
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

IEEE Std. P1687.1: translator and protocol

Larsson, Erik; Murali, Prathamesh; Kumisbek, Gani

Published in:
International Test Conference

DOI:
10.1109/ITC44170.2019.9000135

2019

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Larsson, E., Murali, P., & Kumisbek, G. (2019). IEEE Std. P1687.1: translator and protocol. In International Test
Conference IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ITC44170.2019.9000135

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ITC44170.2019.9000135
https://portal.research.lu.se/en/publications/9253498a-b95b-4366-9e37-a5a0282e0bd9
https://doi.org/10.1109/ITC44170.2019.9000135

IEEE Std. P1687.1: Translator and Protocol

Erik Larsson, Prathamesh Murali, and Gani Kumisbek
Lund University
Lund, Sweden

Email: erik.larsson@eit.lth.se

Abstract—The IEEE Std. P1687.1 working group is currently
exploring alternatives to IEEE Std. 1149.1 test access port (TAP)
as the interface between the boundary of integrated circuits (ICs)
and IEEE Std. 1687 networks. In this paper, we investigate the use
of universal asynchronous receiver-transmitter (UART) to access
IEEE Std. 1687 networks. We have developed a protocol to describe
the information transported over UART and a hardware compo-
nent to translate (retarget) information between UART and IEEE
Std. 1687. The objective is to minimize the amount of information
transported over UART and the area of the hardware component
while maintaining the flexibility to access an arbitrary combination
of instrument in the IEEE Std. 1687 network. We have developed
software for the protocol translation, implemented the hardware
component and IEEE Std. 1687 networks of different sizes in
an field-programmable gate array (FPGA). For comparison, we
developed a number of alternatives, all implemented on FPGA.
The experimental results show that proposed scheme gives low
overhead in terms of transported information (data) and low area
of the hardware component.

Keywords—IEEE Std. P1687.1, IEEE Std. 1687, IEEE Std.
1149.1, UART, embedded instruments

I. INTRODUCTION

The constant semiconductor technology development en-
ables integrated circuits (ICs) with smaller, faster and more
transistors. The development gives advantages, such as the
possibility to implement more functionality to ever-increasing
performance. There are, however, growing challenges to avoid
malfunctioning. Smaller and faster transistors lead to tighter
margins, both in device sizes and timing, which in combination
with higher transistor count increase the need of testing, tuning,
configuration, and so on. Embedded (on-chip) instruments are
increasingly used at different stages through the life cycle
of ICs: from prototype debug, test and validation to in-field
monitoring and test. The number of instruments in modern ICs
increases and can be in order of 1000 [1] [2].

IEEE Std. 1687 [3] was developed to offer flexible and scal-
able access to embedded instruments. The flexibility to access
arbitrary instruments is achieved by dynamically configuring the
active scan-path so that only desired instruments are included,
for example by means of segment insertion bits (SIBs). The
standard includes two description languages, instrument con-
nectivity language (ICL) and procedural description language
(PDL). ICL describes how instruments are interconnected. Fig-
ure 1 shows the schematic equivalent of the network’s ICL
consisting of three instruments, three scan-chains and three
SIBs. PDL describes how to operate on instruments. Figure 1
shows an example of PDL with one iApply group to write data
to instrument i1 and read data from instrument i31.

Not included in IEEE Std. 1687 is support to translate
(retarget) PDL. For the example in Figure 1, the detailed PDL is

1iGetReadData (iGet) reads information from an instrument

Fig. 1. Illustration of today’s and proposed solution to an IEEE Std. 1687
network

first translated by a Electronic Design Automation (EDA) tool
or an embedded controller, from a text format to shift data as
specified by IEEE Std. 1149.1. Second, the IEEE Std. 1149.1 [4]
test access port (TAP) handles the retargeting to and from the
IEEE Std. 1687 network and at scan registers data is retargeted
between serial and parallell format to access instruments.

The IEEE Std. 1149.1 TAP is the primary interface be-
tween IC’s boundary (pins) and an IEEE Std. 1687 network,
see Figure 1. However, the IEEE Std. P1687.1 [5] working
group is currently exploring the use of other interfaces, like
serial peripheral interface (SPI), inter-integrated circuit (I2C),
universal serial bus (USB), and advanced microcontroller bus
architecture (AMBA). We have in this paper explored the use
of universal asynchronous receiver-transmitter (UART) to access
IEEE Std. 1687 networks. We have developed a protocol spec-
ifying data transported over UART and a hardware component
for the translation of data between UART and IEEE Std. 1687,
see Figure 1. Our hypothesis is that with a suitable protocol
specification and a small hardware component it is possible to
keep the amount of data transported over UART low, while
maintaining the flexibility to access arbitrary instruments in
IEEE Std. 1687 networks.

The paper is organized as follows. Related work is briefly
overviewed in Section II. An analysis of data overhead is in
Section III and based on the analysis, we propose a hardware
translator and a protocol, described in Section IV and Section

Paper 2.3
978-1-7281-4823-6/19/$31.00 c©2019 European Union

INTERNATIONAL TEST CONFERENCE 1

V, respectively. The hardware translator and the protocol are for
the working example in Figure 1 shown in detail in Section VI.
We have implemented proposed scheme, as well as a number
of alternatives on field-programmable gate arrays (FPGAs) to
compare the overhead in terms of transported information over
UART and the needed area. We compared the alternatives
using three IEEE Std. 1687 networks of size 50, 100, and 150
instruments, also implemented on FPGA. The results show that
proposed scheme gives low overhead in terms of transported
information and low area of the hardware component, Section
VII. The paper is concluded in Section VIII.

