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Popular summary

Amino acids are the building blocks of life. They join together via chemical bonding
and forms a polymer known as protein. Proteins have an extraordinary property, the
ability to perform chemical catalysis. In solution, proteins undergo several confor-
mational changes (known as conformational dynamics) necessary for their function.
In many cases, proteins are related to certain disease conditions. In order to combat
a disease, one can develop a drug which binds to a specific protein and hampers its
function. Hence, understanding conformational dynamics and mechanism of drug
binding to a protein is necessary for drug discovery.

Drug discovery efforts relies heavily on experimental methods. Several experi-
mental methods have been developed to understand conformational dynamics and
mechanism of drug binding (often known as molecular recognition). However, these
methods are time consuming, costly and often restricted to specialised research facil-
ities. Computational techniques provide an alternative to the experiments. Develop-
ment of hardware and software makes several computational methods accessible to a
common person. Now, one can routinely use computational methods to understand
conformational dynamics and mechanism of drug binding, using a fraction of the
resources necessary to perform an experiment.

This thesis demonstrates how one can capture conformational dynamics and mech-
anisms of drug binding using computational methods such as docking, molecular
dynamics and metadynamics. Docking predicts binding pose and binding affinity
between proteins and drug molecules. Molecular dynamics samples time-dependent
dynamics of a system (such as protein, protein-drug complex etc.) using Newton’s
second law of motion. Metadynamics aims at sampling configurational space of a
system along a chosen reaction co-ordinate.

The first paper aims at predicting binding free energies using a set of host-guest
molecules. Host-guest systems are frequently used in computational studies as a toy
model to mimic protein–ligand systems. In this work, we have used a variant of
metadynamics, denoted funnel metadynamics, and molecular dynamics simulation to
predict the binding free energies for these systems. Our prediction matches well with
experiment which demonstrates the predictive power of our protocol.

In the second study, we combine docking, molecular dynamics and metadynam-

v



vi Popular summary

ics in order to predict the binding poses of 35 different ligands interacting with a
particular protein. We managed to predict the correct binding poses for 29 out of
the 35 ligands. This shows the capability of computational methods in predicting
binding poses of small drug-like molecules.

The last two works deal with understanding conformational dynamics in pro-
teins. In the third paper, we have used molecular dynamics and metadynamics to
understand how rotation of one amino acid, tyrosine, dictates the conformational
dynamics in plasmepsin-II and BACE-1 (drug targets for malaria and Alzheimer’s
disease, respectively). Studying conformational dynamics in these proteins is key to
understanding drug binding pathways. We predicted that the rotation of the tyrosine
side chain dictates the opening and closing motion of the flap (β-hairpin structure of
the protein) that regulates drug binding.

In the fourth paper, we wanted to understand how conformational fluctuations in
a protein affects solvent penetration. Here, we mainly focused on local fluctuations.
The core of a protein is stabilised by hydrogen bond interactions involving backbone
amides. Local fluctuations in a protein break these hydrogen bonds and allow solvent
penetration, defining a broken state. We have used molecular dynamics and meta-
dynamics to sample the broken state of a small protein and predicted the free energy
difference between the broken and ground state.

I hope that the predictions made in this thesis will be helpful to guide future
experiments.
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Chapter 1

Introduction

The last decade saw tremendous breakthrough in several frontiers in science [1], rang-
ing from gene editing to gravitational waves, artificial intelligence to quantum com-
puting [2]. However, three supreme mysteries of science, origin of the universe, origin
of the life and origin of consciousness are still far from being answered. It is quite extraor-
dinary that two fundamental physical concepts, statistical mechanics and quantum
mechanics, developed in early nineteenth century, are intimately involved in explain-
ing some of the nuances associated with these grand scientific mysteries¹. The origin
of life [3, 4], constantly attracted biophysicists for more than a decade.

In the early 20th century, Oparin and Haldane independently proposed an hy-
pothesis which connected chemical evolution with origin of life. Today, the hypoth-
esis is known as Oparin-Haldane hypothesis [5, 6]. According to this, early earth at-
mosphere was reducing in nature and mainly comprised of simple molecules such as
hydrogen, methane, ammonia and water vapour. When exposed to a source of energy
e.g. lightning, UV-radiation, volcanic eruption etc, these inorganic molecules per-
formed some simple chemical reactions and produced building blocks of life such as
amino-acids and nucleotides. These organic molecules accumulated in the sea which
acted as a cooking pot and formed a hot diluted soup of organic monomers and poly-
mers. Today, it is known as the primordial soup [7]. Upon further reactions, these
monomers/polymers combined and eventually formed a molecule with an extraordi-
nary property, the ability to perform bio-chemical catalysis.

Unfortunately, this hypothesis remained untested for over two decades. In 1953,
graduate student Stanley Miller decided to test the Oparin-Haldane hypothesis in a
simulated early-earth environment. Miller simulated the sea by simply putting water
in the round-bottom flask, topped up with methane, ammonia, hydrogen and water
vapour. He simulated the source of energy with electric sparks. After several days of
sparking, Miller analysed the solution and discovered that it managed to synthesise

¹See The Guardian’s list of 20 big questions in science.
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2 CHAPTER 1. INTRODUCTION

small-chain amino acids such as glycine, alanine, and aspartic acid.
Amino acids are fundamental building blocks of proteins. Proteins perform a

vast array of functions in an organism, e.g. catalysis, DNA replication, signaling in
response to external stimuli, transport of molecules, etc. In solution, proteins un-
dergo conformational changes that are necessary for their function. Conformational
changes in a protein are associated with a complex energy landscape, where each basin
corresponds to a different conformation. Today, we can leverage upon the concepts of
statistical mechanics, quantum mechanics and computer science to understand con-
formational motions in a protein. In this thesis, I will demonstrate how we can use
statistical mechanics and computer simulation to understand protein dynamics.



Chapter 2

Statistical Thermodynamics

Software is like entropy. It is difficult
to grasp, weighs nothing and obey’s
the second law of thermodynamics;
i.e. it always increases

Norman Ralph Augustine

Thermodynamics is one of the supreme concepts (the other two are quantum
mechanics and Newtonian mechanics) which governs this universe. The principles of
thermodynamics were developed in the early eighteenth century¹. Since then, several
articles, books, monographs, and theses have been published which convey the under-
lying theories of thermodynamics. Going through these vast and somewhat complex
theories is out of the scope of this thesis. Here, I introduce some key formulas while
keeping the level consistent with an undergraduate chemistry course. The majority
of the concepts of this chapter follows an introductory book written by Benjamin
Widom [8] and Wereszczynski et al [9].

Statistical thermodynamics is the theoretical framework used to calculate prop-
erties of a macroscopic system from the molecular properties of the the vast number
of particles that constitutes the system. In statistical thermodynamics, a system is de-
scribed using an ensemble (Figure 2.1). Ensemble is a collection of a vast number of
systems in different quantum states. At any instant in time, each of the system in the
ensemble will be in different quantum states. When averaging over all the members
of the ensemble, the macroscopic variables are obtained [10].

In statistical thermodynamics, the most fundamental relation, as realized by Boltz-
mann, is the entropy definition

S = kB ln Ω (2.1)

¹It all started in 1738 by Bernoulli. The major breakthrough happened in 1859 by James Clerk
Maxwell who proposed the Maxwell Distribution.

