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Fracture Mechanics of Coated Materials

P. Stahle
Luled University of Technology, division of Solid Mechanics
SE-971 87 Lule4, Sweden; Phone: +46 (0)920 72188,
Fax: +46 (0)920 91047, E-mail: pers@mt.luth.se

1 Basic Equations in Continuum Mechanics

Field equations govern the behavior of solids. In this section the necessary equations are given
for Cartesian coordinates, x;. In the following indices i, j, k... assume the values 1,2 and 3. The
summation convention is used whenever two equal indices appear in a term.

Boundary tractions T; are related to the stress tensor G via Cauchy’s formula

Ti =V hy ij - )
T
where v; is the outward normal to the surface of the body v
(see Fig. 1). Here only static cases are considered. Thus,
equilibrium is required,
05, =0 . ¥)) Fig. | Traction T and

outward normal v

The strain tensor &; with six components is derived from three displacement
components, u;. Because of this, all six components cannot be independent. To ensure the
dependence between the strain components either equations of compatibility may be used or,
as here, a definition of strain based on displacements is used. Strain is assumed to be small and
is defined as follows
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g5 =3(uij+uj;) . 3)
Finally a constitutive relation between stress and strain is needed,

0ij =Ciju€u . @
where Cj;q may be a function of strain, time derivatives of strain, temperature, etc. For

isotropic linear elastic materials Cy only contain two independent material parameters. One

selection is Lamés’ constants G (shear modulus) and A,

Cijkl-=2G8ik8jl +l8ij?>k| )
where
E Ev
G= d A=——" . 6
21+ ) o (1+ V)1 - 2v) ©

Here E is Young’s modulus and v is Poisson’s ratio.

2 Boundary Conditions Near Crack-tips

It is convenient to separate general solutions into symmetric antisymmetric and antiplane

parts. Plane symmetric deformation, so called mode 1 is characterized by

uy (X, X2)=ug(xy,~x3),

™
U (X)X ) =~y (xy,-X,;) “ =~

(see Fig. 2a). Plane antisymmetric deformation, mode II, '

is characterized by n

up (X, X2)=—uy(x1,—Xx2), ®) Fig. 2a Mode |
Uy (Xy, Xp) =u,(Xy,-X,)
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Fig. 2b Mode I1 Fig. 2c Mode I1I

shown in Fig. 2b. Finally antiplane deformation, mode III is an out-of-plane displacement

case, characterized by

uy=u, =0
1 2 ’ ©)
U3 (X, Xp)=—u;(x;,—x,)
(see Fig. 2c). The plane cases are either plane stress or plane strain cases.
An analytical solution for the stress and strain field at a crack-tip in a linear elastic body
was given by the Kolosov (1909) and Inglis (1913). The near-tip solution for stresses and

displacements is as follows:

I:l I I:U I I:lll m
v ‘\l 2nr 4 ( ) ‘\l 2nr 4 ( ) ‘\‘ 2nr ' ( ) ( )

1+ v)Ky I (1+ v)Ky I
[ =242 . (0 +——\/2 . (0
R ;) 4nE mrg; ©)

, an
4 (VK J2m ¢ (o)
4nE i

112 ,0=tan"! (%/x1), K;, Ky and Kyy; are the stress intensity factors and

where r= (xl2 + x%)
fj and g; are known functions of 8. The solution represents the dominating term in a series
expansion around the crack-tip, cf. Williams [1]. The complete solution, e.g., for mode I may
be given as,

1+k

KI k)
O =——1f;; (0)+ ox’lr 2 . 12
= ij® z (12)
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where ai(jk) are known angular functions.

3. Autonomy and Crack-tip Modeling

Suitable scaling is obtained by introducing R as a geometry parameter such as ligament width,
crack length, etc., and the parameter r,, which represents the size of a non-linear region at the

crack-tip. This allow us to do the following separation of (12)

k~1 l+k

-1/2 ke EY
0ij/oo=(2mr/ry)  £5O)+ T ok @/R)Z + X ol c/rp) 2,33
k=12,. k=1,2,.
where g, is the yield stress. The extent of the non- K 1k
linear region r, scale with (Ky/ap)?. i e T @3 2 e ?

