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Abstract

The T matrix method (also called the "extended boundary condi-
tion method" or "null field approach") introduced by Waterman, has
recently been generalized to interfaces of infinite extent
(G. Kristensson and S. Strém, J. Acoust. Soc. Am. 64, 917-936
(1978) and G. Kristensson, "Electromagnetic Scattering from Buried
Inhomogeneities - a General Threedimensional Formalism", Rep. 78-42,
Inst. of Theoretical Physics, Goteborg (1978), to appear in J. Appl.
Phys.). This paper extends the formalism to lossy materials. Here
we explicitly assume that the ground and the inhomogeneity have
losses, but the formalism also applies to a lossy medium above the
ground with only minor changes. In developing the theory, we assume
the source to be situated above the ground but it is otherwise ar-
bitrary. A similar formalism can be constructed when the source
position is located in the ground or in the inhomogeneity. The
scattered field is calculated both above and below the ground.
Above the ground the scattered field separates into two parts,
which have direct physical interpretation; one field, here called
the directly scattered field, which is the total scattered field
when no buried obstacle is present, and a second field, the anoma-
lous field, which reflects the presence of the inhomogeneity. We
present some numerical computations of the field both above and
below the ground for a flat earth and a buried perfectly conduc-
tion spheroid. The main theoretical developments are given in an
appendix, where we study the transformation between plane and

spherical vector waves for a complex wave number,



I 1Introduction

Waterman [l] originally developed the T matrix method of
scattering from a scatterer of finite extent (cf. also [2] for
the elastic case). This approach (also called the "extended
boundary condition method" or "null field approach") has been
generalized to scattering from a buried inhompgeneity in the loss-
less case for both acoustic, electromagnetic and elastic waves
Eﬂ-—[i]. The present paper will extend the formalism to the lossy
case, which in Many scattering problems is the situation of
greatest interest. The scattering configuration will be truly
three dimensional, and the formalism contains rather weak assump-
tions on the source distributions, the geometry of the scatterer
etc. We will here explicitly develop the scattering formalism for
electromagnetic waves with a source above the ground but the re-
sults are applicable with appropriate modifications to the acoustic

and elastic cases and sources in other regions of interest.

The integral representation of the field is the basic ele-
ment in the formalism. Suitable ‘expansions of the Green's dyadic
are central in the method and depending on the situation it is
expanded in either plane or spherical vector waves. The transfor-
mation properties between these two elementary waves - plane and
spherical - play an important part in the formalism and we analyse
its properties in the lossy case in detail. The plane and spherical

waves also enter in the expansions of the pertinent surface fields.

The inhomogeneity is completely described by its T matrix

referring to spherical waves. The T matrix enters in the formalism

as a building block in the construction of the solution, and in



this context many results derived from scattering from obstacles
of finite extent can be used. The interaction between the ground
and the inhomogeneity is described by the solution of a matrix
equation, where a power series expansion of the inverse of the
matrix formally can be identified as multiple scattering contri-
butions [3], [4). We will in this paper study this matrix equa-
tion for the lossy case, and give explicit expressions in the
flat interface case. Both the field above and below the ground are

analysed and explicit expressions are given in the flat earth case.

The electromagnetic scattering from a source, say a dipole,
in the presence of a homogeneous halfspace has been studied
thoroughly and a long list of references are given in [4] addressing
themselves to this problem, both with and without an inhomogeneity
present in one of the halfspaces. Many of these treatments are pu-

rely numerical, while others pursue an analytic solution of the

problem,

In section II the scattering problems to be considered are
defined, the fundamental assumptions are introduced and the basic
equations derived, while in sectjon III the use of the formalism
is illustrated in some numerical examples. In an appendix, we
analyse the transformation properties between plane and spherical
waves in the lossy case for both scalar and vector waves as needed

for the theory developed in section II.



II T matric formalism for a lossy ground

Basic equations

In this section we will point out the essential differences
and similarities between the lossless case [4}, and the situation
where losses are present in the ground and the inhomogeneity. Most
equations are identical in structure to the corresponding lossless
ones, and-at some instances we will therefore be rather brief and

we refer to [4] for more details,

Consider a scattering geometry as depicted in Fig, 1. The
surface So separates the halfspaces VO and Vl' which are assumed
to be homogeneous except for a finite region Vye This inhomogenei-
ty is bounded by the surface S,. Besides the implicit assumptions
on the surfaces S, and Si,namely that they fulfil the necessary
regularity conditions for an application of the Green's theorem,
we also assume S, to lie between the two parallel planes 2=z
and z=z_ (the z-axis is defined as perpendicular to these planes).
We assume that the source and the inhomogeneity are located in
separate halfspaces (the source location is marked with a P).

A parallel formulation can be made when both source and inhomoge-
neity occupy the same halfspace [3] or the source ‘is inside the ob-
stacle. Furthermore we will in this context permit the different
regions to have losses. In many practical applications one en-
counters a situation where the halfspace V, can be assumed to be
lossless, and this is the explicit case we will consider here. The

introduction of losses also in Vo 1s straightforward and the de-

tails are left to the reader.

In each volume the electric field ﬁi satisfies (we assume



the time factor e ¥t throughout this paper)

VxTxE, (F) = K E,(7)=0 TV, ieqry @

Here k2-w2 £ _€ Hwo
i~ ¥ ¥ofp 1M, Y04

electric constant andvpermeability of free space and o4 the conducti-

rpo i=0,1,2, where €6 and u, are the di-
vity in Vi. As discussed above we will in this paper only consider
the case 95=0. All equations in this paper will explicitly be
written down for the electric field Ei' The same analysis holds

for the ﬁi field, and what is discussed below about the Ei field
can equally well be applied to the magnetic field ﬁi if we in-
terpret the source distributions as the corresponding magnetic

ones, e.g. an electric dipole becomes a magnetic dipole, and

the necessary substitutions are made, see Eq. (2) below.

The boundary conditions are continuity in the tangential mag-

netic and electric fields on the surface SO and Sl (for notations

see Fig, 1), i.e.

