
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Collocation Methods for Optimization in a Modelica Environment

Magnusson, Fredrik; Åkesson, Johan

Published in:
Proceedings of the 9th International MODELICA Conference

2012

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Magnusson, F., & Åkesson, J. (2012). Collocation Methods for Optimization in a Modelica Environment. In M.
Otter, & D. Zimmer (Eds.), Proceedings of the 9th International MODELICA Conference (pp. 649-658).
(Linköping Electronic Conference Proceedings; No. 76). Linköping University Electronic Press.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/234cb3c9-d291-4fe6-826c-40673e179dc7

Collocation Methods for Optimization in a Modelica Environment

Fredrik Magnussona Johan Åkessona,b

aDepartment of Automatic Control, Lund University, Sweden
bModelon AB, Lund, Sweden

Abstract

The solution of generic dynamic optimization prob-
lems described by Modelica, and its extension Opti-
mica, code using direct collocation methods is dis-
cussed. We start by providing a description of dynamic
optimization problems in general and how to solve
them by means of direct collocation. Next, an existing
implementation of a collocation algorithm in JModel-
ica.org, using CasADi and IPOPT, is presented. The
extensions made to this implementation are reported.

The new implementation is compared to an old C-
based collocation algorithm in JModelica.org in two
benchmarks. The presented benchmarks are based on
a continuously stirred tank reactor and a combined cy-
cle power plant. The new algorithm and its surround-
ing framework is more flexible and shown to be several
times more efficient than its predecessor.

Keywords: dynamic optimization; JModelica.org;
collocation; nonlinear programming; CasADi

1 Introduction

Optimization of large-scale dynamic systems is be-
coming a standard industrial technology. Applications
include minimization of material and energy consump-
tion during set-point transitions in power plants and
chemical processes, minimizing lap times for vehicle
systems and trajectory optimization in robotics.

There are different kinds of dynamic optimization
problems and in this paper we consider two categories.
The first is optimal control, where the aim is to find
control variable trajectories (and possibly parameters)
that minimize, for example, the amount of resources
spent to perform a specified action. The second cat-
egory is parameter estimation, where the problem is
to find the values of unknown model parameters that

This work was supported by the Swedish Research Council
through the LCCC Linnaeus Center. We would also like to thank
Francesco Casella for letting us use the combined cycle power
plant model.

allow the model to behave according to some given
measurement data.

Solving dynamic optimization problems is useful in
many different fields and applications. Parameter es-
timation is used to improve physical models in gen-
eral. Optimal control has many applications, in both
on-line and off-line settings. On-line optimal control
is usually done in the form of model predictive control.
Off-line applications include finding optimal trajecto-
ries for the transition between two stationary operat-
ing conditions in a system, which can be used either
as a reference during manual control or as a target for
automatic control if combined with feedback. Another
example is the identification of system bottlenecks, for
example by analyzing adjoint variables.

There are many approaches to solving dynamic
optimization problems. Until the 1970s, problems
were typically solved using dynamic programming or
Pontryagin’s maximum principle. These approaches
are ill-suited for large-scale problems and have trou-
ble handling inequality constraints. Modern tech-
niques often involve finding an approximate solution
to the infinite-dimensional optimization problem by
transcribing it into a finite-dimensional nonlinear pro-
gram (NLP). These are called direct methods. The
main difference among direct approaches is how to
handle the constraints describing the system dynam-
ics. In this paper, direct collocation is used. Another
common approach is direct multiple shooting. See [1]
and [2] for overviews on different direct methods.

JModelica.org [3] is a tool targeting large-scale dy-
namic optimization. The system dynamics are de-
scribed using Modelica, and the optimization formu-
lation is done with the use of the Modelica extension
Optimica [4]. In this paper, we implement an opti-
mization algorithm in JModelica.org for solution of
dynamic optimization problems described by Model-
ica and Optimica code. This work is a continuation
of the work begun in [5], where CasADi and JMod-
elica.org were integrated and a prototypical colloca-
tion method was implemented based on this integra-

tion. This prototype has since been refined and ex-
tended to support additional problem formulations and
solution techniques. Additional benchmarks have also
been performed, as reported in [6].

The outline of the paper is as follows. In Section
2, a general class of dynamic optimization problems is
presented. In Section 3, we discuss how to solve this
class of problems using direct collocation. In Section
4, the prominent tools used to implement the described
collocation method in a Modelica environment are pre-
sented. In Section 5, we present the extensions made
to the implementation from previous work. In Section
6, the implemented algorithm is compared to a similar
existing algorithm. The two algorithms are applied to
a continuously stirred tank reactor and to a combined
cycle power plant. Finally, in Section 7, the paper is
summarized and some future work is discussed. The
work presented in this paper is a result of [6], where
additional details are available.

Throughout the paper, the following notation is
used. The integer interval from a ∈ Z to b ∈ Z is de-
noted by [a..b]. All kinds of products between scalars,
vectors and matrices are denoted by the binary oper-
ator ·. The space of functions continuous of order
k from Rm into Rn is denoted by Ck(Rm,Rn), where
k = −1 means that the functions may be discontin-
uous. No distinction between tuples and vectors is
made.