II. RELATED WORK

Early in the process of developing IEEE Std. 1687, Rearick
et al. described problems, activities and instruments [6]. The
listed problems to be addressed by IEEE Std. 1687 included
power management, clock control, chip configuration, memory
test, scan test, logic built-in self-test (BIST), debug/diagnosis,
phase locked-loop (PLL) control, reduced pin count test, and
fault insertion. Activities benefiting from IEEE Std. 1687 in-
clude any on-chip circuit for test, debug, diagnosis, monitoring,
characterization, configuration, or functional use that can be
accessed by, configured from, or communicate with a TAP
controller. As examples of instruments Rearick et al. listed scan
chains, BIST engines, cyclic redundancy check (CRC) regis-
ters, packet counters, performance monitors, waveform analog
analog-to-digital converters (ADCs), remapping registers, trace
buffers, PLL controls, and power managers.

A key feature of IEEE Std. 1687 is dynamic configuration
of the active scan-path. However, dynamically re-configurable
scan-paths leads to a number of challenges. Zadegan et al.
analyzed the challenge of computing the access time [7] and the
need of design methods [8]. Dynamic configuration may require
a number of configuration steps to change from accessing one
set of instruments to accessing another set of instruments.
Baranowski et al. developed a method to limit the search space
in terms of number of configuration steps such that the limit is
high enough to include optimal solution but as low as possible
to speed-up the search [9]. Cantoro et al. proposed techniques
to test the IEEE Std. 1687 network [10]. Jutman et al. proposed
the first work with IEEE Std. 1687 for fault management [11].
To speed-up fault detection, the network was complemented
with an additional infrastructure. A similar infrastructure as
proposed by Jutman et al. [11] was used by Petersen et al.
[12]. Zadegan et al. proposed self-configuring SIBs to speed-up
fault localization [13].

Crouch et al. describe the need of making it possible to
access IEEE Std. 1687 through alternative ports, as SPI, I2C,
USB, AMBA, and others [14]. von Staudt and Spyronasios
describe an industrial case where I2C is used to interface IEEE
Std. 1687 [15].

III. ANALYSIS OF DATA OVERHEAD

In this section we analyze and classify the data (information)
transported to and from an IEEE Std. 1687 network. An IEEE
Std. 1687 network is operated using three operations, capture
(C), shift (S) and update (U), known as CSU-cycles. These
operations perform as follows:

• C: instrument data is captured in scan registers
• S: data is serially shifted through the active scan-path

• U: instruments are updated with data from scan regis-
ters

The C and U operations move data between scan-chains and
instruments. Each of these operations takes one clock cycle.
The S operation moves data in and out of the IEEE Std. 1687
network. The number of clock cycles needed for an S operation
depends on the length of the active scan-path.

We analyze the data moved in and out of an IEEE Std. 1687
network during an S operation. At each clock cycle, one bit of
data is shifted-in and one bit of data is shifted-out. For the
analysis we make use of the iApply group in Figure 1 where
the data 0b11111111 should be written to instrument i1 and
data from instrument i3 should be read:

iWrite i1 0b1111111;
iGet i3;
iApply;

The shortest active scan-path for the IEEE Std. 1687 network
in Figure 1 includes instruments i1 and i3 while instrument i2 is
excluded. The shortest active scan-path is achieved by activating
SIB1 and SIB3 while SIB2 is not activated. The length of this
scan-path becomes 19, given by the length of instruments i1
and i3, each 8 bits long, and by the fact that there are 3 SIBs
on the scan-path, each of length 1. Hence, the shift sequence
contains 19 (8+8+3) bits.

A shift sequence consists of the shift-in sequence and the
shift-out sequence. For the shift-in sequence, the 19 bits are as
follows; 8 bits are instrument data, 0b1111111, for instrument
i1, 8 bits of data must be shifted in because of the read operation
of instrument i3 (the instrument data must be pushed out), and
3 bits are needed for the SIBs. The shift-out sequence also
contains 19 bits, where 8 bits come from instrument i1 when
its current value is shifted out (pushed out), 8 bits come from
reading the content of instrument i3 and 3 bits come from the
SIBs. Hence, the total number of bits for the shift sequence is
38 (19+19). Out of these 38 bits, we observe that the 8 bits
written to instrument i1 and the 8 bits from reading instrument
i3 are useful data. All other bits are overhead bits. The overhead
bits are the 6 bits for the SIBs, which we call SIB overhead.
The rest of the overhead bits are due to the need of shifting out
data from instrument i1 to make it possible to shift in useful
data (write) and the need of shifting in data to instrument i3 to
get out the useful data (read). We denote this as shift overhead.

To generalise SIB and shift overhead, assume the IEEE Std.
1687 network in Figure 1 has N SIBs where SIB(i) controls if
instrument i is included in the active scan-path or not, such that
SIB(i) = 1 if instrument i is included in the active scan-path,
and 0 otherwise. The length of an instrument i is given by l(i).
As all SIBs are always on the active scan path, we find that:

SIB overhead = N × 2 (1)

The shift overhead depends on the number of instruments
included in the active scan path and the type of operation. All
instruments on the active scan path cause overhead, either due
to read or due to write. The shift overhead becomes:

shift overhead =
N∑
i=1

SIB(i)× l(i) (2)

Given the analysis of the overhead (Equations 1 and 2), we
propose a hardware translator and a data protocol aiming at
minimizing the SIB and shift overhead.

