
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Grey-Box Building Models for Model Order Reduction and Control

De Coninck, Roel; Magnusson, Fredrik; Åkesson, Johan; Helsen, Lieve

Published in:
Proceedings of the 10th International Modelica Conference

2014

Link to publication

Citation for published version (APA):
De Coninck, R., Magnusson, F., Åkesson, J., & Helsen, L. (2014). Grey-Box Building Models for Model Order
Reduction and Control. In H. Tummescheit, & K.-E. Årzén (Eds.), Proceedings of the 10th International Modelica
Conference (pp. 657-666). Linköping University Electronic Press.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/8a473a7b-7214-4512-8a76-87e86689e9fe


Grey-Box Building Models
for Model Order Reduction and Control

Roel De Conincka,b, Fredrik Magnussonc, Johan Åkessonc,d , Lieve Helsenb

a3E nv., 1000 Brussels, Belgium,
bKU Leuven, Department of Mechanical Engineering, 3001 Heverlee, Belgium,
cDepartment of Automatic Control, Lund University, SE-221 00 Lund, Sweden,

dModelon AB, Ideon Science Park, SE-223 70 Lund, Sweden

Abstract

As automatic sensing and Information and Communi-
cation Technology (ICT) get cheaper, building moni-
toring data is easier to obtain. The abundance of data
leads to new opportunities in the context of energy ef-
ficiency in buildings. This paper describes ongoing
developments and first results of data-driven grey-box
modelling for buildings. A Python toolbox is devel-
oped based on a Modelica library with thermal build-
ing and Heating, Ventilation and Air-Conditioning
(HVAC) models and the optimisation framework in
JModelica.org. The tool chain facilitates and auto-
mates the different steps in the system identification
procedure, like data handling, model selection, param-
eter estimation and validation. The results of a system
identification and parameter estimation for a single-
family dwelling are presented.

Keywords: buildings, grey-box models, parameter
estimation, collocation method

1 Introduction

The continuous progress in ICT has lead to the avail-
ability of small and low-cost sensors, low power wire-
less data transfer protocols, cheap and accessible data
storage and powerful servers. Applied to the building
sector, these technologies can be used to collect mas-
sive amounts of building monitoring data at relatively
low costs. The abundance of data gives rise to new op-
portunities and applications in existing buildings like
fault detection, energy efficiency analysis and model-
based building operation. A first step in many of these
applications is the creation of a building energy model.

Building models can be classified in three cate-
gories: white-box, grey-box and black-box models
[1–3]. White-box modelling bases the model solely on

prior physical knowledge of the building. Most build-
ing simulation software falls under this category, like
TRNSYS, EnergyPlus and many others [4]. Black-
box modelling bases the model solely on response data
(monitoring of the building) and a universal model set,
including e.g. AR and ARMAX. No physical insight
is required for making a black-box model. Grey-box
identification methods and tools cater for the situation
where prior knowledge of the object is not compre-
hensive enough for satisfactory white-box modelling
and, in addition, purely empirical black-box methods
do not suffice because the involved physical processes
are too complex.

The difference between white- and grey-box mod-
elling is not in the complexity of the model. A single-
state model can be a white-box model if all param-
eters can be fixed based on physical knowledge only.
However, when one or more parameters in a white-box
model are estimated based on a fitting of the model to
measurement data, the model becomes grey, no mat-
ter its complexity. Therefore, the distinction between
white and grey cannot be made by only looking at the
model structure; one has to know how the model pa-
rameters have been identified.

All three model types can be either deterministic
or stochastic. A deterministic model cannot explain
the differences between the model output and the true
variations of the states (observations). Madsen and
Holst [2] therefore introduced a Wiener process in the
system equations to cope with the simplifications of
the model and uncertainties in inputs and monitoring.
The obtained model is a stochastic state-space model.

For existing buildings with available monitoring
data, the grey-box approach is considered to combine
the best of two worlds: physical insight and model
structure from the white-box paradigm and parameter
estimation and statistical framework from the black-
box paradigm. This paper describes an approach to



grey-box modelling for buildings and the development
of a toolbox combining Modelica and Python. The re-
sulting framework will be referred to as the toolbox in
the remainder of this paper.

