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Individualized closed-loop anesthesia through patient model partitioning

Ylva Wahlquist1, Klaske van Heusden2, Guy A. Dumont2, Kristian Soltesz1

Abstract— Closed-loop controlled drug dosing has the po-
tential of revolutionizing clinical anesthesia. However, inter-
patient variability in drug sensitivity poses a central challenge
to the synthesis of safe controllers. Identifying a full individual
pharmacokinetic–pharmacodynamic (PKPD) model for this
synthesis is clinically infeasible due to limited excitation of
PKPD dynamics and presence of unmodeled disturbances.
This work presents a novel method to mitigate inter-patient
variability. It is based on: 1) partitioning an a priori known
model set into subsets; 2) synthesizing an optimal robust
controller for each subset; 3) classifying patients into one of the
subsets online based on demographic or induction phase data;
4) applying the associated closed-loop controller. The method is
investigated in a simulation study, utilizing a set of 47 clinically
obtained patient models. Results are presented and discussed.

Clinical relevance— The proposed method is easy to imple-
ment in clinical practice, and has potential to reduce the impact
from surgical stimulation disturbances, and to result in safer
closed-loop anesthesia with less risk of under- and over dosing.

I. INTRODUCTION

A. Closed-loop anesthesia

Closed-loop anesthesia means that anesthetic drugs are au-
tomatically dosed based on feedback from a clinical sensor,
as shown in Fig. 1. The concept was introduced in the 1950s
and has since developed into an interdisciplinary research
area, as exemplified by [1], [2], [3].

In the considered setting, the WAVCNS depth of hypnosis
(DoH) index [4], reported by the NeuroSENSE NS-901 mon-
itor (NeuroWave Systems Inc., Cleveland Heights, OH.), is
used to control the intravenous infusion rate of the hypnotic
agent propofol.

B. Inter-patient variability

The DoH response to propofol displays a large variation
between patients. This variability comes from differences
in the distribution and elimination of drug in the body,
influenced by physiological parameters such as age, weight,
liver function etc. [5].

To guarantee system safety across an intended demo-
graphic cohort, a closed-loop controller needs to robustly
stabilize the anesthetic state of each individual within it. This
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Center at Linköping-Lund in Information Technology (ELLIIT). The authors
would like to thank Richard Pates1 for discussions on the ν-gap metric.

1Wahlquist, Soltesz and Pates are with the Department
of Automatic Control, Lund University, Lund Sweden
{first.last}@control.lth.se.

2van Heusden and Dumont are with the Department of Electrical and
Computer Engineering, University of British Columbia, Vancouver, Canada
{klaskeh,guyd}@ece.ubc.ca.

can be achieved through robust control techniques [3], in
which case a single controller parameter set is used across the
cohort. In contrast, adaptive control provides individualized
controllers, where the individualization is based on initial
patient responses to the therapy.

The main disadvantage of the robust approach is that it
becomes conservative if the variability within the cohort
is large, manifested by slow responses to changes in DoH
setpoint or disturbance attenuation. On the other hand, adap-
tive techniques require excitation of the controlled dynamics,
in order to learn the dynamics to which the controller
should adapt. Adjusting drug titration to excite the PKPD-
dynamics is typically not justifiable unless such adjustments
are directly motivated by the current state of the patient,
severely limiting clinical applicability.

C. Approach

This work considers a controller design, which fuses the
robust and adaptive approaches. It only relies on demo-
graphic parameters available a priori, or parameters which
can be readily estimated from representative induction phase
data. The induction phase is the temporal episode during
which the patient transitions from fully aware to a setpoint
DoH. This phase is relatively rich in excitation of the
considered dynamics, and generally free from unmodeled
responses caused by unmeasurable surgical stimulation.

However, induction phase data is typically not sufficiently
describing for identification of a full PKPD model [6].
Rather than attempting identification of PKPD models, or
falsification, as investigated in [7], the approach taken here
is instead to design a small set of robust controllers a priori
– each optimized for a subset of existing patient models –
and select the most appropriate one of them, based on data
available by the end of the induction phase.