2 Dynamic optimization

We consider systems whose dynamics are described
by a single and fully implicit differential algebraic
equation (DAE) system of index one (or zero). That
is, an equation system of the form

F(t, ẋ(t),x(t),u(t),w(t), p) = 0,

where t ∈ R is the sole independent variable: time,
x ∈ C0(R,Rnx) is the state, u ∈ C−1(R,Rnu) is the
vector-valued control variable, w ∈C−1(R,Rnw) is the
vector-valued algebraic variable and p ∈ Rnp is the
vector of parameters to be optimized, that is, the free
parameters. Initial conditions are also given on a fully
implicit form, i.e.,

F0(ẋ(t0),x(t0),u(t0),w(t0), p) = 0,

where t0 is the start time. For ease of notation, we com-
pose the time-dependent variables into a single vari-
able z, that is,

z := (ẋ,x,u,w).

The system dynamics are thus fully described by

F(t,z(t), p) = 0, ∀t ∈ [t0, t f],
F0(z(t0), p) = 0,

where t f is the final time and

F ∈C2(R×Rnz×Rnp ,Rnx+nw),

F0 ∈C2 (Rnz×Rnp ,Rnx) ,
nz := 2 ·nx +nu +nw.

These continuity requirements, and some of the con-
tinuity requirements stated later in this section, are
needed to establish the second-order optimality con-
ditions and also to find a solution to the first-order op-
timality condition using some variation of Newton’s
method.

The general problem studied in this paper is to

minimize f (t0, t f ,z, p), (1a)

with respect to t0, t f ,z, p,

subject to F(t,z(t), p) = 0, (1b)

F0(z(t0), p) = 0, (1c)

zL ≤ z(t)≤ zU , (1d)

pL ≤ p≤ pU , (1e)

ge(t0, t f , t,z(t), p) = 0, (1f)

gi(t0, t f , t,z(t), p)≤ 0, (1g)

Ge(t0, t f ,Ze, p) = 0, (1h)

Gi(t0, t f ,Zi, p)≤ 0, (1i)

∀t ∈ [t0, t f].

The objective (1a) can take on many forms. For op-
timal control problems, it is typically a Bolza func-
tional, that is, a function on the form

f (t0, t f ,z, p) =φ(t0,z(t0), t f ,z(t f), p)+∫ t f

t0
L(t,z(t), p)dt,

(2)

where

φ ∈C2(R×Rnz×R×Rnz×Rnp ,R)

is called the Mayer term and

L ∈C2(R×Rnz×Rnp ,R)

is called the Lagrange integrand.
For parameter estimation, the objective function is

typically formulated using a weighted least squares
sum, penalizing the deviation of the measured vari-
ables from the discrete measurement data. However,

in this paper we choose a slightly different approach.
We first interpolate the discrete measurement data to
form ym ∈C0(R,Rny), where ny is the number of mea-
sured variables. This function gives the approximated
trajectories for the vector-valued measured variable
y ∈C−1(R,Rny). Any of the states, algebraic variables
and control variables can be measured variables. The
objective is then chosen as a continuous weighted least
squares function, given by

f (z, p) =
∫ t f

t0
(y(t)− ym(t)) ·Q · (y(t)− ym(t))dt, (3)

where Q ∈ Rny×ny is the weighting matrix. The reason
for this approach is discussed in Section 3.

The constraints (1b) and (1c) enforce the system dy-
namics and initial conditions. The constraints (1d)
and (1e) are variable bounds, which are enforced
during the entire time horizon [t0, t f], where zL ∈
(R∪{−∞})nz and pL ∈ (R∪{−∞})np are the lower
bounds and zU ∈ (R∪{∞})nz and pU ∈ (R∪{∞})np

are the upper bounds. The constraints (1f) and (1g)
are called path constraints. These can for example be
used to describe that a vehicle must follow a certain
path. Finally, the constraints (1h) and (1i) are called
point constraints. These are similar to the path con-
straints, with the difference being that they are only
enforced at specific time points, rather than during the
entire time horizon. The vectors Ze and Zi contain the
variable values at all the time points used in the point
constraints, i.e.

Ze = (z(T1),z(T2), . . . ,z(Tm)),

where Ti is the time point at which point constraint i is
enforced and m is the number of constraint points. A
typical example of a point constraint is terminal con-
straints, where variable values are specified at the end
of the time horizon. The path constraint functions ge

and gi as well as the point constraint functions Ge and
Gi must be twice continuously differentiable.

The general problem formulation (1) covers a large
class of problems. The constraints (1d) to (1i) are op-
tional, whereas the constructs in (1a) to (1c) are re-
quired to get a well-posed problem. The start and final
time can be either fixed or free. For example, letting
the final time be free and choosing the cost function as
f (t0, t f ,z, p) = t f allows for the formulation of mini-
mum time problems, where the goal is to minimize the
time required to perform some action, often specified
in the form of terminal constraints.