A g S A > -t o
nbei(r)=niXEi¢1(r) ' res" ;L=0,1
A r ] A - 1 2
Ayx [VXENE)) = Cin;%[V*E-mt?)] (2)
S O/ S Y Y

= * _ (ki 2 -1
(If we replace E with H, let c,= EI:I) ui+lr uir.)

The starting point in the T matrix formalism [i]is the fol-
lowing integral representation of the field B in terms of a sur-

face integral over the tangential components of E and H on the

bounding surface s.



AR e, g - —n |
F:’(ﬂ = E (r)+VXﬂ )r\\fo(r)G(r,r;k) dS' +
0 S
-2 4 ' -p! '
ool d (B @) a@rigds] @
S
T outside S
¥ inside S

S is a bounded surface and §+ and Vxﬁ+ are the field values on
the outside of 8 (ﬁ is directed outwards on S). The Green's func-

tion G(Z¥,f';k) satisfies the Helmholtz' equation with a delta

function source term.

W ) 67,7k - -3 (7-7) -

')

The requirement of an outgoing wave at infinity gives us the solu-

tion to Eq. (4)

G K- exp Likie-) Jumie-a) 8

It should be noted here that k can be a complex number, which

will be the case when we apply Eq. (3) to volumes with losses.

As discussed in [43 both plane and spherical vector waves are
introduced as well as the transformation between these. In these
quantities we must justify the analytic continuation of k-values
into the complex plane. The definition of spherical waves are found
in [4). The extension to complex k values in these definitions

introduces no problems; the complex quantities just appear in the



radial dependence argument kr but leave the spherical vector har-
monics Kn(r) unaffected. The transformation between spherical and
plane vector waves are discussed in detail in the appendix and

we have, (see Eq. (A.22)):

FA S o

- A k-

q)n(k'r’)=z%,jd(sé( Bn(k\el " sine du 2
° t

——ty .

0 (6)

N

The complex contours C+ are depicted in Fig. 2 (see the appendix
for a definition of the contours). The contour C+ - the upgoing
waves - is used when 2>0 and C_ - the downgoing waves - when 2<0.
It should be noted that along the C, contours k sine is real and
that Eq. (6) essentially is a two-dimensional Fourier integral
in kx’ ky rewritten in the spherical angles (q,8) of K, i.e.

K=k(sina COsB, sing sing, cosa). The definition of gn(f) is found

in [4]:
- A
Bratkle 2 Arntk) T=12 (7)

Note that we here, and when convenient also below, abbreviate
the indices as follows nztn=toml. As a special case (1=0) of

Eq. (A.1l5) we also get the plane wave expansion of the Green's

function in Eq. (5)

IA -~ '
! . k‘?"—‘:) . ]
G(r k)= ﬁ—z Ka[e.é e sina d« 222
° +

The Green's dyadic TG(?,;';k) can thus be written [4}:

- 3 k A '-‘z-(*-?') . '
TGEe k)= 0 = jd(s aade ' eine dw  zpz ®
Y :‘El 8 [+] C J J :



Here T is the unit dyadic and a., j=1,3 are the spherical unit

vectors of £=K/k and with the following convention:

A A
a,= ®
A A
3,
A A
Ay k

The separation of the Green's dyadic in spherical vector waves
is found in e.,q. [6]:

Ta@@h . kD ReW(k?) Pk, « T, (9)
n
Tel,2,

> > > > .
The argument r_ and r_  are chosen to be r or r' according to

> R > . o« . .
|| =min(r,r"), |z, |=max (r,r') and the dyadic Iy, is an irro-

tational dyadic. Eq. (9) holds for complex values of k, at least

for values of k in our domain of interest, i.e. argkeﬁLTV4)[iL In

analogy with Eq, (6) we also need the transformation between the

regular spherical vector waves and the plane waves.

This is found
in e.q, [Q}:

o

dp

The extension to complex values of k in this integral over a

-

ReW (k) - e

- .“2.4 )
B.(kle  sina da (10)

Q ey
o(__—,d

finite interval causes no problems and the formula holds in the

common domain of analyticity of the two sides.

We now apply the integral representation Eqg. (3) to a

surface § consisting of a finite part of S, and lower half sphere.

Assume that the fields encountered in the integral over the lower

half-sphere satisfy the appropriate radiation condition. As the



radius of the half sphere approaches infinity this integral then
vanishes. By introducing the plane wave expansion of the Green's
dyadic, see Eq. (8),in the surface integral over S, we obtain

the following plane wave expansions of the scattered and incoming

field, respectively (which are formally the same as in.the loss-

less case):

EX 5 -
E, (?= 'éd(abj F ) ¢ " sine, do, 2>2 (11)
C+
$1 ) -
"’I'\ ., - - ™ ‘k-’ . .
E.'o"(r)= {dpo.[ t).(ko)cs;l J sing, dat, 2<Z, (12)
C.
Ree SRS
Roe b IR EDA T LA wxEy)) &) 6% g
“:‘(ko)ﬁ gwl nox o a *lko)"‘ noX(VXEO) a'l e, S
[+
T 13
ke C, (1%
: = .> > A -1-|:P' !
03('\30)3-%%&é{(ﬁbe:)-(éika+[ﬁ°xlv'xE;)]'aj} e ds
° keC. (19
2 . .
where f(K0)=jilfj(KO)aj and analogously for aj(Eo)'

The elimination of the surface fields will be done by another
application of the integral representation Egq. (3). This time S
consists of S; and a finite part of S, and an upper half sphere,
such that outside S is inside Vi. Let the radius of the half

sphere go to infinity and assume as before the appropriate radia-

tion conditions. We get:



10.

