LUND UNIVERSITY

Identifying, Prioritizing and Evaluating Vulnerabilities in Third Party Code

Cobleigh, Alexander; Hell, Martin; Karlsson, Linus; Reimer, Oscar; Sénnerup, Jonathan;
Wisenhoff, Daniel

Published in:
IEEE 22nd International Enterprise Distributed Object Computing Workshop

DOI:
10.1109/EDOCW.2018.00038

2018

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):

Cobleigh, A., Hell, M., Karlsson, L., Reimer, O., Sénnerup, J., & Wisenhoff, D. (2018). Identifying, Prioritizing and
Evaluating Vulnerabilities in Third Party Code. In IEEE 22nd International Enterprise Distributed Object
Computing Workshop IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/EDOCW.2018.00038

Total number of authors:

Creative Commons License:
Unspecified

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://doi.org/10.1109/EDOCW.2018.00038
https://portal.research.lu.se/en/publications/3ea97fa3-931f-491a-8308-4bb7de87e21c
https://doi.org/10.1109/EDOCW.2018.00038

Identifying, Prioritizing and Evaluating
Vulnerabilities in Third Party Code

Alexander Cobleigh
debricked AB
Malmo, Sweden
alexander.cobleigh @debricked.com

Oscar Reimer
Dept. of Electrical and Information
Technology, Lund University
Lund, Sweden
oscar.reimer @eit.Ith.se

Martin Hell
Dept. of Electrical and Information
Technology, Lund University
Lund, Sweden
martin.hell @eit.1th.se

Jonathan Sonnerup
Dept. of Electrical and Information
Technology, Lund University
Lund, Sweden
jonathan.sonnerup @eit.Ith.se

Linus Karlsson
Dept. of Electrical and Information
Technology, Lund University
Lund, Sweden
linus.karlsson @eit.1th.se

Daniel Wisenhoff
debricked AB
Malmo, Sweden
daniel.wisenhoff @debricked.com

Abstract—We demonstrate a tool for identifying, prioritizing
and evaluating vulnerabilities in software. The tool aims to
improve security in products by making maintenance more
efficient and robust. Software components and release versions
are matched with vulnerability information from open resources.
The results are visualized on several different levels, ranging from
product portfolio and individual products, to specific releases
and vulnerabilities. The tool keeps track of how security evolves
over time in deployed releases, and also how the maintenance
organization progresses in evaluating new vulnerabilities. This
will result in more efficient, accurate, and robust security analysis
and awareness within the organization, and the anticipated long
term effect is more secure products.

Index Terms—Security, Vulnerabilities, Demonstration, Rec-
ommender system, Software maintenance

I. INTRODUCTION AND BACKGROUND

This paper presents the design of, and motivation behind, a
tool that provides a set of dashboards and information about
developed and/or maintained products. It can track and present
the current security for a product portfolio, a single product,
and a single firmware version, and it also provides details on
specific vulnerabilities. The overall motivation has been the
recent interest in Internet of Things (IoT) devices. The inher-
ent connectivity of IoT devices increases the possibility for
attacks, and cybersecurity has become increasingly important.
This is recognized by the industry and it is difficult to keep
up with the rapid technology development and companies have
different ways of organizing the identification and evaluation
of vulnerabilities [6]. More specifically, the motivation for the
demonstrated tool is based on four main observations. First,
there are many new vulnerabilities disclosed every year. The
NVD database [5] currently contains over 100’000 vulnerabili-
ties, with information such as vulnerable software and versions

This work was financially supported in part by Swedish Governmental
Agency for Innovation Systems (Vinnova), grant 2016-00603, and in part
by the Swedish Foundation for Strategic Research, grant RIT17-0035.

(in a standardized format), links to exploits and advisories,
and a CVSS severity score [4], [8]. The number of new CVEs
has for many years been relatively stable, ranging between
approximately 4200 to 7900 between 2005-2016. In 2017 the
number increased to about 14700 and halfway through 2018
there were about 10000 so far. This amounts to an average of
more than 50 new vulnerabilities each day.

Second, the increasing focus on connected devices, e.g.,
IoT devices, has resulted in many new manufacturers and
integrators of connected products and systems. Also traditional
manufacturers, such as car and truck manufacturers, the indus-
try for home appliances (refrigerators, washing machines, etc),
and the automation industry is turning towards connectivity. If
successful, this paradigm shift will allow more efficient use of
resources, sustainable cities and transportation systems, and
high quality services at reduced cost [7]. The market com-
petition results in a strive towards shorter time-to-market for
new functionality and the development organization typically
build the devices and platforms on open source software. This
allows for well-tested and maintained code at a very low cost.
Additional functionality is then added in-house on top of the
open source software.