3



4 CHAPTER 2. STATISTICAL THERMODYNAMICS

where Ω is the number of available microstates for a system at constant internal energy
U and kB is the Boltzmann’s constant² which has a value of 1.380649 × 10−23 J/K.

System

Surroundings

Boundary

Microcanonical 
(NVE)

Canonical 
(NVT)

Isothermal–isobaric 
(NPT)

Figure 2.1: An artistic representation of a thermodynamic ensemble and some of the commonly used ensembles in
thermodynamics [11]. The difference among these ensembles are due to different degrees of separation
from the surroundings.

For a macroscopic system, the internal energy U is the sum of potential plus
kinetic energy of all the molecules that make up the system. The change in internal
energy, ∆U , is equal to the heat supplied to the system (q) plus the work (w) done
on the system:

∆U = q + w (2.2)

According to the first law of thermodynamics, if a system is thermally (no heat
is exchanged, q = 0) and mechanically isolated (no work is done, w = 0) from the
environment then the internal energy U is constant. Imagine that the system is not
isolated but connected to a thermostat which fixes the temperature at T . Then the
internal energy is not completely constant since the system is fluctuating among a
truly vast number of microstates with possibly different energies, Ei.³

²“Boltzmann himself never introduced it — a peculiar state of affairs, which can be explained by the
fact that Boltzmann apparently never gave thought to the possibility of carrying out an exact measure-
ment of the constant”: Max Planck’s Nobel Lecture

³As an example, the number of available microstates for 1 mole of ideal gas at room temperature and
normal pressure is typically on the order of 101025

, that is 1 followed by 1025 zeros. To write this value
down on paper would require a paper strip with a length of about 3 million light years. As a comparison,
Wikipedia states that the number of atoms in universe is only about 1080, which is a number that fits
nicely on 24 cm of paper.
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The internal energy is the average over the energies of all microstates:

U =
∑

i

PiEi (2.3)

where the Pi the probability of finding the system in microstate i. Instead of Eq. 2.1,
it is also now more natural to use the equivalent statistical entropy definition

S = −kB
∑

i

Pi ln Pi (2.4)

This relation can be used to calculate entropy more or less directly from the confor-
mational distributions obtained in molecular simulations.

The entropy S and internal energy U of the system can be combined into the
master equation that constitutes the definition of Helmholtz’s free energy

A = U − TS (2.5)

A fundamental condition in thermodynamics is that A is constant for a system at con-
stant N , V and T (that is, A is constant for a member of a NVT-ensemble). Using
this in combination with Equations 2.3, 2.4 and the obvious relation

∑
i Pi = 1, al-

lows for the derivation of Boltzmann’s distribution law for the probability of microstate
i with energy Ei:

Pi = e−Ei/kBT∑
i e−Ei/kBT

(2.6)

The normalisation denominator in Eq. 2.6 is known as the (canonical) partition func-
tion Q. It is a function of the number of molecules (N ), volume (V ) and temperature
(T ). Hence Q(N, V, T ) can be written as:

Q (N, V, T ) =
∑

i

e−Ei/kBT (2.7)

Hence, by combining Eq. 2.3 and Eq. 2.6 the internal energy of the system is
given as the (Boltzmann) average over all explored microstates:

U =
∑

i Eie
−Ei/kBT

Q
(2.8)

In principle, even though it is very difficult in practice for most systems, it is possible
to specify the system’s energy levels Ei once the volume V and chemical composition
(i.e. number of molecules of each species) and their mutual interactions are known.

Now, from the relations above it is easy to show that the internal energy is given
by the derivative of the partition function with respect to temperature:

U = kBT 2
(

∂ ln Q

∂T

)
V,N

(2.9)
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which in turn is related to the internal energy through the Gibbs–Helmholtz equation
of thermodynamics,

U = −T 2
(

∂(A/T )
∂T

)
V

(2.10)

By comparing Eq. 2.9 and Eq. 2.10, we find that the Helmholtz’s free energy can be
calculated directly from the partition function as:

A = −kBT ln Q (2.11)

Finally, according to one of the fundamental equations in thermodynamics, the en-
tropy of the system can then be evaluated as

S = −
(

∂A

∂T

)
V

= kB ln Q + U

T
(2.12)

Of course, this expression for S can also be obtained more directly by inserting the
Boltzmann distribution law (Eq. 2.6) into the entropy definition (Eq. 2.4).

In the NVT ensemble, the number of particles, volume and temperature remain
constant. In practice, it is desirable to allow fluctuations of the volume so that the
pressure can be constant. This ensemble is referred as the isothermal–isobaric or NPT
ensemble. The derivation of the partition function for the NPT ensemble is quite
similar to that for the NVT ensemble. However, in treating the NPT ensemble we
have to take into account the system’s volume. The free energy of the NPT ensemble
is known as Gibbs free energy (G), which is similar to Helmholtz’s free energy (A),
except for the addition of a pressure–volume term:

G = U + PV − TS (2.13)

For a classical system, we describe the accessible energies as a function of momen-
tum (p) and position (r) vectors (6N coordinates) [9]. Assuming these are continu-
ous variables, we can express the partition function as:

Z =
∫ ∫

e−βH(rN ,pN )drN dpN (2.14)

where β = (kBT )−1 and H(rN ,pN ) is the Hamiltonian which is the sum of the
kinetic and potential energy (determined by the momentum and position values). Let
us consider a macroscopic equilibrium observable O (for example it can be the total
energy or pressure of the system). The average value of the observable can be expressed
as:

⟨O⟩ensemble = 1
Z

∫
O(rN ,pN )e−βH(rN ,pN )drN dpN (2.15)

According the Ergodic hypothesis, the long time average of an observable is equal
to the ensemble average:

⟨O⟩ensemble = ⟨O⟩time (2.16)
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where ⟨O⟩time is written as:

⟨O⟩time = lim
τ→∞

1
τ

∫ τ

t=0
O(rN (t),pN (t))dt ≈ 1

M

M∑
k=1

O(rN
k ,pN

k ) (2.17)

where M is the number of configurations.
One can use different sampling algorithms (e.g. molecular dynamics or Monte

Carlo simulation) to sample the configurational space. From Eq. 2.13, one can see
that the absolute Gibbs free energy of a system is related to the partition function.
Theoretically, it is possible to calculate the free energy of a macroscopic system from
its partition function by taking into account each accessible microstate of the system
and its corresponding energy. But it will require an extensive sampling of the configu-
rational space, which is impractical even for a small system. We are mainly interested
in calculating free energy differences, not the absolute free energies of systems. The
change in free energy between two states (A and B) can be expressed in terms of the
ratio between the corresponding partition functions ZA and ZB:

∆A→BG = −kBT ln ZB
ZA

(2.18)

This is analogous to Eq. 2.11. If one assumes a classical system (Eq. 2.14), then the
identical microstates between two macro-states (A and B) cancel out which reduces
the problem to sampling the phase space that differs between A and B [9].

In the next chapters, I will introduce two sampling algorithms, molecular dy-
namics and metadynamics. I will also touch upon different methods to calculate free
energy differences in a macro-molecular systems.





Chapter 3

Molecular Dynamics

everything that living things do can
be understood in terms of the
jigglings and wigglings of atoms

Richard P. Feynman

Molecular dynamics simulation (MD) is a sampling method that generates time-
series of configurations corresponding to the thermal fluctuations of an equilibrium
system. A sufficiently long MD simulation, i.e. one that samples enough of the
possible conformations of a system, can be used to extract experimentally relevant
information, such as kinetics, lifetime distributions, etc. However, one might ask
whether it is possible for classical MD to go enough of the conformations of a bio-
logical macromolecule within reasonable time (Figure 3.1) [12, 13]? We will address
this question later, but for now let us focus on MD simulations.