The aim of the toolbox is to identify low-order mod-
els from (limited) building monitoring datasets. When
the dataset is generated by a detailed building simula-
tion model instead of an existing building, we speak
of model order reduction. The obtained models can
be used in order to set up Model Predictive Control
(MPC) or to scale up simulations from single build-
ings to neighbourhoods and districts.

This paper describes the methodology of the tool-
box and presents some results of the application to a
model order reduction of a single-family dwelling.

2 Methodology
2.1 Overview

A high-level overview of the toolbox is shown in Fig-
ure 1. The toolbox is composed of four major compo-
nents:

1. Modelica library FastBuildings with thermal
zone models, HVAC components and building
models;

2. different .mop files specifying the model compo-
nents and which parameters to estimate;

3. JModelica.org as a middle layer for compilation
of the .mop files as well as formulation and solu-
tion of the optimisation problem;

4. Python module greybox.py delivering the user in-
terface and top-level functionality.

Figure 1: Overview of the grey-box buildings toolbox

2.2 Modelica

Modelica is gaining importance in the building simula-
tion community [5, 6]. The choice of Modelica for the
construction of the models is based on two major ar-
guments. First, Modelica allows for linear, non-linear
and hybrid model formulations and therefore it does
not limit the model structure as such. Second, Model-
ica is equation-based, thus allowing efficient Newton-
type solvers to be used as an alternative to for exam-
ple genetic algorithms. Moreover, as shown in Sec-
tion 3, the interfaces of the low-order models are iden-
tical to the detailed building model used in the IDEAS
library [7], enabling easy model exchange.

2.3 Models

Every model structure for which the parameters have
to be estimated is characterized by a different .mop file,
of which the format is very similar to an ordinary Mod-
elica (.mo) file. The .mop file extension is specified
by JModelica.org, which is described in Section 2.4.
Each .mop file has the same structure and has to define
two models: one model for simulation, called Sim, and
one for parameter estimation, called Parest. By de-
fault, the models are based on the FastBuildings Mod-
elica library, which has been developed in conjunction
with this toolbox. However, this is not required for the
toolbox to work, as long as some naming conventions
are followed. The FastBuildings library is introduced
in Section 3. Any parameter present in the model can
be estimated, including initial values of the states.

2.4 The JModelica.org platform

The toolbox relies heavily on the JModelica.org [8]
platform, which is an open-source tool for modelling,
simulation and optimisation of dynamic systems de-
scribed by Modelica code. For simulation purposes,
JModelica.org relies on the Functional Mockup Inter-
face [9]. For optimisation purposes, JModelica.org of-
fers various algorithms and also supports the Model-
ica language extension Optimica. Optimica allows for
high-level formulation of dynamic optimisation prob-
lems of the type presented in Section 2.5. The file for-
mat .mop is used for Optimica code.

The optimization algorithm used by the toolbox to
estimate the parameters is collocation-based and is
presented in Section 2.6 and described in more de-
tail in [10], where in particular optimal control is
also treated. IPOPT [11], built with the MA27 solver
of HSL [12], is used to solve the non-linear pro-
gram (NLP) that arises from the collocation method.



Since IPOPT uses a gradient-based method, first- and
second-order derivatives of all the expressions in the
NLP with respect to all of the decision variables are
needed. To this end, CasADi [13] is used to construct
the NLP and then to compute the needed derivatives
by algorithmic differentiation.

2.5 Problem formulation

Identification of the unknown model parameters is for-
mulated as a dynamic optimization problem of the
general form

minimize
∫ t f

t0
e(t)T ·Q · e(t)dt, (1a)

with respect to ẋ,x,w,u, p,

subject to F(t, ẋ(t),x(t),w(t),u(t), p) = 0,
(1b)

x(t0) = x0, (1c)

∀t ∈ [t0, t f ].