A possible generalization of (1) is the division of
the time horizon into multiple phases, where at the

phase boundaries the DAE system is allowed to change
and/or the states may be discontinuous. Another pos-
sible generalization is enforcing continuity for con-
trol and algebraic variables and then including their
respective derivatives in the constraints and cost func-
tion. These generalizations are however outside the
scope of this paper.

3 Collocation methods

3.1 Collocation polynomials

We will now describe how to solve the dynamic opti-
mization problem (1) by means of direct collocation,
using an approach similar to the ones described in [1]
and [7]. The time horizon is discretized into ne ele-
ments, and within element i the time-dependent vari-
able z is approximated using a vector-valued polyno-
mial zi = (ẋi,xi,ui,wi), called a collocation polyno-
mial. In element i, the time is normalized according
to

t̃i(τ) = ti−1 +hi ·(t f −t0) ·τ, τ ∈ [0,1], ∀i∈ [1..ne],
(4)

where ti is the time at the end of element i, which is
called the mesh point of element i, and hi is the length
of element i. The element lengths have been normal-
ized so that the sum of all lengths equals 1. This nor-
malization facilitates the optimization of t f and t0 by
keeping element lengths constant.

The collocation polynomials are formed by choos-
ing a number nc of collocation points (which is as-
sumed to be the same for each element). Let τi,k de-
note collocation point k in element i, and let zi,k =
(ẋi,k,xi,k,ui,k,wi,k) denote the value of z(τi,k). The col-
location polynomials are then formed using Lagrange
interpolation polynomials, using the collocation points
as interpolation points. Since the states need to be con-
tinuous even at the element boundaries, we introduce
an additional interpolation point at the start of each el-
ement for the state collocation polynomials, denoted
by τi,0 := 0. We thus get the collocation polynomials

xi(τ) =
nc

∑
k=0

xi,k · ˜̀k(τ), (5)

ui(τ) =
nc

∑
k=1

ui,k · `k(τ),

wi(τ) =
nc

∑
k=1

wi,k · `k(τ),

where ˜̀k and `k are the Lagrange basis polynomials,
respectively with and without the additional interpola-

tion point τi,0. The basis polynomials are given by

˜̀k(τ) = ∏
l∈[0..nc]\{k}

τ− τl

τk− τl
, ∀k ∈ [0..nc],

`k(τ) = ∏
l∈[1..nc]\{k}

τ− τl

τk− τl
, ∀k ∈ [1..nc].

Note that the basis polynomials are the same for all
elements, due to the normalized time.

In order to obtain the polynomial approximation of
the state derivative ẋ in element i, the collocation poly-
nomial xi is differentiated with respect to time. Using
(4), (5) and the chain rule, we obtain

ẋi(τ) =
dxi

dt̃i
(τ) =

dτ

dt̃i
· dxi

dτ
(τ)

=
1

hi · (t f − t0)
·

nc

∑
k=0

xi,k ·
d ˜̀k
dτ

(τ). (6)

There are different schemes for choosing the col-
location points τi,k, with different numerical proper-
ties, in particular regarding stability and order of con-
vergence. The most common ones are called Gauss,
Radau and Lobatto collocation. In this paper we use
Radau collocation, which always places a collocation
point at the end of each element, and the rest are cho-
sen in a manner that maximizes accuracy.

Collocation methods are not only used for optimiza-
tion purposes, but are also widely used for numerical
solution of both ODE and DAE systems, i.e. simula-
tion. The concepts are the same in both simulation and
optimization, and there is a theoretical basis shared by
collocation methods in the two areas. See [8] for more
on simulation using collocation methods, which are a
special case of implicit Runge-Kutta methods.

3.2 Transcription of the dynamic optimiza-
tion problem

In this section, the infinite-dimensional dynamic op-
timization problem (1) is transcribed into a finite-
dimensional NLP, using the collocation polynomials
constructed in the previous section. The main idea is
that the infinite-dimensional time-dependent variable z
is approximated using polynomials, which can be rep-
resented using a finite number of values: the colloca-
tion point values. This finite-dimensional approxima-
tion of the solution z is more suitable when employing
numerical optimization methods.

As decision variables in the NLP we choose all the
collocation point values zi,k, the state values at the start
of each element xi,0 and the free parameters p. We also

choose the initial condition values as NLP variables,
which we denote by z1,0. Finally, we choose t0 and t f

as optimization variables if they are free. We thus let

Z = (z1,0,z1,1,z1,2, . . . ,z1,nc ,

x2,0,z2,1,z2,2, . . . ,z2,nc ,

x3,0,z3,1,z3,2, . . . ,z3,nc ,

...,

xne,0,zne,1,zne,2, . . . ,zne,nc , p, t0, t f).

be the vector containing all the NLP variables. There
are other possibilities in the choice of NLP decision
variables, and the choice depends on the collocation
scheme. With Radau collocation and the above choice,
the transcription of (1) results in the following NLP:

min. f̃ (Z), (7a)

w.r.t. Z ∈ RnZ ,

s.t. F(ti,k,zi,k, p) = 0, (7b)