-’- ' L]

5 = -ex A sE@a@e)de -

)

]
==,
0
Pal
»r
ey
4
X
ey
Qomammenmy,
= > g

* (VxE] (F'))G(?'F'; k,) d&} +

|
+ VX'SS& nFEN®) GIR T k) DS +
1

-
<2 . A L ] ' ) rev1
+ k V!{\Txﬂnx(VxE*(?))G(??'k)dS} = (15)
\ g \ A oA
1
We will primarily use the equation above when ¥ is outside

Vy. First we introduce suitable expansions of the surface fields

ﬁoX§I and ﬂlxﬁg. In [4} the following expansions were introduced:

W CY
- - - vko.® |
?\ox—i:('r"hjcl[b‘ ﬁox{cj«(k,)+cjp(k\\}e ' sing, dx, (16)
- +
\'\‘)LE.L(T')- ~ o, Nx Re vk, r)

The expansion on the surface So is an expansion in plane waves,
both up- and downgoing while on Sl we use an expansion in regular
spherical vector waves. Furthermére, the determination of the
coefficients in the related expansions of the relevant derivatives
of these fields can be discussed in a way which is directly ana-
logous to the lossless case. (However, we emphasize that con-
siderable work remains to be done in order to determine the class
of surfaces So and Sl for which the required relations between

the expansion coefficients is rigorously valid (1], [3], [4].)

The completeness of these expansions in the lossless case is

found in [A] and in the lossy case the derivation is formally

analogous.,



11.

The application of the integral representation Eg. (15) inside
v, and above So is formally the same as in the lossless case and
for details in this matter we refer to Ref. [4}. The boundary con-
ditions, Eq. (2), the surface field expansions, Eq. (16)-(17), and
the expansion of the Green's dyadic in spherical vector waves,

Eq. (9), are applied and we get:

a¥ - R
é d(s1 é -{g(-‘:\) e‘k‘-r 3"n0k1 AO(1 = "i Z}" "‘)n(k‘?) an' (RQ\RQ,) °<'h,' (18)
P

IR -
Sd(s\J LK) e sing, do, = 1 2] Re“l’n(k,?) Q. (0utRe) s (29
0 nn'

C.
The first equation holds for all T above 5o and outside the cir-
cumscribing sphere of §;, while the Eq. (19) holds for all ¥ in-
side the inscribed sphere of 5,. The derivation of these two equa-
tions in the lossless case relies on a "limiting absorption prin-
ciple", i.e. the wave number has a small imaginary part, which
eventually goes to zero. However, in the situation treated here,
when losses are present no such limiting procedure is necessary.
The derivation of the Egs. (18)-(19) are otherwise analogous to
the lossless case. Furthermore, we have introduced the'QAn—matrices

of the scatterer Sl'

} - 1 Y !
Qe (Out, Re) = k, A1 (7% P (k7)) Reby U, P +
S
— , —» ! (20)
+C, LPN(\(‘?’) « (V% Rélﬁ;(k}'\)} ds
and Qﬁﬂ(Re,Re) is analogously defined but with regular spherical

vector waves in all places.

The next step will be to eliminate the ¥ dependence in the

two equations above. In the first equation we make use of the
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transformation between plane and spherical vector waves, see
Eq. (6). As was pointed out above, the integral over «,B on both
sides are a two-dimensional Fourier integral in kx'ky and by

use of the inverse transform on a plane z=constant we obtain

-

> > 4 A R : 'E C (21)
Plk) =27 Z' B.(k) Q,/ (Re Re)a, & C,
nn
In Eq. (19) we first make a scalar multiplication on both sides
with Kn(é) followed by an integration over the unit sphere. We

get by use of Egq. (10)

i ‘
o> o =t oA .
fdp, J 2@ B k) sinw,duy= =15 0,10t Re) ) 22
° C. n

where §;(ﬁ) is identical to ﬁn(ﬁ), but with (-i)**2”T cxchanged

with ig+2-r.

The derivation of Eq. (21) relies on the inverse two-dimensional
Fourier transform and it should here be noted the importance of ex-
panding the transformation, see Eq. (6), and the surface field Eqg.
(16) in terms of integrals with the same contours C,. Fof both this
transformation and the surface fields we have the possibility of
choosing different integration contours (cf. the appendix for a
discussion of the more detailed choice of contours) . However, when
applying the inverse transform we then have to pay attention to
the analytic properties of the integrands, since when the contours
differ from Ci’ kX and ky are not real everywhere, In this paper
we will always use the C4 contours, i.e. the contours where both

kx and ky are real, and in this way we can avoid any discussion

of the analytic properties.
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In [A] the field ﬁgc. was calculated. In the case where
losses are present the derivation of this field is formally iden-
tical, and will therefore only be outlined here without any details.
Here we will focus on the field in Vl’ which in e.g. many pros-

pecting applications is of great importance.

The field in vy is given by Eq. (15). The elimination of the
surface fields in this equation will be quite analogous to the
computation of the field ﬁic’. It is also obvious that the deriva-
tion below are valid also in the lossless case. The most straight-
forward region to compute the field El in is outside the circum-

scribing sphere of S;, i.e. when r>max |r'
r'eSl
we can make use of the same expansion of the Green's dyadic over

. In this special case

the whole surface S,r i.e. in spherical waves. However, we note
that calculations of the scattered field in V, inside the circum-
scribing sphere of Sl can also be made, with the appropriate modi-
fications (for "near-field" calculations within the T-matrix
approach see e.g. Bringi and Seliga [i}). The surface field expan-
sions, Eq. (16)-(17), are inserted and we get (the derivation of
this equation is analogous to thg Eq. (19), and again, as pointed

out above, we do not rely on any "limiting absorption principle"

in this lossy case):

% e P -=
E.(P)= S AP‘SI(E) etk‘. Sl.n&‘do\\ - l‘l"“(k,?‘") Q.. (Re,, Re) K (23)
o C. on
The prescribed incoming field amplitude g(ﬁo) in Eq. (14)
is now used to eliminate the surface field expansion amplitudes
;(Kl)’ g(ﬁl) and ap. We insert Eq. (2) and (16) in Eq. (14) and

get:
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a; (k)= LZ -{d[h‘{j& (k) + J(BA (k)} OM'(k k) sinx, doy

k e C_ (24)

Here we have introduced the generalization of the an,—matrix

Eg. (20) to the infinite surface SO:

-’

> o ik k)
oy R0+ I SSH FERTEEE RPN EWEAER) B L D

The formal solution of Eq. (21), (22) and (24) will be found

by an elimination of the @, -coefficients in Eq. (21) and (22)

PO > A 26)
{B(k‘\ = 2 Z.' Bn(k\\ Tnn‘ c,
where

- =t _
CnE j dF’\ j ;Z(k,) 'E,\ (?(J S\not‘do(\ (27)
° C-
-1 '
Tnn' 2~ Z. Q“n-' (RQ\R&) Q“u“. (0\,-}‘2&) (28)
n"

The Ch~quantity is the spherical projection of the plane wave amp-
litude 3(}_()1) later determined by a matrix equation., The T matrix
characterize the scatterer Sl’ i.e. it contains its shape, boundary
conditions etc. If we encounter a situation where we have several
buried scatterers or inhomogeneous ones the formal structure of

the equation is the same, but with the relevant T-matrix inserted.