Paper 2.3 INTERNATIONAL TEST CONFERENCE 2

Fig. 2. SCR, ICR, and ILM content for the PDL and ICL in Figure 1 to
include instrument i1 and i3 in the active scan-path (SCR), perform a write to
instrument i1 and read to instrument i3 (ICR) and shift 8 bits (the length of
instruments i1 and i3 (ILM))

IV. HARDWARE TRANSLATOR

The proposed hardware component translates data between
UART and IEEE Std. 1687. Prior to detailing the proposed
hardware component, we briefly review a solution with IEEE
Std. 1149.1 TAP. The IEEE Std. 1149.1 TAP is based on a
finite state machine (FSM) to translate data between the four
IEEE Std. 1149.1 pins, that is test data in (TDI), test data out
(TDO), test mode select (TMS), and test clock (TCK), and the
eight IEEE Std. 1687 signals, that is TDI for scan-in (SI), TDO
for scan-out (SO), CaptureEn, Select, Reset, ShiftEn, UpdateEn,
and TCK, illustrated in Figure 1.

We assume that the UART circuitry ensures that data arrive
to the IC byte-per-byte, which is stored in an input buffer, and
that data to be sent from the IC over UART is stored in an
output buffer of size one byte. These buffers are implemented
as shift-registers controlled by our FSM. We assume that the
sender of UART data, which is the tester, embedded controller,
etc., sends data so that our FSM consumes data before new data
arrive. If the FSM has consumed all data and need more data,
the FSM stops until new UART data arrive. If the FSM has
filled the output buffer and needs to send more data, the FSM
stops until the output buffer is empty.

The FSM in the proposed hardware component is comple-
mented with a SIB control register (SCR), an instrument control
register (ICR), and an instrument length memory (ILM). These
components are detailed below.

A. SIB Control Register

The SIB control register (SCR) controls which instruments
to include in the active scan path. There is one bit per SIB to
determine if a particular SIB should be active (open) or not
(closed). In general, there are N SIBs, hence there are N bits
in the SCR, where a 1 at position i indicates that SIB i should
be included in the active scan-chain. For the example in Figure
1 when instruments i1 and i3 are in the active scan path, Figure
2 shows the content of the SCR. The SCR for each instrument
(SIB i) is programmed with the control command, detailed in
Section V. The SCR is cleared after the completion of an iApply
group.

B. Instrument Control Register

The basic and fundamental operations on instruments are
read and write. The instrument control register (ICR) determines
the type of operation to perform on a given instrument. In
general, there are N instruments, hence there are N bits in
the ICR. For a given instrument i where the operation is read
the bit is 0 while if the operation is write, the bit is 1. For the
example in Figure 1 where instrument i1 is performing a write
operation and instrument i3 performs a read, Figure 2 shows
in gray the content of the ICR. The ICR for each instrument is
programmed with the control command, detailed in Section V.
The ICR is cleared after the completion of an iApply group.

D Q

CLRSET

S

0

1

D Q

CLRSET

U

si

tsi fso
so

Fig. 3. Illustration of a SIB

C. Instrument Length Memory

The instrument length memory (ILM) keeps track of the
length in bits of each instrument. In general, there are N
instruments, which means there are N entries, one for each
instrument, indicating the length in bits of a given instrument.
For the example in Figure 1 the length of instrument i1 and
i3 are accessed, Figure 2 shows in gray the length of these
instruments. The content of the ILM is fixed at design time.

D. Finite State Machine

The FSM operates on one iApply group at a time, for
example the one in Figure 1. Assume that SCR and ICR are
programmed using control commands, detailed in Section V,
the FSM first defines the active scan-path by traversing the
SCR and shifting content to the SIBs of the IEEE Std. 1687
network. The data in the shift-out sequence is of no interest,
hence discarded.

Once the active scan-path is set, the FSM creates the
shift-in sequence and handles the shift out sequence. We will
for illustration purposes describe them separately. First we
explain the shift-in sequence, Algorithm 1 and then the shift-
out sequence, Algorithm 2. One important aspect is the order of
information to SIBs and instruments. In this paper, we assume
that a SIB is implemented as in Figure 3. Figure 3 shows that
the content of the SIB is shifted out (SO) before the instrument
data is shifted out. This means that for the shift-in sequence,
the SIB data for SIB i comes before eventual data to instrument
i. As SIBs are implemented prior to the hardware translator,
the hardware translator can be adjusting according to used SIB
implementation.

Common for Algorithms 1 and 2 are the following functions:

• SCR(i) returns the SCR content for instrument i. If
SCR(i) = 1, SIB i should be made active such that
instrument i is included in the active scan path, while
if SCR(i) = 0, SIB i is not active, meaning that
instrument i should not be included in the active scan
path.

• ICR(i) returns the ICR content for instrument i. If
ICR(i) = 0, instrument i is in read mode and if
ICR(i) = 1, instrument i is in write mode.

• ILM(i) gives the length in bits of instrument i.

Below we detail Algorithms 1 and 2.

1) Creating shift-in sequence: The input to Algorithm 1 is
UART data and the output is the shift-in sequence to the IEEE
Std. 1687 network, including control signals. For illustration
purpose, the sequence is captured in SHIFTIN , which is a
bit string of K bits, corresponding to the length of the active
scan part.

Paper 2.3 INTERNATIONAL TEST CONFERENCE 3

Algorithm 1 begins by line 1 where variable k, which keeps
track on current bit in the active scan path, is initiated to 0.
The FOR loop at line 2 iterates over the N SIBs. At line
3, k, current bit, is incremented, and at line 4, the bit to be
shifted in is the value of SIB i, which is received from SCR by
SCR(i). Hence, the content of SCR(i) is added to the shift in
SCANIN sequence. The following bits to shift in depends on
the value of SCR(i), line 5. If SCR(i) = 1, it means SIB i is
active and hence instrument i should be included in the active
scan path. The data that is shifted in to an instrument depends
on the type of operation: read or write. At line 6, ICR(i)
determines if the data for instrument i is read or write. If
ICR(i) = 0, the operation for instrument i is a read operation,
which means that dummy data is created by the FSM as the
interesting information is the output from instrument i. On the
other hand, if ICR(i) = 1, the operation for instrument i is
a write operation. In this case data from the UART register
is shifted in. The FOR loops at lines 7 and 11 are used to
ensure the correct amount of shifting, which is determined by
the length of instrument i. The length of instrument i is given
by ILM(i).