F0(z1,0, p) = 0, (7c)

u1,0−
nc

∑
k=1

u1,k · `k(0) = 0, (7d)

zL ≤ zi,k ≤ zU , (7e)

pL ≤ p≤ pU , (7f)

ge(ti,k,zi,k, p) = 0, (7g)

gi(ti,k,zi,k, p)≤ 0, (7h)

Ge(Ze) = 0, (7i)

Gi(Zi)≤ 0, (7j)

∀(i,k) ∈ {(1,0)}∪ ([1..ne]× [1..nc]),

ẋ j,l =
1

h j · (t f − t0)
·

nc

∑
m=0

x j,m ·
d ˜̀m
dτ

(τl),

∀(j, l) ∈ [1..ne]× [1..nc], (7k)

xn,nc = xn+1,0, ∀n ∈ [1..ne−1], (7l)

where

nZ = (1+ne ·nc) ·nz +(ne−1) ·nx +np +2

is the number of scalar NLP variables and

ti,k := t̃i(τk)

denotes collocation point k in element i. The objective
(1a) is transcribed into (7a). In the case of optimal
control, the Mayer term of the Bolza functional (2) is
straightforward to transcribe as

φ(t0,z(t0), t f ,z(t f), p) = φ(t0,z1,0, t f ,zne,nc , p).

To transcribe the Lagrange term, we start by using (4)
to define the Lagrange integrand in element i as

Li(τ,zi(τ), p) := L(t̃i(τ),z(t̃i(τ)) , p) .

The Lagrange term is then approximated as follows.∫ t f

t0
L(t,z(t), p)dt

=
ne

∑
i=1

(
hi · (t f − t0) ·

∫ 1

0
Li(τ,zi(τ), p)dτ

)
≈

ne

∑
i=1

(
hi · (t f − t0) ·

nc

∑
k=1

ωk ·Li (τk,zi,k, p)

)
,

where the quadrature weights ωk are given by

ωk =
∫ 1

0
`k(τ)dτ.

These quadrature weights provides the best approxi-
mation for these interpolation points, as shown in [1].
The optimal control objective is thus transcribed as

f (z, p)≈φ(t f ,zne,nc , p)+
ne

∑
i=1

(
hi · (t f − t0) ·

nc

∑
k=1

ωk ·Li (τk,zi,k, p)

)
=: f̃ (Z).

For the parameter estimation problem, the continuous
weighted least squares integral (3) is approximated us-
ing the same Gaussian quadrature, resulting in

f (z, p) =
∫ t f

t0
(y(t)− ym(t)) ·Q · (y(t)− ym(t))dt

≈
ne

∑
i=1

(
hi · (t f − t0) ·

nc

∑
k=1

ωk · (yi,k− ym(ti,k)) ·Q·

(yi,k− ym(ti,k))

)
=: f̃ (Z),

where yi denotes the collocation polynomials for the
measured variables, and yi,k denotes the corresponding
collocation point values.

The system dynamics constraint (1b) is only en-
forced at the collocation points and the start time in
the NLP, rather than during the entire time horizon.
The initial conditions (1c) are straightforward to tran-
scribe into (7c), since all the initial values have been
chosen as NLP variables. The consistency of the user-
provided initial conditions is ensured by enforcing all
the dynamic constraints at the start time.

The initial values for the states and algebraic vari-
ables are determined by the dynamic and initial con-
straints. The initial value for the control variable is

however not governed by the dynamic or initial equa-
tions, but is instead given by the collocation polyno-
mial u1. To obtain the value for u1,0, we thus need to
add the extrapolation constraint (7d).

The bounds and path constraints (1d) to (1g) are
straightforward to transcribe into (7e) to (7h), by only
enforcing them at the collocation points. How to tran-
scribe the point constraints (1h) and (1i) is less obvi-
ous. The approach we have chosen is to assume that
each constraint point coincides with a collocation or
mesh point. It is then just a matter of identifying the
NLP variables that correspond to the constraint point
values Ze and Zi in order to transcribe the point con-
straints into (7i) and (7j). The other possibility is to
evaluate the collocation polynomials at the constraint
points. These constraints are however more computa-
tionally expensive to evaluate. But adding elements in
order to line up the mesh with the constraint points is
prone to be even more expensive. However, as long
as the number of constraint points are few in number,
which often is the case, this is not a critical issue.

A similar situation occurs during parameter estima-
tion if a discrete least squares sum is used as the ob-
jective. The measured variable values are then needed
at each of the measurement time points, and these are
typically not few in number. The question of whether
to line up the mesh (or even collocation) points with
the measurement time points, or to simply evaluate the
collocation polynomials, is then a critical choice. In
this paper however, we avoid this issue by instead us-
ing the continuous least squares objective (3). This
allows us to evaluate the objective using quadrature,
for which we only need the variable values at the col-
location points, which are readily available.