We proceed by formally inverting Eq. (24) (this can be done

algebraically when S0 is a plane, see below) and we get with Eqg. (26)
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F

- . o s
&j(kJ:-L‘Z{: .(I)d(&o‘cf-aj’(ko) O.“l (khko) Slnmbdxo -

13
e2z [do é By (6) Tog ¢ Ry (BE)) sink) du, Fpec 29

nnl o

J n Jj

coefficient mjj, (ﬁl,ﬁl') for the surface So from below is ana-

Here Bn.Eﬁ *a. and similarly B;.E§;°aj is defined. The reflection

logous to the T-matrix for the scatterer Sl and is defined

as:

ﬁ -1 - > ) .
.. M)
R. jd(b S Qu»(k"ko) Q‘” (ko)k') S\no(oclo(
kec kec (30)
We construct the basic matrix equation for determining the coeffi-

cients C% by multiplying Eq. (29) with B (k ) and sum over j and

integrate over Pl and ®; over a C_ contour. We get:

n  “n (31)

A“nr-‘ZZ fd{s‘meot d« .(dfl‘.gSm« do( X
n“ 0

Ny > t A
tEnn'j'(k') |';.n.(R Mk, k an(k‘) (32)

W'

)

(33)

1y
| d “LZ jd[b‘jswx du Sd{s JSmoL du a.:l‘(.l:b\ Q}} (.);"]:b) g*“. (/\:')

Thus we obtain an equation which is formally the same as in the
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lossless case. Again the iteration of Eq. (31) reflect the multiple

scattering phenomenon between the surface S and the scatterer Sy

and we refer to [A] for more details on this subject

The final expression for the field El outside the circum-
scribing sphere of Sl, Eq. (23), can eventually be written in

terms of the C,~vector by introducing the Eqgs. (29), (22), (27)

and (28)
w '|: - r \
E. (\")‘ Z Jd(s' Sg o t"'{ -i_(d{},, 5 ai\(-lzo) Q:\:‘) (d\zo.-\:‘\ Sim(o dx, +
i o 0 c. )
Ay
Ny = e P .

+ 2.?‘:',\' {d(;‘ j E“A'(k:) \n“| (,h' @'jj,(k\.kq)s‘““\d*'\l s\n&1dm\~
“Llu»?:‘l’(kr) an Cy =

= E?;r'(?) + % (3:,\(?’)" e~ Hu;,Z 4’ (kP)l (34)

The total field El has been divided into three terms with the

following definitions:

l.
-1
“dir T . .
Sy (F)a-u%{dfs,é 1 { Pé_a () Q1 (k, %) sine, dorg sinw, di, (35)
vEN
' Ay e A v -
?U‘) 2.2.50\ S ‘rjd(s s%n"(\&,\ @\ﬂ(khk‘)smw"&& sind, d (36)
e C 5 'C+ ) 1) ™ f \

The field E?lr is the transmitted field as if no scatterer is

present, while the two remaining terms reflect the presence of
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the scatterer; a field which could be called the scattered field
ﬁfc'. In terms of a multiple scattering interpretation, which is
discussed in more detail in B], the second term on the right hand
side of Eg. (34) can be interpreted as the sum of all those con-
tributions, which is reflected the last time at the surface So'
Similarly, the third term corresponds ‘to the contributions reflec-
ted the laét time from the inhomogeneity. Of course both these
contributions added contain all the multiple scattering effects

between S0 and the inhomogeneity, via cn, the solution of Eq.

(31).

As we have seen, the consideration of the field ﬁl is quite

analogous to the derivation of the scattered field Eg?‘ in VO’

which in the lossless case is found in (}]. In the lossy case
the formal derivation of Egc. is the same and we here just state

the result,.

SC. ~» ge. dir - nom. - 2 Se. dir, - - —
Eo (™= ES (R BT - = "d“(va.. E:\(r) Vae ! (37)
where
' o iF
o4 i A °
Ezc“dr(i’\sz: jd[soj a; e: jd J R“ (k,, k )a (ko)mna du. o St dotg
e et o

n(F;a-liz;Jd DS Je” Jd[s‘g B,,‘-\'L'\Q‘\[ Q.“. (’\20:\2,)'*

1A
+ 7 jcl(a JQM"(k k;) G( (k,,k1) Sinot clo(]Smo( di, sink dw (38)

- - i B \ . - -
LR Zfd(sé o (&, k) Q3 (kK sinade, Kee, Kec. (o)

"o
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Rjj' (]—{o,ﬁo') is the reflection coefficient for the surface So

from above, cf. Eq. (30).

So far we have considered the general case, and have not
introduced any specific geometry. The inversion of Eq. (24) in
the general case, when So is rough, is indeed a @ifficult prob-
lem. However, when one has a "finite hill" one can find an algo-
rithm so that the interaction between the hill and the inhomoge~-
neity is taken intoaCCOUHtEUﬂ. The numerical computations in this
paper will only consider a plane surface SO and for this case most
of the equations can be simplified. We get for a plane surface SO

(Z=Zo=constant) (cf. the lossless case):

by - . oz 2l 2 \/
a2 (8 R e il R
E.' U‘)=§‘_E; {d[s‘gaie_ ra&(k: )e t D: (A,) San‘
- A
2K - y 112 a1k

—- T AL Lz k-A)" -
T.(™= ‘szd(a,léie“‘“ an(k,) Rj(?\‘) o\ Swna, dK, (41)

3 ° Cc.