The system dynamics are modelled by a single, possi-
bly implicit, non-linear and time-variant, differential-
algebraic equation (DAE) system of at most index one.
That is, an equation system of the form (1b), where t
is the time, x is the state, w is the vector-valued al-
gebraic variable, u is the vector-valued system input,
which includes both control variables and known dis-
turbances, and p is the vector of parameters to be esti-
mated. Since a gradient-based method will be applied
to solve the dynamic optimization problem, F needs to
be twice continuously differentiable with respect to all
of its arguments except the first one (time). This dis-
ables the use of hybrid models. Initial conditions are
given by specifying the initial state, that is, on the form
of (1c), where t0 is the start time. The initial state is
usually unknown, in which case some, or all, elements
of x0 can also be introduced as elements of the vector
p.

The objective (1a) of the optimisation is to minimise
the integrated quadratic deviation e of the model out-
put from the corresponding measurement data. The
model output y is typically some of the states, but
could also be some of the algebraic variables (and also
inputs, as discussed below). The matrix Q, which typ-
ically is diagonal, is used to weight the different out-
puts. The measurement data is assumed to be a func-
tion of time, denoted by ym. Since measurements are
typically discrete in time, they are simply interpolated
linearly to form ym. The output deviation e is then
given by

e(t) := y(t)− ym(t). (2)

The inputs can be treated in two different ways. The
first is to assume that the inputs are known exactly
by their measurement data and eliminate them from
the problem. The second way is to have an error-in-
variables approach where the inputs are kept as deci-
sion variables and treat them as model output, that is,
include them in the vector y and penalize their devi-
ation from the corresponding measurement data. The
second way is useful for coping with uncertainties in
the measurement data.

2.6 Solution algorithm

The approach taken to solve (1) is based on low-order
direct collocation, see [14]. The idea is to divide the
time horizon into a number of elements, ne, and ap-
proximate the time-variant system variables ẋ,x,w and
u by a polynomial of time within each element, called
a collocation polynomial. These polynomials are de-
termined by enforcing the dynamic constraints at a cer-
tain number of points, nc, within each element. These
points are called collocation points and ti,k is used
to denote collocation point number k ∈ [1..nc], where
[1..nc] denotes the integer interval between 1 and nc,
in element number i ∈ [1..ne]. The system variables’
values at these points, denoted by

(ẋi,k,xi,k,wi,k,ui,k,ei,k) :=

(ẋ(ti,k),x(ti,k),w(ti,k),u(ti,k),e(ti,k)),

are then interpolated based on Lagrange interpola-
tion polynomials to form the collocation polynomials.
There are different schemes for choosing the place-
ment of collocation points with different numerical
properties. In this paper we only consider Radau collo-
cation. All collocation methods correspond to special
cases of implicit Runge-Kutta methods and thus inher-
hit desirable stability properties making them suitable
for stiff systems.

This approximation reduces the Problem (1), which
is of infinite dimension, into a finite-dimensional non-



linear program of the form

min.
ne

∑
i=1

(
hi ·

nc

∑
k=1

ωk · eT
i,k ·Q · ei,k

)
, (3a)

w.r.t. ẋi,k,xi,l,wi,k,ui,k, p,

s.t. F(ti,k, ẋi,k,xi,k,wi,k,ui,k, p) = 0, (3b)

x1,0 = x0, (3c)

xn,nc = xn+1,0, ∀n ∈ [1..ne−1], (3d)

ẋi,k =
1
hi

nc

∑
l=0

αl,k · xi,l, (3e)

∀(i,k, l) ∈ ([1..ne]× [1..nc]× [0..nc]).

The NLP objective (3a) is an approximation of
the original objective (1a) based on a Gaussian-like
quadrature formula, where the measurement error ei,k
in each collocation point is summed and weighted by
the corresponding element length hi, which is fixed a
priori, and the quadrature weight ωk, which depends
on the choice of collocation points. Notice that the de-
cision variables are not only the unknown parameters
p, but also the discretized system variables ẋi,k,xi,l,wi,k
and ui,k.