The first MD simulation of a simple protein folding was published in 1977 [15].
Since then, MD simulations have been routinely used to investigate structure, confor-
mational dynamics and thermodynamics associated with biological macromolecules
[16, 17, 18, 19]. This section mainly deals with some key principles behind MD
simulation.

Classical MD simulations involve numerical integration of Newton’s equations of
motion. According to Newton’s second law, the force (F ) acting on a particle of mass
m is:

F = ma = m
dv

dt
= m

d2r

dt2 (3.1)

where a is the acceleration, v is the velocity, and r represents the coordinates of the
particle. The force can also be expressed as the gradient of the potential energy V :

F = −∇V (3.2)

9
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10-15

fs
10-12

ps
10-9

ns
10-6

ms
10-3

ms 1s >1s

Vibrational motion

Rotational motion

Helical folding

Hairpin folding

Loop dynamics

Ligand binding/unbinding

Protein folding

Timescale associated with classical MD simulation

Figure 3.1: Timescale of specific biological processes that one can capture with classical MD simulation [14].

Using Eq. 3.1 and Eq. 3.2, acceleration a can be expressed in terms of the gradient
of the potential energy:

a = − 1
m
∇V (3.3)

Hence, in order to generate a molecular dynamics trajectory one needs to know the
initial position of atoms, the initial distribution of velocities and the potential energy
surface. The equation of motion is deterministic, which means that positions and
velocities at t = 0 determine the positions and velocities at some other time, t. In
biomolecular simulation, the initial positions (co-ordinates) are typically obtained
from experiments such as X-ray, NMR, or Cryo-EM.

3.1 Integration Algorithms

Integration algorithms assume that the position r and velocity v of an atom can be
approximated by Taylor series [20]:

r(t + ∆t) = r(t) + v(t)∆t + 1
2
a(t)∆t2 + ... (3.4a)

v(t + ∆t) = v(t) + a(t)∆t + 1
2
b(t)∆t2 + ... (3.4b)
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The choice of time-step (∆t) is critical to perform MD simulations. Often, the fastest
motion is the vibrations of bonds involving hydrogen atoms. One can choose a time-
step of typically 0.5 fs which will allow such vibrations. Alternatively, if the bond
lengths associated with hydrogen atoms are kept fixed using some constraint algo-
rithm (e.g. SHAKE [21] or LINCS [22], then one can use a slightly larger time-step
(typically 2 fs). Over the years, several algorithms have been developed for integrating
the equations of motions e.g. verlet, leap-frog, velocity-verlet etc [20]. As an example,
I will briefly describe the leap-frog algorithm, which is a commonly used algorithm.

In case of the leap-frog algorithm, the velocities at time t + 1/2∆t are calculated
using velocities at time t−1/2∆t and the acceleration a at time t [23]. The positions
r at time t + ∆t are calculated using positions at time t together with previously cal-
culated velocities. The velocities leap over the positions and the positions leap over the
velocities just like a frog, hence the name leap-frog (Figure 3.2). An advantage of this
algorithm is that the velocities are explicitly calculated, whereas a disadvantage is that
the velocities are not calculated at the same time as the positions, which compromises
its precision. Thus, the leap-frog algorithm is

v

(
t + 1

2
∆t

)
= v

(
t − 1

2
∆t

)
+ a(t)∆t (3.5a)

r(t + ∆t) = r(t) + v

(
t + 1

2
∆t

)
∆t (3.5b)

and the velocities at time t can be approximated as:

v(t) = 1
2

[
v

(
t − 1

2
∆t

)
+ v

(
t + 1

2
∆t

)]
(3.5c)

t0 t5

r0 r1 r2 r3 r4 r5

t2 t3 t4

v1/2 v3/2 v5/2 v7/2 v9/2

t1

Figure 3.2: Schematic diagram of leap-frog algorithm.

3.2 Force Fields: potential energy functions

Biomolecules consist of many atoms, which makes it very difficult to study them
using full quantum-mechanical calculations. Empirical potential energy functions
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provide an attractive alternative that is computationally cheap compared to quantum
mechanics. Potential energy functions are often referred to as force fields [24, 25, 26].
The functional form of these force fields defines the potential energy of the system.
The current generation of force fields provides a reasonably good compromise between
accuracy and computational efficiency.

A typical potential energy function can be divided into two terms, representing
the bonded and nonbonded interactions:

V(R) = Vbonded(R) + Vnonbonded(R) (3.6)

The bonded interactions comprise three terms:

Vbonded(R) =
∑

bonds
kb(l − l0)2 +

∑
angles

ka(θ − θ0)2

+
∑

torsions
kϕ[1 + cos(nϕ − γ)]

(3.7)

The three bonded terms of the potential energy represent bond stretching, angle bend-
ing and rotation around torsion angles, with l being the distance between two cova-
lently bound atoms, θ the angle between three atoms (Figure 3.3), ϕ the torsional
angle, and kb, l0, ka, θ0, kϕ, n, and γ fixed parameters (summation indices have
been omitted for simplicity).

The nonbonded term is the sum of Lennard–Jones and Coulomb interactions
between all pairs of atoms:

Vnonbonded(R) =
∑

i

∑
j ̸=i

4ϵij

(σij

rij

)12

−
(

σij

rij

)6


+
∑

i

∑
j ̸=i

qiqj

4πϵ0rij

(3.8)

The Lennard–Jones potential energy describes the exchange repulsion and dispersion
attraction between all pairs of atoms i and j, with rij being the distance between two
atoms and σij and ϵij being fixed parameters. The Coulomb interaction describes
attraction or repulsion between two atoms with partial atomic charges qi and qj sep-
arated by distance rij .

Over the years, several force fields were developed for organic molecules, proteins,
nucleic acids, lipids etc. In our study, the protein was treated using Amber FF14SB
[27] and CHARMM36 [28] force fields. The organic molecules were described using
GAFF [29] and OPLS [30] force fields.

The most time-consuming part in a MD simulation is to calculate the non-bonded
energy terms. As can be seen in Eq. 3.8, an explicit calculation of the non-bonded
energy term between every pair of atoms increases the complexity as the square of
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Figure 3.3: Schematic diagram of different types of interaction energies accounted in a force field.

the number of atoms (N2). A popular strategy is to set a cutoff distance beyond
which interactions are ignored. Accounting for long-range interactions just by in-
creasing the cutoff is highly computationally demanding [24]. In recent years, several
models have been developed which permit the inclusion of long-range interactions in
biomolecular simulation [31]. Ewald summation is considered to be one of the better
approximations to treat long-range electrostatic interactions for a periodic system. A
variant of Ewald summation, known as particle-mesh Ewald has been used frequently
[32, 31, 33].

3.3 Periodic boundary conditions (PBC)

Enabling periodic boundary conditions (PBC) makes it possible to run simulations
on a relatively small number of particles, in such way that every particle still experi-
ences forces as if it were in bulk solution. A central box is constructed by immersing
the solute in water molecules. The box is then replicated in all directions. During sim-
ulation, if a particle drifts out of the central box it ends up in the replica box. Forces
on the particle are calculated from particles within same box as well as replica boxes.
The minimum image convention is used to avoid double counting¹. The simplest box
is a cube. For globular proteins, a truncated octahedron box is often preferred over
the cubic box. The shape of the truncated octahedron reduces the number of water
molecules that need to be simulated compared to the cubic box, which speeds up the
calculation.