In order to determine the state derivative values at
the collocation points, we enforce equation (6) at all
the collocation points, giving us the collocation equa-
tions (7k). These are not enforced at the start time,
where the state derivative values instead are deter-
mined by the DAE system and initial conditions.

Finally, we add the continuity constraints (7l), to get
continuity for the state. An NLP has the general form

minimize f (x)
with respect to x ∈ Rnx ,

subject to xL ≤ x≤ xU ,

g(x) = 0,

h(x)≤ 0,

which the transcription (7) is a special case of. By
solving the NLP (7), we may obtain an approximate
solution to the dynamic optimization problem (1).

4 Tools

4.1 CasADi

Obtaining the first and second-order derivatives of the
NLP cost and constraints functions with respect to the
NLP variables allows for efficient solution of an NLP.
To this end, CasADi [9] (Computer algebra system
with Automatic Differentaion) is used. CasADi is a
low-level tool for efficiently computing derivatives us-
ing automatic differentiation (AD) and is tailored for
dynamic optimization. Once a symbolic representa-
tion of an NLP has been created using CasADi, the
needed derivatives are efficiently and conveniently ob-
tained and sparsity patterns are preserved.

To solve the NLP (7), we use IPOPT [10]. IPOPT
uses a sparse primal-dual interior point method to find
local optima to large-scale NLPs. CasADi comes with
an interface to IPOPT, which is used in the implemen-
tation.

4.2 JModelica.org

4.2.1 The JModelica.org platform

JModelica.org [3] is an open-source platform for simu-
lation and optimization of Modelica models. Whereas
standard Modelica tools, such as Dymola1 and Open-
Modelica2, mostly focus on the simulation of physi-
cal systems, JModelica.org also targets large-scale dy-
namic optimization. A common problem is that a large
amount of research goes into developing algorithms
without accompanying means of describing complex
physical systems, making these algorithms difficult to
use in practical applications. One goal of JModel-
ica.org is to open up the Modelica language and the
vast amount of existing Modelica models to algorithms
developed in academia.

The Modelica language is largely designed with
simulation-based analysis in mind. To accommodate
the need for conveniently formulating dynamic op-
timization problems based on models described by
Modelica code, the Modelica extension Optimica [4]
has been developed and integrated into JModelica.org.
Optimica enables the extension of a Modelica model to
include the constructs used to formulate a dynamic op-
timization problem, such as (1), where the pure Mod-
elica code describes the dynamic constraints (1b) and
(1c).

1http://www.3ds.com/products/catia/portfolio/

dymola
2http://www.openmodelica.org/

The main components of JModelica.org are the
Modelica and Optimica compilers, which are imple-
mented in Java, and the three modeling interfaces
Functional Mock-up Interface (FMI)3, JModelica.org
Model Interface (JMI) and a new symbolic XML-
based format based on the FMI XML format, which
includes equations in symbolic form. The user inter-
acts with the various components of JModelica.org via
the scripting language Python.

While FMI is a standard defining a tool-independent
format for representation of hybrid dynamic models
on ordinary differential equation (ODE) form, JMI is
a runtime library designed solely for JModelica.org,
and has long been the main interface for dynamic opti-
mization in JModelica.org. The main optimization al-
gorithm in JMI is collocation-based and implemented
in C. It relies on CppAD4 to compute and evaluate
derivatives. However, in this paper the new XML-
based format is instead used for the new collocation
algorithm. This format is an extension of the XML
format used in FMI and is described in [11]. The for-
mat uses a DAE representation of the model instead of
an ODE representation. It is designed to use a model
representation that is as general as possible, allowing
for the formulation of a wide variety of problems based
on Modelica code, in particular dynamic optimization
problems described by Optimica code. CasADi sup-
ports import of models described by this XML for-
mat, allowing for smooth interaction between JMod-
elica.org and CasADi.

4.2.2 The collocation algorithm toolchain

Figure 1 depicts an overview of the entire workflow
for the implemented collocation algorithm.

User

Modelica

Optimica

JModelica.org

 Compiler
XML

Python

CasADi CollocationIPOPT

Solution

Figure 1: Overview of algorithm workflow

3http://www.functional-mockup-interface.org/
4http://www.coin-or.org/CppAD/

http://www.3ds.com/products/catia/portfolio/dymola
http://www.3ds.com/products/catia/portfolio/dymola
http://www.openmodelica.org/
http://www.functional-mockup-interface.org/
http://www.coin-or.org/CppAD/

The user starts by defining the system model in
Modelica and the dynamic optimization problem in
Optimica. The user interaction is carried out in
Python. The Optimica file is, via Python, sent to
JModelica.org’s compiler. The compiler generates an
XML file from the Optimica file, which has a flat,
rather than hierarchical, representation of the dynamic
optimization problem similar to that of (1).

The XML file is parsed by CasADi and JModel-
ica.org and the extracted information is used to tran-
scribe the problem into an NLP by the collocation al-
gorithm inside JModelica.org. This NLP problem is
then solved by IPOPT. The solution is written to a re-
sult file in a format compliant with Dymola. The so-
lution is also represented by a Python object which is
returned to the user. This allows the user to freely ana-
lyze the data in Python, e.g. plotting it either manually
or using JModelica.org’s plotting GUI.