A t A A Zii,(l?-ﬁz)vz . -
e 2‘2;{AP'E(Bni(k‘\Bn"i(k:)Ri(M)e " siax, di, Yy (42

n“ -

’-ﬁ o [ 22 RN
v oA - l':'!'o((kf')‘o\ ‘lk;)‘o) ) 2= 2) " - (43)
d,= ‘f, £ A(Soé.ﬂ(k.,\ B.\:‘(ko )e —“—"‘B:\(M Sind,du

. T 7_‘/3 . -
“UZ (ko h) rakr A
e o\ "o o ko js‘nxoduo

™
'Etsc.,din(?)zzja(bos a: (k) R:(4) (44)
) :\ o c+ -‘ J

o y \ \
Ry e iz, () 208 1)9) B3 (k'l:‘\_:l:;m (45)
KRR RS HEW °
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The Fresnel reflection coefficients are @JJ :

N, (X A Y
R,(\)= ¢ Sako (1) % kg (1- 0 )™

MR ek, (1= (k)2 k(4= (7)) 2 (46)

,
R ()= Nt o GeoX 2= ¢, US-2)
DA T (R~ ,\‘f% ¢, (k- &‘)"&

1 is the reflection coefficient for an incoming wave polarized

along a; and R2 for a wave polarized along az. Dj(A) and Nj(A)

are the denominator and nominator in the reflection coefficient

respectively, and A=k sinai; i=0,1. All square roots are defined
such that Im(ki—fyl/z)o. We have also introduced the follwoing no-

tation for the transformed arguments in Eq. (40)-(45)

"’*—- ( . . . ( (-k-g 2 2 )VL)
k‘ =S k' Smo(‘pos{s” sind, S\n{s”- k‘) = Sin «,

A- . . .

k‘ = Smu‘cosp“ Siny,sinf, - cosu,)

o . . .

ko = ko( smxocospo‘smuosm{}o,- cosxo)

%S 2 Y,
ko E?(S\nmows‘so,&nu sm(’bo, ( —‘f)-smc( L)
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ITI. Numerical applications

The final Eqgs. (40)-(45) given in the preceding section
will now be applied in some numerical examples. These illustrations
include both field computations above theground (the electric
field) and below the interface (the magnetic field). The source
that excites the inhomogeneity is chosen to be a vertical dipole
source; in the case of electric field an electric dipole, while
in the magnetic case a magnetic dipole. The dipole source located

at a source point PE(pt,O,zt) is given by (li]:

Chts thol F-T |

[ \ A

“ine. . (=72 Ux] VX e ]} (47)
Ho (f) ] kg { [Z ko|R=T

If we place the source on the surface So (z =zo) then Eq. (43)

t
simplifies into

1 .m-{ . 1
d =;Js.%n_ j L kobdb ezk.zo(1—("f‘)zl1-t"))/"x
SRS A ACELCRY) LN

* T et -8 i, 80, PP e f- 80 -

=8 rade; LE-me1) FJ:((\-l‘E‘f‘)z(i-tL)jlz) - (t+z)(1—t‘iﬂ)"(1-§a)"‘ﬁm((1-(‘?-:)1(14‘1)"‘)} (48)

4

Here the definitions of spherical harmonics and normalization

follow Ref. Dﬂ.

The numerical examples are separated into two groups; one

in which we compute the electric field above the ground and one
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where we focus on the magnetic field below the interface. In all
numerical examples we have chosen a moderate contrast in the
parameters between VO and Vl’ These values are chosen here since
they are believed to illustrate "worst case" applications of the
above formalism (i.e. using the full structure of the equations,
without further specializations). Numerical computations for va-
lues of the parameters corresponding to high contrasts and losses
will be performed in the future. In this case it is possible to
introduce further simplications by using asymptotic methods for
the strongly oscillating integrals. Work in this direction is in

progress., Parameters in common in all the numerical examples are:

1

/K= 10+5:

\

/u'r//“-or= 1

Koz,= 0.2

The inhomogeneity, completely specified by its T-matrix, is
here taken as a perfectly conducting spheroid. The semiaxis in the
direction of rotational symmetry is a and the semiaxis in the per-
pendicular direction is b. The T-matrix for the spheroid is gene-
rated numerically for an orientation of the rotational symmetry
axis along the z-axis, and is then rotated by means of the three-
dimensional rotation matrices [121 to an arbitrary orientation,
The orientation of the symmetry axis is given in spherical angles
¢,x. This procedure allows us to calculate the T-matrix for in-
homogeneities which are asymmetrically oriented both with respect

to the interface and to the source position. Thegeneration of the
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T-matrix for a large class of asymmetrical scatterers can thus

be performed efficiently, since the rotational matrices are fairly
easy to generate numerically. To get the result for a different
orientation of the scatterer only these matrices have to be recal-
culated; the T-matrix along the symmetry axis is the same as before.

The steps of computation of the scattered field for a given inhomo-

geneity are in short:

l) Compute the dn—vector, Eq. (48) for a given source position P.

2) Compute the Ann,-matrix, Eg. (42).

3) Compute the field vector Fn(_f) or '?n(?), Eq. (41) or (45)

for a given array of field points T.

4) Generate the Tnn,-matrix of the inhomogeneity oriented

along the z-axis.

5) Rotate the Tnn,—matrix by applying the rotation matrices.

6) Solve Eq. (31) for the cn—vector.

7) Combine the quantities in Eq. (37) or (34).

A variation of a single parameter or a different choice of
inhomogeneity (concerning e.g. both shape and orientation) does
not affect all steps above; most of them need not be repeated. Only
a few items have to be recalculated and this feature makes the for-
malism efficient in situations where one is interested exploring

the effect of these types of parameter variations.