¹Only the shortest distances between a pair of atoms are counted, irrespective of their position in
the same box or replica box.
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3.4 Water models

Water plays an important role in screening of electrostatic interactions. The implicit
way to treat the water is to include an effective dielectric screening constant. This is a
very crude approximation. In explicit treatment of water, the electrostatic interactions
are expressed in terms of Coulomb’s law and the dispersion and repulsive forces are
expressed in terms of Lennard-Jones potential [34]. Figure 3.4 shows a representation
of some typical water models used in MD simulations [35].

Figure 3.4: Shape of different water models used in MD simulation [36]. In 4-site water model the dummy atom, M has
a negative charge to improve the electrostatic distribution.

MD simulation has found its application in several fields of science, such as bio-
chemistry, materials science, atmospheric chemistry, solution chemistry, toxicology,
etc. In this thesis, we will strictly limit our discussion to biomolecular simulations,
which can be used to study conformational dynamics, protein folding, ligand bind-
ing/unbinding, effect of mutations, allosteric regulations, etc [16].

3.5 Limitations of MD simulation

In recent years we have seen a significant improvement in computational power. MD
simulations have leveraged upon the development of powerful hardware to understand
complex motions associated with macromolecules. However, MD simulation still
suffers from several shortcomings. A couple are:

1. The timescale problem: The integration time-step of MD is usually in the
order of femtoseconds (fs). However, many interesting slow conformational
changes (e.g. ligand binding/unbinding, loop dynamics, protein folding/un-
folding) happen in the timescale of micro/milliseconds or longer (Figure 3.1).
It is not routinely feasible to sample conformational changes in the millisecond
regime for any system with more than a thousand atoms [13].

The energy landscape of a biomolecule is characterised by different metastable
states that are separated by high kinetic barriers. Due to an integration time-
step of a few femtoseconds for a classical MD simulation, crossing these kinetic
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barriers within reasonable computational resources becomes a daunting chal-
lenge [37].

2. The accuracy of the force fields: Empirical force fields are approximations and
one needs some kind of experience to know what to trust in a MD simulation
[38, 39]. Moreover, classical MD simulations cannot capture formation and
breaking of covalent bonds. Hence, it is impossible to study reaction mecha-
nisms using classical MD simulation.

In the next chapter I will discuss some methods that were developed to address the
first limitation, the timescale problem.





Chapter 4

Metadynamics: overcoming barriers

Now everybody’s sampling

Missy Elliot, American Musician

The energy landscape of a biomolecule is rugged, meaning that it is characterised
by numerous metastable basins which are separated by high kinetic barriers. Crossing
a kinetic barrier to sample a metastable state is therefore a rare event¹, and can be inac-
cessible in classical MD simulations due to the timescale problem. In last two decades,
several methods have been developed to accelerate the sampling of rare events. These
methods are known as enhanced sampling methods [40, 41, 42, 43, 44]. Enhanced
sampling methods can be divided into two categories: collective-variable based (such
as metadynamics, umbrella sampling, steered MD) and collective-variable free meth-
ods (such as parallel-tempering MD, accelerated MD). Collective variables (CVs) or
reaction co-ordinates are functions of atomic co-ordinates that differ between two or
more metastable states within the configurational space [45].

Here, I will mainly discussmetadynamics, which is a CV-based enhanced-sampling
method. Over the years, several reviews have been written on metadynamics which
sums up the key concepts and applications [46, 47, 48, 43, 49].

4.1 Metadynamics

Metadynamics involves the idea of filling the free energy minima [50, 45] with an
external bias potential. Addition of bias pushes the system away from local free energy
minima that have been explored by the simulation and thus accelerates sampling of
configurational space. The bias is applied along pre-defined CVs. CVs are generally
low-dimensional representations of atomic coordinates. A good CV should be able to

¹events that occur with low frequency

17
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distinguish key metastable states along slow degrees of freedom [45]. The selection of
a suitable CV is not trivial and is still an active area of research that I will touch upon
in a later section.

In metadynamics the bias is deposited as a sum of Gaussian shaped hills. The
metadynamics bias potential at time t along a set of d chosen CVs, collectively denoted
by s (s is a function of atomic coordinates R) can be written as:

V (s, t) =
∑

kτ<t

W (kτ) exp
(

−
d∑

i=1

(si − si(R(kτ)))2

2σ2
i

)
(4.1)

where W (kτ) is the Gaussian height, τ is the Gaussian deposition stride and σi is the
Gaussian width of the ith CV. The Gaussian width is usually chosen by monitoring
the fluctuation of the CV in a MD simulation.

Assume that a free energy surface (FES) is described by two local minima A and
B. A metadynamics simulation starts with the system being in free energy minimum
B. As time goes by, the bias is deposited in basin B which increases the underlying
potential. After some time t, the system jumps out of basin B and falls into basin A.
Now, the bias starts accumulating in basin A. When basin A is also filled up by bias
potential, the free energy surface flattens out and the system can fluctuate freely along
the flattened FES (Figure 4.1).
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Time

CV

Figure 4.1: Time evolution of a typical metadynamics simulation. Basin A and B are separated by kinetic barrier. Over
the time, external bias potential builds up in basin B and the system escapes to basin A. Once the bias fills up
basin A, the system shows diffusive behaviour along CV space.

If the external bias potential V (s) converges to a particular value, then one can
estimate the underlying unbiased free energy surface from metadynamics using the
following expression:

V (s, t → ∞) = G(s) + C (4.2)

Here, C is an irrelevant constant and G(s) is the free energy surface along the CV
s(R):

G(s) = − 1
β

ln
(∫

δ(s − s(R))e−βV(R) dR

)
(4.3)

where V(R) is the potential energy. In theory, at the end of a metadynamics simu-
lation, the underlying free energy surface should be constant (Eq. 4.2). However, as
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the repulsive bias potential is continuously deposited during the simulation, it really
never converges but oscillates around a particular value.

In order to solve this problem, a smoothly converging variant of metadynamics
known as Well-tempered metadynamics (WT-Metad) [51] was developed, in which
the Gaussian height W decreases with increasing bias potential V (s, t):

W (t) = W0e
− 1

γ−1 βV (s,t) (4.4)

where W0 is the initial Gaussian height and γ is the bias factor which can be expressed
as

γ = T + ∆T

T
(4.5)

T is the temperature and ∆T is an adjustable input parameter with the dimension of
temperature. The choice of ∆T regulates the exploration of the free energy surface.
When ∆T → 0, the simulation corresponds to a MD simulation, whereas when
∆T → ∞ it corresponds to a standard metadynamics (non well-tempered) simula-
tion. For γ > 1 and t → ∞, we have that W (t) → 0 and the bias potential V (s, t)
converges to:

V (s, t) = −
(

1 − 1
γ

)
G(s) + c(t) (4.6)

where c(t) can be expressed as:

c(t) = 1
β

ln
∫

e−βG(s) ds∫
e−β(G(s)+V (s,t)) ds

= 1
β

ln
∫

e
− γ

γ−1 βV (s,t)
ds∫

e
− 1

γ−1 βV (s,t)
ds

(4.7)

Addition of bias in metadynamics alters the unbiased probability distribution P (R).
One can express the time dependent biased probability distribution, PV as:

