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Populärvetenskaplig sammanfattning 

Övervakning av biodiversitet i kulturlandskap – 

metodutveckling baserad på fjärranalys och GIS 

Kulturlandskapet är starkt knutet till människan och hennes aktiviteter. Flera tusen 

år av samspel mellan människa och natur har skapat landskap som definierar 

levnadsvillkoren för en mångfald av arter. Men när samhället förändras, förändras 

även kulturlandskapet. De forna årtusendenas långsamma och gradvisa 

förändringar har accelererats av människans teknologiska framsteg. I södra 

Sverige har jordbruksreformer, konstgödsel, modernt skogsbruk och urbanisering 

omvandlat kulturlandskapet på bara 200 år. Men mycket av biodiversiteten i 

landskapet är format av och beroende av habitat, landskapsstruktur och skötsel 

som de såg ut för 200 år sedan. För att kunna bevara så mycket som möjligt av vår 

biodiversitet måste vi övervaka kulturlandskapet och nya kostnadseffektiva, 

storskaliga metoder måste tas fram för att underlätta bevarandearbetet. Att 

övervaka och samla in data över kulturlandskapet med hjälp av satellit- och 

flygbaserade sensorer (fjärranalys) och behandla dessa data i datormiljö, kan vara 

nyckeln till ett effektivt övervakningssystem. 

I denna avhandling undersöker jag framförallt kopplingarna mellan artrikedomen 

av växter och kulturlandskapets egenskaper, med hjälp av datorbaserad behandling 

av flyg- och satellitdata, samt statistisk modellering. Jag har med hjälp av 

satellitdata och officiell rumslig och statistisk data utfört tre studier i delar av 

Skåne, med målsättningen att kunna koppla heterogeniteten i landskapet och 

landskapets sammansättning vad gäller markanvändning, till nivåer av artrikedom 

av växter. Med hjälp av högupplöst satellitdata och hyperspektral flygdata har jag 

även genomfört tre studier i ett gräsmarksområde på Öland, där jag har undersökt 

kopplingarna mellan betade gräsmarkers spektrala reflektans och deras 

växtdiversitet, samt möjligheterna att åldersklassificera betade gräsmarker med 

hjälp av deras spektrala signaturer.  

I den första studien baserad i Skåne visade jag att landskapets heterogenitet, 

uppmätt med mått från officiell Svensk Marktäckedata (rumsliga mått) och 

heterogeniteten i den spektrala reflektansen från Landsat-satellitdata (spektrala 

mått), är kopplad till artrikedomen av växter. Jag visade också att kopplingen 
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mellan artrikedom av växter och uppmätt landskapsheterogenitet är särskilt stark 

om man kombinerar rumsliga och spektrala mått. Med hjälp av kombinationer av 

rumsliga och spektrala heterogenitetsmått lyckades jag sedan bygga modeller som 

förutsade artrikedomen av växter med <20% felmarginal i ca 80% av 

studieområdet. 

I den andra studien baserad i Skåne skapade jag först historisk (1975) och nutida 

(2001) markanvändningsdata, baserad på Landsat-satellitdata, officiell höjddata, 

samt årstidsskillnader i ett spektralt baserat mått på växtlighetens fenologi. Jag 

visade sedan att både historisk och nutida markanvändning och 

landskapsheterogenitet är kopplade till nutida artrikedom av växter. Jag visade att 

proportionen åkermark i landskapet var negativt kopplad till artrikedom av växter, 

medan proportionerna av våtmark, lövskog och betesmark generellt var positivt 

kopplade till växternas artrikedom. Jag visade också att en ökning i proportionen 

av lövskog mellan det historiska och nutida landskapet kan påverka artrikedomen 

av växter positivt och att detta också gällde när heterogeniteten i landskapet ökade. 

I den tredje studien i Skåne visade jag att artrikedomen av växter i landskap som är 

enkla i sin sammansättning och heterogenitet, bäst förklarades av proportionerna 

av de vanligaste markanvändningsklasserna som inte var åker. Jag visade även att i 

de mest komplexa landskapen så var det mängden av småbiotoper (t.ex. 

märgelgravar, häckar, vägrenar) inom landskapet som förklarade artrikedomen av 

växter bäst. 

I den första av studierna på Öland visade jag att skillnader mellan betade 

gräsmarker i deras spektrala signaturer, uppmätta med data från Worldview-2-

satelliten, var kopplade till skillnader i deras artsammansättning av växter. Jag 

förutsade även skillnader i gräsmarkernas artsammansättning av växter genom att 

mäta skillnaderna i deras spektrala signaturer. I den andra studien på Öland 

använde jag data från den hyperspektrala flygbaserade sensorn HySpex för att 

förutsäga artdiversitet (artrikedom och Simpson’s index) av växter inom betade 

gräsmarker. Jag visade att de bästa resultaten kom när man använde samtliga 245 

spektrala band för att mäta gräsmarkernas reflektans. I den tredje studien på Öland 

använde jag återigen data från HySpex-sensorn för att klassificera betade 

gräsmarker i tre olika åldersklasser (5-15 år, 16-50 år och >50 år). Det bästa 

resultatet fick jag när jag började med att välja ut de spektrala band (177 band) 

som var viktigast för att kunna särskilja åldersklasserna. 

Sammanfattningsvis så visar mina resultat att metoder baserade på fjärranalys och 

GIS (geografiska informationssystem) kan vara mycket användbara verktyg för att 

effektivt kunna övervaka biodiversitet inom kulturlandskapet. Detta både genom 

deras förmåga att modellera landskapets struktur och sammansättning och genom 

deras förmåga att relatera dessa modeller till faktisk biodiversitet i ett brett 

spektrum av rumsliga skalor, habitat och landskap. 
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Introduction 

Cultural landscapes  

The cultural landscape has been defined as the "cultural properties that represent 

the combined works of nature and of man." by the World Heritage Committee 

(UNESCO 2012). The cultural landscape is shaped by a strong relationship 

between land-use and natural resources, including abiotic factors such as e.g. 

climate, water availability, soil and bedrock. These resources and conditions have 

been the main drivers of the land-use composition in the Nordic countries during 

most of the last 6000 years (Ihse 1995). However, anthropogenic activities have 

played an increasingly important role as civilisation evolved, as thousands of years 

of interaction between man and environment have created landscapes that define 

the living conditions for a multitude of species. As such, cultural landscapes reveal 

much about our evolving relationship with the natural world, because as society 

changes, so does the cultural landscape. Cultural landscapes are intrinsically 

linked to human activities, which have modified, and continue to modify, the 

general structure and function of landscape features, and their impacts on habitat 

conditions and the species inhabiting these landscapes (Martínez et al. 2010). 

Much of the present biodiversity within the European cultural landscapes is tied to 

habitats developed centuries ago, and to the agricultural practices of those times, 

whose management regimes are no longer economically viable (Vos & Meekes 

1999). The intensification and extensification of agricultural practices have re-

shaped the cultural landscapes, and have led to a transformation towards a simpler 

landscape structure (Benton et al. 2003). To monitor the cultural landscape has 

become increasingly important in order to quantify its composition and structural 

complexity, their change in space and time, and to learn their roles in the 

distribution of species, and the habitats that sustain those species. For this, we 

need to develop cost-effective yet efficient methods capable of large-scale 

assessments. Methods based on remote sensing and GIS may offer key toolsets for 

future monitoring systems. 

https://en.wikipedia.org/wiki/World_Heritage_Site
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The development of cultural landscapes in the south of 

Sweden 

The earliest signs of anthropogenic activity affecting the land-cover in the south of 

Sweden was seen during the Neolithic age (ca. 4000 BC), when hunter-gatherer 

communities started to adopt slash-and-burn and clearcutting agricultural 

techniques (Eriksson et al. 2002). This led to patchiness in the pristine vegetation, 

which was probably mainly dense broad leaved deciduous forest (Eriksson et al. 

2002). Eventually, as more permanent residences and agricultural practices started 

to develop, the concept of the village took on a new importance, as the processes 

surrounding it started to shape the countryside landscape (Emanuelsson et al. 

2002). A system of “infields”, which mainly consisted of arable fields and 

meadows, developed close to the villages, while so-called “outfields”, positioned 

further out from the populated areas, were used as pastures and for collecting 

fodder and wood for fuel (Widgren 1983). In the early stages of the system, 

outfields were generally used as commons, with no real ownership attached and 

free general use. As the exploatation of the commons increased and the amount of 

forest decreased, boundaries and borders between counties and villages were 

established (Emanuelsson et al. 2002). This general system of land use within the 

cultural landscape persisted into the late 18th century. Starting in the early 19th 

century, the cultural landscape changed dramatically (Emanuelsson et al. 2002). 

Villages were broken up, and farmsteads were spread out over the landscape. 

Arable fields increased in size, and the development of artificial fertilisers 

increased production capacity (Emanuelsson et al. 2002). An increased production 

of ley reduced the need for pastures and haymaking in semi-natural grasslands and 

meadows, thereby diminishing the areas of these habitats (Eriksson et al 2002). 

Many of the traditionally managed grasslands that survived this initial period of 

change were abandoned after the 1940’s and developed into forest (Eriksson et al. 

2002). Generally, forests were re-established on the former outfields, either 

through active plantation activities or by the cessation of grazing activities 

(Emanuelsson et al. 2002), and active forestry as a means of income was increased 

(Emanuelsson et al. 2002). Due to economic factors, fast growing coniferous 

species, mainly spruce, came to dominate the new plantations. As with the 

agricultural areas, the forested areas changed towards a simpler, more homogenic 

landscape structure. 