5 Implementation extensions

The work presented in this paper is a continuation of
the work begun in [5], where a prototypical colloca-
tion algorithm was implemented in JModelica.org us-
ing CasADi in Python. In this section we describe the
prominent extensions made to this implementation.

The algorithm supports problems with free start and
final time. Since these are typically combined with ter-
minal constraints, support for general point constraints
has also been added.

Whereas the old implementation only supported
Radau collocation with three collocation points per el-
ement, the new implementation supports an arbitrary
number of collocation points (up to about 80 points,
at which point the method for computing the colloca-
tion points runs into numerical problems). The new
implementation also supports Gauss collocation as an
alternative to Radau collocation.

CasADi has two separate approaches to performing
automatic differentiation. The first approach is called
SX and is a conventional AD approach, where the
computation graph is only allowed to contain scalar,
built-in unary and binary operations. The second ap-
proach is called MX and allows for more general oper-
ations in the computation graph, such as matrix opera-
tions (preserving sparsity), branches and user-defined
functions. The novel MX graphs are less computation-
ally efficient than SX graphs, but support a wider range
of operations. This allows the resulting MX graphs to
be smaller than SX graphs, thus consuming less mem-
ory, which may be critical. The collocation algorithm

has been extended to enable the user to choose be-
tween SX and MX graphs. See [9] for more details
regarding SX and MX graphs.

The collocation algorithm only deals with systems
which are continuous in time. However, control sig-
nals are often inherently discrete in time, which can
not be disregarded in for example model predictive
control. In order to support discrete control signals, the
possibility of adding blocking factors has been added.
Blocking factors change the representation of control
signals from piecewise polynomial to piecewise con-
stant. Control signals can be forced to remain constant
over single or multiple elements.

Finally, options have been added to allow the elimi-
nation of certain NLP variables. The state derivative
variables ẋi,k can be eliminated by inlining the col-
location constraint (7k), and the state continuity vari-
ables xi,0 can be eliminated by inlining the continuity
constraint (7l). This allows for the trade-off between
problem size and problem sparsity. Eliminating state
derivatives also has the benefit of no longer needing to
scale these variables, which often is difficult.

6 Benchmarks

6.1 Benchmark setting

In this section, we will compare the newly extended
collocation algorithm based on CasADi and its Python
interface with the old collocation algorithm imple-
mented in C. Both of these algorithms are imple-
mented in JModelica.org. We use Radau collocation
with the same, low number of collocation points per
element. The benchmarks are based on a continuously
stirred tank reactor and a combined cycle power plant.

The two algorithms are based on the same theory
and the constructed NLP problems are nearly identi-
cal, so the solutions can be expected to also be nearly
identical. There are however a few differences. The
most prevalent is that the new algorithm constructs
AD graphs for the entire NLP. The computation of the
Hessian of the Lagrangian function is thus easy and
efficient. Obtaining this information for the old algo-
rithm using CppAD, although possible, would require
a tremendous effort to implement, which has not been
done. Thus IPOPT employs a quasi-Newton method
for the old algorithm, in which the Hessian instead is
approximated. The computation of the Hessian and
AD graphs for the entire NLP is expensive. These
computations can however be performed off-line, and
in turn make the on-line computations more effective.

In this benchmark, SX graphs are used for the new al-
gorithm, since the generality offered by MX graphs are
unnecessary for the presented benchmarks.

All the benchmarks are run on a Fedora 16 com-
puter with an Intel® Core™ i7-2600 Quad processor
@ 3.4 GHz. Revisions [3352] and [2594] of JModel-
ica.org and of CasADi respectively are used, together
with version 3.10.2 of IPOPT with the MA27 linear
solver. For each benchmark, we provide the following
run-time statistics:

• Off-line: The CPU time [s] spent doing off-line
computations, which includes compilation of the
Modelica and Optimica code, construction of AD
graphs and computation of derivatives of NLP
functions.

• On-line: The CPU time [s] spent doing on-line
comptuations, which essentially is the time spent
in IPOPT. This part consists of two parts, where
the first one is the time spent internally in IPOPT,
and the second part is the time spent evaluat-
ing NLP functions, which is done by CppAD or
CasADi. The time spent by CasADi evaluating
NLP functions is nearly negligible, whereas Cp-
pAD spends a significant amount of time evaluat-
ing functions on-line for the old algorithm.

• Total: The total CPU time [s] from the start of
the compilation until the optimization result is re-
turned.

• Iterations: The number of iterations required by
IPOPT to solve the problem.

Minor variations in the collocation scheme or prob-
lem formulation can have a tremendous impact on the
required number of iterations, for example if the solver
has to enter a restoration phase, which in turn affect
the overall solution time. But on average, the required
number of iterations for the two algorithms should be
similar for a specific problem. The only significant
reason to expect a different number of iterations is
due to that the new algorithm computes second-order
derivatives analytically, whereas the old algorithm ap-
proximates them numerically. The number of itera-
tions for the new algorithm can thus be expected to be
lower on average.