Algorithm 1: Creating shift− in sequence
Input: Data sent over UART; SCR(i)=1 if SIB i is

active, 0 otherwise; ICR(i)=0 if instrument at
SIB i is in read mode and 1 if instrument at
SIB i is in write mode; ILM(i) gives the
length in bits of instrument i;

Output: The shift-in sequence to a IEEE Std. 1687
network, for illustration captured in
SCANIN

1 k = 0
2 for i=N downto 1 do

/* Iterate over the N SIBs */
3 k = k + 1
4 SCANIN(k) = SCR(i)

/* SIB content given by SCR(i) */
5 if SCR(i) = 1 then

/* SIB i is active, which means
instrument i should be
included in active scan-path
*/

6 if ICR(i) = 0 then
/* Instr. i in read mode */

7 for j = 1 to ILM(i) do
/* ILM(i) dummy bits created

by FSM and shifted in */
8 k = k + 1
9 SCANIN(k) = 1

10 else
/* Instr. i in write mode */

11 for j = 1 to ILM(i) do
/* ILM(i) bits from UART

shifted in */
12 k = k + 1
13 SCANIN(k) = one bit from UART

2) Handling shift-out sequence: Algorithm 2 takes as input
the shift-out sequence, which appears bit-by-bit, from the active
scan path of the IEEE Std. 1687 network. The shift-out sequence

is for illustration purposes captured in SHIFTOUT , which is
a bit string with a length of K bits, corresponding to the length
of the active scan path. The output of Algorithm 2 is the data
that is to be transported from the IC over UART.

Algorithm 2 begins by line 1 where variable k, which keeps
track on current bit in the active scan path, is initiated to 0.
The FOR loop at line 2 iterates over the N SIBs. At line 3,
k, current bit, is incremented and the bit that is shifted out is
the value of SIB i. If the shifted out bit (SCANOUT (k)) is
equal to 1, the SIB is active and hence instrument i is included
in the scan path, line 4. By checking the content of ICR(i) the
FSM knows if the command is read or write. If ICR(i) = 0,
instrument i is in read mode. Hence, the content of instrument
i should be sent over UART. If ICR(i) = 1, instrument i is in
write mode. Hence, the content of instrument i can be discarded
as the output information is of no value. At lines 6 and 10,
the FOR loops are used to ensure correct amount of shifting,
which is determined by the length of instrument i. The length
of instrument i is given by ILM(i).

Algorithm 2: Handling shift− out sequence
Input: Shift out data from a IEEE Std. 1687 network,

for illustration captured in SCANOUT ;
ICR(i) is 0 if instrument at SIB i is in read
mode and 1 if instrument at SIB i is in write
mode; ILM(i) is the length of instrument i
connected to SIB i;

Output: The data to be transported over UART, which
for illustration is captured in UART

1 k = 0
2 for i=N downto 1 do

/* Iterate over the N SIBs */
3 k = k + 1
4 if SCANOUT (k) = 1 then

/* SIB=1 means an active
instrument */

5 if ICR(i) = 0 then
/* Instr. i in read mode */

6 for j = 1 to ILM(i) do
/* ILM(i) bits sent on UART

*/
7 k = k + 1
8 UART = SCANOUT (k)

9 else
/* Instr. i in write mode */

10 for j = 1 to ILM(i) do
/* Discard ILM(i) bits */

11 k = k + 1

V. DATA PROTOCOL

The protocol specifies the format of data (information)
transported over UART. The protocol consists of two parts;
data to the IC and data from the IC. For data to the IC, each
iApply group is translated into one or more control commands
followed by one or more data commands. The data sent from
the IC is in a raw format, byte by byte, including only useful
information as the FSM removes from the shift-out sequence
the SIB information and all overhead data. The details in the

Paper 2.3 INTERNATIONAL TEST CONFERENCE 4

raw format is extracted by software using information about the
ICL and currently used iApply group.

Below we detail the commands for control and data. The
control command defines the active scan-path and the type of
operation for each instrument, read or write. The active scan-
path is set by loading SCR and the type of operation is set by
loading ICR. A control command consists of two mandatory
bytes where the 16 bits are defined as follows:

• Bit 15 (bit 7 in the first byte) is used to distinguish if
the command is a control command or a data command,
0 for control and 1 for data.

• Bit 14 (bit 6 in the first byte) determines if the instru-
ment associated with the SIB will perform a read or a
write operation, 0 for read and 1 for write.

• The remaining 14 bits are used to specify the address
(number) to the SIB to be set active. The control
command enables an IEEE Std. 1687 network with 214

SIBs.