Since the states need to be continuous (but not dif-
ferentiable) with respect to time, the new continuity
constraint (3d) needs to be introduced. Because we use
Radau collocation, where no collocation point exists at
the start of each element, this also requires the intro-
duction of the new variables xi,0, which represent the
value of the state at the start of element i. With the in-
troduction of x1,0, the initial condition (1c) is straight-
forward to transcribe into (3c). The dynamic con-
straint (1b) is also straightforward to transcribe into
(3b), by only enforcing it at the collocation points in-
stead of during the entire time horizon.

Finally, we introduce the constraints (3e) to capture
the dependency between x and ẋ. The state derivative
ẋi,k in a collocation point is approximated by a finite
difference of the collocation point values of the state in
that element. The finite difference weights αl,k are re-
lated to the butcher tableau of the Runge-Kutta method
that corresponds to the collocation method.

All that remains is to solve the NLP (3) in order to
obtain an approximate solution to the original Problem
(1). This can be done using dedicated NLP software;
in our case IPOPT.

2.7 Toolbox functionality and workflow

The user interacts with the toolbox through the grey-
box.py Python module. This module defines two
classes GreyBox and Case, as shown in Figure 1.

The idea is to instantiate the GreyBox class once for
the system identification of a given building. The
GreyBox object will contain many different instances
of the Case class. Every Case is an attempt (success-
ful or not) to obtain a model for the given building.
The Case therefore keeps track of the model structure,
identification data, initial guess, solver settings and re-
sults of a single attempt. The functionality of the tool-
box is packed in methods of the GreyBox class and
can be grouped into different domains, according to
the foreseen workflow. This is shown in Figure 2. This
workflow is discussed in the following paragraphs.

Figure 2: Workflow and high-level functionality in
greybox.py

The methods under data handling are used to load
the data files, resample the data if desired, create data
slices of given lengths (for example one week, but can
be any period) and show a plot of any data slice. Typ-
ically, one data slice is the training set, and the other
slices can be used for cross-validation.

When the data has been pre-processed, a model
structure has to be specified in the model selection
step. This is accomplished by specifying the path
to a .mop file. There are two models in the .mop
file: a Modelica model for simulation, called Sim,
and a Modelica + Optimica model for parameter es-
timation, called Parest. The main difference is that
in the model Parest, the value of the Optimica at-
tribute free is set to true for each parameter to be
estimated. The compilation of both models happens
automatically by invoking the corresponding JModel-
ica.org functionality. This includes extracting infor-
mation from the model (state vector, parameter vector
and required inputs) and getting solver options.

Before the parameter estimation can be started, an
initial guess has to be specified for each element in the
parameter vector. These can be obtained by default, by
inheritance, by Latin hypercube sampling or manually.

When the default initial guesses are used, an appro-
priate value is chosen for each parameter, based on its



name. For example, the naming convention in Fast-
Buildings forces all parameter names for thermal re-
sistances to start with ’r’ (like rWal), for thermal ca-
pacities with ’c’ (like cZon), for fractions with ’fra’
(like fraRad), etc. Based on the first letter(s) of a pa-
rameter to be estimated, a default initial value can be
set.

An alternative for obtaining the initial guess is to
start from the optimized parameter vector from a pre-
vious case. This is especially useful when a new .mop
file is selected that has similarities with a previously
processed .mop file. Due to the naming conventions in
FastBuildings, the corresponding parameters will have
the same name. Therefore, the best initial guess for the
parameters in the new model will be the optimal value
from the previous estimation. For new parameters, the
default initial guess method described above is used.

The last automated option to obtain initial guesses
is based on Latin hypercube sampling. Due to the
non-convexity of the problem, there can potentially
exist many local minima. To investigate the parame-
ter search space more systematically and increase the
chances of finding a global minimum, a Latin hyper-
cube sampling method has been implemented. This
method will take a single initial guess as well as lower
and upper bounds for each parameter and derive a
univariate beta distribution from these three values.
The distribution can be symmetric or asymmetric, as
shown in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

pd
f

a = 1.5, b = 4.5 a = b = 4 a = 4.5, b = 1.5

Figure 3: Symmetric and asymmetric beta distribu-
tions

The Latin hypercube sampling will then derive n
stratified samples from each distribution and combine
them randomly to obtain n different initital guesses.
Each of these guesses will be copied to a new case to
keep track of the results.