PV (R, t) = e−β(V(R)+V (s(R),t))∫
e−β(V(R)+V (s(R),t)) dR

(4.8)

One can extract the unbiased probability distribution from a biased distribution by
re-weighting it according to the Boltzmann distribution law:

P (R) = PV (R, t)eβ(V (s(R),t)−c(t)) (4.9)

Different algorithms have been developed to recover unbiased probability distribu-
tion from a biased simulation [52, 53, 54]. Together, they are known as re-weighting
algorithms. The possibility to extract the unbiased probability distribution of any
reaction-coordinate using re-weighting makes WT-MetaD a powerful sampling ap-
proach.
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4.2 Convergence of metadynamics

System starts in a local minimum where the bias starts depositing. As the simulation
progress, the bias starts to grow and the Gaussian height decreases as in Eq. 4.4. After
sometime, the system escapes the local minimum and stars sampling new regions in
the conformational space. When this happens the Gaussian height is readjusted to its
initial value and starts decreasing again. In the long run, Gaussian height gets smaller
and smaller and the system shows a diffusive behaviour in the CV space. The free
energy of WT-Metad along a good CV (discussed in a later section) should converge
as in Eq 4.6. Voth and co-workers demonstrated that WT-Metad converges asymp-
totically [55]. However, the time required for convergence cannot be predicted.

At any point in time in a metadynamics simulation, one can calculate the free
energy difference between two local minima along a chosen CV as a function of sim-
ulation time (Figure 4.2). In the long run, Gaussian heights gets smaller and smaller
and free energy fluctuates asymptotically. A converged free energy profile can be ob-
tained by averaging over a time-interval where the system shows diffusive behaviour
along CV space [56].

4.3 Choice of collective variable

Metadynamics is dependent on the choice of CV. Theoretically, one can use any
atomic co-ordinates as CV in a metadynamics simulation. In practice, a badly chosen
CV can cause irreversible changes in a system by pushing the system towards an un-
physically high free energy region. A good CV should able to discriminate between
different metastable states, i.e. each metastable state should correspond to different
values of the CV. If this condition is violated, the system remains stuck in a local free
energy minimum during the metadynamics simulation [45]. If one chooses a CV that
ignores orthogonal degrees of freedom (separated by high free energy barriers), then
metadynamics experiences hysteresis, meaning that it gets stuck in some intermediate
free energy basin along orthogonal variables. For example, assume that we want to
capture a protein–ligand binding process. A natural choice of CV would be the dis-
tance between the ligand and the binding site of the protein. Imagine that the entry
of the ligand is occasionally blocked by the presence of a long-lived water molecule
in the binding site. In this case, an ideal second CV should capture the dynamics of
the water molecule in the binding site. Failure to incorporate such a second CV will
create hysteresis. Thus, selection of good CVs is far from trivial. One needs some
amount of prior information in order to develop an optimal set of CVs. This can be
achieved by monitoring some interesting fluctuations in a MD simulation or using
information from experiments.

The problem of selecting optimum CVs is associated with the complex high di-
mensional configurational space. One way to solve this problem is to project the
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Figure 4.2: Reweighted free energy surface along χ1 angle (A) in two independent (different initial starting velocities)
WT-Metad simulations using χ1 and χ2 angles as CVs. Distribution of χ1 angle centred around ± π

3 radian
is denoted as normal, whereas distribution centred around ±π radian is denoted as flipped). The first step
to check convergence is to calculate free energy difference between normal (N) and flipped (F) states along
χ1 as a function of simulation time (B). One can see that the free energy is fluctuating around an average
value for the two independent metadynamics runs. Sampling of χ1 and χ2 angles during metadynamics
simulations shows diffusive behaviour along CV space (C and D). Free energy profile of χ1 as a function of
simulation time from the last ∼200 ns of metadynamics simulation (E and F). In the last part, the free energy
profiles look similar, apart from a constant offset. Using all these observations, we can say that these two
independent metadynamics simulations reached convergence.

high dimensional space onto a low-dimensional sub-space (i.e. defined by few eigen-
vectors), using dimensionality reduction and machine learning algorithms [57, 58].
Dimensionality reduction methods such as principal component analysis (PCA) and
time-lagged independent component analysis (tICA) have been used to generate CVs
for metadynamics.

PCA does a maximal variance projection of the high-dimensional data onto a
low-dimensional subspace. The orthogonal axes (principal components) of the low-
dimensional subspace represents directions of maximum variance. In contrast to PCA,
tICA captures high autocorrelation linear combinations of the high-dimensional data.
The directions of maximal autocorrelation are referred to as time-lagged independent
components (tICs). Let’s say that in a MD simulation the loop region of a small
protein remains highly flexible and the helix region undergoes a rare transition due
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to rotation of side chains. In this case, the motion with high variance (loop motion)
will be captured by the first few principal components. On the other hand, the rota-
tion of side-chains, which is the motion with high autocorrelation, will be captured
by the first few tICs. Because of their ability to capture conformational motions in
biomoecules (Figure 4.3), PCs and tICs are used as CVs in metadynamics [59, 60, 61].

Figure 4.3: PCA and tICA performed on the pairwise distance between heavy atoms in a MD simulation of alanine
dipeptide. Both PCA and tICA yields projections with some defined basins. However, PCA resolves only one
slow process (see the timescale plot) whereas, tICA captured three slow process in MD simulation (source:
PyEMMA [62] tutorial)

4.4 Reconnaissance metadynamics

Incorporation of many low-dimensional CVs in metadynamics remains a challenge.
Reconnaissance metadynamics (Recon-Metad) leverages upon dimensionality reduc-
tion (PCA) and clustering (Gaussian mixture model) algorithms in order to be effec-
tive with a larger number of CVs [63]. In Recon-Metad, the bias potential is deposited
along a mixture of basins which are a low-dimensional representation of the underly-
ing high-dimensional FES. The basins are identified dynamically at regular intervals
using a combination of PCA and the Gaussian mixture clustering algorithm [64, 65].
The biasing leads to escape from the already sampled basins and exploration of new
areas of conformational space. Recon-Metad has been used mainly for prediction of
binding poses [66, 67] and sampling the conformational space of small proteins [63].

4.5 Replica-exchange with metadynamics

Replica-exchange MD (REMD) is a CV free method for enhanced sampling, where
the system is accelerated by modifying the original Hamiltonian of the system. One of
the most popular variants of REMD is parallel tempering [68]. In parallel tempering
(PT), several replicas are simulated with the same potential energy function but at
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different temperatures. During the simulation, exchange of configurations between
two neighbouring replicas (Figure 4.4) are attempted using the following acceptance
probability:

p(i → j) = min
{

1, e∆PT
i,j

}
(4.10)

∆PT
i,j is written as:

∆PT
i,j =

(
1

kBTi
− 1

kBTj

)
(V(Ri) − V(Rj)) (4.11)

where Ri and Rj are the coordinates of two replicas at temperatures Ti and Tj re-
spectively and V(Ri) and V(Rj) are the potential energies of the two replicas i and
j. The efficiency of exchange depends on how much overlap there is between the
potential energy distributions of the replicas.
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Figure 4.4: Schematics diagram of parallel tempering. The black arrows describe the exchange process between replicas.