Below we show the control command for:
iWrite i1 0b11111111;, in Figure 1:

b15 = 0 - the command is a control command

b14 = 1 - the instrument should perform a write

b13 − b1 are 0 and b0 = 1 - address to SIB 1

A data command consists of two mandatory bytes and
a number of bytes with data. The two mandatory bytes are
specified as follows. Bit 15 (bit 7 in the first byte) distinguish
if the command is a control command or a data command.
The next 15 bits determines the number of bytes with data that
follows. The 15 bits enables that up to 215 bytes of data can be
transported with one data command. Below we show the data
command for iWrite i1 0b11111111;, in Figure 1:

b15 = 1 - the command is a data command

b14 − b1 are 0

b0 = 1 - there is one byte of data

The byte with data (”11111111”) is:

1 1 1 1 1 1 1 1

VI. EXAMPLE

In this section we illustrate the translator (described in
Section IV) and the protocol (described in Section V) using
the PDL and ICL of the IEEE Std. 1687 network in Figure 1.

The iApply group from the PDL description in Figure 4 is
retargeted into two control commands and one data command,
in total 7 bytes of information. The two control commands, byte
1 to 4 in Figure 4, set required values in SCR and ICR. The first
control command, byte 1 and 2 in Figure 4, makes SIB 1 active
and sets instrument i1 in write mode. The details are as follows.
Bit b7 = 0 in the first byte indicates that current byte and the
following byte form a control command. Bit b6 = 1 in the first
byte indicates that a write operation should be performed. The
following 14 bits, which holds the value 1, indicates that SIB 1
should be active so that instrument i1 is included in the active
scan-path. The next two bytes, byte 3 and 4 in Figure 4, are
also forming a control command, indicated by bit b7 = 0 in

Fig. 4. Retargeting the iApply group to proposed format for UART

byte 3. This control command has b6 = 0, which informs that
a read operation should be performed. The following 14 bits,
which holds the value 3 (0b11) informs that SIB 3 should be
active so that instrument i3 is included in the active scan-path.
The following 3 bytes, byte 5, 6, and 7 in Figure 4, forms a
data command as b7 = 1 in byte 5. The remaining 15 bits in
byte 5 and 6 are used to specify the number of bytes with data
that follows. In this example, the 15 bits specify the value 1,
meaning that one byte of data follows. The data in byte 7 is the
data that should be written to instrument i1.

Figure 5 illustrates the translation of UART data into shift-in
data. When a control command arrives, the hardware translator
automatically resets SCR and ICR. Control commands set SCR
and ICR as needed for the iApply group. In this example,
the SCRs corresponding to SIB 1 and SIB 3 are set to 1,
indicating that SIB 1 and SIB 3 should be active. The first
control command makes the hardware translator set the bit in
ICR corresponding to instrument i1 to 1 to indicate that a write
operation should be performed. The second control command
sets the bit in ICR corresponding to instrument i3 to 0, to
indicate that a read operation should be performed.

When the data command arrives, the hardware translator
begins operating the IEEE Std. 1687 network. First, the active
scan path is set by traversing SCR at the highest value, in
this example 3 (SCR(3)), and includes that bit in the shift-in
sequence. Next, SCR(2) is shifted in and finally SCR(1). The
bits shifted out are ignored (discarded). Second, the hardware
translator creates the shift-in sequence and handles the shift-
out sequence concurrently for the active scan path. We first
describe the shift-in sequence. The hardware translator begins
by checking the SCR at the highest value, in this example
3 (SCR(3)), and includes that bit in the shift-in sequence.
If SCR(3) = 1 the hardware translator checks the value of
ICR(3) to learn what type of operation to perform. In this
example a read operation should be performed, which means
data needs to be shifted in such that the content of instrument
i3 is shifted-out. This additional shift-in data is created by the
hardware translator. The hardware translator checks ILM(3) to
know how many cycles to shift. After required number of shifts
for instrument i3, the next bit to be shifted in is the value of

Paper 2.3 INTERNATIONAL TEST CONFERENCE 5

Fig. 5. The hardware translator forming the shift-in sequence from the
retargeted data in Figure 4

SCR(2) to SIB 2. As SCR(2) = 0, indicating that instrument
i2 is not in the active scan-path, the hardware translator shift-
in a 0 and directly start to focus on next bit in SCR, which
is SCR(1). SCR(1) = 1, which means instrument i1 should
be included in the active scan-path. The hardware translator
checks ICR(1) to learn what type of operation to perform.
As ICR(1) = 1 a write operation should be performed.
The hardware translator gets the length of instrument i1 from
ILM(1) and takes data from the UART buffer and adds it to the
shift-in sequence. Figure 6 shows the created shift-in sequence
and how its information will set the SIBs and the instruments.

The first bit that is shifted out corresponds to the content
of SIB 3, see Figure 7. This information bit is of no interest
so the hardware translator discards this bit. As the content of
SIB 3 = 1 the hardware translator understands that instrument
i3 is included in the active scan path. The hardware translator
knows the length of instrument i3 by checking ILM(3). The
hardware translator checks ICR(3) and finds that a read
operation has been performed on instrument i3. Hence, this is
useful information that should be sent back over UART. When
the translator completed the shift-out bits corresponding to the
length of instrument i3, the next shifted-out bit is the value
of SIB 2, this value is 0, which is discarded and informs the
translator that next shifted out value corresponds to the value
of SIB 1. SIB 1 is 1, so instrument i1 is active and by checking

Fig. 6. The shift-in sequence and the created active scan-path in the IEEE
Std. 1687 network

ICR(1) the translator knows that instrument i1 is in write mode,
which means that ILM(1) of shifted out bits can be discarded.
The data that the translator returns over UART is the data that
is read from instrument i1, the only useful information. At the
receiver side, the one that initiated the iApply group, knows that
the received data corresponds to reading from instrument i1.