Many of the quantities contain an integral over a C, or C_
contour. These integrals have to be computed numerically, and we
use a fast, improved quadrature, which in a subdivision of the

integration interval uses the previously computed function va-
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lues. The integrand usually contains an exponential factor, which
makes the convergence very rapid. In those integrals where such
an exponential factor is absent or is small, we use a different
method. Since the integrals have oscillating integrands we divi~
de the integration interval into parts, according to e.g. the
nulls of the integrand so that the total integral becomes an
alternating series. We then abply an Euler transformation to

the series, which improves the convergence of the series very

efficiently.

The computer time required in the various steps above varies
considerably and only a rough estimate can be given, The steps 1),
2), 4), 5), 7) have usually an execution time of less than 2 min.
C.p.u. on an IBM370/3031 or IBM 360/65. Item 3) is the most time-
consuming step, which for an array size f and a truncation order
used in the numerical examples considered here, takes about 10 min.
C.p.u. The radial and the azimuthal dependence in the pertinent
integrals can be separated in such a way that all azimuthal de-
pendence is a common factor outside a remaining integral, which
only depends on the p and z coordinates, Step 6) takes only a
couple of seconds c.p.u. to evaluate. However, it should be noted
that the various.execution times here given highly depend on the
truncation size of the matrices, prerequired accuracy in the eva-
luation of the integrals, array size of measuring points in Fn(f)
or ? n(?) etc;, and we should also observe that the constituent
parts in the scheme above can be used again in various combinations
which reduces the computational costs considerably., The above
C.p.u. times refer to computations to about three significant

figures in the final results. In many practical applications one
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does not of course need such a high accuracy and the c.p.u.

time requirements are reduced accordingly.

In a series of plots, Fiqures 3-6, we illustrate the anoma-
lous scattered electric field on the surface Sov(z=zo) in a region
close to the inhomogeneity. These plots show computer interpolated
surfaces of constant amplitude of the anomalous scattered electric
field Egc.,anom.. Due to the computer interpolation.algorithm these
figures contain some irregularities, which are not present in the
original computations. These figures show different field components
for various scatterers, which are perfectly conducting spheroids -
both prolate and oblate - of diverse orientations, both with res-
pect to the surface So and to the source position., In Fig. 7 we
show the quotient of the vertical components of the anomalous
scattered electric field and the incoming electric field along
the x-axis. The pattern these plots exhibit are fairly complex,
but seem to fit reasonably well to the radiation pattern of a
simple dipole, which replaces the scatterer. In order to achieve
this the orientation of the dipole has to be adjusted. The re-
sulting optimal orientation was found to agree reasonably well
with what was to be expected from the relevant source, treated
as a source in a homogeneous space (no interface SO). The present
more accurate computations can be used to investigate when these

simple dipole-excitation models are valid.

The second part of the numerical illustrations given in this
paper is the magnetic field below the surface So' Here we have
calculated the magnetic field - both the direct and scattered -
along a straight line with a specific direction. Along these

"drillholes" the field component along the line is depicted in
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Fig. 8-10. The "drillhole" starts at the coordinates (xo,yo,zo)
and has a direction given by the spherical angles (n,¢) . The
source in these calculations is a vertical magnetic dipole lo-

cated on the surface SO at (pt,O,Z ). In each plot we illustrate

o
the field component along the drillhole for various scatterers -
perfectly conducting spheroid of different orientations. As ex-
pected we get the highest response from the obstacle at the posi-
tion closest to the inhomogeneity. Although the scatterer is

rather small and the drillhole does not come too near £he obstacle,

we have a rather high signal return from the inhomogeneity, which

in some situations is more than 10%.
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Appendix

Transformation relations between plane and spherical vector

waves.

The transformation between spherical waves and plane waves
for a real wave number is discussed in detail in [15]. The exten-

sion to complex wave numbers is found in this appendix,

Consider the following integral for z)0:

) -
gdpé Yn(?d Q-Lk? SNk du (A1)
+

Here we have adopted the notations
+ ~
r=(x,y,z) =rr
r=(sin® cos¢, sin® sin¢, coso) . (A.2)
__}_ _ A_ iua
ks (kX'ky’kZ) :kk:lkle k
k= (sina cosg, sina sing, cosa)

The complex contour C+ in the a-plane (see Figure 2) is a contour

from o=0 to a=n/2-R-i~ subject to (a=a'+ia", where a',a" are real

numbers) .

tanh " + tand tansit =0 (2.3)

We will here assume ® € (0,n/4). This restriction can be relaxed

but it is sufficiently general for our purpose (remember

Imk2>0,’Rek2>0). The case#=0 is excluded since that is the

situation analysed by Danos and Maximon [13]
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The integral in Egq. (A.l) is essentially a two-dimensional
Fouriertransform in (kx,ky); first rewritten in polar coordinates
A=k sine and B and then finally transformed into the spherical
angles o, B. For more details see Banos [(14). We have here explicit-
ly assumed z>0 (¢<n/2) but for z<0 the C+—contour is replaced by
the C_-contour and a similar analysis will hold. Note that on

both these contours we have

Im(k sina)=0

Im(zk cosa)30 (Ar.4)

Re(k sina)?0

The C,-contour defined by Eq. (A.3) transformed to the tzcosa-plane
is a contour (see Figure 11) from t=wel(“/2_n) to t=1 subject

to (t=t'+it")

(t‘tans{+{|)(t'-t"tang{) = tan& (2.5)

The integral (a.l) is easily shown to be uniformly conver-
gent for all T when z2c>0, where c is any positive number (cf.
the exponential decaying factor). We also note that.the integrand
is an analytic function. except for the branch points t=t1 of the
associated Legendre functions P?(cosa) in Yn(ﬁ) and for the essen-
tial singularity at infinity for the exponential function. It is
- permitted to deform the contour C+ to any contour T p;ovided no
singularities are crossed. For convenience we will deform the
C,~contour to I' as depicted in Figure 12 or in the cosa-plane, see

Fig. 13. The constant ao=n/2—iag is any complex number where ag
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satisfies

sink m: > Yeos 8 (A.6)

The reason for this deformation of C+ is to simplify the analysis

given below. We note that the first part of I' (from a=0 to a=a0)

is identical to the corresponding part of the contour used in (}3].
The evaluation of the integral in Eq. (A.1l) is done by

first makiﬁg a rotation of the’coordinate system (a,8) to a co-

ordinate system (n,y). Here n is the new polar angle, specified as the

angle between % and f, and ¢ is the new azimuthal angle (see Fig.