Grasslands 

Grasslands in the south of Sweden can generally be divided into two categories; 

improved grasslands and semi-natural grasslands. Both have their origins in 

anthropogenic activities, and are also maintained through further anthropogenic 
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involvement (Ihse & Lindahl 2000). Semi-natural grasslands were an integral part 

of the traditional Swedish cultural landscape as long as the outfields were still used 

for grazing, and their remnants are still of particular importance to the biodiversity 

within the cultural landscape. They are generally characterised by low nutrient 

availability, as grazing activites remove nutrients, and as they are not improved by 

artificial fertilising, although they may have their origin on former fertilised arable 

fields (Bullock 2011). They are also not improved by agricultural practices such as 

plowing or seed-sowing (Bullock 2011). These conditions favour grassland 

specialist species and other species with poor ability to compete in the more 

common high-nutrient environments. Consequently, semi-natural grasslands 

generally have a high level of plant species richness, as well as a high proportion 

of grassland specialist species (Reitalu et al. 2009), making them habitats of high 

conservation value (Reitalu et al 2010). They also contribute to regulatory 

ecosystem services, socio-cultural ecosystem services (recreation, education and 

esthetic values) (Bullock 2011), and can also be considered as a cultural heritage, 

owing to their importance within the concept of the historical agricultural 

landscape. Levels of plant species richness within semi-natural grasslands are 

dependent on both former (Lindborg & Eriksson 2004) and present land use, as 

well as other physical properties of the landscape such as topography, soil type, 

and landscape context. Stochastic processes can also have an impact on plant 

species richness (Öster et al. 2007) in semi-natural grasslands. 

Changes to the cultural landscape, and their effects on 

biodiversity  

Landscape heterogeneity (complexity) is a direct result of the number of land 

use/land cover (LULC) classes and the distribution and configuration of these 

within an area (Turner et al. 2001). In order to study changes in the complexity of 

landscapes, we need information on change in LULC, which has been considered 

the most important variable of global change impacting ecological systems 

(Vitousek 1994, Foody 2002), and rivals climate change as the largest variable 

affecting the global environment (Skole 1994, Foody 2002). Change in LULC has 

also been described as the largest global threat to biological diversity (Chapin et 

al. 2000). It has been suggested that the main cause of the decline in biodiversity 

in agricultural areas is loss of spatial and temporal heterogeneity, i.e. farmland 

becoming more simplified (Benton et al. 2003, Persson et al. 2010). 

Not only the overall landscape complexity, but also its composition, is of 

importance to biodiversity in cultural landscapes. Proportions of non-cropland 

LULC types have been shown to be positively associated with levels of species 
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diversity in agricultural regions. The intensification of agricultural practices has 

also led to an added importance of smaller non-crop elements within the 

agricultural landscape, such as field margins, stone walls, and field islets. Non-

crop elements are important to overall species diversity, as they provide refuge and 

resources vital to a variety of species (Duelli & Obrist 2003), and also aid in the 

dispersal of species within the landscape. Preserving and maintaining semi-natural 

elements within the agricultural landscape is also important for ecosystem 

services, such as those provided by pollinators or natural enemies of crop pests 

(Ricketts et al. 2004). In Sweden, field margins and other small biotopes of non-

crop habitats have traditionally been held open by grazing activities and fodder-

harvesting (Cousins & Eriksson 2001), and many management-intensive species 

are therefore tied to these habitats. As management has decreased with the 

cessation of traditional agricultural practices, ecologically important small 

biotopes have become increasingly overgrown by woody vegetation 

(Jordbruksverket 2006).  

Semi-natural grasslands in Sweden have been greatly diminished through the 

large-scale cessation of grazing activities, resulting in a 90% loss in the area of 

traditionally managed semi-natural grasslands since the beginning of the 20th 

century (Bernes 1994). The rapid loss of semi-natural grassland habitats has been 

identified as a major reason for the decline seen in biodiversity throughout Europe 

(Tscharnke et al. 2005). Those traditionally managed grasslands that persist are 

mainly preserved through grazing on the prescription of various conservation 

agencies. Grazing is considered an essential part of preserving semi-natural 

grasslands (Reitalu et al. 2010), along with maintaining a certain amount of 

connectivity between grassland patches. However, remaining patches of semi-

natural grasslands within the agricultural landscape have become increasingly 

isolated (Ihse 1995) and exposed to fertilisers and agrochemicals from the 

surrounding croplands, which may compromise their function as high-species 

richness habitats (Robinson & Sutherland 2002). 

It has become increasingly clear that in order to fully understand the impact that 

changes to the complexity and composition of LULC has on biodiversity in the 

cultural landscape, we must focus on changes over space and time, and thus 

changes to landscape structure as a whole (Walz & Syrbe 2013). Analyses of 

species richness patterns have revealed that not only present land use, but also 

management continuity and land-use history has a strong influence on present day 

plant species richness (Eriksson & Eriksson 1997, Bruun et al. 2001, Eriksson et 

al. 2002). However, our knowledge of change in LULC and its dynamics is limited 

(Foody 2002). Accurate LULC data has not necessarily been readily available or 

easy to acquire (DeFries & Townsend 1994), and results from traditional field-

based surveys quickly become outdated and irrelevant in the face of rapid 

environmental change (Zewdie & Csaplovics 2015). Reliable long term 
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information on spatial and temporal changes in LULC brought on by 

anthropogenic activity is vital, as is the reliable evaluation of management actions 

(Pettorelli et al 2014). 

Remote sensing  

Remote sensing, as defined for this thesis, relates to the detection of 

electromagnetic energy from the earth’s surface from aircraft or satellite based 

sensors (Turner et al. 2003). Remote sensing offers a cost-effective way of 

monitoring the cultural landscape over a broad set of spatial and temporal scales. 

Remote sensing of vegetation 

The reflectance properties of vegetation can vary between vegetation types, but 

their reflectance characteristics are built on variation within the same parameters; 

optical properties of plant litter, stem and leaves; canopy biophysical properties 

(e.g. area and orientation of leaves); density of the vegetation; illumination 

conditions; and viewing geometry (Asner 1998). The effect of the latter two, 

which are not properties of the vegetation itself but of the conditions in which we 

study them, can be minimised through correction procedures (Schaepman-Strub et 

al. 2006), leaving the former three as the main influences on the spectral properties 

that define spectral signatures of vegetation types. 

Figure 1 shows a typical reflectance curve for green vegetation through the visible 

(0.4 μm – 0.7 μm), near infrared (NIR, 0.7 μm – 1.2 μm) and short wave infrared 

(SWIR, 1.2 μm – 2.6 μm) wavelengths. The visible wavelengths (blue, green, red) 

are characterised by low reflectance, mainly due to light absorption from leaf 

pigments, such as chlorophyll. The green colour of healthy vegetation is due to the 

chlorophylls absorption of more light in the blue and red wavelengths, which can 

be clearly seen in the reflectance peak in the green band. The reflectance in the 

NIR wavelengths are generally controlled by the structure of the vegetation, which 

affects air-cell interactions of photons within the mesophyll of the leaves (Woolley 

1971), while reflectance in the SWIR wavelengths is mainly dependent on water 

absorption and non-pigment plant compounds such as nitrogen and lignin (Asner 

1998). While these interactions are well understood and documented (e.g. Asner 

1998, Kumar et al. 2001), actual canopy reflectance is harder to interpret due to 

interactions between multi-layered vegetation and the soil background (Homolova 

et al. 2013). 
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Figure 1. Typical spectral reflectance curve for vegetation. Modified from Medcalf et al. (2010). 

The way vegetation properties are studied using remote sensing can broadly be 

categorised into two methods; physical methods, where simulations of plant-light 

interactions (Jaquemod et al. 2009) are used, and empirical methods, where 

statistical relationships between empirical data on vegetation properties and 

reflectance information is used (Ustin et al. 2009). Physical models are 

computationally intensive and generally require extensive parameterisation and 

calibration procedures before they can be applied (Liang 2005). Empirical 

methods are generally computationally faster, but are dependent on locally 

measured parameters from a given sensor, and are therefore hard to transfer to 

different spatial or temporal locations or to use with another sensor. It is also 

possible to combine physical and empirical methods (Liang 2005) in order to find 

the optimal solution for a given problem and situation. 

Vegetation indices 

The aim of a vegetation index (VI) is to reduce the spectral response from a given 

number of spectral bands into a single number that can be used to find 

relationships between vegetation properties and spectral reflectance (Perry & 

Lautenschlager 1984). The most well-known VI is the Normalised Difference 

Vegetation Index (NDVI), which combines information from spectral bands in 

wavelengths corresponding to red and near infrared (NIR), calculated as NDVI = 
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(NIR – red) / (NIR + red). The NDVI was first used in the 1970’s (Rouse et al. 

1973) and is today established as the go-to VI for the study of vegetation 

properties (Pettoreli et al. 2005). It has e.g. been used as a proxy for vegetation 

productivity and biomass (e.g. Box et al. 1989, Pettoreli et al. 2005), and for the 

prediction of plant species richness (e.g. Gillespie 2005, Parviainen et al. 2010). 

Remote sensing for estimating species diversity of plants 

The estimation and prediction of species diversity using remote sensing techniques 

can be accomplished using three types of methods; direct methods, where spectral 

reflectance is directly related to individual organisms or communities of 

organisms; indirect methods, where spectral reflectance is related to environmental 

properties that can act as proxies for species diversity (Turner et al. 2003); and an 

approach which involves the development of direct relationships between spectral 

radiance values, and species distribution patterns recorded from observations in 

the field (Nagendra 2001). Direct methods are generally limited by the mismatch 

between the spatial resolution of sensors and the size of species being studied, but 

advances in sensor technology has made it possible to study certain species 

assemblages and larger organisms, such as trees (Turner et al. 2003). Duro et al. 

(2007) identify four general methods for identifying biodiversity using indirect 

remote sensing techniques; through the study of (i) the earth’s physical structure, 

such as climate and topography, (ii) vegetation productivity or function, (iii) 

habitat suitability with respect to structure and spatial arrangement, and, (iv) 

heterogeneity as a consequence of disturbance. The NDVI has been used 

frequently in method (ii) due to its ties to vegetation productivity and biomass (e.g. 

Rocchini 2009, Parviainen et al. 2010). 

The structure and spatial arrangement of landscape features have been extensively 

used in species diversity studies using remote sensing (e. g. Deutschewitz et al. 

