

Power Constrained Test Scheduling for 3D Stacked Chips: poster

Sengupta, Breeta; Ingelsson, Urban; Larsson, Erik

2010

Link to publication

Citation for published version (APA):

Sengupta, B., Ingelsson, U., & Larsson, E. (2010). Power Constrained Test Scheduling for 3D Stacked Chips: poster. Poster session presented at 1st IEEE International Workshop on Testing Three-Dimensional Stacked Integrated Circuits, Austin, Texas, United States.

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- · You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Power Constrained Test Scheduling for 3D Stacked Chips

Breeta SenGupta Urban Ingelsson Erik Larsson {breeta.sengupta, urban.ingelsson, erik.larsson}@liu.se Linkopings University, Sweden

Purpose:-

- Schedule core tests for stacked 3D chips
- Minimize the Test Application Time (TAT)
- ❖ A maximum power limitation
- The cost of control lines is considered

Test Scheduling Modes:-

Serial Processing (SP)

- Pre-bond test schedules of each chip are performed serially in post-bond
- ➤ Minimizing pre-bond requirement for control lines for each chip, the overall number of control lines remain at a minimum

Partial Overlap (PO)

- In post-bond, power compatible sessions of pre-bond are performed concurrently
- ➤ The number of sessions for each chip still remains the same, hence the number of control lines required also remain at a minimum, the same as SP

ReScheduling (RS)

- ➤ Sessions are split in pre-bond, such that they can be performed concurrently with sessions of other chips in post-bond, thus reducing the overall test time
- > Each split of session requires an additional control line

Pre-bond tests in SP are scheduled as per: V. Muresan *et al*. Greedy Tree Growing Heuristics on Block-Test Scheduling Under Power Constraints, *JETTA*, 2004.

Experimental Results:-

	Chip1					Chip2				Chip1 & Chip2			TAT				Incr. in	
	P	re-bo	nd Tes	st		Pre-bond Test				Post-Bond Test				Pre-bond + Post-bond				control lines
	T _{SP}	T _{PO}	T _{RS}	R (%)		T _{SP}	T _{PO}	T _{RS}	R (%)	T _{SP}	T _{PO}	T _{RS}	R (%)	T _{SP}	T _{PO}	T _{RS}	R (%)	%(orig)
Z	300	300	300	0	Z	300	300	300	0	600	560	560	6.7	1200	1160	1160	3.3	0 (6)
L	1374	1374	1374	0	L	1374	1374	1592	-15.9	2748	2107	1592	42.1	5496	4855	4558	17.1	3 (36)
M	26	26	27	-3.8	M	26	26	27	-3.8	52	52	48	7.7	104	104	102	1.9	20 (10)
Z	300	300	300	0	L	1374	1374	1374	0	1674	1374	1374	17.9	3348	3048	3048	9.0	0 (16)
Z	300	300	300	0	M*	520	520	520	0	820	780	780	4.9	1640	1600	1600	2.4	0 (8)
L	1374	1374	1374	0	M**	1040	1040	1040	0	2414	1824	1824	24.4	4828	4238	4238	12.2	0 (18)

Z: ASIC Z, L: System L, M:Muresans' Design ; SP: Serial Processing, PO: Partial Overlap, RS: ReScheduling, R: Reduction (test time)

RS shows significant test time reductions wrt SP and PO

Principle :-

T1

T2

C1

The main objective of the algorithm implemented for ReScheduling are:

C1+C2

T6

Minimum number of splitting of sessions (wrt SP test schedules)

T2

- This helps in keeping the number of control lines to a minimum.
- ➤ The minimum TAT is accepted which has an acceptable number of control lines

The objective is attained by:

- Considering two pre-bond sessions at a time, which belong to two different chips This preserves the sessions defined by SP to the maximum possible extent, since all tests in the stack are not considered individually
- ➤ Reductions in test time for all possible session pairs is calculated and tabulated, TAT_{RS} is obtained by maximizing the sum of the time reductions by mutually exclusive session pairs, from the table.

The problem has a large solution space, hence a greedy heuristic was applied, which has a overall complexity of O(*N log N*) for N sessions

Conclusions :-

- Testing of stacked 3D chips is different from non-stacked chip testing, as the same test schedule does not hold good in pre-bond and post-bond stages
- ❖ Splitting of sessions ⇒ Increase in Number of Control Lines ⇒ Increased Cost
- ReScheduling focuses on minimal splitting of pre-bond sessions
- Experimental results depict up to 42% reduction in postbond test time and 17% in overall test time