At small scale yielding there is a circular
region A (see Fig. 3) around the crack-tip in which
the stress field closely coincides with the field

given by the singular stress terms (r”, 72, etc.) in

(13). In an annular region B (r 2 Rg) only the
square-root singular stress term and non-singular

terms are significant. Thus, the non-linear near-tip

field can be determined by studying a circular disc

dak
. ) . e Oy =k £,0)+ X Oy r 2
with the radius R using boundary conditions given i = f2nr T ® k}_i 2 d

Fig. 3 The state inside A is
controlled by K.

by K. The conclusion is that K; completely
describes the solution in region A and, thus, also
the state of the fracture process region at the crack-
tip.

The square-root singular term together with the non-singular stress terms (r'?, r'2 etc.)
are depending on boundary conditions but the only term communicating information to the
non-linear region is the square-root singular term defined by K. The non-singular terms of
(13) given on the boundary of the body only contribute to the stress state outside region A.

According to the principle of superposition all non singular terms may be removed or changed

without effecting the state of the non-linear region A including the fracture process region. The
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non-linear region is said to be autonomous and governed by a single parameter, e.g., K, [2, 3].
At linear fracture mechanics the state of the fracture process region, in the sense of growth,
growth rate, closure, etc. is controlled by K;. Fracture mechanical testing is used to corrclate
K; with the different states of the process region, e.g., initiation of crack growth, K,
threshold for fatigue crack growth, Ky, etc.

In cases where Rg extends to the remote boundary or A cease to exist autonomy may be
based K; and one or more second order terms oy, 0.,3,.. or on parameters derived for elastic
plastic solutions, e.g., J or J and Q or other yet unknown parameters.

A theory may also be based on studies of micromechanical studies of fracture processes.

4 Engineering Linear Fracture Mechanics

The practical application of linear elastic fracture mechanics (LEFM) is the transfer of results
between tests and applications. The foundation is the K; governed autonomy of the non-linear
region. The limits for LEFM were established by Brown and Shrawley in an ASTM

convention [4]. They formulated the following requirements

2
. b[K_] , i
0.0

where t, a and b are thickness crack length and ligament width respectively, K, is the fracture
toughness.
Assume that a structure is subjected to a load P, e.g., as defined in Fig. 4. With a given

geometry the stress intensity factor, K;, may be determined as a function of P,
Ki=K{(P) . (15)

Fracture mechanical testing on a small test specimen (see Fig. 5a), suitable for a laboratory

experiment, provide, e.g., crack length, a, as a function of K,

a=a(K,) , (16)
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as suggested in Fig. 5b. By

combining (15) and (16) one —— K;(P) —
obtains P / —
——— / ——

a=a(P) . a7 -—

Fig. 4. A crack in engineering structure will be

judged on the basis of a lab test

a) b)

KI
g T KE)_ A~

[

a

Fig. 5. Fracture mechanical testing may be performed on a small test
specimen; a) test specimen and b) test result

5J - A Path Independent Integral

Consider a linear elastic body in equilibrium (2). Let us use Gauss’ theorem on the area

integral defined for a regular region with the boundary I'.

Ix= .[Gij,jui,kdv= —[o ju iJde+.[ (Ojuik)jdv=
_I"ijeij,kdv"’J (c ijui,k )J dv

Assume that there exists a strain energy function, W, defined as follows

W= _[cijdsfj

13

(19)
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Thus,
W,k = Oj;€ij k (20)
which gives r
I= -] WidV+ [ oy, 1) dV @ Fig. 6. A loop T" encom-
= {WdeS + { iU Y ds passing a regular region
. ] Fre
where the last integral is taken over the path T
According to (2) i
Ik=0 (22)
which gives Fig. 7 A regular region in
the neighborhood of a
crack, encompassed by the
§(Wvy —oju;v;)dS=0 23) path Ty, Ts, Ty and Ts,.