Third, when new vulnerabilities are discovered, either in
configurations (e.g., weak default passwords or cryptographic
primitives), in third-party software or in in-house software, the
software is typically patched. For third-party software, new
software versions can be retrieved from the source (assuming
that the code is maintained), be added to the build system,
and new firmware or software updates can be made available
to customers. In a recent survey [10] based on 2205 users, it
was reported that only 14% have ever updated their router’s
firmware. Some devices or software can be automatically
updated, but this is far from always possible. Apart from the
fact that this functionality is still lacking in many devices, high
availability systems can not afford a reboot or devices may



not be connected at all times. Privacy issues may also pre-
vent certain customers from allowing frequent communication
with the manufacturer’s servers or cloud services. Thus, even
though there is new firmware, many customers still use old
versions. Since the manufacturer’s reputation is at stake when
new vulnerabilities are disclosed, there is a need to keep track
of all released firmware and understand its exposure to attacks.
A related aspect is that the developer’s efforts to minimize
the number of vulnerabilities can be tracked through different
firmware releases. High security awareness can be used as
selling points for manufacturers and developers and can be
seen as a competitive advantage.

Finally, the large number of new vulnerabilities will require
significant effort from the product maintenance organization.
Identified potential vulnerabilities must be evaluated and some
vulnerabilities will be left with no action while others will
require immediate actions. Prioritizing the order in which to
evaluate vulnerabilities can reduce the time of exposure, make
the evaluation more cost efficient, and improve the accuracy
and robustness of the evaluations. The most straight-forward
way of prioritizing is the vulnerability severity. The most
widely used and recognized severity metric is the CVSS score,
provided by NVD. This metric takes into account various
aspects of exploitability and impact of the vulnerability, but
the metric is designed to be repeatable and not tied to specific
products, operating environments or organizations. The metric
does have support for stakeholders manually adjusting it to
environmental circumstances, but this is done as part of
the evaluation and does not help when prioritizing which
vulnerabilities to evaluate first.

II. SYSTEM OVERVIEW

The main focus has been to design a tool that can help
improve working with vulnerabilities and patching of IoT de-
vices. This is done by presenting products, firmware versions,
and vulnerabilities on a set of configurable dashboards. The
tool is not limited to specific types of devices, but can be
used on standalone applications as well. Features and interface
have been designed in close cooperation with companies,
providing feedback already at early stages and throughout
the development of the tool. It takes two types of inputs,
information on vulnerabilities and information about devices
and software components. This information is used to present
the current security status of devices and to help users and
organizations to more efficiently work with vulnerabilities.
Output information is provided through a series of views,
tables and graphs, focusing on devices, software components
and vulnerabilities.

A. Vulnerability Information

Information related to vulnerabilities is primarily taken from
the NVD database, which is the most well known and widely
used public vulnerability database. The database is provided
both in the form of web pages and as XML and JSON feeds.
The feeds are very easy to use, but they unfortunately do
not include all information. Some information can only be

retrieved from scraping the web pages, so this is used as a
complement as well. From NVD, we collect e.g.,

e The summary text for the vulnerability.

o The CVSS score, together with the different subscores.

e Relevant links to more information. These links can be
used to determine if there are available exploits.

o Which type of weakness that the vulnerability represents,
i.e., the CWE [3]. This could be e.g., Buffer Errors
(CWE-119), Cross-Site Scripting (CWE-79) or Input Val-
idation (CWE-20).

o The vulnerable software components. These are given
as CPEs (Common Platform Enumeration), which is a
standardized format for representing vendor, name and
version of a software component (or e.g., operating
systems).

Other sources of information that are used include e.g., more
detailed CWE information, allowing an analyst to better grasp
the problem, and information collected from mailing lists
discussing software security.

B. Device Information

One main feature is to support tracking of a large number
of devices and releases. One manufacturer might have dozens,
or even hundreds, of different devices, and each device might
receive firmware updates quarterly or monthly. This results in
a large number of datapoints as the software modules included,
and also the version of the module, will differ between both
devices and firmware releases. Vulnerabilities affecting one
device will differ between firmware versions since patched
components will decrease and newly added components might
increase the number of vulnerabilities. The information col-
lected is simply the device, the firmware/release version, and
a list of the components that are included in the firmware.
This information can be added and maintained either using
the graphical interface in the tool, or through an API. Thus,
it is possible to track the software with very high level of
granularity, e.g., specific builds.

C. Views and Dashboards

The tool supports a variety of views. The views are divided
into four main levels. Though there are default information on
each view, they are highly customizable on organizational or
even user-based level.

Product Portfolio. This presents an overview of the registered
products together with summary information on the number of
releases and vulnerabilities.