When a case has an initial guess for the parame-

ter vector, the parameter estimation can be started.
However, the NLP described in Equation (3) requires
good initial guesses for each of the decision variables
in the collocation problem (including all collocated
states and algebraic variables). This is handled by do-
ing a simulation first with the Sim model and the ini-
tial guess of the parameter vector. The resulting sim-
ulation trajectories are used as initial guesses for the
decision variables in Problem (3). Numerical scaling
factors for each system variable are also computed as
the infinity norm of the corresponding trajectory.

The solution time and the number of iterations can
vary a lot depending on the initial guess and the abil-
ity of the model to represent the measurement data.
IPOPT allows the specification of a maximum solu-
tion time and/or a maximum number of iterations after
which it will interrupt the optimisation. Both can be
set in the toolbox, but in practice, specifying a max-
imum solution time is more intuitive. It is also more
effective when the iterations become very slow. More-
over, experience shows that long execution times often
lead to solutions far away from the global optimum or
even divergence.

The estimation will add the optimized parameter
vector to the case, as well as the IPOPT solver statis-
tics.

The validation of the results is always based on a
post-simulation with the Sim model and the optimized
values of the parameter vector. There are both visual
and quantitative validation methods. The visual meth-
ods contain for example time series plots of the re-
sulting trajectories and corresponding residuals, scat-
ter plots of the residuals with monitoring data and a
plot of the autocorrelation function of the residuals.
This also implies a check on the weights of the matrix
Q from (1a) in case the error-in-variables method is
used. When a full Latin hypercube sample has been es-
timated, a visual check of the different local optima is
implemented. This can whether the sample was large
enough to suppose the global optimum to be found.
The quantitative methods are based on a computation
of the root-mean-square error (RMSE) for each trajec-
tory in the vector e from Equation (2). This can be
done on the training data (auto-validation) or on any
other dataset (cross-validation). As the RMSE is com-
puted based on the post-simulation, possible discreti-
sation errors in the collocation method are disregarded
in the model validation process.

A computation of the confidence interval for each
of the estimated parameters is implemented. This will
give an indication of the accuracy of the estimation and



the parameter’s influence on the model’s input-output
behaviour. The standard deviation of the estimated
parameters p̂ is computed according to Englezos and
Kalogerakis [15]. The standard deviation for parame-
ter i is the square root of the diagonal element on (i, i)
in the covariance matrix cov(p̂) of the estimated pa-
rameters, which is given by

cov(p∗) = σ̂
2(JT J)−1,

where J is the Jacobian of the trajectories with respect
to the estimated parameters and σ̂2 is the estimated
variance of the output deviation e.

The final step in the system identification is model
selection. Model selection should be carried out on
two levels: for a single model, and between different
models. For a single model, generally a Latin hyper-
cube sampling is executed and the resulting global op-
timum is taken if it is a valid solution. Valid means
that:

• the parameters do not lie on the specified mini-
mum or maximum bounds,

• the parameter values are physically reasonable,

• the confidence intervals are within reasonable
bounds.

The normal procedure for an inter-model selection
procedure starts by a parameter estimation on a very
simple (first-order) model. The obtained parameter
values are often a good indication of the order of mag-
nitude of the parameters for the more detailed models
later on. Then, different models of higher order and
complexity are estimated, and only those for which
the single model validation is satisfactory are retained.
Among all the retained models, the best model is the
one that leads to the lowest RMSE value for cross-
validation. This approach avoids overfitting of the
model, as will be demonstrated in Section 4. A more
focused forward selection procedure as described by
Bacher and Madsen [16] can also be applied.

3 FastBuildings library

The FastBuildings library targets low-order building
modelling. The library has sub-packages for thermal
zone models (including windows), HVAC, user be-
haviour, inputs, buildings and examples. Single and
multi-zone building models can be created easily by
instantiating one of the predefined templates in the
Building sub-package and redeclaring the desired

submodels, like the thermal zone, HVAC or window
model. The following design principles are applied
throughout the library.