Here a path independent and vanishing integral is obtained. The integral is path
independent under the condition that the material contained by the contour I"is elastic
and regular. The contour in Fig. 6 may be reshaped to the contour in Fig. 7 without
violating these conditions. Integration along the crack surfaces (parts I'y; and I';)-does

not contribute to the integral. Thus,
Ix Trem )= Tk (Ttip ) =Ix (-Ttip ) (24

By changing the integration direction for contour I, as is done after the last equality in (24),
it becomes obvious that any integral taken along a contour from the lower crack surface to the
upper crack surface anti clock-wise around the crack-tip, give the same value. The J integral is

defined by specializing tok =1

JT) = Wdx; - [o5Vju;,dS , 25)
r r
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where I is a path from the lower crack surface to the upper crack surface, €.g., I'em or I in
Fig. 7 (cf. Rice [5]). By shrinking the contour into the vicinity of the crack-tip an approximate

steady state is obtained

dui 9w 26)
da  ox

The first integral in (25) I Wdx, then represents

the material bound strain energy passing over a

contour T, assumed to be fixed relative to an Fig. 8 Steady-state in the
near-tip region

advancing crack-tip. The second integral in (25)

jcijv ju;,148= jTi (Qu; /0a) dS (cf. (1) and (26)), represents the work done by tractions T;

acting on the contour during a unit length of crack growth (see Fig. 8). Since the integration

path T may be shrunk onto the crack-tip J represents the work release rate at the crack-tip.

Example: Consider a substrate with

an applied thin film according to Fig.

hag?

9. The film is subjected to

appreciable residual stress. We wish

to calculate the stress intensity factor

for a crack growing parailel with and
below the interface at a distance that Fig. 9 Integration paths near a steady state
is small compared to the film crack, growing below a bimaterial surface
thickness, h, from the surface of the
structure. The analysis can be made for a crack at an arbitrary distance from the free surface in
or below the film without difficulties but the calculations will be somewhat lengthier.

Due to path independence J(Tyg) = J(I's) = J(T5)+ T+ 53+ ). The integral J(Tp) =
J(T AT+l p+) = 0, while it is defined for a closed path in the film. Tractions, T; = o; v
and displacement derivatives u;; are continuos across the bimaterial interface. It is assumed
that there is very little in-plane residual stress in the flaking film and part of substrate far
behind the crack-tip. The out-of-plane stress remain due to assumed plane strain conditions.

By making the contours for J(T;) and J(I'y) very large, only J(T's1), J(T') and J(T'3) become

non-zero.
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h
J(Te) =)+ X(Tr3)= [(1-v) 62 /Edxy + [Tidu; /dxidx;  @7)
0 I'ps
J(Ts)=— [Tjou; /oxdx; (28)
l‘sl

JTe)=0 = J(Is)=30resresh=1(1-V)ofesh/E 29
If the crack is assumed to follow a pure mode I path one obtains

) =ITip) =(= VK> /E = K| =0 o5 |——
Is)=X tlp) ( ) I I res 21+ v) 30

6 Cracks Perpendicular to a Bimaterial Interface

It can be shown that only two material parameters need to be considered for plane bimaterial

problems. One choice is Dunders’ parameters [6] defined as follows

a=Gl(K2+1)—G2(K1 +1)
Gl(K2+1)+G2(Kl +1)

Gn

_Gi(k3 -1)-Gy(x; —1)
G (K +1)+G,(x; +1)

) (32)

where x; =3 - 4v; for plane strain and ;= (3 - v;)/(1 + ;) for plane stress

6.1 Stationary elastic crack
The solution for a crack with its crack plane perpendicular to and the tip at the interface (see
Fig. 10) was given by Zak and Williams [7]:

-A
— | &i(® 33)
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where A is determined from the generic equation

2
A BB)(I A) +<1x :2}_0 (34)

sin(mA){cos(mA )~
The distance r from the crack-tip is made non-

dimensional by using the material parameters, K. 4
and the yield stress, G,, q is a load parameter and

g; are known angular functions. Figure 11 shows A <
versus ¢ for a few different B. One may note for o

> 0 that there is very little influence of B on A.