One can easily combine a CV based method such as metadynamics with PT.
The resulting PT-MetaD algorithm has the following modified acceptance probability
which takes into account the metadynamics bias:

∆PTMetaD
i,j = ∆PT

i,j + 1
kBTi

[
V i

G(s(Ri), t) − V i
G(s(Rj), t)

]
+ 1

kBTj

[
V j

G(s(Rj), t) − V j
G(s(Ri), t)

]
where V i

G and V j
G are metadynamics bias potentials acting on the ith and jth repli-

cas, respectively. The effect of neglecting slow degrees of freedom in metadynamics
(due to a limited number of CVs) can be compensated by PT, which increases the
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probability to cross moderate to high free energy barriers along all degrees of freedom
[69]. In my study, I used a variant of PT-Metad that enhances fluctuation within a
well-tempered ensemble (WTE). In the WTE, bias is applied to the system’s potential
energy, which increases the fluctuations while keeping the average energy close to that
of the canonical ensemble [70]. It increases the overlap between the potential energy
distributions of neighboring replicas, so that fewer replicas are needed.

PT-Metad scales poorly with system size. Hence, running PT-Metad for a big
system is highly computationally demanding.



Chapter 5

Molecular recognition

our cells engage in protein
production, and many of those
proteins are enzymes responsible for
the chemistry of life

Randy Schekman

Molecular recognition is a process by which two or more molecules bind to each
other through non-covalent interactions. In this thesis, I mainly focus on protein–
ligand binding. Binding of a protein P and ligand L forms a protein–ligand PL com-
plex. The binding process can be expressed as:

P + L kon−−⇀↽−−
koff

PL (5.1)

where kon and koff are the binding and unbinding rate constants. If [PL], [L] and
[P] denote the equilibrium concentrations of the protein–ligand complex, the protein
and the free ligand, respectively, the binding constant Kb is defined as:

Kb = kon
koff

= [PL]
[P][L]

= 1
Kd

(5.2)

where Kd is the dissociation constant. The Gibbs free energy of binding, ∆Gb can
be written as a function of binding constant, Kb:¹

∆bG = −RT ln Kb (5.3)

¹Standard concentration is implicitly assumed in all these equations. Hence, I somewhat sloppy
omit the 
-symbol that should be present at all standard state differences.

25
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where T is the temperature and R is the gas constant. A more negative free energy cor-
responds to more favourable binding. ∆bG is further divided into two components,
the enthalpy ∆bH and entropy ∆bS of binding:

∆bG = ∆bH − T∆bS (5.4)

The enthalpic part mainly depends on the strength of interactions between the pro-
tein and the ligand. These contributions include hydrogen bonds, electrostatic inter-
actions, ionic interactions, van-der Waals interactions etc [71, 72]. However, there
might also be significant contributions from solvation processes. The binding entropy
∆bS can be decomposed into three terms:

∆bS = ∆Ssolv + ∆Sconf + ∆Sr/t (5.5)

where ∆Ssolv is the change in solvent entropy upon ligand binding, mainly due to
release of tightly-bound/buried water molecules. ∆Sconf is the change in conforma-
tional degrees of freedom of protein and ligand upon binding. ∆Sr/t is the change
in translational and rotational degrees of freedom for both protein and ligand upon
binding.

Over the years, several computational methods have been developed to predict
protein–ligand binding-free energy [73, 74]. These methods can be roughly divided
into three categories: (i) pathway methods, which involve rigorous free-energy paths
and thus would in principle give the exact result if the force field was perfect and the
sampling sufficient, (ii) endpoint methods, which are also based on extensive sam-
pling, but with an approximate statistical-mechanical treatment that only considers
the end-states, and (iii) molecular docking methods that are based on empirical free-
energy expressions that are faster to evaluate.

5.1 Alchemical transformation

The most commonly used pathway methods are based on so-called alchemical trans-
formations and typically involve the calculation of a relative binding free energy,
∆∆bG between two similar ligands (A and B). This process can be visualised as a
thermodynamic cycle as in Figure 5.1. The relative binding free energy can be written
as:

∆∆bG = ∆bGB − ∆bGA = ∆GA→B
bound − ∆GA→B

solv (5.6)

The idea is to calculate the free energy along the vertical lines, i.e. to alchemically trans-
form one ligand into the other in the bound (∆Gbound) and solvated state (∆Gsolv),
respectively. The protein without ligand does not need to be simulated, which facili-
tates convergence. Each transformation works by dividing the path between the end
states into a series of intermediate, unphysical states, in which one ligand is changed
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into the other by turning off the interactions of one ligand with the surroundings,
while turning on the interactions of the other ligand with the surroundings [75]. Af-
ter extensive sampling of all intermediate states, the free energy can be calculated by
free energy perturbation [76], thermodynamic integration [77], or Bennett accep-
tance ratio (BAR) [78].

Relative binding free energy calculations are more efficient when two ligands are
similar to each other. However, a slight modification in ligand structure can make a
big change in its binding mode. Knowledge of the binding mode is necessary for a
reliable estimation of the free energy.

A
A

B B

∆G
A
b

∆G
B
b

∆Gbound∆Gsolv

Figure 5.1: Pictorial representation of a thermodynamic cycle for relative binding free energy, ∆∆Gb between two ligand
A and B. Explicit waters are indicated as red circles.

5.2 Funnel metadynamics

Direct calculation of the binding free energy along the horizontal lines in Figure 5.1
is more computationally expensive due to the large difference between the end states.
The binding of a ligand to a protein is a slow process where changes in solvation
plays a key role. In practice, sampling along horizontal lines needs to be accelerated
by biasing along carefully chosen reaction co-ordinates that promote frequent bind-
ing/unbinding.

Funnel metadynamics is an enhanced sampling method that aims at accurate es-
timation of binding free energy by sampling along the ligand binding path (thus, it
is also a pathway method). In regular well-tempered metadynamics, one can choose
a CV such as the distance between binding site of the protein and ligand that facili-
tates ligand binding/unbinding. As soon as the ligand leaves the binding site, it starts
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sampling all possible conformations in the solvated state, which takes a long time to
converge. Funnel metadynamics facilitates frequent binding/unbinding by using a
funnel like restraint potential (Figure 5.2) that reduces the sampling of the unbound
state [79]. The effect of the restraint potential can be rigorously taken into account
and the free energy difference between the bound and unbound state, ∆bG can be
written in terms of one-dimensional PMF w(z):

e−β∆bG = C
Sue−β∆Gsite

∫
site

e−β[w(z)−wref ]dz (5.7)

where C
 = 1/1.660 Å−3 is the standard concentration, Su is the cross-section
of the funnel cylinder, ∆Gsite is the change in the free energy for restraining the
bound ligand. wref corresponds to the reference value of the PMF in the unbound
state, which in practice is calculated by taking the average of w(z) over some chosen
interval along z. The radius of the cylindrical section of the funnel should be such that
it doesn’t affect the natural fluctuation of the ligand in the binding site. In that case,
∆Gsite = 0. A large radius increases the sampling of the unbound state, whereas a
small radius affects the equilibrium dynamics of the binding state. In practice, test
calculations with a few different choices are performed and the time-evolution of
ligand binding/unbinding (along the z axis) is monitored to select an optimal radius.
Funnel metadynamics assumes that one has previous knowledge of the binding site.
However, in principle it does not require a priori information about the binding mode
of the ligand.