• The thermal connectors are HeatPorts from the
Modelica.Thermal package.

• Thermal resistors and capacitances are not used
from the Modelica Standard Library (MSL).
Simplified versions with less auxiliary variables
are implemented. They have exactly the same in-
terface and connectors for compatibility with the
MSL.

• A strict naming convention is used for consis-
tency and to enable the greybox.py toolbox to au-
tomate certain tasks.

• The library heavily relies on the extends con-
struct in order to avoid code duplication. This
is specifically useful for the thermal zone models
that have increasing complexity as a function of
their order.

• An inner/outer component simFasBui passes
all inputs like weather data, occupancy etc. from
the top most level to all sublevels.

• The models for thermal zones, HVAC and user
behaviour have exactly the same interface as their
equivalents in the IDEAS library [7]. Therefore, it
is very easy to replace one or more detailed mod-
els from an IDEAS-based model by a low-order
equivalent from the FastBuildings library.

Currently, the thermal zone models available in the
library are based on a resistor-capacitance (RC) net-
work analogy which is often used for the modelling of
thermal processes. This is however not required; any
model that specifies a relationship between the heat
flows and temperatures at the interface of a thermal
zone can be implemented. An example of one of the
third-order models in the library is given in Figure 4.

The library is distributed with the Modelica license
2 and can be found in the open-IDEAS source code
repository on Github [17].

4 Results

The toolbox is applied on a case study for model or-
der reduction on a single family dwelling. A low-
order model is derived from the simulated trajectories
that are obtained with a detailed model. Prior knowl-
edge about the dwelling is not taken into account in the



Figure 4: Example of a third-order thermal zone model in the FastBuildings library

model selection or parameter estimation, but is given
here. The dwelling has two construction layers with a
total heated floor surface of 196 m2. The dwelling is
designed according to a low-energy standard and has
massive walls and floor heating. A total of 33 m2 of
windows with a g-value of 0.6 is integrated as follows:
9.5 m2 on east, 10.4 m2 on south and 11.6 m2 on west.

Figure 5 shows the training and validation datasets.
Both sets consist of one week of hourly data. Al-
though the ’measurement’ data comes from a (de-
tailed) simulation, only a few variables that could eas-
ily be measured in a real dwelling are used for this
case study. These include: the ambient temperature
TAmb, global solar radiation on a horizontal surface
IGloHor, electricity consumption powEle, thermal
power of the heating system qHeaCoo, and zone tem-
perature T Zon. Hereafter the detailed simulation data
is called measurement data. All of the inputs are elim-
inated from the problem, as discussed in Section 2.5,
except for T Zon which is the fitting variable.

Nine models with different order, equations, and pa-
rameters have been identified using Latin hypercube
sampling. After validation on single-model level, three
models have been eliminated because some of their
parameters were positioned on a specified minimum
or maximum boundary. The RMSE values for auto

and cross-validation of the six remaining models are
shown in Figure 6. This figure shows that a lower
RMSE on auto-validation does not necessarily imply
a lower RMSE on cross-validation. The best model
is the one with the lowest RMSE on cross-validation.
For this case it is the model with 11 parameters, we’ll
call it model11. This is the model for which the struc-
ture is shown in Figure 4. The models with 12 and 13
parameters are overfitted.

We will now analyse the results for model11 in more
detail. The sample size was 38 and a maximum CPU
time of 5.5 seconds was set. The default solver settings
were not changed. This implies that the number of col-
location elements corresponds to the number of data
points (ne = 168), and each collocation element has
two collocation points (nc = 2). From the 38 cases, 10
converged to a solution within the limit of 5.5 seconds.
Figure 7 shows the RMSE (auto-validation) compared
to the IPOPT objective function for each of these 10
solutions. This plot reveals that 4 local optima have
been found; the (supposed) global optimum has been
found 3 times. The results also show that the discreti-
sation in the collocation method did not lead to signif-
icant errors: there is a strong consistency between the
optima found according to Equation (3) and the RMSE
of the post-simulation.