VII. EXPERIMENTAL RESULTS

The objective of the experiment is to evaluate the overhead
of proposed scheme, that is the hardware translator (described
in Section IV) and the protocol (described in Section V). The
overhead is computed as described in Section VII-A and the
proposed scheme is compared against bit banging, proposed
scheme without on-chip handling of dummy data, proposed
scheme without ILM, and a naive approach, all outlined in
Section VII-B. The benchmarks in the experiments are detailed
in Section VII-C, the results are presented in Section VII-D and
the results are discussed in Section VII-E.

A. Overhead

Operating an IEEE Std. 1687 network results in overhead,
see Section III. We illustrate the overhead using the iApply
group that writes data to instrument i1 and reads data from
instrument i3, see Figure 4. The shift-in and the shift-out
sequences (Figures 4 and 5) result in:

• SIB overhead are bits to set SIBs

• Useful bits in the shift-in sequence are bits for writing
data to instrument i1

• Useful bits in the shift-out sequence are bits from
reading data from instrument i3

• Dummy bits in the shift-in sequence are bits needed to
push out data from instrument i3

• Dummy bits in the shift-out sequence are bits needed
to push out data from instrument i1

The proposed data and control commands aim at reducing
the overhead to operate IEEE Std. 1687 networks, but do
themselves generate overhead. We illustrate this overhead using
the iApply group in Figure 4. The two control commands, byte

Paper 2.3 INTERNATIONAL TEST CONFERENCE 6

Fig. 7. The extraction of useful data from a shift-out sequence from an IEEE
Std. 1687 network

1, 2, 3 and 4, generates control overhead. The data command
generates three bytes where the two mandatory bytes, byte 5
and 6, are data overhead. The third byte in the data command,
byte 7, contains useful data, to be written to instrument i1.
Note, these commands assume a hardware translator capable of
handling, creating and discarding, dummy overhead.

To estimate area overhead, we report the number of Xilinx
configurable logic blocks (CLBs), which constitutes the basic
FPGA cell.

B. Alternatives to proposed scheme

The alternatives we compare proposed scheme against are:

1) Bit banging: For bit banging, the received byte of data
is directly applied to the seven inputs at the IEEE Std. 1687
interface, TDI(SI), CaptureEn, ShiftEn, UpdateEn, Select, TCK
and Reset. The output from the IEEE Std. 1687 network,
TDO(SO), is placed in one byte and sent over UART. The
number of clock cycles for a CSU-cycle is one for C, one for U,
and the length of the active scan-path for S. We report one byte
of data is received and one byte of data is sent over UART per

TABLE I. AREA OVERHEAD IN CONFIGURABLE LOGIC BLOCKS (CBLS)

Approaches Instruments
50 100 150

IEEE Std. 1687 network 369 742 1118
Naive 45 45 45
No ILM 96 118 140
No Dummy 103 129 147
Proposed 100 123 144

clock cycle. In general, as TCK is sent over UART to control
the IEEE Std. 1687 network, there is a need to send two bytes
of data per clock cycle.

2) Without dummy data handling: In the proposed scheme,
the FSM creates shift-in (push out) data for instruments per-
forming a read operation and removes shift-out data for instru-
ments performing write operations as well as SIB content. We
have made an implementation where we excluded this feature.

3) Without ILM: In the proposed scheme, the ILM keeps
track on the length of each instrument. We have made an
implementation where we excluded this feature. To perform
experiments where the ILM is not present, the protocol and
the FSM are modified. The control command is extended from
two bytes to three bytes where the additional byte is used to
include the length of the instrument. The FSM is modified
such that instead of checking the ILM to get the length of an
instrument, the FSM receives the input on instruments length
from a command via UART.

4) Naive: In the naive case, all features in the proposed
scheme, that is dummy data handling, ILM, SCR, and ICR,
are excluded. We have written software for the retargeting so
that the shift-in sequence is created and formed into packets
of size one byte, which is sent over UART. Instead of having
the hardware translator creating the shift-in sequence as in
Figure 5, the software creates this sequence, see Figure 8. First
information of size is sent (number of packets with scan-data)
and then packets with scan-data. For illustration Figure 8 shows
the formation of the scan data sequence into three packets (one
byte each) of data, with additional padding bits in the last byte
to match the size of packets.

Fig. 8. Forming shift-in sequence into three packets of bytes

C. Benchmarks

We have created ICL and PDL to perform experiments. We
created ICL for three IEEE Std. 1687 designs with 50, 100, and
150 instruments, respectively. The instruments are connected in
a flat manner with one SIB per instrument, as illustrated in
Figure 1. The instruments are of length 8, 16, and 32 bits. The
length is set as follows: Instrument one has length 8, instrument
two has length of 16, instrument three has length of 32, and
instrument four has length of 8, and so on. The instruments
perform bit-wise inversion, the value written to the instrument
is inverted. The motivation for this simple instrument is that it
eases validation of the implementation.

We have made use of four trivial PDL descriptions with
one iApply group each, iGet2 of instrument 1, iWrite of

2iGetReadData (iGet) reads information from an instrument

Paper 2.3 INTERNATIONAL TEST CONFERENCE 7

Fig. 9. The total overhead (logarithmic scale) for the approaches in Table II
applying the PDL according to the BASTION scheme

Fig. 10. Comparing amount of control, data and dummy overhead of the
methods; Proposed, No ILM, and No Discard

instrument 1, iGet of all instruments, iWrite of all instru-
ments. We have also made use of the PDL scheme used in the
BASTION benchmarks [16]. The PDL scheme in BASTION is
to first perform one iApply group with a write to all instruments,
followed by one iApply group with read from all instruments,
and finally, for each individual instrument, an iApply group
with a write followed by an iApply group with a read. For
the benchmark with 50 instruments the BASTION PDL scheme
results in 102 iApply groups.