2003, Honnay et al. 2003, Gillespie 2005), where remote sensing is generally used 

for the creation of spatial metrics based on spatially explicit landscape features, 

which are then related to species data. Related to this is using the remotely sensed 

measurements of the heterogeneity of landscape features as a proxy for species 

diversity, which has been done in a variety of studies at different spatial scales (c.f. 

Ricklefs 1977, Shmida & Wilson 1985, Huston 1994). Continuous spectral 

heterogeneity, where heterogeneity in spectral reflectance values is directly used, 

has also been related to species diversity (e.g. Rocchini et al. 2004, Parviainen et 

al. 2013). The origin for the use of continuous remotely sensed data for the 

production of heterogeneity measurements lies in the Spectral Variance 

Hypothesis (SVH, Palmer et al. 2000, Palmer et al. 2002), which suggests that 

spatial variation of reflectance should correlate with variation in habitat 

conditions, and thus with plant species richness. It is theorised that continuous 
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remotely sensed data can add detail on habitat characteristics at the landscape level 

beyond what can be supplied by climate- and topography-variables and LULC 

classes (Parviainen et al. 2013).  
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Aims 

The general aim of this thesis has been to develop new methods and techniques 

based on remote sensing and GIS, in order to investigate relationships between 

plant species diversity and landscape parameters at varying spatial and temporal 

scales, within cultural landscapes in Southern Sweden.  

I have specifically addressed the following questions: 

Paper I: Can landscape-scale plant species richness be related to individual and 

combined landscape-scale measures of environmental and spectral heterogeneity? 

Can we predict landscape-scale plant species richness using combined measures of 

landscape-scale environmental and spectral heterogeneity?  

Paper II: Can Landsat satellite data, supported by ancillary data on topography 

and seasonal differences in the NDVI, be used to measure LULC change between 

historical (ca 1975) and contemporary (ca 2001) landscapes? Can we relate 

changes in LULC between the historical and contemporary landscapes to 

contemporary levels of landscape-scale plant species richness? 

Paper III: What is the relative importance of different non-crop habitat types for 

large-scale total plant species richness? Are the relationships influenced by 

landscape complexity? 

Paper IV: Is Worldview-2 satellite spectral dissimilarity related to fine-scale plant 

species dissimilarity in semi-natural grasslands? Are the relationships affected by 

the spatial extents of grassland plots and spectral windows? 

Paper V: Can HySpex hyperspectral aerial data be used to predict fine-scale plant 

species diversity, using i) spectral heterogeneity ii) the direct relationship between 

spectral reflectance and plant species diversity?  

Paper VI: Can HySpex hyperspectral aerial data be used to classify dry grazed 

grasslands into three age classes? Can pre-selecting suitable wavebands improve 

the classification results? 
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Material and Methods 

Studies resulting in papers I, II and III were carried out in the province of Scania, 

in the south of Sweden. Studies resulting in papers IV, V and VI were carried out 

on the Baltic island of Öland. For clarity and to avoid confusion, the data and 

methods used for each study area will be presented separately.  

Scania 

Scania, Sweden’s southernmost province, covers an area of approximately 11 000 

km2, which represents 2.5% of Sweden’s total land surface The province is 

Sweden’s most productive agricultural region, with almost half of its area 

dedicated to agricultural land use (Statistics Sweden 2010). For the studies in this 

thesis, I have adopted two different official partitions of the province, both based 

on the premise that Scania consists of three distinct districts. In papers I and II, 

definitions and borders defined by the Nordic Council of Ministers were used, 

which define the districts on the basis of differences in geological, edaphic, 

topographic and climatic conditions Nordiska Ministerrådet 1977) (Figure 2). 

 

 

 

 

 

 

 

 

 

 

Figure 2. The location of the province of Scania (inset) and map showing the Plains, Central, and Woodland districts in Scania. 
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In paper III, definitions and borders defined by the Swedish Ministry of 

Agriculture were used, which divides the province into three agricultural regions, 

also known as production areas. The borders and physical makeups of the two 

different delineations are very similar, but there are some differences, as the 

geographical districts are mainly based on the physical geography of the province, 

and the agricultural regions are defined by intensity in agricultural practices. Both 

systems of delineation generally describe the districts/regions in the same way: 

The Plains district, found in the south-western part of the province, is dominated 

by arable cultivation on fertile clayey moraine soils, with patches of planted 

conifers and deciduous woodlands. The Central district has a similar physical 

makeup, but with lower agricultural intensity and a higher proportion of forest. 

The Woodlands district in the north-eastern part of the province is characterised by 

igneous rock that is typically overlaid by moraine soils with low clay content. 

Agricultural practices are less intense in the Woodlands district, and the main 

land-cover is commercially managed mixed forest, dominated by coniferous 

species (Germundsson and Schlyter 1999). The Plains, Central and Woodlands 

districts represent a gradient of decreasing land-use intensity and increasing 

landscape complexity.   

Plant species richness  

The aim of paper I, II and III based on the Scania study area was to explain levels 

of plant species richness, and in paper I, also to predict levels of plant species 

richness.  Plant species occurrence data was derived from the project “Skånes 

Flora”, a province-wide floristic survey coordinated by the Lund Botanical Society 

during the years 1987 – 2005 (Tyler et al. 2007). For the survey, Scania was 

divided into 2.5 × 2.5 km grid squares. I used the total number of plant species in 

paper I. In paper II, the (i)  total number of  plant species, (ii) the total number of 

red listed species (according to the International Union for conservation of Nature 

Red List), and (iii) the total number of grassland habitat specialist species (Ekstam 

and Forshed 1992) were used. In paper III, the (i) total number of plant species, 

and (ii) the total number of grassland habitat specialist species were used. 

Landsat satellite data 

Paper I made use of a Landsat 7 ETM+ scene from the 1 July 2001, while paper II 

made use of Landsat 2 MSS satellite scenes from 27 February 1973 (dormant 

season), 3 July 1975 (growth season) and 27 August 1973 (senescence season), 

and Landsat 7 ETM+ satellite scenes from 23 March 2003 (dormant season), 1 

July 2001 (growth season), and 12 September 2002 (senescence season). In paper 
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I, the Landsat 7 ETM+ scene was used to produce measures of spectral 

heterogeneity; the range and standard deviation of the red and near-infrared bands, 

and the normalised difference vegetation index (NDVI), calculated as ((NIR – red) 

/ (NIR + red)), within each of the 2.5 × 2.5 km grid squares used in the study. In 

paper II, the Landsat 2 MSS data was used in Support Vector Machine- 

classifications to describe a historical landscape for the period around year 1975. 

A SVM (Vapnik 1995) is a machine learning technique, based on statistical 

learning theory, which delivers a supervised classification. The Landsat 7 ETM+ 

scenes were used in Support Vector Machine-classifications to describe a 

contemporary landscape for the period around year 2001, which temporally 

matched with the contemporary plant richness data. Reflectance values of 

individual bands from the growth season images were used directly in the 

classifications, while dormant season and senescence season images were used as 

ancillary data to calculate differences in NDVI between dormant season – growth 

season, and senescence season – growth season for the historical and 

contemporary landscapes, in order to aid in separating spectrally similar classes.  

Explanatory variables 

Proportions of LULC classes 

The proportion of different classes of LULC was used as descriptors of plant 

species richness in paper II and III. In paper II, I used LULC data that were 

created using supervised SVM-classifications, while I used data from official 

sources in paper III. In paper III, I used the Swedish Land Cover Database (SMD) 

(Metria), which incorporates 51 LULC classes at a spatial resolution of 25 m × 25 

m (table S1 (supplemental material) in paper II). The original 51 classes were 

reclassified to 8 summary classes, before proportions of each class for each grid 

square was calculated. I also used “Blockdatabasen”, an annually updated 

Integrated Administration and Control System (IACS) produced by the Swedish 

Board of Agriculture, in order to be able to define sub-classes of farmland and 

their administrative borders. “Blockdatabasen” was also used in order to 

approximate the amount of small biotopes found within the study area. I used the 

2001-version of the database.  In paper II, SVM-classifications were used to create 

representations of historical (around 1975) and contemporary (around 2001) 

LULC in Scania, using the same 8 classes as in the reclassified SMD-data. From 

these classifications, proportions of each LULC class for each grid square were 

calculated.  

Topography 

Topography is known to be linked to species distributions in mountainous regions 

(Hofer et al. 2008), but it may also influence plant species diversity in flatter 
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regions (Moeslund et al. 2013), such as Scania, where elevation ranges from 0 to 

212 meters above sea-level. I used measures of topographic heterogeneity in both 

paper I (range and standard deviation of the elevation and the slope) and paper III 

(standard deviation of the elevation) as descriptors of plant species richness within 

each grid square. I used elevation as ancillary data in the SVM classifications in 

paper II. 

Soil and Bedrock  

Soil properties, which in large part are dependent on the properties of the bedrock 

on which the soil is formed, have a strong influence on the spatial distribution of 

plants (Tyler 2007). I used the number of unique soil types within grid squares in 

paper I, and the proportion of bedrock-categories within grid squares in paper III, 

as descriptors of plant species richness. 

Environmental heterogeneity 

All three studies based on the Scania study area incorporated measures of 

environmental heterogeneity as descriptors of plant species richness, and in paper I 

also as predictors of plant species richness. Several data sources were used to 

produce measures of environmental heterogeneity, incorporating data on the 

spatial distribution and composition of LULC, as well as data on topography and 

soil diversity. Paper I and III focused on data from official sources, while paper II 

used environmental heterogeneity variables from LULC data created by the SVM 

classifications. 

Spectral heterogeneity 

In paper I, six measures of spectral heterogeneity were calculated from the 

unclassified, continuous Landsat data, using the standard deviation and the range 

of the red (0.63 – 0.69 μm), and near infrared (NIR) (0.77 – 0.90 μm) wavebands, 

and the NDVI (NIR-red)/(NIR+red). Measures of spectral heterogeneity were 

related to levels of plant species richness. 