Fig. 10 Crack terminating perpen-
dicular to a bimaterial interface

08
D6
0.4
0.2
0 1 1 1 J
-1 05 0 0.5 1
o
Fig. 11 The exponent A as a function Fig. 12 A crack growing from a
of the mismatch parameter o bimaterial interface

6.2 Growing elastic crack

Elastic fracture mechanics fail to explain how a crack can penetrate a bimaterial interface from
a weaker to a stiffer material. Infinite critical loads are predicted which of course is
contradicted by reality. To understand this, a case where the crack has grown a distance a
from the interface (see Fig. 12) is considered. The crack-tip is, immediately after it has left the

interface, embedded in a homogeneous material. Thus, close to the crack-tip a square-root
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singular stress field is developed. The remote 15[

field (33), governed by the load parameter q, is
A 0 ref [8]

X 2 x

supposed not to be effected by the

X x x e x X% x

1
disturbance introduced by a short extension of 3

the crack. Linear elasticity implies a linear

i osl a <0, ref. [9]
relation between remote stresses and near tip ’
stresses. Thus, for dimensional reasons q and
L 1 L 1 1 L L
K must be related according to %0 075 05 025 0 025 05 o075
o
Fig. 13 The K scaling parameter
£ as a function of o for B = o /4.
2 -y 2 —A+1/2
1/ 2| ao 1/2| ac
K; = £ q0,(2n2) (—2] = & qKj(2m) [—2] : (35)
K K;
Ic Ic

where £ = £ (a, B) is an undetermined non-dimensional constant of proportionality,
depending on the material mismatch properties only. Thus, (35) describes the load transfer to
the tip for different elastic mismatches. In Fig. 13 the o-dependence of € obtained from a
finite element analysis [8] is shown. Schmauder and Miiller {9] analyzed a crack approaching
an interface (a < 0) using Erdogan’s integral equation technique. Their results are included in
Fig. 13. The behavior for a > 0 as compared with that for a <0 is surprisingly different.

For plastic yielding at a small scale compared with the crack advance a, it may be
assumed that crack growth occurs when K; =K, i.e. q.= (1/&5:)(.«;3,/ I(;"c)}‘_l 2
Equation (35) explicitly shows that as the crack
approach an interface to a weaker material, i.e., if i Ki=Kj¢

. q 172
A > 1/2, g, vanishes and q, becomes unbounded as

the crack approach an interface to a stiffer

material, i.e., for A < 1/2. This is sketched in Fig. A=1/2
14 where the critical load, q., is plotted versus the A<l Interface
position, a, of the crack-tip.

The result is found under two assumptions, a -
1) that the K;-controlled autonomy prevails and Fig. 14 Critical load . as a

function of the crack length a
2) that the crack follows a straight and
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perpendicular path to the interface. In fact as a crack approach an interface to a stiffer material
for which A < 172, either of two things may happen: 1) The non-linear region at the crack-tip
may become of the size of the distance left to the interface. Thus, the K; controlled autonomy
is no longer guaranteed. The result can be that the crack grows across the interface under the
control of another load parameter than K. This is explained in section 6.3 and 6.4. 2) The
crack may become path unstable. Thus, a slight deviation from the straight path causes a
redistribution of the near-tip stress state that promotes an increased deviation. examples of

this is examined in section 9.

6.3 Stationary elastic-plastic crack

Assume that a crack is terming perpendicularly at a bimaterial interface where one or both
materials are elastic-plastic. The film contains a crack and has the yield stress 1,. The
substrate has the yield stress yt,. Stress distributions for a broad range of elastic moduli and
yield strength mismatches may be constructed using slip-line solutions [10, 11]. Fig. 15 shows
the slip-line solutions for two different mismatches in yield stress.

