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Abstract

A previously developed formalism for calculation of the
scattering from a buried inhomogeneity is taken as a starting
point for an iterative scheme for treating the influence of
a deviation from a flat interface, This deviation canbe a hill,
or a depression, of finite extent on an otherwise flat surface.
Each iteration takes into account all the multiple interactions

between the hill and the inhomogeneity. Extensions in various

directions are briefly discussed.



I. Introduction

In previous papers a general formalism for studying scatter—
ing from buried inhomogeneities has been developed [l], [2].
This formalism is in principle applicable to very general geo-
metrical shapes of the air-ground 'interface. However, in order
to solve a géneral case one has to invert a two-dimensional
integral transform and this usually constitutes a formidable
analytic and numerlcal problem, It is therefore of great inte-
rest to find specialvapproximate methods which apply to speci-
fic classes of non-planar surfaces. We recall that for a plane
ground surface, the integral transformation degenerates and an
explicit algebraic inversion can be made [l]. We‘alsoépote that

this inversion is independent of the inhomogeneity. ;-

- .

In the present article we give a preliminary repoxt on

approximate methods of solution for the case when the_.deviation

from the plane is of finite extent. In the approximation in-
troduced here an algebraic solution similar to the oné for the

planar case can still be obtained. As a consequence, éhe inter-

“20

ference between the influence of the inhomogeneity ané:on the

other hand of the deviation from a plane surface can°5§ stu-

died. Since the approximation is expected to become mQre accu-
rate as the wavelength increases, our method is expected to

be useful e.g. in VLF prospecting situation, where the wavelength

is of the order of 10~30 km.



II. Statement of the problem

For simplicity we consider the dase of a scalér wave
(as is clear from [2], the electromagnetic case can be treated
in an analogous fashion). For the configuration depicted in
Fig. 1, the solution of the stationary scattering problem, with
the source lyirng above the ground surface S, is given in terms

of the folldwing quantities (cf. Ref. [l] for more details).

i) a(ﬁé), f(ﬁb): the plane wave expansion coefficients of the
incoming and scattered field respectively (harmonic and e-

vanescent plane waves)

ii) a(k), B(k): the plane wave expansion coefficients of the
field wI on the lower side of 3.

iii) the operator
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which can be thought of as describing the passage of a plane

wave through S from below. Similarly its inverse Q-'l can be
thought of describing a passage thorugh S from above. Further-
more, the reflection coefficient of S for plane waves coming from

above is in this notatian formally given by

P
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ASimilarly,;the reflection coefficient of S for waves coming

from below is
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iv) the transition matrix Tnn,(l) of the inhomogeneity,

R(K
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(3)

referring to spherical waves.

The scattered field above Z=Z> is then given by
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Here C, 1s the spherical wave projection of a(il). The
B(Kl):s have been expressed in terms of a(ﬁl) i.e. Cn by
means 6f thé scattering properties of the inhomogeneity. Fur-
thermpre, Cn is determined in terms of the incoming field by
taking into account the scattering properties of the inhomoge-

neity and of the ground surface. One obtains a equation of

the form

Ch = C[n"'z th‘cﬁ‘
"7\\

(5)



where dn represents the spherical wave components of the
incoming field after it has passed through S, ALt is indepen-
dent of the fields and depends only on the geometry and scatfer-

ing properties of S and Sl [l].

From (1) it can be seen that in the special case of a plane
surface S, Q(ﬁé,ﬁl) degenerates and becomes proportional to
6(2)(5 x(ﬁo—ﬁl)) (which is just an expression of Snell's law
of refraétion at a plane interface). Several of the previous
expressions then simplify substantially and one obtains for in-

stanc_:_e N '. ] 1/2 |
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Here Z=Zo defines the plane and R(Al), Al=klsina, is the well~-
known reflection coefficient of the plane [1]. Refs. [1] and
[2] conﬁain further details of the resulting expression for

sc . . : I
¥~ ~, as well as numerical results for particular inhomogeneities.

From (2), (3)>and (4) it is_seen that in order to obtain
an explicit solution for wsc for a generai surface S, it is
necessary to invert, in an explicit manner, integral transfor-
mations with the kernel Q(?;,EZ). Since, furthermore, the func-
tions on which this kernel acts are of a complicated nature, we
Wish to find approximate procedures useful fdr treating parti-
cular classes of nonplanar surfaces S. In these procedures we
want to make maximum use of the solution obtained previously

for the planar case.

.One generalization of the planar case which immediately



suggests itself is’when the deviation from a plane is con-
fined to a finite region., It is then natural to try to use
-the planar case as a starting point in an iterative scheme

and we shall later concentrate on that possibility.