Two problems are considered:

1) How can a clinically obtained PKPD model set (rep-
resenting a patient cohort) be partitioned, in order to
maximize robust performance within each partition,
while keeping down the total number of partitions?
This gives an upper bound on performance, but is
practically infeasible, since it requires full model
knowledge for each patient.

2) How can (the same) model set be partitioned, based
on patient data, which is available by the end of the
induction phase? This gives insight into the clinical
potential of the proposed method.
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Fig. 1. Block diagram overview of the closed-loop control anesthesia system. Signals: r – DoH setpoint; e – control error; u – infusion rate (control
signal); d – exogenous disturbance (surgical stimulation); n – measurement noise; E – DoH; y measured DoH; yf – low-passed filter version of y.

II. METHODS

A. Patient model set

The patient model set used in this study was originally
published in [6]. It consists of n = 47 pediatric PKPD
models (19 F, 26 M (2 unknown), age (median (range))
12 years (6–16), weight 47 kg (21–82), height 155 cm
(119–181)). Each model relates propofol infusion rate u to
DoH (clinical effect) E. The dynamics to be controlled are
the series connections of such a PKPD patient model, and
the linear dynamics M(s) = 1/(TMs+1)2, with TM = 8 s,
of the considered NeuroSense EEG monitor. It provides the
WAVCNS index, being a DoH measure with values close to
100 representing the fully aware state, 0 corresponding to
an iso-electric EEG and 50 being a common setpoint for
many surgical procedures [8]. For this reason, the considered
PKPD models have all been linearized around an operating
point corresponding to 50 WAVCNS.

The combined PKPD and monitor model relates the infu-
sion rate u (input) to the measured clinical effect y (output),
as schematically illustrated in Fig. 1.

It is known that linearized propofol PKPD models display
a large variation in phase lag between patients [6]. The
lag can be represented as a delay in low-order models and
corresponds to the time it takes for the DoH to be affected
by the anesthetics. In the considered patient model set, the
delay ranges 1− 120 s with a median delay of 45 s.

The clinical effect in absence of a drug is termed E0. In the
considered data set, E0 is 91.4(87.1−94.6) (median(range)).
Both delay and E0 can be readily estimated from induction
phase WAVCNS data.

B. Partitioning

We propose a method of minimizing the effects of inter-
patient variability through patient model partitioning, com-
prising the following steps:

1) Partition the patient model set into subsets through
clustering;

2) Optimize a robust controller for each subset, which
maximizes performance while ensuring robustness
over the subset;

3) When a new patient is to be anesthetized, determine
which subset the patient belongs to through either a
priori demographic information or through the induc-
tion phase response obtained with a controller robust
across the entire model set;

4) Perform a smooth (continuous control signal) switch
to the optimal controller synthesized under point 2 for
the subset determined under point 3.

Steps 1–3 can be performed offline a priori, while step 4 is to
be performed online for each new treatment. (Steps 1–3 can
subsequently be repeated as more data becomes available.)

The two extremes of m = 1 subset and m = n subsets
correspond to a single robust controller and a fully individ-
ualized (adaptive) design, respectively. The former does not
provide any advantage, and the latter is practically infeasible
since it relies on complete model knowledge for each patient.
In-between, there exist a multitude of possible partitionings.
For a set of n elements (models), it is possible to construct
Bn unique partitions (including the two extremes above),
where Bn is the nth Bell number. It grows rapidly in n, with
B47 > 1043, rendering exhaustive evaluation infeasible. Pre-
determining to partition into m ≤ n subsets instead results in
mn partitionings, which already for m = 2 results in > 1014

partitionings for n = 47.
As a practically viable alternative to exhaustive evalua-

tion, partitioning through clustering heuristics is considered.
Further below, three bases for partitioning the model set are
considered. It is of particular interest to investigate:

1) How much can performance be increased, when going
from m = 1 to m > 1 subsets?