6.2 Continuously stirred tank reactor

The continuously stirred tank reactor (CSTR) model
used for this benchmark was developed in [12]. The

system contains a highly nonlinear exothermic re-
action and has two states: reactant concentration c
[mol/m3] and reactor temperature T [K]. The rate F0
[m3/s], concentration c0 [mol/m3] and temperature T0
[K] of the reactant inflow are assumed to be constant.
The reactor has a liquid cooling system, whose tem-
perature Tc [K] is the sole control variable.

A formulation analogous to (1) of the considered
problem is to

min. φ(t f), (8a)

w.r.t. c,T,Tc,φ ,

s.t. ċ(t) = F0 ·
c0− c(t)

V
− k0 · e−

Ea
T (t) · c(t), (8b)

Ṫ (t) = F0 ·
T0−T (t)

V
−

H
ρ ·Cp

· k0 · e−
Ea

T (t) · c(t)+

2 ·U
r ·ρ ·CP

· (Tc(t)−T (t)), (8c)

φ̇(t) =
∣∣∣∣(c(t),T (t),Tc(t))−

(
cref,T ref,T ref

c
)∣∣∣∣2

2
(8d)

(c(t0),T (t0),Tc(t0),φ(t0)) = (c0,T0,Tc0,0),
(8e)

(T (t),Tc(t))≤ (350,370), (8f)

∀t ∈ [t0, t f].

The objective (8a) is to move the system from the sta-
tionary operation point given by the initial condition
(8e), where

(c0,T0,Tc0)≈ (956.3,250.1,370.0),

to the stationary operation point, given by(
cref,T ref,T ref

c
)
≈ (338.8,280.1,280.0).

The variable φ is introduced as a state and measures
how the cost increases over time, and is governed by
the dynamic equation (8d). This allows us to formulate
the objective on Mayer form, instead of Lagrange.

The dynamics of the system are modelled by equa-
tions (8b) and (8c), where V,k0,EA,H,ρ,Cp,U and r
are physical parameters and constants. In order to
avoid too high temperatures, we impose the variable
bounds (8f). With t f = 200 s, ne = 70 and nc = 5, we
get the following result.

Table 1: Run-time statistics for the CSTR benchmark

Off-line On-line Total Iterations

New alg. 1.0 0.3 1.3 50
Old alg. 2.0 0.9 2.9 62

400
500
600
700
800
900

c
[m

ol
/m

3
]

New algorithm

Old algorithm

260
280
300
320
340

T
[K

]

0 50 100 150 200
t [s]

200

250

300

350

T
c

[K
]

Figure 2: Comparison of the old and new algorithm on
optimal control of a CSTR

We see that for this benchmark, the new algorithm
is about twice as fast both off-line and on-line. They
also produce the same solution (up to IPOPT toler-
ances). This problem is very small-scale, and in the
next benchmark we will see that a larger problem will
allow the new algorithm to truly outperform the old
one

6.3 Combined cycle power plant

The combined cycle power plant (CCPP) model used
for this benchmark is described in [13]. The model has
9 states, 128 algebraic variables and 1 control variable.
The task is to minimize the time required to perform
a warm start-up of the power plant. This problem has
become highly industrially relevant during the last few
years, due to an increasing need to improve power gen-
eration flexibility. The startup process is considered
finished when the normalized load input signal u [1]
to the steam turbine, starting at 15 %, has reached 100
% and the evaporator pressure p [Pa], which is a state
with an initial value of approximately 3.47 MPa, has
reached approximately 8.35 MPa.

In order to reduce the wear and tear on the steam
turbine, which is one of the most expensive parts of
the power plant, the thermal stress in the turbine σ

[Pa], which is an algebraic variable, may not exceed
260 MPa. This is the main limiting factor in the startup
process. Another imposed constraint is that the deriva-
tive of the load input signal u may not be negative and
may not exceed 0.1/60 s−1. Since these bounds are
on the derivative of the control variable, which is not
supported by neither the old nor the new algorithm, we

introduce the control variable u̇ and add the equation

du
dt

= u̇,

to the DAE system. This converts the previous control
variable u into a state, giving us a total of 10 states,
and the sole control variable is now instead u̇, which
we can impose the mentioned bounds on.

We formulate a Lagrange cost function which pe-
nalizes the weighted deviation of the load input signal
and the evaporator pressure from their respectively de-
sired values, given by

f (z) =
∫ t f

t0

(
10−12 ·

(
p(t)−8.35 ·106)2

+

0.5 · (u(t)−1)2
)

dt.

With t0 = 0 s, t f = 4000 s, ne = 40 and nc = 4, the
following optimization result is obtained.