Hybrid heterogeneity 

In paper I, environmental and spectral measures of landscape heterogeneity were 

used together in models (hybrid heterogeneity) and related to levels of plant 

species richness. Hybrid heterogeneity measures were also used to predict levels 

of plant species richness in paper I. 
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Data analysis 

In ecological studies, the distributions of the relationships between response and 

explanatory variables are often complex or unknown (e.g. Yee & Mitchell 1991, 

Guisan et al. 2002, Parviainen et al. 2008). There is also a need to adapt methods 

that can deal with collinearity among a potentially high number of explanatory 

variables. The potential of modeling non-linearity in the relationships between 

response and explanatory variables was also something to consider when choosing 

statistical methods.  

In paper I, I used Generalised Additive Mixed Models (GAMM) to relate 

explanatory variables of environmental (EH) and spectral (SH) heterogeneity, and 

combinations of the two (hybrid heterogeneity (HH)), to plant species richness in 

training datasets, before testing the models on separate validation datasets by 

predicting levels of species richness, also using GAMM. 

In paper II, I used Pearson’s correlation coefficients to relate proportions of LULC 

classes and measurements of environmental heterogeneity to plant species richness 

in the historical and contemporary landscapes, respectively, as well as relating the 

changes in proportions of LULC classes and measurements of environmental 

heterogeneity between the historical and contemporary landscapes to plant species 

richness. I also tested for differences in change in LULC classes between the 30 

least and most species rich squares between the historical and contemporary 

landscapes, using 2-tailed Student’s t-tests.  

In paper III, I used Generalised Least Squares (GLS) linear models and an 

information-theoretic approach with multi-model averaging to relate explanatory 

environmental variables to plant species richness.  

Akaike Information Criteria (AIC)-values were used as the variable selection tool 

in models in both paper I and III. I also tested and included spatial correlation 

structures to correct for spatial autocorrelation within the data in both paper I and 

III.  

Öland 

The study area (centred on 56°40′49″N, 16°33′58″E), located close to the village 

of Jordtorp, covers approximately 22.5 km2, and consists of a mosaic of 

grasslands of different ages, cropland, forest and small villages (Figure 3). The 

topography is generally flat, with a few low ridges built up of glacio-fluvial 

sediments. The area is generally dry, with a mean annual precipitation of 468 mm  
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Figure 3. The Jordtorp study area on the Baltic island of Öland, Sweden 

 

and a mean annual temperature of 7ºC (Forslund 2001). The grasslands in the area 

range from recently developed on former arable fields and forest sites (Johansson 

et al. 2008), to old semi-natural grasslands with a grazing continuity of over 280 

years. The majority of the grasslands in the study area are grazed, mainly by cattle, 

with varying intensity. Grasslands currently cover approximately 10% of the study 

area, compared to roughly 80% at the beginning of the 19th century (Johansson et 

al. 2008).                    

Dependent variables  

Measuring and predicting grassland age and grassland plant diversity were the 

topics in the Öland studies. Species richness of plants and the inverse Simpson’s 

diversity index (iSDI) within 52 dry grazed grassland sites of three different age 

classes (5–15y, 15–50y, >50y) were used in paper V. Within the same sites, I 

predicted age classes of grassland plots in paper VI. In paper IV, I calculated, and 

then predicted, pairwise dissimilarity in plant species composition (a measure of β-

diversity) between 15 sites within the >50y grassland age class. 
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Remote sensing data 

I used a Worldview-2 multispectral satellite scene (2m spatial resolution, 8 bands) 

in paper IV, where I calculated pairwise spectral dissimilarity for individual 

spectral bands, as well as for three vegetation indices (VI’s), between plots in 15 

grassland sites. In paper V, I used information from individual bands and spectral 

heterogeneity and, in paper VI, I used information from individual bands, from the 

HySpex airborne hyperspectral sensor.  

Statistical analysis 

In paper IV, I used Worldview 2 multispectral satellite data (2m spatial resolution, 

8 bands) to relate pairwise measures of spectral dissimilarity to measures of plant 

species dissimilarity (β-diversity) between 15 old (>50y) dry grassland plots in 

training datasets, using univariate regression and vegetation indices (VI’s), and 

partial least squares regression (PLSR) and the full set of Worldview-2 spectral 

bands. I used two vegetation plot sizes, (2m × 2m and 4m × 4m) and different 

sized spectral windows, centred over the vegetation plots, to capture the remote 

sensing data (smallest: 1 × 1 pixel, largest: 11 × 11 pixels). The models developed 

on the training datasets were then used to predict β-diversity between pairs of plots 

in validation datasets (15 plots), using RMA regression and PLSR, respectively. 

In paper V, individual spectral bands from the HySpex sensor were related to 

levels of plant species diversity (species richness and the inverse Simpson’s index 

(iSDI)) in training plots, using partial least square regression (PLSR). Two sets of 

models were built, model 1 used all spectral bands (245 bands) and model 2 used a 

subset of spectral bands, 25 for species richness and 35 for the iSDI. The bands 

were selected based on their importance for predicting species diversity. Spectral 

heterogeneity within training plots, calculated with the “mean distance to the 

spectral centroid”-method, were also related to levels of plant species diversity 

using ordinary least squares regression (OLR). Models developed on the training 

data were then used to predict levels of plant species diversity (species richness 

and the inverse Simpson’s index (iSDI)) through the use of PLSR for PLSR-

training models, and reduced major axis regression (RMA) for OLR-training 

models, in validation plots.  

In paper VI, I used individual spectral bands from the HySpex sensor and partial 

least squares discriminant analysis (PLS-DA) in training plots to build models to 

predict age classes (5–15y, 15–50y, >50y) of dry grazed grasslands. Two sets of 

models were built, model 1 used all spectral bands (245 bands) and model 2 used a 

subset of 177 spectral bands, selected based on their importance for predicting 

grassland age classes. Models developed on the training data were then used to 
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predict age classes (5–15y, 15–50y, >50y) of dry grazed grasslands in validation 

plots, using PLS-DA. 
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Results and discussion 

Studies resulting in paper I, II and III were carried out in the province of Scania, in 

the south of Sweden. Studies resulting in paper IV, V and VI were carried out on 

the Baltic island of Öland. For clarity and to avoid confusion, the results for each 

study area will be presented and discussed separately. 

Scania 

The common general aim in paper I, II and III was to explain, and in paper I also 

to predict, levels of plant species richness in Scania and its three geographical 

districts. 

The influence of landscape heterogeneity on plant species richness 

In paper I, I used generalised additive mixed models (GAMM) to show that plant 

species richness was related to, and could be predicted with, measures of 

environmental (EH) and spectral heterogeneity (SH), and that EH in general was a 

better descriptor of plant species richness than SH. I also found that the 

combination of EH and SH (hybrid heterogeneity, HH) generally could improve 

on models compared to when EH and SH were used separately (table 3 in paper I). 

The results also suggest that SH has a larger complementary role in models of 

heterogeneity when the EH has a low impact on plant species richness. These 

results are in agreement with e.g. Parviainen et al. (2013), who show that spectral 

data can complement environmental data and enhance the performance of models 

describing plant species richness. I found that measures of LULC heterogeneity 

generally were the best environmental descriptors of plant species richness. The 

importance of LULC heterogeneity in the variance of plant species richness in 

areas with low altitudinal ranges, such as Scania and its districts, is corroborated 

by earlies studies (e.g. Heikinnen et al. 2004, Ortega et al. 2004, Waldhardt et al 

2004). I found that the red and near infrared individual spectral bands were 

generally better descriptors of plant species richness than the NDVI, except in the 

woodlands district. The NDVI is often the go-to vegetation index used in 
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ecological studies (Pettorelli et al. 2014), but our results suggest that the use of the 

NDVI’s individual components (red and near-infrared) may be more suitable 

under certain environmental conditions, and that they should not be discarded in 

favour of the NDVI as spectral descriptors of plant species richness before their 

descriptive capabilities have been assessed. These findings are in accordance with 

other studies using spectral proxies to describe landscape heterogeneity (e.g. Wen 

et al 2012, Ding et al. 2014). I found that positive linear relationships generally 

described the relationships between heterogeneity variables and plant species 

richness, but that weakly unimodal, bimodal, and negative linear relationships also 

occurred (table 3 in paper I). In a review of 192 studies, Stein et al (2014) found 

similar general trends in the shape of the relationships between environmental 

heterogeneity and plant species richness.  

The importance of LULC heterogeneity for promoting plant species richness was 

further shown in paper II, where measures of EH was significantly correlated with 

levels of plant species richness for the three species categories in both the 

historical and contemporary landscapes (Table S9 (supporting information) in 

paper II). The relatively high correlations for the historical landscape suggest that 

contemporary levels of plant species richness are dependent not only on 

contemporary environmental heterogeneity, but also on earlier levels of 

heterogeneity in the landscape. The lower correlations for red-listed plant species 

richness in both the historical and contemporary landscapes indicates that red-

listed species may already have declined before the mid-1970s, as previous studies 

suggest that red-listed species may be affected by changes in the landscape 

configuration earlier than other categories of species (e.g. Cousins et al. 2015). 

Predicting plant species richness using hybrid heterogeneity and 

GAMMs 

In paper I, using GAMMs to predict plant species richness in separate validation 

data sets resulted in prediction deviances of <20% in approximately 80% of 

validation data set squares for Scania and its three geographical districts (figure 3 

in paper I). While I feel that this represents a successful attempt at predicting plant 

species richness, there is currently very little stated from stakeholders and 

practicing conservationists on their demands and needs for prediction accuracy 

(Skidmore et al. 2015). As far as I know, no common guidelines or practices exist 

on what “good” or “acceptable” prediction accuracy of species richness actually is, 

making it hard to properly judge and evaluate the impact of the prediction results.  
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Land use/land cover and its influence on plant species richness 

In paper II, I used SVM-classifiers utilising Landsat data and ancillary data on 

topography and seasonal differences in the NDVI, to create LULC information 

with high degrees of accuracy (+85% overall accuracy, see Foody 2002) for both 

the historical and contemporary landscapes (see tables 3 and 4 in paper II). 