D. Results

We have on an Nexys 4 DDR with an Artix-7 (XC7A100T-
1CSG324C) FPGA implemented the proposed scheme (de-
scribed in Section IV), the proposed scheme without on-chip

Fig. 11. Theoretical comparison of proposed control command and a shift-in
scheme

Fig. 12. Theoretical comparison of proposed control command and a shift-in
scheme on BASTION PDL

handling of dummy data (Section VII-B2), proposed scheme
without ILM (Section VII-B3), the naive approach (Section
VII-B4), and the IEEE Std. 1687 networks. For the bit banging
(Section VII-B1) we computed the overhead without making
an implementation on an FPGA. We have also implemented
software for the creation of data transported over UART for all
cases except for bit banging.

The experimental results on UART overhead are collected
Table II. Table II is organized as follows. The benchmarks of
size 50, 100, and 150 instruments are in column one, the applied
PDL is listed in column two and the amount of useful data bits
is in column three. In column four, the types of overhead is
listed, including the total overhead and the amount of useful
data in relation to total overhead. The approaches bit banging,
naive, no ILM, no dummy handling and proposed are listed in
columns five to nine.

The experimental results on area overhead are collected in
Table I, which is organized as follows. The first column lists
the approaches, the IEEE Std. 1687 network itself and the four
approaches, naive, no ILM, no dummy, and proposed. Column
two to four list the number of CBLs for each of the IEEE Std.
1687 networks.

Paper 2.3 INTERNATIONAL TEST CONFERENCE 8

Fig. 13. Estimated area of implemented approaches in relation (%) to the
IEEE Std. 1687 networks

E. Discussion

Based on the results, we make the following observations:
• Bit banging and naive schemes generate highest over-

head and the data overhead increases dramatically as
design complexity increase (number of instruments),
see Figure 9 that shows the total overhead, note log-
arithmic scale, for the approaches using PDL from the
BASTION scheme.

• Proposed, no ILM, and no dummy schemes scale for
control, data, and dummy overhead nearly linear with
the number of instruments, see Figure 10.

• ILM has a significant impact on reducing overhead,
compare no ILM and proposed schemes in Figure 10.

• Proposed scheme where FSM handles and creates
dummy data has a significant impact on reducing
overhead, compare no discard and proposed schemes
in Figure 10.

• Control overhead is relatively high in all cases, see
Figure 10. An alternative to proposed control command
is to send control data, for example to SCR for SIB
content, as shift data that is shifted-in to SCR for each
iApply group. We compare for a design with 100 SIBs
the amount of data required using a shift-in sequence
of 100 bits per iApply group (fixed scheme) against
proposed scheme when accessing 1 to 9 instruments,
see Figure 11. The results indicate that when 6 or
more instruments are accessed, the shift-in scheme is
more suitable. On the other hand, we made a theoretical
computation of the amount of SCR data needed for the
three designs using PDL as in the BASTION scheme.
The result indicates that proposed control command
generates less control overhead compared to a shift-in
scheme (fixed scheme), see Figure 12.

• The estimated area for the approaches relative to the
IEEE Std. 1687 networks decreases as the number of
instruments increase (%), Figure 13.

• We note that the naive scheme gives the lowest area and
that all other approaches performs basically the same.
The fact that the proposed, no ILM and no dummy
schemes perform the same when their functionality
differs can be that the proposed functions (ILM and
dummy handling) do not cost much in area or that
these designs are based on proposed scheme where the

functions have been removed, hence no optimization.
We also note that the relative impact of the hardware
for the approaches decreases as the IEEE Std. 1687
network increases in number of instruments.

VIII. CONCLUSIONS

We developed hardware and protocol where we, instead of
using IEEE Std. 1149.1, made use of UART to access IEEE Std.
1687 networks. The overall aim is to minimize the overhead in
terms of data transported over UART and the area of the hard-
ware component. We implemented on FPGAs proposed scheme
and a number of alternatives as well as supporting software for
retargeting. Experiments with benchmarks with 50, 100, and
150 instruments using the BASTION PDL scheme show the
benefit of SIB control register (SCR), instrument control register
(ICR) to create and handle dummy data, and instrument length
memory (ILM) to know the length of instrument during shifting.

Future work may include the handling of general IEEE
Std. 1687 networks, analysis of the need of other operations
on instruments than read and write, built-in synchronisation of
communication, handling of misalignment in data transfer, and
other protocols like SPI, I2C, and so on.

REFERENCES

[1] “Embedded Instrumentation: Its Importance and Adoption in the Test and
Measurement Marketplace, Frost and Sullivan, Whitepaper, 2010, 20 p.”

[2] K. Posse, “Component manufacturer perspective,” in 2015 International
Test Conference, 2015, pp. 1–10.

[3] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, 2014.

[4] “IEEE standard test access port and boundary-scan architecture,” IEEE
Std 1149.1-2001, 2001.

[5] IEEE P1687.1, “Standard for the Application of Interfaces and Con-
trollers to Access 1687 IJTAG Networks Embedded Within Semicon-
ductor Devices.”

[6] J. Rearick et al., “IJTAG (Internal JTAG): A step toward a DFT standard,”
in International Test Conference (ITC), 2005.

[7] F. G. Zadegan et al., “Access time analysis for ieee p1687,” IEEE
Transactions on Computers, vol. 61, no. 10, pp. 1459–1472, Oct 2012.

[8] F. Ghani Zadegan et al., “Design automation for IEEE P1687,” in Design,
Automation & Test in Europe Conference (DATE), 2011.

[9] R. Baranowski, M. Kochte, and H.-J. Wunderlich, “Modeling, verification
and pattern generation for reconfigurable scan networks,” in International
Test Conference (ITC), 2012.