ZCC = 1.0 nm

Rcyl = 0.2 nm

Z = 0 

Virtual atom

α = 
45

°

Z 

Figure 5.2: Pictorial representation of a model funnel potential used to calculate binding free energy in a host-guest
system [80]. α defines the amplitude of the cone, Rcyl defines the radius of the cylindrical section, Z is the
axis defined to study binding/unbinding and ZCC is the distance where the potential switches from cone to
cylindrical shape.

A typical CV in funnel metadynamics is the distance between the heavy atoms of
the binding site and the ligand. However, the binding process may involve other slow
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degrees of freedom such as rotation of the ligand, conformational dynamics of the
protein, desolvation of buried water from the binding site, etc. Ignoring orthogonal
slow degrees of freedom introduces hysteresis, which prevents frequent sampling of
unbinding/binding and makes the simulation take an infinitely long time to converge
[80].

5.3 MM/PBSA

End-point methods sample the protein–ligand complex as well as the protein and lig-
and in the unbound states, and calculate the free energy difference in an approximate
way by taking the difference between absolute free energies corresponding to these
states. One of the most popular end-point methods is molecular mechanics Poisson–
Boltzmann surface area (MM/PBSA) [81]. In MM/PBSA method, the binding free
energy of a protein–ligand complex is written as:

∆bG = ∆EMM + ∆Gsol − T∆Sconf (5.8)

∆EMM, ∆Gsol and T∆Sconf corresponds to changes in gas-phase molecular me-
chanics energy, solvation free energy and conformational entropy upon ligand bind-
ing, respectively.

The individual components of Eq. 5.8 can be further expanded as follows:

∆EMM = ∆Eint + ∆Eelec + ∆EvdW (5.9)

where ∆Eint, ∆Eelec and ∆EvdW are the changes in internal (bond angles and tor-
sion angles), electrostatic and van-der Waals energy, respectively. Furthermore,

∆Gsol = ∆GPB + ∆GSA (5.10)

where ∆GPB and ∆GSA denotes the polar and non-polar contributions respectively.
The polar contribution is approximated by the Poisson–Boltzmann (PB) method,
whereas the non-polar contribution is estimated from the solvent accessible surface
area (SASA):

∆GSA = γ · SASA + b (5.11)

where γ and b are empirical parameters.
The change in conformational entropy (Eq. 5.8) is estimated using Normal Mode

Analysis (NMA). In practice, MM/PBSA analysis between similar complexes often
ignores the entropic term.

Each individual energy term in the previous equations is evaluated as an average
over snapshots along the MD trajectory. In principle, MM/PBSA requires indepen-
dent MD simulations for the protein, ligand, and protein–ligand complex, which is
computationally demanding. In practice, one usually makes the approximation that
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no conformational changes happen upon binding, so that snapshots of all three species
can be obtained from a single MD simulation of the protein–ligand complex. The
main advantage of this approach is that the simulations can be much shorter, because
the calculation of averages converges much faster due to error cancellation. On the
other hand, it ignores changes in the conformation of ligand and protein upon bind-
ing. It also ignores entropy of water molecules in the binding site before and after
ligand binding [81, 82]. Ignoring these contributions leads to larger error and poor
reliability.

MM/PBSA also suffers from convergence problem. MM/PBSA analysis of a sin-
gle long MD simulation underestimates the statistical error in the result. One needs to
perform many independent simulations (with different starting velocities) using the
same starting structure in order to generate reliable precision [83]. The performance
of MM/PBSA is highly dependent on the studied system. MM/PBSA has been used
in conjunction with docking to evaluate docking poses, refine docking scores and
determine structural stability.

5.4 Molecular docking

Docking is a computational method which uses a combination of scoring functions
and search algorithms to predict binding modes and affinities of ligands [84, 85, 86,
87, 88]. Conformational degrees of freedom associated with ligand and protein side-
chains (in the binding site) make the pose prediction a conformational search prob-
lem. Molecular docking uses search algorithms to perform the conformational search.
The majority of the search algorithms deal with ligand flexibility, whereas a few al-
gorithms have been developed to consider flexibility of binding site residues within
a framework known as flexible docking. During the conformational search, the al-
gorithm generates several conformations (poses) of the ligand. The poses are ranked
based on binding free energy. Lower the binding free energy better the pose.

In docking, binding free energy calculations are carried out by simplified energy
functions known as scoring functions. There are three main types of scoring functions:
force-field based, empirical and knowledge-based [89, 90]. A typical force-field based
scoring function computes the enthalpic contribution to the binding as a sum of
van der Waals and electrostatic interactions. The solvation effect is approximated by
implicit solvent models [91]. Entropy plays a key role in protein–ligand binding.
However, computing the entropic contribution is time consuming. Incorporation
of entropy in the scoring function is still a challenge in molecular docking. Efforts
have been made in order to incorporate the conformational entropy of ligand using a
clustering approach [92].

Approximations introduced in scoring functions and conformational search al-
gorithms affect the accuracy of docking outcomes. However, it provides a compu-
tationally cheap way to screen large-scale ligand libraries against a particular protein
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(known as virtual screening). Docking has been routinely used to predict binding
poses of ligands when the experimental structure of the complex is unknown. Often,
protein–ligand complexes generated by docking are subjected to MD simulations and
end-point free-energy calculations (such as MM/PBSA), in order to check the stabil-
ity of the complex and improve the free energy estimation [93]. The combination of
docking, MD simulation and enhanced sampling in order to predict the binding pose
and free energy of binding is an attractive area of research [94].





Chapter 6

Summary of the papers

6.1 Paper I

In this paper, we have used funnel metadynamics and MM/PBSA to predict binding
free energies between a set of six guest molecules and two octa-acid hosts (OAH and
OAMe) (Figure 6.1).

OAH OAMe 

G1 G2 G3 G5 G4 

 

G6 

Figure 6.1: Structural representation of two octa-acid hosts, OAH and OAMe along with six guest molecules, G1-G6
used in our study [80].

Funnel metadynamics was performed using the distance between host-guest and
orientation of guest molecule as CVs. The binding of the guest molecule was hin-

33
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dered by the presence of water molecule trapped inside the host’s cavity. This created
hysteresis, which prevented frequent sampling of the binding event. We introduced
a restraint potential that prevented the water molecules from getting trapped in the
binding site of the host. The effect of the restraint potential was rigorously calculated
by free-energy perturbation. For OAH and OAMe systems, our predicted relative
binding free energies from funnel metadynamics agreed well with experimental results
(Figure 6.3). However, we observed poor convergence of the funnel metadynamics in
the case of OAMe-G4 (Figure 6.2). The bulky G4 guest had difficulty finding its way
back into the binding pocket of OAMe during funnel metadynamics. The conver-
gence can be improved by choosing an auxiliary CV that takes into account rotational
degrees of freedom of this bulky ligand.

OAMe-G1 OAMe-G4

Figure 6.2: Fluctuation of binding/unbinding event (projection of ligand on z axis) during well-tempered funnel meta-
dynamics with OAMe-G1 and OAMe-G4 complex using GAFF force field. The bound state was defined as:
z = 0.5 − 0.6nm., whereas for unbound state z > 1.3nm. OAMe-G4 shows fewer transitions between
unbound and bound states compared to OAMe-G1. All other complexes with OAMe resembles the fluctua-
tion of OAMe-G1.

We also performed MM/PBSA analysis on the host-guest systems. No significant
correlation was observed between MM/PBSA and the experiment. We concluded
that the approximations used in the MM/PBSA were not accurate enough to calculate
differences in binding free energy among various guest molecules.