Training data Validation data

Figure 5: Measurement data for two weeks (first week as training data, second week as validation data)

0 2 4 6 8 10 12 14
Number of estimated parameters

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

RM
SE

 o
n 

TZ
on

 [K
]

auto-validation
cross-validation

Figure 6: RMSE values for auto and cross-validation
for the different models as a function of the number of
estimated parameters

0 5000 10000 15000 20000 25000
IPOPT objective value [-]

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

RM
SE

 [K
]

Figure 7: Relation between the IPOPT objective value
and RMSE for auto-validation (obtained by post-
simulation)



A time series plot of the cross-validation is shown in
Figure 8. It is important to note that this plot shows an
open-loop simulation over one week. The prediction
power of the model is very good, with absolute devia-
tions of the zone temperature always below 0.5 K.

Jan 23 2011 Jan 24 2011 Jan 25 2011 Jan 26 2011 Jan 27 2011 Jan 28 2011 Jan 29 2011293.0

293.5

294.0

294.5

295.0

295.5

296.0

296.5
TZon, measured
TZon, simulated

Figure 8: Comparison of the model output with the
measurement data for an open loop simulation on the
validation dataset

The normalized confidence intervals are shown in
Figure 9. All parameters seem to have well defined
confidence intervals. The most unconfident parameter
values are found for the thermal resistance of the infil-
tration (resInf in Figure 4) and for the thermal capacity
of the zone air (capZon in Figure 4).

bu
i.z

on
.rI

nf

bu
i.z

on
.c

Em
b

bu
i.u

se
.fr

aT
ot

bu
i.z

on
.rW

al

bu
i.z

on
.c

Zo
n

bu
i.z

on
.rE

m
b

bu
i.z

on
.c

W
al

bu
i.z

on
.w

in
[1

].g
A0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4 Confidence intervals based on estimated standard deviation

95% confidence interval
99% confidence interval

Figure 9: Normalized confidence interval for the pa-
rameters in the selected model

5 Conclusion

Inverse modelling is gaining attention in the build-
ing simulation community. More specifically grey-box
modelling is considered as a strong framework for the
creation of low-order models for analysis and control
of monitored buildings. This paper presents an ap-
proach to obtain useful grey-box models in a largely
automated way.

The first step is the creation of a building library
with many potential model candidates. The Model-
ica package FastBuildings contains low-order models
for thermal zones, HVAC, users, single and multi-zone
buildings.

Next, a toolbox is presented that largely automates
the parameter estimation of the FastBuildings mod-
els. It is implemented as a Python module that wraps
the functionality of JModelica.org and presents the
user a high-level interface for all common operations.
The use of a gradient-based method allows an efficient
numerical solution of the estimation problems. Spe-
cific attention is paid to robustness and ease-of-use.
A Latin hypercube sampling of the parameter search
space overcomes issues related to the non-convexity
of the optimization problem.

The toolbox is applied to a model order reduction
case study for a single-family dwelling. Only vari-
ables that can easily be measured in a real building
are used. The selected model has 11 parameters and is
able to predict the indoor temperature in an open-loop
simulation (with a priori knowledge about weather and
electricity consumption) with an RMSE of 0.16 K.

The real value of the toolbox can only be assessed
by using the obtained models for model predictive
control or for large-scale district simulations. Both ap-
plications are foreseen in future work.

Acknowledgement

Roel De Coninck wishes to acknowledge the EU
ITEA2 project Enerficiency for supporting his work
on behalf of 3E and the EU FP7 project Performan-
cePlus (contract nb. 308991) for supporting his work
on behalf of KU Leuven. Fredrik Magnusson and Jo-
han Åkesson gratefully acknowledge support from the
Lund Center for Control of Complex Engineering Sys-
tems (LCCC) and the ELLIIT Excellence Center at
Lund University.



References

[1] T. Bohlin, “Editorial - Special issue on grey box
modelling,” International journal of adaptive
control and signal processing, vol. 9, pp. 461–
464, 1995.

[2] H. Madsen and J. Holst, “Estimation of
continuous-time models for the heat dynamics
of a building,” Energy and Buildings, vol. 22,
pp. 67–79, 1995.