Table 2: Run-time statistics for the CCPP benchmark

Off-line On-line Total Iterations

New alg. 4.9 3.0 7.9 79
Old alg. 13.2 23.9 37.2 75

4
5
6
7
8

p
[M

P
a]

New algorithm

Old algorithm

0
50

100
150
200
250

σ
[M

P
a]

0 1000 2000 3000 4000
t [s]

0.2
0.4
0.6
0.8
1.0

u
[1

]

Figure 3: Comparison of the old and new algorithm
for optimal start-up of a CCPP

In this case we clearly see the benefits of con-
structing AD graphs for the entire NLP problem us-
ing CasADi for large-scale problems, which is what
allows for the exceptionally quick NLP on-line solu-
tion. Once again the algorithms find the same solution.

7 Conclusions

We have presented and implemented an optimization
algorithm based on existing theory for direct collo-
cation. The algorithm has been compared to an old
and similar algorithm in JModelica.org. The solutions
found by the two algorithms have shown to be as iden-
tical as can be expected, that is, up to IPOPT toler-
ances.

The overall performance of the new algorithm com-
pared to the old algorithm, in terms of speed, is clearly
superior, especially for large-scale problems. In terms
of being fully-featured, there are still a few important
features missing for the new algorithm. CasADi com-
bined with Python is however very flexible, so adding
new features is often straightforward, which is not the
case for the old algorithm implemented in C.

Future work includes adding additional discretiza-
tion schemes, adding support for multi-phase prob-
lems and allowing element lengths to be free in order
to maximize accuracy. A related topic is the further
development of Optimica, to support additional prob-
lem formulations.

References

[1] L. T. Biegler, Nonlinear Programming: Con-
cepts, Algorithms, and Applications to Chemical
Processes. MOS-SIAM Series on Optimization,
Mathematical Optimization Society and the So-
ciety for Industrial and Applied Mathematics,
2010.

[2] T. Binder, L. Blank, H. Bock, R. Bulirsch,
W. Dahmen, M. Diehl, T. Kronseder, W. Mar-
quardt, J. Schlöder, and O. Stryk, “Introduc-
tion to model based optimization of chemical
processes on moving horizons,” in Online Op-
timization of Large Scale Systems: State of the
Art (M. Grötschel, S. Krumke, and J. Rambau,
eds.), pp. 295–340, Springer, 2001.

[3] J. Åkesson, K.-E. Årzén, M. Gäfvert,
T. Bergdahl, and H. Tummescheit, “Mod-
eling and optimization with Optimica and
JModelica.org—languages and tools for solv-
ing large-scale dynamic optimization problem,”
Computers and Chemical Engineering, vol. 34,
pp. 1737–1749, Nov. 2010.

[4] J. Åkesson, “Optimica—an extension of Mod-
elica supporting dynamic optimization,” in In

6th International Modelica Conference 2008,
Modelica Association, Mar. 2008.

[5] J. Andersson, J. Åkesson, F. Casella, and
M. Diehl, “Integration of CasADi and JMod-
elica.org,” in 8th International Modelica Con-
ference, Mar. 2011.

[6] F. Magnusson, “Collocation methods in JModel-
ica.org,” Master’s Thesis ISRN LUTFD2/TFRT-
-5892--SE, Feb. 2012.

[7] J. T. Betts, Practical Methods for Optimal Con-
trol and Estimation using Nonlinear Program-
ming. SIAM’s Advances in Design and Control,
Society for Industrial and Applied Mathematics,
2nd ed., 2010.

[8] E. Hairer and G. Wanner, Solving Ordinary
Differential Equations II: Stiff and differential-
algebraic problems. Springer series in compu-
tational mathematics, Springer-Verlag, 2nd ed.,
1996.

[9] J. Andersson, J. Åkesson, and M. Diehl,
“CasADi – A symbolic package for automatic
differentiation and optimal control,” in Re-
cent Advances in Algorithmic Differentiation
(S. Forth, P. Hovland, E. Phipps, J. Utke, and
A. Walther, eds.), Lecture Notes in Compu-
tational Science and Engineering, (Berlin),
Springer, 2012.

[10] A. Wächter and L. T. Biegler, “On the imple-
mentation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear
programming,” Mathematical Programming,
vol. 106, no. 1, pp. 25–57, 2006.

[11] R. Parrotto, J. Åkesson, and F. Casella, “An
XML representation of DAE systems obtained
from continuous-time Modelica models,” in
3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and
Tools, (Oslo, Norway), pp. 91–98, Oct. 3 2010.

[12] G. A. Hicks and W. H. Ray, “Approximation
methods for optimal control synthesis,” The
Canadian Journal of Chemical Engineering,
vol. 49, no. 4, pp. 522–528, 1971.

[13] F. Casella, F. Donida, and J. Åkesson, “Object-
oriented modeling and optimal control: A case
study in power plant start-up,” in 18th IFAC
World Congress, (Milano, Italy), Aug. 2011.

	Introduction
	Dynamic optimization
	Collocation methods
	Collocation polynomials
	Transcription of the dynamic optimization problem

	Tools
	CasADi
	JModelica.org
	The JModelica.org platform
	The collocation algorithm toolchain

	Implementation extensions
	Benchmarks
	Benchmark setting
	Continuously stirred tank reactor
	Combined cycle power plant

	Conclusions

