative execution, that looks promising in our
preliminary evaluation. We plan to expand our evaluation to be
more general, and to use our model to find optimal speculation con-
figurations S⋆

n , providing the shortest response times. A possible
approach could be to search for the configurations that minimize the
system utilization, in order to provide performance enhancements
even for server systems under high load.

ACKNOWLEDGMENTS
This work was partially supported by the Wallenberg AI, Auto-
nomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation, by the Nordforsk Nordic
Hub on Industrial IoT (HI2OT), and by the ELLIIT Excellence Center
at Lund University.

REFERENCES
[1] M. F. Aktaş and E. Soljanin. 2019. Straggler Mitigation at Scale. IEEE/ACM

Transactions on Networking 27, 6 (Dec 2019), 2266–2279.
[2] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013. Effec-

tive Straggler Mitigation: Attack of the Clones. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation (nsdi’13). USENIX
Association, 185–198.

[3] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2
(feb 2013), 74.

[4] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113.

[5] Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt. 2007. Analysis
of join-the-shortest-queue routing for web server farms. Performance Evaluation
64, 9-12 (oct 2007), 1062–1081.

[6] Tommi Nylander, Johan Ruuskanen, Karl-Erik Årzén, and Martina Maggio. 2020.
Modeling of Request Cloning in Cloud Server Systems using Processor Sharing.
In Proceedings of the 2020 ACM/SPEC International Conference on Performance
Engineering (ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada.

[7] Xiaoqi Ren, Ganesh Ananthanarayanan, Adam Wierman, and Minlan Yu. 2015.
Hopper: Decentralized Speculation-aware Cluster Scheduling at Scale. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Communication
- SIGCOMM '15.

[8] H. Xu and W. C. Lau. 2017. Optimization for Speculative Execution in Big Data
Processing Clusters. IEEE Transactions on Parallel and Distributed Systems 28, 2
(Feb 2017), 530–545.

	Abstract
	1 Introduction
	2 Model
	3 Evaluation
	4 Conclusion
	Acknowledgments
	References