Product Releases. All releases for one specific product are
summarized together with the number of vulnerabilities. Note
that several releases are typically deployed at the same time
since deployed devices might not be updated for each new
release. Two different vulnerability metrics are relevant here.
First, the number of vulnerabilities at the time of release, and
second, the current number of vulnerabilities affecting that
release. The first metric will allow organizations to measure
their security awareness since this number can to a large
extent be controlled by the organization by using up-to-date



software. The second metric will measure the current security
of a product. This is more difficult to control, but e.g.,
hardened devices, device configuration and proper separation
of privileges, will affect to which extent vulnerabilities are
exploitable. An example of the first metric is given in Fig. 1.
Five releases for a product is shown, together with the number
of vulnerabilities that have been identified for the respective
releases.

Seconds

Dashboard - Connected Product

€ companyname

Connected
Product

Apr15,018300PM  Oct15, 022 3:00PM

Fig. 1.
product.

An example of an overview of the tracked releases for a chosen

Release Details. This view will give a summary of all vul-
nerabilities that affects a given release. The view can show
a vulnerability listing , with one vulnerability per row, and a
software component listing, with one component on each row
together with the number of vulnerabilities.

Vulnerability Details By choosing a vulnerability, details on
this vulnerability will be displayed. The information here will
largely be based on the information given in NVD, but will
also use information from other sources.

D. Evaluation Support

By default, all vulnerabilities that have a matching CPE
in the NVD database will be listed, shown as a vulnerability
that affects the product/release. However, after evaluation of
each vulnerability, it is often concluded that no action is
needed since the vulnerability does not affect that particular
configuration, or it is not exploitable due to the particular usage
of the component. Thus, the tool has support for recording
evaluations and labeling vulnerabilities as evaluated, together
with the decision made. This will reduce the number of
vulnerabilities listed as affecting a device or a release, and
can be used both for tracking the security of releases and for
the security work within the organization.

E. Summary Reports

The tool is able to generate summary reports on sev-
eral different levels. Both overview reports for the complete
product portfolio, for individual products, and for individual
releases. The main purpose of these reports is to generate
overview results that can be used in strategic decisions or
even marketing. Examples of data generated by the reports
include number of vulnerabilities, number of vulnerabilities
for products and releases, their severity, how many of them

have been evaluated and how many of them have an exploit.
This data is also presented based on time of appearance.
Additionally, the tool supports creation of detailed reports for
individual vulnerabilities.

F. Integration Support

The actual usage of a tool like this will depend on how
well integrated it is into already existing processes in an
organization. Due to this, it is important to support integration
with a wide variety of other third-party tools that are typically
used in development or product maintenance organizations.
The demonstrated tool supports integration with the BitBake
build tool and Jenkins, GitLab CI, and Travis continuous
integration tools for automatically detecting which software is
used. It also supports Jira, GitLab and GitHub for managing
tickets and integrating with project management.

G. API

In addition to using the web based interface for interacting
with the tool, it is possible to use an API, both to deliver
input, and to extract output. This will allow third parties to
integrate parts of the data into their own customized tools
and environments, if the provided integration support is not
sufficient..

III. INNOVATIVE CONCEPTS

Recently, several other organizations have shown interest
in integrating vulnerability information into development en-
vironments. One notable example is GitHub, which tracks
vulnerabilities in dependencies that are found in Ruby gems
and NPM packages [2]. Also the NPM package manager [9]
has recently added support for a security review of the
dependency tree. The demonstrated tool is in contrast not
limited to certain languages, such as Ruby and JavaScript,
since it will track all software included in a release at
build time. Neither is it limited to only matching software
with reported vulnerabilities, but instead attempts to help the
software maintainer (or security analyst) in prioritizing which
vulnerabilities to evaluate first. This is accomplished using
ideas similar to recommender systems for e.g., products at e-
commerce sites or movies and music recommender systems.
Another innovative concept is the tracking of vulnerabilities
between different products and product releases. These two
concepts are described in more detail below.

A. Recommender System

Recommender systems can be divided into three main
variants. Knowledge-based recommender system are based on
explicit knowledge about users and items. This is saved in a
user profile that can be defined and tweaked. Item features
are then extracted and matched with the user profile. Another
variant is a content-based recommender system, in which user
preferences are learned by analyzing past user behaviour.
Previously viewed items can be used to build a profile for
a user. These recommender systems can capture preferred
features that the user might not be explicitly aware of. On