Specifically, I found that the addition of the ancillary data improved the 

classification of spectrally similar classes, such as grazed grasslands and cropland, 

particularly within the historical landscape. This is especially encouraging 

considering the technical limitations, specifically in regards to spatial, radiometric 

and spectral resolution, of the older Landsat 2 MSS data used in the classification 

of the historical landscape. This suggests that historical Landsat data in 

conjunction with ancillary data and modern classification methods, such as SVM, 

can produce accurate LULC information for historical conditions. Further, I 

showed that proportions of LULC in both the historical and contemporary 

landscapes were related to contemporary plant species richness for grid squares in 

southern Scania and within its three geographical districts (table S8 (supporting 

information) in paper II). I found that correlations between proportions of LULC 

in the historical landscape and contemporary plant species richness were 

comparable to those of LULC in the contemporary landscape and contemporary 

plant species richness (table S8 (supporting information) in paper II), suggesting 

that contemporary levels of plant species richness are related also to earlier LULC 

composition in the landscape. Correlations between red-listed plant species 

richness and LULC proportions in the historical and contemporary landscapes 

were lower than for the other species-groups, further indicating that red-listed 

species may already have declined before the mid-1970s.  

In paper II and paper III, I found that non-crop habitats were highly important for 

plant species richness within Scania’s three districts, but that which habitat was 

important depended on the district in question, and to some extent which method 

of analysis and which data was used. Both papers conclude that cropland has a 

negative effect on levels of plant species richness within the study areas. 

Proportions of semi-natural- or grazed grasslands and deciduous forest were 

important in both studies, being generally positively correlated to plant species 

richness categories in paper II (table S8 (supporting information) in paper II), and 

selected as variables of importance in paper III (tables 3 and 4 in paper III). In 

paper III, I also found that small biotopes were important in the Central and 

Woodlands districts, but not in the Plains district, which has a higher proportion of 

cropland. This suggests that there needs to be a certain level of non-crop habitats 

in the surrounding landscape for small biotopes to have a positive effect on plant 

species richness (Aavik & Liira 2009). In paper II, heterogeneity within the 

landscape had higher correlations than did proportions of LULC, with levels of 
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plant species richness, while in paper III, LULC variables were generally more 

important than environmental heterogeneity in explaining levels of plant species 

richness. These somewhat contradictory results suggest that the choice of data and 

methodology can play an important role in the results of studies of how 

environmental variables affect plant species richness. 

Change in land use/land cover and landscape heterogeneity between 

historical and contemporary landscapes  

In general, the measured change between historical and contemporary landscapes 

in proportions of LULC classes in paper II (table 5 in paper II), coincided well 

with data from official sources. For those LULC categories that were shown to be 

important to levels of plant species diversity within the individual landscapes in 

both paper II and paper III, I showed that between the historical and contemporary 

landscapes, cropland decreased, and grazed grassland and deciduous forest 

increased. LULC classes generally shown to be important to plant species richness 

thus seem to be increasing in area, while LULC classes generally shown to be 

detrimental to plant species richness are decreasing in area, within studied areas of 

the province of Scania. The supposed increase in new grazed grasslands, often the 

results of abandonment of arable fields, may in the future lead to an increase of 

species rich grassland vegetation if grazing management continues (Lengyel et al 

2012), and a supposed general shift from low species richness planted coniferous 

forest to more species rich deciduous forest may also lead to a general increase in 

plant species richness and diversity. 

The influence of land use/land cover change on plant species richness 

In paper II, I show that, generally, change between the historical and contemporary 

landscapes in the proportion of deciduous forest is positively correlated to levels 

of plant species richness in southern Scania (table S10 (supporting information) in 

paper II). I found significant differences in mean change between historical and 

contemporary landscapes in the proportion of cropland, coniferous forest and 

deciduous forest, when comparing the 30 least (coldspots) and 30 most (hotspots) 

species rich squares within Scania (figure 5 in paper II). In hotspots, the proportion 

of deciduous forest had increased more than in coldspots, while the proportion of 

cropland and coniferous forest had decreased more in hotspots than in coldspots of 

plant species richness.  

In paper II, variables of landscape heterogeneity showed fairly high correlations 

with plant species richness for the historical and contemporary landscapes 

individually, but for the change between the historical and contemporary 
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landscapes, only the number of patches (for Scania and the Plains district, for total 

and grassland sp. species richness) and Shannon’s diversity index (for the Plains 

district for grasslands sp. species richness) showed significant correlation with 

plant species richness. There can be several reasons for this; change in 

heterogeneity may generally be too small to have a significant effect on levels of 

plant species richness; change in heterogeneity may not be modelled well with the 

used methodology; or as shown in paper I, the effect of heterogeneity on plant 

species richness may not have been exclusively linear, or positive. 

Öland 

Papers IV, V and VI, based on studies in the Öland study area, have prediction 

techniques in grasslands using remote sensing and statistical modelling as the 

common theme.  

In paper IV, I found significant positive relationships between spectral 

dissimilarity and plant species dissimilarity in the pairwise comparisons using 

RMA regression and VI’s, for both vegetation plot sizes in the training datasets, 

with the strength of the relationships decreasing as the spectral windows used 

increased in size (figure 3 in paper IV). Using PLSR and Worldview-2 spectral 

bands in the training dataset, I found the same pattern, with the strength of the 

relationships decreasing, and the cross-validated RMSE increasing, with 

increasing size in spectral windows (figure 5 in paper IV). When applying the 

models on the validation datasets, correlations between predicted and field-

observed β-diversity were similar for both vegetation plot sizes, and for when VI- 

and individual band measurements of spectral dissimilarity were used, 

respectively. Correlations between predicted and field-observed β-diversity 

generally decreased with increasing pixel window size (table 2 in paper IV). This 

suggests that spectral windows of approximately equal size to vegetation plots best 

captures the environmental conditions within the vegetation plots. The similarity 

in correlations between predicted and field-observed β-diversity for the two 

vegetation plot sizes suggests that the species present within the 2 m × 2 m plots 

represent a subset of species present in the 4 m × 4 m plots, as there is an expected 

correlation between measures of species diversity within semi-natural grasslands 

(Öster et al. 2007). While using PLSR with the full set of Worldview-2 spectral 

bands gave slightly higher correlations between predicted and field-observed β-

diversity than did using VI’s, the difference was small. While using the full of set 

of spectral bands in PLSR models can be expected to improve the relationships 

between dependent and explanatory variables (c.f. Fava et al. 2010), the NDVI-

based VI’s apparently captured the majority of the available spectral response, 
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most likely due to the NDVI’s correlation to vegetation productivity and biomass. 

I suggest that the observed relationships between β-diversity and spectral 

dissimilarity in paper IV is mainly due to differences in grazing conditions 

between plots, affecting levels of biomass, field layer height, plant litter and 

exposed soil, which will have an effect on both the species composition and the 

spectral response within plots. I also note that there are other variables other than 

heterogeneity that affect fine-scale plant species richness, such as grassland age 

(Johansson et al. 2008) and the availability of soil nutrients (Reitalu 2014). 

In paper V, I predicted levels of plant species diversity in grassland plots of 

varying ages using PLSR and HySpex hyperspectral data, resulting in correlation 

coefficients (r2) of 0.43 (species richness) and 0.45 (iSDI) for model 1 (using all 

HySpex spectral bands), and 0.19 (species richness) and 0.40 (iSIDI) for model 2 

(using 25 and 35 HySpex spectral bands for species richness and ISDI, 

respectively), with relative prediction errors (RMSEp) of approximately 20% for 

both species richness and iSDI for both models (table 3 in paper V). Using a 

subset of 25 HySpex spectral bands to predict species richness reduced correlation 

coefficients drastically. This is contradictory to the findings of e.g. Fava et al. 

(2010), who improved prediction accuracy by reducing the number of spectral 

bands in PLSR-based prediction of plant species richness in hay meadows in the 

European Alps. Using a subset of 35 HySpex spectral bands to predict iSDI did 

not reduce the prediction accuracy nearly as much, suggesting the extra ten bands 

used in the model 2 prediction of iSDI was enough to make a large impact on 

prediction accuracy. Predicting species richness and iSDI using spectral 

heterogeneity resulted in statistically non-significant results, with high (> 30%) 

prediction errors, and I must therefore conclude that the method was unsuccessful. 

It’s likely that the 1m spatial resolution of the HySpex sensor did not manage to 

capture the fine-scale variation within environmental conditions in the grassland 

plots. Also, a spatial mismatch between the 4 m × 4 m field plots and the 8 m × 8 

m spectral windows may have further influenced the prediction accuracy 

negatively. 

In paper VI, I classified grassland plots into age classes (5 - 15y, 16 – 50y, > 50y), 

using partial least squares discriminant analysis (PLS-DA) and hyperspectral 

HySpex data. Models developed on the training dataset and evaluated with cross-

validation, and models applied on the validation dataset, had very similar overall 

classification accuracies and kappa-values, which suggests that the models are 

robust. Model 1, using the full range of Hyspex spectral bands (269 bands), had an 

overall classification accuracy of 77% and a kappa-value of 0.65 for both the 

training and validation datasets. Model 2, using a subset of 177 HySpex spectral 

bands, had an overall classification accuracy of 81% and a kappa-value of 0.71 for 

the training dataset, and an overall classification accuracy of 85% and a kappa-

value of 0.77 for the validation dataset. This shows that a pre-selection of 
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wavebands using appropriate methods can improve the accuracy of grassland age 

classifications using hyperspectral data. I found that grassland plots belonging to 

the youngest age bracket were associated with the highest levels of nutrients in 

plots, and the oldest grasslands with the lowest levels of nutrients in plots. Young 

grasslands are typically established on recently abandoned arable fields, where 

residual nutrient levels can be expected to be high compared to those plots where 

grasslands have persisted for a longer time and grazing activities have reduced 

nutrient availability. Remotely sensed data suggested a higher amount of 

chlorophyll in the young plots than in the old plots, which correlates to the more 

vigorous vegetation of nutrient rich habitats. 
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Conclusions 

This thesis shows that plant species diversity patterns can be described with 

remotely sensed proxies of landscape properties, or using spectral reflectance 

directly, at a variety of spatial and temporal scales. The thesis has explored 

relationships between remotely sensed data and both α- and β-diversity of plants, 

thus incorporating both components of landscape γ-diversity. The thesis also 

highlights the difficulty and necessity of finding the relevant spatial scales where 

relationships between landscape properties and species diversity are at their 

strongest, and then finding suitable proxy data to model those relationships. The 

modeled relationships have not always been strong, or straightforward. Even 

though I have used relatively new multivariate statistical methods, and 

incorporated a variety of spectral sensors, including modern hyperspectral sensors, 

much of the variation within plant species diversity patterns have remained 

unexplained. Some of the loss in the strength of the relationships can be explained 

by the aims of the individual papers, as they generally focus on individual or 

limited aspects of the total variation within landscape properties that can be 

expected to affect plant species diversity. However, the complexity in how plant 

species diversity responds to landscape properties, and perhaps even more in the 

varying responses of the individual species themselves, makes the responses 

inherently difficult to model.  