[10] R. Cantoro et al., “Test of reconfigurable modules in scan networks,”
IEEE Transactions on Computers, vol. 67, no. 12, pp. 1806–1817, Dec
2018.

[11] A. Jutman, S. Devadze, and J. Aleksejev, “Invited paper: System-wide
fault management based on ieee p1687 ijtag,” in 6th International
Workshop on Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC), June 2011, pp. 1–4.

[12] K. Petersen et al., “Fault injection and fault handling: an MPSoC
demonstrator using IEEE P1687,” in IEEE International On-Line Testing
Symposium (IOLTS), 2014, 2014, pp. 170–175.

[13] F. G. Zadegan, D. Nikolov, and E. Larsson, “On-chip fault monitoring
using self-reconfiguring ieee 1687 networks,” IEEE Transactions on
Computers, vol. 67, pp. 237–251, 2018.

[14] A. Crouch, M. Laisne, and M. Keim, “Generalizing access to instrumen-
tation embedded in a semiconductor device,” IEEE Computer, vol. 50,
no. 7, pp. 92–95, 2017.

[15] H. M. von Staudt and A. Spyronasios, “Using ijtag digital islands in ana-
logue circuits to perform trim and test functions,” in IEEE International
Mixed-Signals Testing Workshop (IMSTW), June 2015, pp. 1–5.

[16] A. Tšertov et al., “A suite of IEEE 1687 benchmark networks,” in
International Test Conference (ITC), 2016.

Paper 2.3 INTERNATIONAL TEST CONFERENCE 9

TABLE II. DATA TRANSPORTED OVER UART

Benchmark PDL Useful data Type of overhead Bit banging Naive No ILM No dummy handling Proposed

50

iGet 1 8

Control overhead 120 24 16 16
Data overhead 24 16 16 16
Dummy overhead 111 0 111 0
Total overhead 1776 255 40 143 32
Useful data (%) 0.4 3.0 16.7 5.3 20

iWrite 1 8

Control overhead 112 24 16 16
Data overhead 24 16 16 16
Dummy overhead 118 0 118 0
Total overhead 1776 254 40 150 32
Useful data (%) 0.4 3.1 16.7 5.1 20

iGet all 920

Control overhead 1032 1200 800 800
Data overhead 24 16 16 16
Dummy overhead 226 0 170 0
Total overhead 16368 1282 1216 986 816
Useful data (%) 5.3 41.8 43.1 48.3 53.0

iWrite All 920

Control overhead 112 1200 16 800
Data overhead 24 16 800 16
Dummy overhead 1031 0 974 0
Total overhead 16368 1167 1216 1790 816
Useful data (%) 5.3 44.1 43.1 33.9 53.0

BASTION 3680

Control overhead 13152 4800 3200 3200
Data overhead 2448 1632 1632 1632
Dummy overhead 13702 0 2290 0
Total overhead 222128 29302 6432 7122 4832
Useful data (%) 1.6 11.2 36.4 34.1 43.2

100

iGet 1 8

Control overhead 216 24 16 16
Data overhead 24 16 16 16
Dummy overhead 205 0 205 0
Total overhead 3376 445 40 237 32
Useful data (%) 0.2 1.8 16.7 3.3 20

iWrite 1 8

Control overhead 208 24 16 16
Data overhead 24 16 16 16
Dummy overhead 212 0 212 0
Total overhead 3376 444 40 244 32
Useful data (%) 0.2 1.8 16.7 3.2 20

iGet all 1856

Control overhead 2064 2400 1600 1600
Data overhead 24 16 16 16
Dummy overhead 439 0 335 0
Total overhead 32944 2527 2416 1951 1616
Useful data (%) 5.3 42.3 43.4 48.8 53.5

iWrite All 1856

Control overhead 208 2400 1600 16
Data overhead 24 16 16 1600
Dummy overhead 2063 0 1958 0
Total overhead 32944 2295 2416 3574 1616
Useful data (%) 5.3 44.7 43.4 34.2 53.5

BASTION 7424

Control overhead 45520 9600 6400 6400
Data overhead 4848 3232 3232 3232
Dummy overhead 45692 0 4586 0
Total overhead 765232 96060 12832 14218 9632
Useful data (%) 1.0 7.2 36.7 34.3 43.5

150

iGet 1 8

Control overhead 312 24 16 16
Data overhead 24 16 16 16
Dummy overhead 349 0 299 0
Total overhead 4976 685 40 331 32
Useful data (%) 0.2 1.2 16.7 2.4 20

iWrite 1 8

Control overhead 304 24 16 16
Data overhead 24 16 16 16
Dummy overhead 356 0 306 0
Total overhead 4976 684 40 338 32
Useful data (%) 0.2 1.2 16.7 2.3 20

iGet all 2800

Control overhead 3104 3600 2400 2400
Data overhead 24 16 16 16
Dummy overhead 1245 0 501 0
Total overhead 49648 4373 3616 2917 2416
Useful data (%) 5.3 39.0 43.6 49.0 53.7

iWrite All 2800

Control overhead 304 3600 2400 2400
Data overhead 24 16 16 16
Dummy overhead 3103 0 2950 0
Total overhead 49648 3431 3616 5366 2416
Useful data (%) 5.3 44.9 43.6 34.3 53.7

BASTION 11200

Control overhead 97104 14400 9600 9600
Data overhead 7248 4832 4832 4832
Dummy overhead 96758 0 6904 0
Total overhead 1628848 201110 19232 21336 14432
Useful data (%) 0.7 5.3 36.8 34.4 43.7

Paper 2.3 INTERNATIONAL TEST CONFERENCE 10