Figure 6.3: Correlation in binding free energy between experiment and funnel metadynamics using GAFF and OPLS
force-fields. Blue, red and green represent OAMe, OAH and OAH-Gu2 complex respectively [80].
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6.2 Paper II

In this paper, we predicted the binding pose of 35 ligands with farnesoid X receptor
(FXR), using a combination of molecular docking, molecular dynamics and recon-
naissance metadynamics. We docked all ligands against all available crystal structures
of FXR (apo and another 18 crystal structures retrieved from PDB) using AutoDock
Vina. For each ligand, the top predicted docking pose (the prediction with the best
score among all included crystal structures) was used to perform MD simulations.
The end-point of the MD simulation was then used as a starting point for the recon-
naissance metadynamics (Recon-Metad) simulation. An RMSD less than 2 Å towards
the crystal structure (released by D3R team) was used to define the correct pose.

Our approach using multiple crystal structures for docking allowed us to find the
correct binding poses for 21 out of 35 ligands. Our submission was one of the most
successful submissions to the D3R Grand challenge 2 (Figure 6.4). For 8 of these lig-
ands, the correct pose was not the top pose. Inclusion of experimental protein struc-
tures (crystal structures released after the submission deadline) allowed us to predict
the correct binding poses for 29 ligands. The docked conformations (both correctly
docked and mis-docked) remained stable during the following MD simulations. MD
simulations did not provide any significant improvement in coordinate RMSD versus
the experimental structure. Using Recon-Metad simulations we explored new bind-
ing poses for the ligands. However, if started from a mis-docked pose, Recon-MetaD
simulations failed to predict the correct pose in all cases. In Recon-MetaD, the bias
was applied on the dihedrals of the ligand, which did not promote the rotation of the
ligand with respect to the protein. Protein side chains present in the binding site also
sterically hindered the ligand exploration. We hypothesised that the incorporation of
such CVs will improve docking poses using Recon-MetaD simulations.
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Figure 6.4: Performance of the submissions in D3R Grand Challenge 2. The upper panel of the histogram shows the
distribution of the number of correctly predicted ligand poses (out of 35) over all the submissions in D3R
challenge. Whereas, the lower panel of the histogram shows the results when only the first (top-predicted)
pose was considered. The filled part shows the performance of our docking result [95].

6.3 Paper III

In paper III, we used a combination of molecular dynamics and metadynamics to
understand flap dynamics of two pepsin-like aspatic proteases, Plm-II and BACE-1.
Previous computational studies suggested that a tyrosine residue present in the flap
region governs different flap conformations.

A χ1 angle distribution of the tyrosine centred around +π
3 radian or −π

3 radian
is denoted as normal, whereas a distribution centred around ±π radian is denoted as
flipped (Figure 6.5).

We performed independent (different starting velocities) MD simulations on apo
Plm-II and BACE-1. The starting conformations of BACE-1 differ in terms of the ty-
rosine orientation. MD simulations of apo Plm-II showed a tendency for the tyrosine
to remain stuck in the normal state (Figure 6.6). On the other hand, simulations start-
ing with BACE-1 remained trapped either in the normal or flipped state (Figure 6.6).
Metadynamics using torsional angles (χ1 and χ2) as CVs sampled the transition be-
tween the normal and flipped states. The free energy surface reweighted along the
torsional angles showed that the flap remains in a dynamic equilibrium between the
normal and flipped states (Figure 6.6). Hydrogen bond interactions between the tyro-
sine and neighbouring residues, Trp (tryptophan) and Asp (aspartate), were predicted
to be the dominant interactions that stabilise these states (Figure 6.5). Both MD and
metadynamics simulations sampled spontaneous flap opening in Plm-II and BACE-1.

Mutation of the tyrosine to alanine resulted in a complete flap collapse in Plm-II
and BACE-1. This is in accordance with previous experimental studies which showed
that mutation to alanine resulted in loss of activity in pepsin-like aspartic proteases.

Most of the pepsin-like aspartic proteases possess conserved tyrosine residue in
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Figure 6.5: Reweighted free energy surface projected along χ1 angle of tyrosine in case of metadynamics simulation
starting with apo Plm-II. Basins corresponds to normal and flipped states were also highlighted. H-bond
interactions with Trp and Asp are the key interactions stabilising these two states.

their flap region. Using observations from our study combined with previous ex-
perimental calculations, we predicted that the flap dynamics in pepsin-like aspartic
proteases is governed by the rotation of the tyrosine side chain.

6.4 Paper IV

In paper IV, we attempted to understand the role of local fluctuation in hydrogen
exchange (HX) of backbone amides with solvent. The core of a protein is held to-
gether by H-bond interactions between backbone amide (NH) and neighbouring
residues. Local fluctuations in a protein break the H-bond interactions and allows
solvent penetration. This results in HX between NH and hydrogen atoms of sol-
vent water molecules [96]. The free-energy difference between exchange competent
(open) conformation and the dominant (closed) conformation can be calculated from
an MD simulation by counting the number of conformations belonging to the open
(O) and closed (C) state, respectively [97]. We hypothesised that the O state, more
precisely an exchange compatible conformation (ECC) is a rare fluctuation within
the metastable broken (B) state (Figure 6.7). In the B state, backbone H-bond inter-
action involving amide is broken which leads to influx of at least one water molecule
close to the amide hydrogen.

In the millisecond MD trajectory of BPTI, the β hairpin region remained stable.
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Figure 6.6: Sampling of normal (N) and flipped (F) conformations in MD simulations using Plm-II (A-B) and BACE-1 (C-D).
Reweighted free energy surface projected on χ1 and χ2 shows that the flap remains in a dynamic equilibrium
between normal and flipped states in metadynamics simulations. Here, we presented a few representative
free energy surfaces from MD and metadynamics simulations.
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Figure 6.7: Pictorial representation of different conformational states of BPTI. In closed state backbone amide remains
H-bonded with neighbouring residue. Breaking of H-bond interaction leads to formation of metastable B
state. In B state, amide hydrogen forms H-bond interactions with solvent water molecules.
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Hence, the amides located in this region didn’t sample O conformation [97]. How-
ever, one amide (Ile18) located at the end part of the hairpin region, accessed the
open state due to local fluctuations involving neighbouring loop (residues 11 − 19
and 34 − 40). This is a typical example which connects local fluctuation in a protein
with solvent penetration, resulting in HX . In this study, we mainly focused on Ile18.
However, we also provided a general overview of the dynamics of other residues in
context of HX .

In this study, we analysed millisecond long simulation of BPTI provided by D.
E shaw group [98]. Further, we performed enhanced sampling calculations (well-
tempered metadynamics and PT metadynamics) and several short MD simulations
starting with broken conformations of Ile18. Our hypothesis that local fluctuations
in protein defines the metastable state which is responsible for HX can be seen from
Figure 6.8. Looking at the free energy surface we can say that the time-independent
component (tIC1) able to capture the transition between broken and closed state.
Breaking of H-bond interaction leads to water penetration which can be seen from the
distribution of FW in Figure 6.8. We also performed similar calculations for other
amides e.g. Gly36 and Met52. Observations from our study validates the hypothesis
that the local fluctuations in a protein defines the metastable states which is responsible
for HX in most residues of BPTI.
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Figure 6.8: 2D FES for Ile18 calculated from PT metadynamics simulations. Left: tIC1 plotted against first water; right:
H-bond distance plotted against first water. tIC1 was used as a measure to capture local fluctuation of the
loop.
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