There are limitations with using simple measures of plant species diversity and 

landscape properties. Estimating habitat diversity through spectral heterogeneity, 

or using simple remotely sensed measures of landscape diversity, usually produces 

summary measures which do not say much, if anything, about the uniqueness or 

ecological importance of the different habitats (Rocchini et al 2016). Likewise, 

species richness and other simple measures of species diversity do not contain 

information on actual species composition, which can be of great importance in 

conservation efforts (Luoto 2005). 

Despite these limitations, remote sensing allows for the inexpensive collection of 

environmental information over vast areas, and does so in a consistent and 

repeatable manner while disregarding borders, conflicts, and other difficulties that 

may affect field-based inventories (Skidmore et al., 2015) within cultural 

landscapes. It also allows for information gathered in elapsed time to be revisited 
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and reexamined, and to put together data on temporal changes and thereby rapidly 

reveal where to direct conservation efforts (Skidmore et al. 2015). 

New satellite systems are continually developed, and technological advances may 

bring about new possibilities for the remote sensing of cultural landscapes. The 

Worldview-3 sensor, the successor to the Worldview-2 sensor used in paper IV in 

this thesis, offers extremely detailed (0.31m spatial resolution, panchromatic band) 

satellite data for the monitoring of, for example, individual trees or small scale 

species assemblages, and data is now available for interested parties, although at a 

fee. The EnMAP satellite sensor, due for launch within the near future, will supply 

data with the same spatial resolution as the Landsat 7 satellite used in papers I and 

II in this thesis, but with hyperspectral resolution, using 244 spectral bands (in the 

0.42 μm – 2.45 μm wavelengths) compared to the eight found on the Landsat 7 

satellite sensor.    

Remote sensing can be a crucial tool in ecological studies and conservation efforts, 

but in order for it to reach its full potential, there is a need for closer cross-

disciplinary collaboration between ecologists and remote sensing specialists 

(Skidmore et al. 2015). Many landscape and vegetation properties can be 

measured through remote sensing, but there are few standards or guidelines in 

place on how to translate those measurements into metrics that are actually 

meaningful for biodiversity monitoring (Skidmore et al. 2015). However, there are 

promising initiatives to improve the acquisition, coordination and delivery of 

biodiversity observations to users, such as national level decision makers and the 

scientific community. These include the Group on Earth Observations Biodiversity 

Observation Network (GEO BON). The main aim of GEO BON is to aid in 

coordinating large-scale biodiversity monitoring, linked to environmental data, to 

ensure that the Convention on Biological Diversity (CBD) reaches its stated goals 

for the biodiversity targets implemented during the 2010 Aichi-meeting (GEO 

BON).  

Perhaps, in some small way, this thesis can also contribute to that goal.   
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Modelling plant species richness in cultivated 

landscapes using public-domain data on 

environmental and spectral heterogeneity  

Jonas Dalmayne, Therese Irminger-Street, Ola Olsson, Honor C. Prentice, 

Karin Hall   

Abstract  

Theoretical and empirical studies indicate that plant species richness is 

likely to be promoted by environmental heterogeneity (at different spatial 

scales), with a diversity of habitats allowing the coexistence of species that 

have differing ecological requirements. The present study investigates 

relationships between vascular plant species richness (data from 965 2.5 × 

2.5 km grid squares) and landscape-scale habitat heterogeneity in the 

Swedish province of Scania. Habitat heterogeneity was characterized with 

the help of variation in Land Use Land Cover (LULC) data in the public 

domain (environmental heterogeneity) and/or variation in Landsat  spectral 

data (spectral heterogeneity). Generalized Additive Mixed Models 

(GAMMs) were used to analyse relationships between species richness and 

habitat heterogeneity: in the data set for the whole of Scania and, separately, 

for the subsets of squares representing the three geographic districts within 

Scania (the “Plains”, “Central” and “Woodland” districts). Each of the four 

data sets was divided into similarly-sized training and validation sets of 

squares before analysis. Three types of model (in which the explanatory 

variables were based, respectively, on descriptors of environmental 

heterogeneity, spectral heterogeneity and the combined environmental and 

spectral variables) were used to explain levels of within-square species 

richness (response variable) in each of the four training data sets. A 

combination of environmental and spectral descriptors of heterogeneity 

provided the best models for species richness in the Scanian, Plains and 

Woodland training data sets, whereas the environmental descriptors gave 

the best model for the Central district.  In all four data sets, the models 
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based on spectral heterogeneity alone were inferior to the models based only 

on environmental heterogeneity. Models based on a combination of 

environmental and spectral heterogeneity predicted within-square species 

richness with +/- 20% accuracy in ca. 80% of the squares in the independent 

validation data set for Scania. Squares where species richness was 

underestimated by >20% had a significantly higher mean observed species 

richness, and squares where species richness was overestimated by >20% 

had a significantly lower mean observed species richness, than the overall 

mean observed richness within the squares in the validation data set. The 

study shows that landscape-scale habitat heterogeneity is related to plant 

species richness in the province of Scania and its three districts. The 

relationship is generally best characterized by measures of habitat 

heterogeneity that are based on a combination of environmental and spectral 

variables.  

1. Introduction 

Individual plant species have particular habitat preferences and ecological 

amplitudes and, if different species are favoured by different environmental 

conditions, then a high level of spatial environmental heterogeneity (EH) is 

expected to be accompanied by a higher level of species diversity than that 

found under more uniform environmental conditions at the same spatial 

scale (Whittaker 1972; Silvertown 2004). The traditional European cultural 

landscapes, which developed over centuries of human land-use, contained 

extensive areas of species-rich semi-natural habitats, such as pastures, 

meadows and forest margins, and were characterized by heterogeneous 

environmental conditions and high levels of biodiversity (Bignal and 

McCracken 1996; Poschlod and WallisDeVries 2002). The progressive 

intensification of agriculture and forestry (e.g. Niemelä et al. 2005) during 

the last century has led to the loss and fragmentation of semi-natural 

habitats, and to a loss of spatial heterogeneity in the environmental 

conditions of many European landscapes (Bignal and McCracken 1996; 

Benton et al. 2003; Tscharntke et al. 2005; Krauss et al. 2010). For example, 

in Sweden landscapes with extensive areas of species rich semi-natural 

habitats (such as grasslands with a long continuity of grazing management) 

have been progressively transformed into landscapes that are dominated by 

either intensive arable cultivation or large-scale commercial forestry 
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(Bernes 1994; Wramner et al. 2003; Johansson et al. 2008). The remaining 

fragments of species-rich semi-natural habitats support a substantial 

proportion of the present-day species diversity in many European rural 

landscapes (Billeter et al. 2007). As the relict patches of semi-natural habitat 

become progressively more fragmented, disjunct and isolated (Ihse 2005), 

habitat quality is increasingly affected by mineral fertilizers and 

agrochemicals from the surrounding landscapes (Robinson and Sutherland 

2002). The loss and fragmentation of high quality semi-natural habitats, 

followed by a decrease in EH, has been identified as a major reason for the 

dramatic decline of species diversity in many modern European cultural 

landscapes (Storkey et al. 2012). Concern about the loss of species diversity 

has increased the demand for a better understanding of the mechanisms that 

drive the loss or maintenance of diversity, and there is a need for more 

information on the way in which the relationship between EH and levels of 

species diversity varies between different types of landscape. It has been 

suggested that, in the future, landscapes should be managed so as to enhance 

the spatial heterogeneity at several spatial scales (Benton et al. 2003; 

Belfrage et al. 2015), and methods that allow the evaluation of species 

diversity over large areas need to be developed.  

In the ecological literature, the term environmental heterogeneity has been 

used to refer to spatial variation in many types of abiotic and biotic 

environmental conditions (Stein et al. 2014; Stein and Kreft 2015). Stein et 

al. (2014) conclude that, separate effects of spatial heterogeneity in climate, 

soil, topography, land-cover, and vegetation may influence the richness of 

terrestrial plants and animals, and that variation in vegetation and 

topography have a particularly strong impact on the levels of species 

richness at a variety of spatial scales. Studies of different groups of 

organisms, carried out within different types of habitat and at a range of 

spatial scales, generally report a positive relationship between EH and 

species diversity (e.g. Stein et al. 2014; Stein and Kreft 2015). Stein and 

Kreft (2015) argue that EH is expected to promote levels of species 

diversity because it favours species coexistence, species persistence, and 

species diversification, and that the processes driving the positive 

heterogeneity-diversity relationships may act at different spatial and 

temporal scales. Some studies have, however, also shown that the 

association between EH and species richness may be negative (particularly 

at fine spatial scales) or non-linear, or that species diversity is not 

significantly associated with environmental heterogeneity (e.g. Yang et al 
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2015; Stein et al. 2014), highlighting the importance of choosing modelling 

techniques that allow for the description of both linear and non-linear 

heterogeneity-diversity relationships in studies of the associations between 

EH and species diversity.  