However, we first make a few remarks on some general fea-
tures of the problem. Consider thé case when there is no in-
homogeneity (cf. Fig. 2). Several approache§ are possible here.
First we.note that one might treat the situation in Fig. 2 as
a limiting case of that in Fig., 3. This latter case can be
treated by means of the formulation in Ref. [l] by making use
of the alternative which applieé wﬁen the source and the inhomo-
geneity lie in the same hélf-space and by then takingthe limit
of the lower part of the hill approaching the plane. However
for several reasons this approach is expected to be of limited
use., The main reason for this is that'one would then violate
the geometrical constraints which are basic to the T matrix
approach, Suitable modificatiqns of the geometry etc could be
considered but this would then jeopardize the simplicity and use-
fulness of the results. One may hote, however, that in'applying
the method of Ref. [l], the case when the hill consists of a
material different from that of the lower half;space could also
be accommodated. In generai, éoﬁparison with the method of
Ref. [l] mainly serves to indicate a way of looking at the
problem and to define a possible set of quantities which can
be used in constructing the solutiop, even if this is not made
exactly as in Ref,. [l].'For instance, for a low hill ore would,
in a direct application of the T matrix method,_wént to compute

the T matrix of ‘a very oblate object which would increase the

demand on the matrix size. -However one could here still use



expansions for the fields on the tép and the botton of the

hill in terms of a discrete set of functions and then eliminate
these by some procedure differentvfrom that of forming the

T matrix for the hill. A search fér suitable discretization
methods for the hill problem is presently pursued in related

work.

We thus conclude that it is desirable to develop an appro-
ximate approach which differs from the more or less direct

application of the transition matrix scheme of Ref. [l].



III. Approximate treatment of the influence of the hill

One obvious way of making use of the plane surface solution
is to write the integrals over S in the expression (1) for .
Q(ﬁo,fl) as one integral over the plane, cutting through the
hill, plus the difference between the integrals over the hill
and‘ovér the bottom of the hill (cf. Fig. 2). Let SP denote the
flat part of S and let AS be the hill so that S=SP+AS. Let
furthermore So denote the whole plane and AS that part of 5o
while lies underneath AS, so that S,=Sp*t45. As is easily seen,
the treatment given below applies to a depression as well as

to a hill. However, for brevity we shall always refer to the

finite deviation from the plane as the "hill".

' It is instructive to first consider the case when the two
half-spaces separated by S are homogeneous. We construct an
approximation scheme for this case and then study how the full
solution of the "plane surface plus buried inhomogeneity" -
problem can be introduced into this scheme so that interactions
between the hill and the inhomogeneity can be taken into account.

In the absence of an inhomogeneity we have [l]
2 r ~
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of an integral over S, we have a corresponding division of

o e
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where Qo is the Q-function obtained in the plane surface case

s (2)

'(as was noted above, QO ( (k -k ))) If the decompo-

sition (8) is introduced into (7) the first term on the right

" hand side is
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and where k1 denotes the "Snell-transformed" Kl vector i.e.

| 2
\( = (k,siny 603(3 Sesmw Smgo G? 9\) )
(11)
Thus the relation between a(Ko) énd a(Kl) can be written

2%
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(12)
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So far, no approximation has been made. Egqg. (12) can be
regarded.as an integral equation of thé second kind for a.

The driving term a(ﬁo)'N_l(A ) corresponds to the solution

for the planar case. If one is primarily interested in solutions
for the long wavelength case (as in VLF prospecting), the solu-
tion for the planar case is a suitable starting point for an .
interative approach to (12). We note that, according to (1)

and (8), Q contains terms proportional to LZ and k kl and
therefore "long wavelength" in this context will mean that
Ao,_kl, where Ai=2nkzl, i=0,1, are greater than the main dimen-
sions of AS. The once-iterated .solution of (12) is thus ob-
tained by introducing the approximation m=a-N—l in the ;nte—
grand. The integration involves only the direction angles of

the k vectors and with notation a(KO) = a(ko, o BO) etc, the

07

first correction term can be written

2
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(13)
(X'Eko sina') and the first order approximaﬁion for o is

'u =(a-A )'N~l. This process can now be continued, but in view
of the computer time'requirements which are typical for itera-
tion schemes, one would in précﬁice have to limit one-self to
cases where one or two iterations would suffice (the drawback
is of course that thé solution obtained in each step must be
computed at sufficiently many K-values for the integration in

"the next step to be accurate enoughL
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IV. The combined influence of the hill and the inhomogeneity

In the previous section the known solution for a plane
interface was taken as the starting point for the iteration.
Since the solution for a plane interfaée plus an inhomogenei-
ty is also known, it is natural to investigate the possibility
of using this solution as a starting point in a similar itera-
tion process which would then include both the influences of
‘the inhomogeneity and of the hill, as well as interactions

between these two structures.