2) How close to the performance limited indicated by
point 1 is it possible to get by only using patient
(model) properties that are available by the end of the
induction phase.

1) Partitioning using full model knowledge: Assuming
full knowledge of the PKPD dynamics on an individual level
provides an upper bound on achievable performance. How-
ever, this is clearly an unrealistic assumption. (Were such
knowledge available, one could simply design an optimal
individualized controller, voiding the need for any of the
methodology to be introduced.)

The ν-gap metric provides a measure of pairwise “dis-
tance” between transfer function models, subjected to neg-
ative feedback. A thorough and technical introduction is
provided in [9].

In the application at hand, it is natural to create partitions
such that models within each subset behave similarly under
negative feedback so that a small ν-gap between any pair of
models within a given subset is desirable.

By calculating pairwise distances between each pair of



models in the set using the ν-gap metric, a similarity matrix
is obtained. Subsequent application of a clustering technique
to this similarity matrix results in the desired partitioning,
Three different such clustering methods have been consid-
ered.

The first considered clustering method is hierarchical
clustering [10]. It can be graphically represented through
a dendrogram, illustrating how the elements (models) are
connected and successively merged to aggregate clusters.
These connections are based on the average linkage, further
explained in [11].

The second and third considered clustering methods are
both spectral methods, relying on the Laplacian matrix of
the similarity matrix on which eigenvalue decomposition is
performed. A “standard” clustering method, such as k-means,
can then be applied on eigenvectors corresponding to certain
eigenvalues to create the clusters.

Spectral clustering has been performed according to the
methods described in [12], and [13], respectively.

2) Partitioning using demographic parameters: Demo-
graphic parameters (e.g. age, gender, height and weight)
constitute a clinically viable alternative, upon which to base
partitioning of the model set. Patient models can then be
placed in different subsets depending on if the demographic
entity is larger or smaller than the median value of all patients
in the model set.

3) Partitioning using induction phase data: Induction
phase data can be used to readily estimate some parameters
of the PD model, such as the delay and E0. As for partition-
ing using demographic parameters, the patient models can
be placed in different subsets depending on if the estimated
value is larger or smaller than the median value of all models
in the data set.

C. Controller optimization
A feedback controller is used to titrate propofol based on

measured DoH. It needs to be tuned to match (physiological)
variability within the patient population, here represented by
a set of PKPD models.

Controller performance was defined as the ability to atten-
uate unmodeled (surgical) disturbances. More specifically, a
disturbance model comprising an additive output step d(t)
with Laplace transform D(s) (see Fig. 1) was considered,
and attenuation performance was quantified in terms of the
L2 norm of the resulting clinical effect E(t), as motivated in
[14]. Optimal robust control was considered with the same
objective for each subset of the partitioning. The performance
of a subset of the partitioning was defined as the worst case
performance of all models within the subset.

The considered controller structure is the filtered PID
controller, used in the clinical study [6], comprising an ideal
parallel form PID controller with transfer function

C(s) =

(
kp +

ki
s

+ kds

)
, (1)

in series with a low-pass filter to attenuate high frequency
measurement noise, forming the filtered controller K = FC
with F (s) = 1/(Tfs+ 1)2, shown in Fig 1.
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Fig. 2. Distribution of optimization cost ‖y‖22 across the patient model set
for calculated controllers, where y is the clinical effect when the input is a
step, for different partitioning methods. Nominal controller (m = 1 subset)
and optimized individual controllers (m = n = 47 subsets) are used for
comparison. All other partitions comprise m = 2 subsets. For partitioning
on ν-gap, a is hierarchical clustering, b and c is spectral clustering with
methods described in [12] and [13], respectively.