It is becoming increasingly clear that the use of Earth-observation satellite 

data in ecological studies can contribute to a deeper understanding of the 

mechanisms influencing the patterns of biodiversity (e.g. Pettorelli et al. 

2014a). Unclassified continuous satellite data have shown to be particularly 

useful in ecological research, providing additional, detailed information on 

environmental characteristics that complements data on, for example, 

climate, topography and land-cover (Parviainen et al. 2013; Sheeren et al. 

2014). The use of unclassified continuous reflectance values avoids the loss 

of information that is involved in the process of classification into simple 

land-cover classes (Parviainen et al. 2013). The spectral variation of 

remotely sensed data is expected to be associated with the heterogeneity in 

the environment (Rocchini et al. 2010), with higher levels of both species 

diversity and spectral heterogeneity (SH) being found in more 

heterogeneous habitats (the spectral variation hypothesis (SVH); Palmer et 

al. 2002). Measures of SH, in combination with measures of EH, have been 

used successfully in the assessment of patterns of species diversity within a 

range of different habitats and geographic regions (e.g. Zimmermann et al. 

2007; Camathias et al. 2013; Parviainen et al. 2013). For example, 

Zimmermann et al. (2007) showed that a combination of Landsat data and 

data on topography and climate could be used to explain and predict the 

distribution of tree species in Utah, USA.  

At present, the potential use of satellite imagery in biodiversity research has 

not been fully explored, and several problems have hindered the use of 

satellite data as a tool in conservation management (Turner et al. 2015). For 

example, difficulties with the retrieval of open-access satellite data have had 

a negative impact on the applicability of satellite data in research and 

operational applications (Turner et al. 2015). However, several recently 

launched internet-based platforms, such as the United States Geological 

Survey (USGS) Landsat archive, now provide free satellite data (Woodcock 

et al. 2008; Turner et al. 2015). In Sweden, the Saccess satellite archive 

(https://saccess.lantmateriet.se/portal/saccess_se.htm) provides free 

retrospective satellite data. 
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In the present study, we developed predictive models for vascular plant 

species richness within the Swedish region of Scania and its three 

geographic districts. The three Scanian districts represent a gradient in 

farming intensity and landscape heterogeneity – ranging from the 

intensively farmed and homogenous landscapes of the Plains district and the 

more heterogeneous agricultural landscapes of the Central district, to the 

Woodland district which is dominated by intensively managed forests. Data 

on vascular plant species richness (the response variable) within 2.5 km × 

2.5 km grid squares were available from a province-wide floristic inventory 

in Scania (Tyler et al. 2007). Each of the grid squares was characterized by 

three sets of explanatory variables: EH variables (including topographic, 

soil, and land-cover variables), SH variables derived from Landsat satellite 

data, and a combination of both environmental and spectral heterogeneity 

variables. Both the EH and SH variables were developed from databases, in 

the public domain, that can be accessed free-of-charge. We ask the 

following questions. (1) Can landscape-scale (2.5 km × 2.5 km) vascular 

plant species richness be predicted from the sets of EH and SH variables, 

respectively? (2) Is the predictive ability of a combination of EH and SH 

variables superior to that of the separate sets of variables? (3) Does the 

accuracy of the environmental and spectral heterogeneity-based predictions 

of landscape-scale species richness differ between the province of Scania as 

a whole and the three geographic districts (the Plains, Central and 

Woodland districts) within Scania? We also examined which EH and SH 

variables were important for the prediction of landscape-scale species 

richness in the whole province of Scania and in each of the three Scanian 

geographic districts. 

2. Methods 

2.1. Study area 

The study area was the province of Scania in southern Sweden which covers 

approximately 11 000 km
2
 and is divided into three geographic districts 

(Fig. 1a) that are characterized by different geological, edaphic, topographic 

and climatic conditions (Germundsson and Schlyter 1999). The geology of 

the plains of Southwestern Scania (the "Plains district") and Central Scania 
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(the "Central district") (Fig. 1a) is dominated by sedimentary bedrock that is 

mainly overlain by fertile, clayey moraine soils (Germundsson and Schlyter 

1999). The northeastern district – the Woodlands of Northeastern Scania 

(the "Woodland district") (Fig. 1a) – is characterized by igneous rock that is 

mainly overlain by moraine soils that are less clayey and less fertile than 

those in the Plains and Central districts (Germundsson and Schlyter 1999). 

The overall topography in the Plains and Central districts is flat or gently 

undulating but, particularly in the Central district, several horsts contribute 

to local differences in elevation (Fig. 1b). The topography in the Woodland 

district is hilly, with some hills reaching more than 200 m (Fig. 1b). The 

mean January temperature in Scania ranges from -2 °C (in the Woodland 

district) to -0.5 °C (in the Plains district), and the mean July temperature 

ranges from 15.5 °C (Woodland district) to 16.5 °C (Plains district). The 

mean annual precipitation ranges from 550 mm (Plains district) to 900 mm 

(Woodland district) (Germundsson and Schlyter 1999). Both the Plains and 

Central districts are characterized by intensive arable (mainly cereal) 

cultivation. The agricultural intensity is higher in the Plains district than in 

the Central district, which contains a higher proportion of planted stands of 

conifers and patches of deciduous forests than the Plains district 

(Germundsson and Schlyter 1999). The land-cover in the Woodland district 

consists mainly of intensively managed mixed forests dominated by 

coniferous species (Germundsson and Schlyter 1999). 

 

a)                                                                                                  b)                                                   

Figure 1.  (a) The location of the province of Scania (inset) and map showing the locations of the Plains, 
Central, and Woodland districts within Scania (b) map showing elevation (metres above sea-level). 
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2.2. Plant species richness  

We used species data from a province-wide floristic inventory in Scania 

(coordinated by the Lund Botanical Society), in which presence/absence 

data for all vascular plant species were collected, between 1987 and 2005, 

from 1560 2.5 km × 2.5 km squares (Tyler et al. 2007). In the present study, 

species richness was represented by the total number of vascular plant 

species sampled in each of the 1406 2.5 km × 2.5 km squares (together 

covering ca. 77 % of Scania)  that were regarded as being fully inventoried 

(Tyler et al. 2007). 

2.3. Explanatory variables 

Each of the 1406 2.5 km × 2.5 km squares was characterized by three sets of 

heterogeneity variables; (i) environmental heterogeneity (EH) variables, (ii) 

spectral heterogeneity (SH) variables (Table 1), and (iii) a combination of 

EH and SH variables, “hybrid heterogeneity” (HH) (cf. Parviainen et al. 

2013). The heterogeneity variables were extracted from official databases in 

the public domain, using ArcGIS 10.1 (ESRI) and FRAGSTATS ver. 4 

(McGarigal et al. 2012).  

2.3.1. Environmental heterogeneity variables 

Ten variables were used to characterize EH: four topographic variables, one 

soil and five land-cover variables (Table 1). We derived the topographic 

variables (standard deviation (SD) of the elevation (EHSD_elevation), range of 

the elevation (EHR_ elevation), SD of the slope (EHSD_slope) and range of the 

slope (EHR_slope)) from a digital elevation model (DEM), with a spatial 

resolution of 50 m and an accuracy of ± 2 m, supplied by the National Land 

Survey of Sweden (Table 1). We used the soil patch-richness (EHPR_soil; 

Table 1), representing the number of soil types, as a proxy for soil 

heterogeneity. EHPR_soil was estimated on the basis of data extracted from 

the Swedish Soil Cover Map (1:50 000), supplied by the Swedish 

Geological Survey (http://www.sgu.se). The digital soil map was 

transformed from vector to raster format with a spatial resolution of 5 m.  

The land-cover EH was characterized in terms of the heterogeneity of 

different categories of land-cover (types of land-use and vegetation). We 

calculated five landscape indices based on different descriptors of patch  



8 

Table 1. The explanatory variables (environmental heterogeneity and spectral heterogeneity) used in the 

prediction of vascular plant species richness at the landscape scale (in 2.5 km × 2.5 km grid squares) in the 

province of Scania and in its three districts. 

 

SD = standard deviation, R = Range, DEM = Digital Elevation Model, NIR = Near-infrared wavelength band, NDVI = 

Normalized Difference Vegetation Index, NLS = National Land Survey of Sweden, SSM = Swedish Soil Cover Map, 

SGU = Swedish Geological Survey, SMD = Swedish Land Cover Database, USGS = United States Geological Survey. 

 

complexity; total edge (EHTE), number of patches (EHNP), patch richness 

(EHPR), Shannon’s diversity index (EHSHDI) and Shannon’s evenness index 

(EHSHEI) (Table 1). The landscape indices were estimated on the basis of 

data for the 51 land-cover classes, included in the Swedish Land Cover 

Database – “Svenska Marktäckedata” (SMD) (http://gis-

services.metria.se/nvfeed/atom/annex2.xml) at a spatial resolution of 25 m × 

25 m (Table S1). The SMD database (provided by the Swedish 

Environmental Protection Agency) is a further development of the CORINE 

Land Cover project (http://www.eea.europa.eu/publications/COR0-

landcover). In addition to the satellite-based CORINE data, the SMD land-

cover classification incorporates data from terrain, road and vegetation maps 

Explanatory  

variables 
Abbreviations Units Description 

Source, Spatial 

data provider resolution 

Environmental 

heterogeneity  
          

Topography  
     

SD of elevation EHSD_elevation m 
 

DEM, NLS 50 m 

EHSD_elevation EHR_elevation m 
 

DEM, NLS 50 m 

SD of slope EHSD_slope degree 
 

DEM, NLS 50 m 

Range of slope EHR_slope degree 
 

DEM, NLS 50 m 

Soil  
     

Soil patch richness EHSoil_PR number number of soil types SSM, SGU 1:50000 

Land-cover  
     

Number of patches EHNP number number of individual patches SMD, NLS 25 m 

Total edge EHTE m total length of patch-edges SMD, NLS 25 m 

Patch richness EHPR number number of land-cover classes SMD, NLS 25 m 

Shannon’s  

diversity index 
EHSHDI  

𝑯′ =  − ∑ 𝒑𝒊  𝐥𝐧 𝒑𝒊

𝑹

𝒊=𝟏

 SMD, NLS 25 m 

Shannon’s evenness 

index 
EHSHEI  

𝑱′ =
𝑯′

𝑯′𝒎𝒂𝒙
 SMD, NLS 25 m 

Spectral  

heterogeneity  
          

SD of red SHSD_red  
Landsat ETM+ band 3, 0.63 – 0.69 µm USGS 30 m 

Range of red SHR_red  
Landsat ETM+ band 3, 0.63 – 0.69 µm USGS 30 m 

SD of NIR SHSD_NIR 
 

Landsat ETM+ band 4, 0.77 – 0.90 µm USGS 30 m 

Range of NIR SHR_NIR 
 

Landsat ETM+ band 4, 0.77 – 0.90 µm USGS 30 m 

SD of NDVI SHSD_NDVI  
(NIR – red) / (NIR + red) USGS 30 m 

Range of NDVI SHR_NDVI   (NIR – red) / (NIR + red) USGS 30 m 

Fig Study_b 
Fig Study_a 
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(Swedish National Land Survey), and forest-inventory data (Swedish 

University of Agricultural Sciences), as well as information from the 

Swedish Meteorological and Hydrological Institute, Statistics Sweden, the 

Swedish Environmental Protection Agency, and the various Swedish county 

administrative boards. 