14) . The spherical harmonics Yn(k) is transformed according to

eDf

3
Yn(«)rb): Z, Bm’m (‘t’,e,()) Yf.m'(r\‘q') (A.7)

This relation holds for real angles (a,B8), but can be analytical-
ly continued to complex angles (a,B) (note that the m' summation
is finite). We have here changed from real combinations of the
spherical harmonics to complex ones which have an azimuthal de-

m C . . .
B_(thls is merely a matter of convenience and in

pendence ei
accordance with references [12] and (13]). The final result holds
for real combinations too. Furthermore, we can without loss of

generality take ¢=0, The case$ $0 is an azimuthal rotation with

a trivial shift in the B interval. The relation between .the two

coordinate systems (o,B) and (n,v) is [;é] ($=0) :

cosn = sin @ s'moccos(z, + c0s0 cos.

) . . A.8
Smrlcos“h cosB sxnoccosp - sinBcos (h.8)

s{mls'\nq) = s{mxs'mfa
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The Eq. (A.l) can be rewritten as

'S
t k?‘

o
Scl{sj\(n(}l:)e sinx dw =
> LT

zs(oc,p)

3(n,¢)

sh\a,drl(A.g)

0 -
=T, By (0,6,0) Jde] v, (q ) 5o
m' X’ rl'

|3(d18)|
The Jacobian !3(n,y) ! is easily found:

3GH sine= (3538 - 3% 8] snce sing

We observe that the Jacobian is non-zero for |cosn|#l, and thus

the transformation non-singular, see [}3} and below.

e ]
|k°r

%
éd[‘;({Yn(k)c sind do =

(r.10)

Q) ke .
= :Z:.. 3"{“\ (0\9,0) g'dq’é"ch- (r(’q’) e,|k =1 Sinn dn

The contours y' and r' are the transformed contours of the (o) B)

variables given by Eq. (A.8), (Note that I'' is a function of v.)

Our goal is now to deform the contours in the right hancd side
of Eq. (A.10) to the original contours.(we[O,Zﬁ]and nel' or equi-
valently neC+). For this step to be valid we have to make sure that

no singularities of the integrand are crossed. The endpoints of

the integral also have to be the same.

In the discussion of the contour deformations it is convenient
to divide T into two parts: one from the origin to the point e
and from o, to infinity respectively. The deformation of the first

part of the T contour, where o is real and a=7/2+ia", -agsamgo
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is found in [13]. There a detailed analysis is found of how to re-
arrange the integrations in the real region, and how to let the
starting point of the n variable remain at n=0 (2*0 corresponds

to n+6). We see that the map of the real part of I' is real, and
the rearrangemént can be intérpreted as a transformation on the
unit sphere. A discussion of how to circumvent the singular points
cosn=t1 is also found in [lﬂ. The rearrangement discussed above
can also be performed for the original contour C,r but then much

harder to illustrate.

We now discuss the final part of the I'' contour, i.e.

1]
,tanhao

=yl e d N . l ng _ N ’ —
o=a'=1ioaJ, arctan.(EEH;t~0$cﬂ$1V2 and aeC+, a"<£ al. First we ana
lyse the asymptotic behaviour of T' as a»+n/2-% -1 o, According to

Eq. (A.8) we have:
cosn=sin® sino cosf + cos® cosa

Asymptotically we have

arg(C.osq) = -+ - arctan(tanf)cos[s) &> < (A.11)

and we see that arg (cosnp) € [n/z_—-'x-—e, 7/2=-8 + 9], see Fig. 15.

Furthermore we have

arﬂ( kt‘.osrl) = W/ - arctan(tan QCOSP) | { > - (A.12)

and we conclude that arg (k cosn)e_[n/Z-G, n/2+B] as a"»+-wo, Thus
for 9<n/2 we have arg (k cosn) ¢ (0,n) as a"+-», which ensures the
correct convergence properties at infinity. In the n-plane this

corresponds to (see Figure 16)
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n-> -);\ﬂf/z.-arctan({angcos[s)-;Q &> W= W =1oo

The remaining step is to make sure that we do not cross the
singular points cosn=t1 as we deform the remaining part of T'. We

have, see Eq. (A.8)

cosn= sino sin® cosB + cosa cos®

It is fairly easy to see that for a=o'+ia" with o' arbitray and
G"S-GBI where aa is given by Eq. (A.6) we have

|cosn|>1
Thus we see £hat the last part of r° (a=a'+ia", “"4‘“8) does
not enclose the singular points cosn=t1. Neither does the last

part of I'' enclose both cosn=1 and cosn=-1, since the curve

never enters the third quadrant of the cosn plane. (The last

part of T' starts in the first or second quadrant, depending
on B, and ends in the sector'arg(cosn)e[m/Z—K -8, w/2-% +9],
and the first part of I'', where o is real or a=n/2+iq";

-agsa"so, has only values in the first and second quadrant).