the other hand, they suffer from a cold start problem in
that it will take some time to build reliable profiles for new
users. The third main variant is the collaborative filtering
recommender system. In this case, items are recommended
based on considerations of what other similar users have
viewed. This also has a cold-start problem since new items
will not have many views by users, so they are not as
often recommended. All variants have their pros and cons,
and it is possible to combine them into hybrid systems. A
recommender can be seen as a scoring system, since each item
will receive a certain score depending on how well it matches
the user’s profile. High scoring items are then recommended.
See e.g., [1] for a more thorough overview. In the demonstrated
tool, vulnerabilities are recommended. Instead of using only
CVSS score, which is designed to be repeatable and not tied
to a specific organization or product, our tool uses a wider set
of features. It includes e.g., vulnerability type (CWE), date of
disclosure, Twitter activity, if the component handles sensitive
data, and the number of products that are affected. It also
considers availability of exploits, together with the exploit
origin. The existence of Metasploit modules should be seen
as more severe than proof of concept code. The recommender
system used is a hybrid recommender based on knowledge-
based and content-based filtering. Due to privacy aspects,
collaborative filtering is not used, but might be considered in
future work. The knowledge based part takes advantage of the
fact that the user (product owner, integrator or manufacturer)
has certain product knowledge that a third-party analyst might
not have. As an example, the number of affected products
(that have e.g., been sold) is only known to the user, and the
importance of this metric is probably very user dependent.
It can also handle new users very well. The content-based
part takes advantage of not requiring users to fine-tune all
preferences completely, and can also capture certain user pref-
erences that are difficult to explicitly determine. In addition
to knowledge-based and content-based data, the recommender
also takes domain knowledge as input, i.e., some portion
of the score will be user independent. This guarantee that
important vulnerabilities are not missed just because the profile
or user history do not correlate well with the vulnerability.
The weighting between knowledge-based, content-based, and
domain knowledge influence will vary over time. Content-
based influence will increase as the amount of knowledge
based on user history increases.

B. Release Tracking

The tracking of all products and their releases is an impor-
tant part of the tool. It is motivated partly by the fact that
customers do not immediately apply updates. Particularly in
a B2B business model, it is still important to understand the
security of all deployed devices, and the threats customers
are exposed to. When identifying new critical vulnerabilities
in unpatched components, the manufacturer might want to
explicitly inform customers of the risks related to not patching.
Another motivating aspect of release tracking is to allow the
maintenance organization to explicitly report and measure the

security work and provide an overview of the product portfolio
and its exposure to attacks. This can be used within the
organization to improve security work, but it can also be used
in marketing situations and in communication with different
stakeholders. A third aspect is the manufacturer’s support
organization, where first and second line support can more
easily answer vulnerability related questions, and customers
can be given a dedicated information channel for security, and
update recommendations, related to their purchased products.

IV. CONCLUSION

A tool for identifying, prioritizing and evaluating vulnera-
bilities in software has been outlined and demonstrated. The
demonstration consists of showing the different views and
how they can help organizations to more efficiently work with
security vulnerabilities. It is also demonstrated how the recom-
mender system will help prioritizing between vulnerabilities
and how reports can be generated. Since it has been designed
with feedback from industry throughout all phases, it has
potential to significantly increase the security for developed
IoT devices, and to improve how companies throughout the
value chain understand and work with security. The tool has
recently been commercialized by debricked AB. The main
reasons for commercialization are that the industry has already
shown high interest in the tool, and they have expressed a
need for receiving more detailed information and evaluations
of vulnerabilities.

It is anticipated that the proposed tool will provide higher
reputation for manufacturing and development organizations,
as well as increased trust throughout the value chain. It
will also lead to more competitive companies and increased
innovation speed through more efficient use of open source
software.

REFERENCES

[1] Charu C Aggarwal. Recommender Systems, The Textbook. Springer,
2016.

[2] The GitHub Blog. Introducing security alerts on github, 2017-
11-16. Available at: https://blog.github.com/2017-11-16-introducing-
security-alerts-on-github/.

[3] The Mitre Corporation. Common weakness enumeration (cwe). Online,
Last accessed 2018-06-03.

[4] First. Common vulnerability scoring system v3.0: Specification docu-
ment. Online, Last accessed 2018-06-03.

[5] National Institute for Standards and Technology (NIST).
vulnerability database. Online, Last accessed 2018-06-03.

[6] Martin Host, Jonathan Sonnerup, Martin Hell, and Thomas Olsson.
Industrial practices in security vulnerability management for iot systems
— an interview study. In Proceedings of Software Engineering Research
and Practice (SERP), pages 61-67, 2018.

[71 Mckinsey Global Institute. The internet of things: Mapping the value
beyond the hype, June 2015. Report.

[8] Peter Mell, Karen Scarfone, and Sasha Romanosky. A complete guide
to the common vulnerability scoring system version 2.0. In Published
by FIRST-Forum of Incident Response and Security Teams, volume 1,
page 23, 2007.

[9] The npm Blog. ‘npm audit’: identify and fix insecure dependen-

cies, 2018-05-08. https://blog.npmjs.org/post/173719309445/npm-audit-

identify-and-fix-insecure.

Matt Powell.  Wi-fi router security knowledge gap putting de-

vices and private data at risk in uk homes.  Technical report,

2018. Available at https://www.broadbandgenie.co.uk/blog/20180409-

wifi-router-security-survey.

National

[10]