The resulting stresses can be used to understand the effect of mechanical properties
mismatch on the competition between crack deflection into the interface and crack penetration
into the base material. Small defects, with depths smaller than the film thickness, distributed
at the surface of the substrate, are subjected to stresses that may be computed from the slip-
line fields. A yielded film such as the one in Fig. 15b induces a high stress (about 51,) parallel
with the interface on the substrate side [10]. Driven by the stress the small defects may grow

and ultimately the substrate fractures. A detailed discussion of this can be found in [10].

y
Interfage Y Interface
) N ~
Crack Crack tip X Crack Crack tip x

Fig. 15 Near-tip slip line fields in film and substrate. a) y> 1, b) y =
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6.4 Growing elastic-plastic crack
To treat the elastic plastic generalization of the problem defined in Fig. 12 one have to focus
on the stress and strain field that develops inside the plastic region. Delfin et al. [8] observed
that the crack opening displacement at the initial stage of crack growth is reversed as
compared to what would be expected from a K;-based prediction (cf. Fig. 17). Thus, a crack
growing from an interface into a weaker material at a constant remote load will experience an
increasing load at the crack-tip. This crack is likely to be unstable as it is growing. The
opposite happens as a crack grows into a stiffer material. Here one would expect the crack to
be unstable if K;-control would be at hand, while a constant remote load lead to increasing K;
in the elastic case. However, calculations of the near-tip plastic field show that the crack-tip
opening displacement is decreasing suggesting that there, quite opposed to expectations for an
elastic case, will be an initial phase of stable crack growth. :

The asymptotic near-tip field for a crack growing in a homogeneous elastic perfectly-
plastic solid under small scale yielding conditions has been derived by Rice and Sorensen [12]
and Drugan, et al. [13]. The separation of the crack surfaces, close to the crack-tip, is of the

form

5=Ad g% rl.{fg} . (36)
G, da E; r

where ] is the J-integral, e is the natural logarithm base,

(1-v3)
R= EZZJ and J=—2 K2 (37)
oL E;

where 0, is the yield stress in the initially uncracked material. The parameters A, B and s have
been numerically estimated by several investigators. A suitable choice could be A, B and s,
equal to 0.6, 5.3 and 0.27 respectively.

Fig. 17 a and b is showing the crack opening displacements and height of plastic zone
versus extent of crack growth for o = -0.8, -0.4, 0, 0.4 and 0.8 at a small distance from the
crack-tip[8]. The results provide a possibility to predict the toughness of materials subjected
to fracture induced by a cracked film.

=T

=

T

Sl

TAa s R
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a = -0.4

)
[} 0,5 1 1.5

afr 0 05 1 1.5

Fig. 16 a) Height of the plastic zone over the crack plane; b) Crack-tip
opening displacements. The displacements & are measured at 0.05r*. The
scaling length parameter r* = (K;/ 0,,)°

7 Crack in the Interface Between two Dissimilar Materials

The solution for a crack situated in the plane between
two dissimilar materials is given by (33). However, here
A is given by (cf. Shih [14])

~ie (38)

[N Y =

where

_1,.|1-B
&= ln(1+B] (9 Fig. 17. Acrack ina
bimaterial interface

The material parameter € is for realistic material combinations very small and usually below
0.1, e.g., for Si0; on Al;03 £ =0.075. The stress ahead of the crack-tip (8 = 0) becomes

op+iop=1 (o";z+ io}) )(1+ ie)(L/r) 27 (40)

where 65, and oY are stresses at a large distance from the crack. Because of the oscillating
nature of the stresses one may compute the distance to the position where the normal stress,

Gy, first vanish as the crack-tip is approached. By using the fact that € is small one obtains a

simplified expression from (40). For SiO; on AL,O;
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8x101°L for ¢35 =0

r= Lexp[— i arctan(6 3, / 612)] = . (4D

3x107°L for 655 =05

which in practice hardly can be observed in either of the two load cases. It is important to
realize that fracture process regions generally are very small, especially at brittle fracture but
the small distances found in (41) is even so likely to be within the fracture process regions.
Therefor the conditions in the fracture process region are expected to be effected by the
oscillatory character of the near-tip ﬁéld.' A strong dependence on fracture toughness of mode
mixity G13/05 has been observed in experiments [15]. Micro mechanical studies of mixed

mode fracture of interfaces have been performed by Sun et al. [16] and Wang and Stahle [17].