Robustness has been ensured by imposing constraints on
the norms of the sensitivity S and complementary sensitivity
T = 1 − S, as well as on the noise sensitivity KS
transfer functions. Furthermore, a time domain constraint
was imposed to limit the maximal WAVCNS undershoot by
My . Numerical values for the constraint levels Ms, Mt and
Mks were chosen to match the robustness of the clinically
evaluated controller presented in [6], and the undershoot was
limited to 20 % of the applied disturbance step magnitude.
The constraints were enforced for all models within a given
subset. The corresponding synthesis problem can be formu-
lated as a constrained optimization problem (2).

min
K

max
subset
‖Sk(s)D(s)‖22 (2)

subject to ‖Sk‖∞ ≤Ms

‖Tk‖∞ ≤Mt

‖KSk‖2 ≤Mks

L−1 (Sk(s)D(s)) ≥My.

This problem was solved for each subset to yield param-
eters kp, ki, kd of the PID controller (1), and Tf of the
low-pass filter F .

Solving the problem involves consecutive simulations of
the closed-loop response to the disturbance d, and the re-
sulting minimum of (2) is quantifies the cost (reciprocal to
performance) of the minimizing controller K.

III. RESULTS

Fig. 2 shows the distribution of optimization cost across
the patient model set for the considered partitioning methods.
The optimization cost (reciprocal to performance) obtained
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Fig. 3. Distribution of optimization cost ‖y‖22 across the patient model
set, where y is the measured DoH resulting from a disturbance step d, for
partitioning into 2, 3, 4, 5 subsets based on the model delay.

with several partitions into m = 2 subsets is compared
with that obtained when using a robust controller for the
entire set (m = 1 subsets), as well as when utilizing fully
individualized controllers (m = 47 subsets).

The performance improvement can be characterized by the
relative decrease in optimization cost, distributed across the
model set. Moving from m = 1 to m = 47 subsets, there
is for instance a 32 % decrease of the worst-case cost, and
a 19 % decrease of the median cost. As expected, one of
the ν-gap-based methods (the one marked with a in Fig. 2)
results in the highest improvement, 30 % worst case and
11 % median, when moving from m = 1 to m = 2 subsets.
The clinically relevant clustering method yielding the largest
improvement for the same scenario is based on patient age
(marked Age in Fig. 2), resulting in a 29 % worst-case and
a 5 % median cost decrease.

Fig. 3 shows the resulting cost for partitioning into m =
2, 3 . . . , 5 subsets, based on induction phase response delay
[6]. The outcome is representative for the considered cluster-
ing methods in that there is a notable improvement in going
from m = 1 to m = 2 subsets, but only minor improvements
associated with further increase of the number of subsets,
beyond m = 2.

IV. DISCUSSION

Inter-patient PKPD variability is arguably the limiting
factor for closed-loop control performance in automated
anesthesia. This paper introduces a methodology to mitigate
the effect of this variability, by classifying each patient using
available demographic parameters or induction phase data.
Robust controllers are optimized a priori based on a partition
of a patient PKPD model set. The clustering procedure can
be readily repeated if patient models are added to the set, or
if another model set is being considered.

A simulation study based on 47 published pediatric PKPD
models has shown that the approach is feasible, and that
substantial performance improvement, in terms of distur-
bance attenuation and DoH setpoint tracking, is obtainable
using a partition into two subsets. Optimizing individual
controllers, as well as controllers for a partitioning based on
the ν-gap between models were used to investigate an upper
bound on achievable performance. The main result is that by
partitioning into only two partitions based on age (readily
available parameter), it is possible to obtain performance
comparable to that of fully individualized controllers. The

fact that age was found to be the most relevant of the
considered parameter for the patient group at hand, motivates
its previous use as a gain scheduling parameter [15], [3].

While the paper serves to demonstrate feasibility of a
novel and clinically relevant method, the exact outcome (in
terms of number of subsets and performance distribution) is
expected to vary depending on the patient model set used
for the a priori synthesis, as well as the exact formulation
of the performance objective and robustness constraints.

A similar study where partitioning was made on age for
adults into four subsets is [15], where it was found that
partitioning of the model set by age improves performance.
In this paper, more methods were evaluated and it was stated
that two groups are enough for children and we found out
that the result was almost as good as the performance limit
for two subsets.
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