The integration variable ¢ can then easily be changed to the real
interval vye E,an The endpoints of the deformed curve remain
the same; we have y=nr.when B=nr. From Eg. (A.8) we can solve for

¥, and we get (y=y'+iy" and see Fig, 17):

! .
{-_a q’ = A sinp
rlz A&+E€-ﬂhﬂ3

i .
= 2B )
tanh2Y ;4banp
A+B+&np

(A.13)
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where

r

. ' ) -1
Az cos Bcos[s - sinBltana (1-tanhzot. )(fanh"ot"+ tanzoc')

= ' U 2! z 2
| B= ~smbBtanha (1+tan c()( tanhs + tan«

Thus we have analysed the contours y'! and T' and justified
the deformation of these contours to the original we[O,Zﬁ]and
nel or neC, and showed that this deformation is valid. We have,
see Eq. (A.10)

—‘2 u) l "COS .
.(d[sjY (k) (°.t sine d® = 7, m-‘%"‘“‘ $,9,0) qu’j Y(m'('l 'k smqafl

tkrecosn .
ﬁom (4’,9,0) Z'\Txloé Pt(com]) e L sian c\,.l =

&

A R4
-Z.Tl‘t h!(kr) Llr) 2 2T q)n(k?) (A.14)

In this last equation we have returned to the more general situation
where ¢*0, see the discussion above, and furthermore we have used

the integral representation of h(l)(z) [}{] and the definitions
or & (L) (40,00 [12), 1.e.

®
h[(ljz l jpt(ﬂ l'thH.‘. v€(~ar«11"lf~ar31)

oo expliv)

1041
%%LW.B,OFY‘\(?)/XM » XmFr:

A completely analogous analysis can be made for z<0 but this time

with the contour C_ and we can here conclude:

vk P
qj (k?) = zv Jdp S Yn(?d e ein dw 2%0 (A.15)
Cy
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For an z#0 the integral in Egq. (a.l5) is a uniformly convergent
integral and differentiation under the integral sign can be

>
justified. The spherical vector waves $n(kr) can thus be formed

T

- | :
\Pm(k‘é’)sr—-—— (F v ) (ke q’n(k?\) T=12 (A.16)

In proving the transformation between spherical vector waves and
plane vector waves we will essentially follow the presentation

found in [g]. First we consider:

— " -
q”m(k?) = h, (ke) A, LT : (A.17)

For definition of the vector spherical harmonics see [4]. We
will also need the following identity [6]. (Note that we for con-

venience are using the complex combination of the spherical har-

monics, i.e. no ¢ index.)

-> ~ A A A
A"‘(‘A.) = A1m{(r) =',t(t*“ VY{m(““) )( r=
(A.18)

A AA ALA
= a- tmﬂ(?) E__ + Q.“.Yem-‘(r) €+ + Q,thm(f\Z

Wherefa_,a+,az are contants depending only on £ and m and where

>

1
% = Nz (%viu)
A T (A.19)
E.= Tg(xﬂ“)

We get with Eq. (A.15)
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0 \

\! A A A
Lp‘n(k;:)= ht(k\') { O"'Y(.MM(?.) 8_ + Q+Y(m_‘(?) £+ + o'iY{“\ () ,2\] s

I® >
1 = A iker
= Zﬁtja[:,.g Anlkle  swnx dwo Z
o) c+

N
o

(A.20)

The spherical vector wave for t=2 is found by differentiation

under the integral sign, and we get

)
on (a.21)
; ~ ke
S Azn(ﬁ) e sinxd« 220

b4

[ ]
=]
O Ly
.
-
o

Thus finally we have

2% -

™ L = A k?®

Lpn(k-':) 3-2—‘[\? j dFS E“(k) e cinol d o 2)4 0 (A.22)
o ‘¢,

where B (k) is defined in Eq. (7).
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Figure captions

Fig. 1 Geometry and notations.
Fig. 2 The integration contours C_ and C_, K=ar3k
Fig., 3 The amplitude of the x-component of the anomalous

scattered field Iﬁgc-,anom.

-£] on the surface S_
(kozo=0.8) for a buried perfectly conducting spheroid.
The semi axis in the direction of rotational symmetry
is koa=0.3 and the other semi axis is kob=0.15. The

orientation 6f the symmetry axis is 6=x=m/6. The source

is located at kopt=6 and the scale factor is 10_6.

SC.,anom,

> ~
Fig. 4 The same as Fig. 3 but the z-component |EO ‘Zl

shown and 6=7/3, x=1/2, kopt=3 and the scale factor is

1072,

Fig. 5 The same as Fig. 3 but k ,a=0.15, kob=0.3 and 6=n/6,

x=37/4, kopt=3 and the scale factor is 10_5.

Fig. 6 The same as Fig. 3 but koa=0.15, kob=0.3, kopt=0 and

the scalar factor is 10_4.

A

z| for data

. s . >sc.,anom. _~;Azinc.
Fig., 7 The variation in |E +an ~zlAEO .

o
as in Fig. 5 along the x-axis. The scale is in percent.
Fig. 8 The amplitude and phase variation of the field compo-
nent of the scattered magnetic field ;-ﬁic' along a drill-
hole (t is a parameter along the drillhole). The drillhole
starts at ko(xo,yo,zo)=(l,0,0.8) and has the direction

n=57/6, ¥=m", The source is located at kopt=3. Data for

the obstacle koa=0.l, kob=0.2

a) 9=1T/2, x=0

b) 6=1/6, x=r/4
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The amplitude of the field component of the scattered

*>SC.,
l»
kO (Xolyolzo)=(_lrlIO~8)l n=5n/6, ‘1’=31T/2' k

mangetic field |n-

along the drillhole
of =3

koa=0.l, kob=0.2 and a) ¢=n/6, x=un/4, b) ¢g=u/3, X=un/2.
The amplitude and phase variation of the field component

of the total magnetic field ﬁ-ﬁl along the drillhole for

data as in Fig. 8 b). The dashed 1ine;is field component
for a homogeneous ground.
The C, contour in the complex cosa-plane (R =r1/6),

The I' contour (¥ =n/6).

The I' contour in the complex cosa-plane

-Notations of angles in the rotated coordinate system.

The variation in cosn as a function of o for fixed 0 (a
varies along the complex part of I' ; the dotted line is
the variation of o along a=m/2-iv, v=[0,a8]; 8=5n/12,
X=n/6 a) cosB=-1, b) cosB=-1/2, c) cosB=0,

d) cosB=1/2, e) cosB=1.

The variation of n as a function of ‘o for fixed 0.

For data see Fig. 16.

The variation of y as a function of B for fixed o

(6=57/12, &=n/6, sinha"=-1/cos®H, tana'=—tanha“/tan& ).
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