When vy contains an inhomogeneity, the surface field just
below S is described in terms of two sets of plane wave coeffi-

cieﬁts, Q(Kl) and B(El) and instead of (7) one has now [l]

zrn_, .
oK)=t 5‘1?1 [ EOL(‘Z) + SP(E:)]Q(E,E) sina, clot,

o C- C+

(14)
Here B(Kl) represents the total upgoing compenent.of the sur-
face field. This component is bﬁilt up from refiéctiohs from the
inhomogeneity. The technical expression of this fact is the fol-

lowing relation between B and the spherical projections Cn of «a.

nn'
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Thus, (14) can be written
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We now wish to make use of the separafion Q=QO+AQ in an
-app;oximate treatment of (l6). We note again that the crucial
broblem is that of inverting Q in the term 7 «*Q in (16). In
the other terms where & has been projected iﬁzo the CLisy it
suffices just to calculate Q itself. However, the division
Q=QO+AQ is still useful here since it separates out one part
that will correspond to the Ann,jmatrix Ll] of the plane sur-
| face case so that previous calculations concerning that matrix
can be used again in the present problem, With Q=QO+AQ we thus

have

_ 2w o
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The first term on the right hand siae of (17) reduceé as bé—
fore to an algebraic expression so that o can be extracted.

. If we then introduce the flat surface plus inhomogeneity solu-
tion into the second term, we obtéin an equation which can be
solved by a procedure similar to the one used in Ref. [l].
Here we note that if we would also introduce the flat surface
plus inhomogeneity solution as an approximation for the C,:s
in the fourth term on the right hand side df (l7), we would,
after projecting on spherical waves, obtainan equation of the

- form

, (o)
dh, = C"L -+ E’ thlchl ) + 5%
M

(18)
(o)

n

Here § is what we get by introducing the flat surface plus

inhomogeneity solution a=a_ into the two terms in (17) which

o
coﬁtain AQ. Furthermore Ann' is the matrix given by ﬁq. (60) in
Ref, [l]. This means that in comparison. with the flat surface
case, the equation for Cn would be modified only a trivial way,
namely only a change in the value of dn' This means, in pgrti—
cglar, that the multiple reflections would have exactly the
same structure as in the flat surface case (this structure is
‘given by (1+A)-l).Such a scheme is expected to give a much
poorer result than a scheme in which the influence of the hill
is taken into account in each multiple scattefing. This is
achieved by not making any approximations for Ch in the fourth
term on £he right hand side of (17), but rather include it in

the multiple scattering equation. We then obtain

~ .
d.n = Ch + Z _QM, Cyr + (S_V» . (19)

. N
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Co= [G+BY" ], (20

where
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an’ = Rvm" t LSPDM‘ (21)

AV

d, = dn+ &, (22)

Again, Ann' and dn are those given in Ref.l:l] for the flat

surface plus inhomogeneity case. For 6 and (5A)nn, we get
_ . , 1
""; X 2k iz, (k- 'H 120(‘%43)/2
= ' ML B . .
(SR = 81 | B (RN E
- _ o - .

R T T S‘L\” jyu(ka(E Y sin o]

nt o C+ (23)

" -1 N ) ¥z, k ')\3
5, = Sd(atj NET T (g
C_ ]

wé‘o}«ajo«cz‘m@<%, B )sing, doy
°C. |
( —E-Z = (bﬁfn&QCOSFU IQ:;EW‘S{“P - ( ki_)\zsfé N

By introducing a=a in (24), 5, becomes a known quéntity and the

(24)

solution for Cn is obtained from (20). The corresponding solu-
tion for wsc is obtained by means of Eq. (54) in Ref. [l]

where the separqtion Q=QO+AQ can be used again.
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V. Concluding remarks

The approximation scheme suggested above should next be
tried numeridaily'in some representative‘cases. Furthermore
it should be extended to the electromagnetic case and triea
for parameter choices which are relevant to the VLF prospecting

situation.

in_thg probiem txéated above, the hill was aésumed to consisi
of the séme materiallas-£he rest of Vl. Howevér, in geophysical
wave propagation proBlems and in VLF prospecfing problems in
particular,. the situations depicted in Figs. 4 and 5 are of
interest. The situation in Fig. 5 éan for instance be uséd
as a'model for the influence of a lake on the response from
an ore body, a problem which is encountered very ofteé'in prac-
tice, We suggest that similér.iteration techniques be developed
for these cases. We must warn, however, that althoughcthe geo-
metry is in many respects similar to that s&udied in ﬁﬁe present
note, this similarity may prove to be deceptivé: we k;bw from
previously studied multiple scattering problems that éhe full
solution for the configuration in Fig. 4 is consideraéay more

{
complicated. %

°

In this context we also note that it is natural téktry to
develope. analogous. approximation schemes for the case depicted
in Fig. 6. Of course, problems of this nature haQe been freated
by a }arge number of different methods in the literature. How-
ever, one is then most often interested in the propagaiion cha-
racteristics along the waveguide with non-constant cross-section,

formed by the two surfaces and this is strongly reflected in‘the
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methods used. We are mainly interested in the reflection and
transmission characteristics across the laYer and a formalism
like ours where the propagation along the z-axis plays a

special role may then have some advantages.
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