[3] N. R. Kristensen, H. Madsen, and S. B. Jor-
gensen, “Parameter estimation in stochastic
grey-box models,” Automatica, vol. 40, pp. 225–
237, Feb. 2004.

[4] D. B. Crawley, J. W. Hand, M. Kummert, and
B. T. Griffith, “Contrasting the capabilities of
building energy performance simulation pro-
grams,” Building and Environment, vol. 43,
pp. 661–673, Apr. 2008.

[5] M. Wetter, “A view on future building system
modeling and simulation,” in Building per-
formance simulation for design and operation
(J. L. M. Hensen and R. Lamberts, eds.), no. i,
p. 28, 2011.

[6] M. Wetter and C. Van Treeck, “IEA EBC
Annex 60 - New generation computational
tools for building and community energy sys-
tems based on the Modelica and Functional
Mockup Interface standards.” http://iea-
annex60.org/about.html, 2013.

[7] R. Baetens, R. De Coninck, J. Van Roy, B. Ver-
bruggen, J. Driesen, L. Helsen, and D. Saelens,
“Assessing electrical bottlenecks at feeder level
for residential net zero-energy buildings by in-
tegrated system simulation,” Applied Energy,
no. (Special issue on Smart Grids, Renewable
Energy Integration, and Climate Change Mitiga-
tion - Future Electric Energy Systems), 2012.

[8] J. Åkesson, K.-E. Årzén, M. Gäfvert,
T. Bergdahl, and H. Tummescheit, “Mod-
eling and optimization with Optimica and
JModelica.org—languages and tools for solv-
ing large-scale dynamic optimization problems,”
Computers and Chemical Engineering, vol. 34,
pp. 1737–1749, Nov. 2010.

[9] T. Blochwitz, M. Otter, M. Arnold, C. Bausch,
C. Clauß, H. Elmqvist, A. Junghanns, J. Mauss,

M. Monteiro, T. Neidhold, et al., “The func-
tional mockup interface for tool independent
exchange of simulation models,” in Model-
ica’2011 Conference, March, pp. 20–22, 2011.

[10] F. Magnusson and J. Åkesson, “Collocation
methods for optimization in a Modelica envi-
ronment,” in 9th International Modelica Confer-
ence, (Munich, Germany), Sept. 2012.

[11] A. Wächter and L. T. Biegler, “On the imple-
mentation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear
programming,” Mathematical Programming,
vol. 106, no. 1, pp. 25–57, 2006.

[12] HSL, “A collection of Fortran codes for large
scale scientific computation.” http://www.
hsl.rl.ac.uk, 2013.

[13] J. Andersson, J. Åkesson, and M. Diehl,
“CasADi – A symbolic package for automatic
differentiation and optimal control,” in Re-
cent Advances in Algorithmic Differentiation
(S. Forth, P. Hovland, E. Phipps, J. Utke, and
A. Walther, eds.), Lecture Notes in Compu-
tational Science and Engineering, (Berlin),
Springer, 2012.

[14] L. T. Biegler, Nonlinear Programming: Con-
cepts, Algorithms, and Applications to Chemical
Processes. MOS-SIAM Series on Optimization,
Mathematical Optimization Society and the So-
ciety for Industrial and Applied Mathematics,
2010.

[15] P. Englezos and N. Kalogerakis, Applied Param-
eter Estimation for Chemical Engineers, vol. 81
of Chemical Industries. CRC Press, Oct. 2000.

[16] P. Bacher and H. Madsen, “Identifying suitable
models for the heat dynamics of buildings,” En-
ergy and Buildings, vol. 43, pp. 1511–1522,
Feb. 2011.

[17] KU Leuven and 3E, “open-IDEAS source code
repository.” https://github.com/open-
ideas, 2014.

http://iea-annex60.org/about.html
http://iea-annex60.org/about.html
http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
https://github.com/open-ideas
https://github.com/open-ideas

	Introduction
	Methodology
	Overview
	Modelica
	Models
	The JModelica.org platform
	Problem formulation
	Solution algorithm
	Toolbox functionality and workflow

	FastBuildings library
	Results
	Conclusion