8 Crack Path Stability

A commonly made assumption in crack
y P Crack Entrance

- . Polycarbonate
growth analysis is that the crack remain .y

in its original plane. In this section the
path of an edge crack in a compliant
elastic layer is considered. The plane of
the initially straight crack form an Crack Exit

angle, 8, to the free surface of the

. Steel
layer. The load is a force couple Fig. 18. An model experiment showing
applied to open the crack mouth path unstable crack growth.

parallel to the interface as shown in

Fig. 18. The growing crack is assumed to follow a path along which the mode II stress
intensity factor vanishes. In [18] cracks in an elastic layer on two different substrates was
studied. The boundary element method (BEM) was used for calculation of growing cracks.
Figs. 19 a and b show the resulting crack paths for a rigid and an inextendable flexible substrate
respectively. With inextendable flexible is meant that displacement parallel with the edge

bonded to the substrate and tractions normal to the edge vanish.
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The crack path leading straight and perpendicular to the bimaterial interface is unstable
for rigid substrates. For an inextendable flexible substrate an unstable path parallel with the
sides of an infinite layer is identified. Cracks with a small inclination to the surface return to
this surface irrespective of the boundary conditions at the bimaterial interface. Cracks with a
large inclination also return to the surface for rigid substrates but approach the bimaterial

interface for

inextendable flexible (i} }
Steady state depth {17]
substrate. The results 25 T _
are compared with
. 051 y
experimental results !
] 3
and discussed in view -0.75 i
N 3
of a characterization of -1 . y : . .
. 0 05 1 15 2
stable crack paths in EN
[18]. Fig. 19 a. Crack paths in a film on a rigid substrate. 8, is the angle

between the initial crack and the traction free surface

0 05 xy/h 1 1.5
Fig. 19 b. Same as Fig. 19a for a rigid substrate.

9 Cracks Parallel with a Bimaterial Interfaces

A frequent observation is that a crack deflects following a curved path as described in the
previous section. After a short distance the crack may run almost parallel with the interface. A
steady state path for which Ky/K; = 0 can often be found. BEM and FEM are excellent tools
for examination of cracks growing along steady state paths. However here a simple beam

model is described. This model give fairly accurate results and requires much less effort.
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9.1 Simplified analysis of steady-state crack depth
A crack may either find a steady-state path
) M;=Ph22
parallel to the interface, approach the interface ‘6:
P

or return to the free surface. Wavy crack paths

that exceptionally have been observed are not by .
considered here. In the case when the crack M, _ l
return to the surface a fragment is formed. Fig. <‘—) n

4 shows the geometry for the simplified F i
calculations. The expression giving M; is Fig. 20 Geometry for the simplified

. . I ions fi - .
somewhat lengthy but is easily calculated from calculations for steady-state cracks

simple beam theory.

A symmetry for stresses at the base of the beams A and B is sought by a variation of
the distance Ahy, between the stress free surface of the layer and the crack plane [14].
Symmetry paths (Ky/K;=0) can either be stable with d(Ky;/K;)/dA <0 or unstable with
d(Ky/K;)/dA >0. Fig. 21 shows a map of possible paths for different combinations of A and
hi/h,.

For thin beams hy/h,> 13.6 an unstable path was found at A= A,. This means that any
straight crack at A <A, would form a kink in a direction towards the surface of the layer (A
=0). Reversed at A > A, a kink would be formed in a direction towards the interface (A = 1).

For the interval 6.9 <h,/h; < 13.6 a stable path is found at A = A, and an unstable path
at A=A, < A,. This means that a straight

crack at A < A, would approach the

layer surface (A = 0), a straight crack in !
1> A > A, would approach the steady- 08
state path at A = A,.

In the region hy/h; < 6.9 any 10'6
straight path in the layer would result in 04
a kink directed towards the stress free
surface of the layer. This suggests that 02 Cracks approach

the layer surface at A=0

all cracks will deflect and turn towards 0
the layer surface (A = 0). Other loads 5 ,,1},?2 15 2

can be studied with the same method. Fig. 21 Stable and unstable paths for steady-
state cracks for different height ratios h1/h2,

These paths are of interest since the [19]
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resistance to delamination does not involve the strength of the interface whereas the crack
grow in a homogeneous material, i.e. either the film or the substrate,
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