2.3.2. Spectral heterogeneity variables 

A Landsat ETM+ scene from 7 July 2001, covering the province of Scania, 

was acquired from the Landsat archives of the United States Geological 

Survey. Landsat ETM+ provides eight-band multispectral imagery in the 

spectral range 0.45 − 12.5 µm, with a spatial resolution of 30 m (with the 

exception of the thermal (60 m) and panchromatic (15 m) bands, which 

were not included in the present study). The Landsat scene was chosen on 

the basis of its quality (a minimum of haze and cloud cover) and to provide 

a temporal match with the growing season. The Landsat data were supplied 

as a level 1T product, with systematic radiometric and geometric corrections 

applied with the help of ground control points (GCPs), and topographic 

corrections carried out using a DEM. We transformed digital numbers 

(DNs) to top-of-atmosphere reflectance values (see Chander et al. 2009), 

and we also carried out a dark object subtraction to correct the Landsat 

scene for atmospheric disturbance.  

Different earth-surface features reflect and absorb solar radiation differently 

at different wavelengths, and the ability of remote sensing data to detect 

spatial heterogeneity across landscapes may be influenced by the 

wavelengths or wavelength combinations that are used (e.g. Ding et al. 

2014). For example, the red reflectance has been shown to be sensitive to 

the soil properties of land surfaces, and the spatial variation of the red 

reflectance has been shown to be useful in studies of landscape 

heterogeneity in areas with sparse vegetation cover (Garrigues et al. 2006; 

Ding et al. 2014). The near infrared (NIR) reflectance is sensitive to the 

cellular structure of leaves in the vegetation, and the spatial variation in the 

NIR reflectance has been used to describe the overall variation in vegetation 

properties across landscapes (Garrigues et al. 2006, Ding et al. 2014). The 

normalized difference vegetation index (NDVI) (Rouse et al. 1973, Tucker 

1979) is a frequently used spectral vegetation index, which characterizes the 

contrast between the absorption in the red waveband by chlorophyll 

pigments and the reflectance in the NIR waveband caused by leaf cellular 

structure. The spatial variability of the NDVI is often used to describe 
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landscape heterogeneity (e.g. Oliver et al. 2005) and, for example, 

Parviainen et al. (2010) used the standard deviation (SD) and range of the 

NDVI to characterize the heterogeneity in greenness in boreal forests in 

Finland. The separate use of the red and NIR wavebands may provide 

information that complements that of the NDVI (Garrigues et al. 2008, Ding 

et al. 2014). In the present study, a total of six measures of spectral 

heterogeneity were calculated from the unclassified, continuous Landsat 

data, using the SD and range of the red (0.63 – 0.69 µm) (SHSD_red, SHR_red), 

and near infrared (NIR) (0.77 – 0.90 µm) (SHSD_NIR, SHR_NIR) wavebands, 

and the NDVI (NIR-red)/(NIR+red) (SHSD_NDVI, SHR_NDVI) (Table 1).  

2.4 The data set representing the whole province of Scania and 

the subsets representing the three geographic districts within 

Scania 

Each of the 1406 fully inventoried squares in the floristic inventory of the 

province of Scania (Tyler et al. 2007) was assigned to one of the three 

geographic districts; the Plains district (224 squares), the Central district 

(501 squares), and the Woodland district (681 squares) (Fig. 1a). Each of 

the four data sets (the full Scanian data set, and each of the three district 

subsets) was divided into two data sets (a training set and a validation set) 

by randomly assigning the squares to one or the other of the two data sets – 

giving a total of four training data sets and four validation data sets. 

Squares, for which the combined coverage of the SMD classes “surface 

water” and “built up area” (Table S1) exceeded 50%, and squares associated 

with spectral data considered to be affected by atmospheric disturbance 

were removed from the training and validation data sets. The removal of 

squares from the data sets reduced the total number of squares representing 

(i) the full Scanian data set to 965 squares (481 and 484 squares for training 

and validation data sets, respectively), (ii) the Plains district subset to 155 

squares (84 and 71 squares for training and validation data sets, 

respectively), (iii) the Central district subset to 379 squares (184 and 195 

squares for training and validation data sets, respectively), and (iv) the 

Woodland district subset to 431 squares (213 and 218 squares for training 

and validation data sets, respectively) that were used in the statistical 

analysis.  
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2.5 Statistical analysis 

2.5.1 Training data sets 

For each of the four training data sets, the values of within-square species 

richness (response variables) were related to each of the three sets of 

explanatory heterogeneity variables (EH, SH, and HH sets of variables) with 

the help of the generalized additive mixed model (GAMM) regression-

modelling approach (Chen 2000). The GAMM approach is an extension of 

general additive models (GAMs) (Hastie and Tibshirani 1986) and has the 

advantage that it is able to account for spatial autocorrelation within data 

sets (Zuur et al. 2009). Both GAMs and GAMMs allow the simultaneous 

fitting of both parametric and non-parametric response shapes within the 

same model (Chen 2000). It is argued that both approaches are appropriate 

for use in ecological studies, where the distributions of the relationships 

between response and explanatory variables are often complex or unknown 

(e.g. Yee and Mitchell 1991; Guisan et al. 2002; Drexler and Ainsworth 

2013; Parviainen et al. 2013).  

In the present study, model development was carried out on the training 

data, using Akaike information criterion (AIC) (Akaike 1974) values to 

compare and select variables for candidate models in a forward stepwise 

model selection procedure. AIC values take into consideration both 

goodness-of-fit and model complexity and, unlike likelihood ratio tests, 

allow the comparison of non-nested models. In the forward stepwise model 

selection procedure, each explanatory heterogeneity variable is first 

individually tested, and the variable generating the model with the lowest 

AIC value is entered as the first variable in the candidate model. At each 

subsequent step, the remaining variables are individually added to the 

variable(s) already present in the model, and the variable that produces a 

candidate model with the lowest AIC value is selected, while also ensuring 

that all the included smoothing terms are statistically significant (p ≤ 0.05). 

The procedure is repeated until the AIC is not lowered by > 4 by the 

addition of a further variable: the model is then considered final. The fact 

that the addition of a variable to a GAMM automatically adds 2 to the AIC 

needs to be taken into consideration when using AIC values to compare 

models (Arnold 2010). To minimize the effect of multicollinearity in the 

statistical analyses, we disqualified an explanatory variable from entering a 

model if it showed a ≥ 0.7 correlation (cf. Zimmermann et al. 2007) with a 

variable that had entered the model at an earlier step. Smoothing selection 
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(identification of the best-fitted distribution) for the model terms was carried 

out using a maximum likelihood (ML) method. The maximum number of 

degrees of freedom (df) was restricted to four, to avoid over-fitting and to 

retain interpretability of the response shapes. A Gaussian probability 

distribution with an identity function was assumed for the response (species-

count) data, because of the large size of the data sets and in order to be able 

to use AIC values for model comparison (cf. the mgcv package, R 

Development Core Team 2016).  

If spatial autocorrelation is not accounted for in models analysing the 

relationships between environmental conditions and species abundance, 

environmental factors may incorrectly be identified as being important or 

unimportant for the observed pattern of species diversity (cf. Lennon et al. 

2000, Keitt et al. 2002, Wagner and Fortin 2005). To check, and account, 

for spatial patterns in the model residuals for the training data sets, we 

constructed five spatial residual correlation structures (exponential, 

Gaussian, linear, rational, spherical) that were included in the GAMMs (see 

Zuur et al. 2009). When the five models including spatial residual 

correlation structures were compared with each other and with the 

uncorrected models, at each step in the forward selection procedure, the 

models including the exponential correction structure consistently gave the 

lowest AIC values and, thus, showed the best ability to model the spatial 

autocorrelation within the training data sets (Zuur et al. 2009). 

Consequently, all model selection was performed with an exponential 

spatial residual correlation structure built into the candidate models.  

For each of the four training data sets, the ability of the final model (for 

each of the three sets of explanatory variables) to explain within-square 

species richness was investigated by calculating the adjusted r-squared (r2) 

values, the root mean square error (RMSE), and the normalized RMSE 

(nRMSE) of the relationships between the species richness assessed from 

the model and the field-observed species richness. Finally, for each of the 

four training data sets, the final GAMM models derived from each of the 

three sets of explanatory variables (EH, SH and HH variables) were 

compared by calculating the differences in AIC values (ΔAIC) between the 

models, and the best final model was identified. If ΔAIC between two 

models is two, or less than two, both models are plausible candidates for the 

best model (Burnham and Anderson 2002, Monteiro et al. 2013). A ΔAIC 

value between four and seven indicates that, compared with the model with 

the lower AIC value, the model with the higher AIC value has 
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“considerably less support” (in terms of its ability to explain the variation in 

the response data). A ΔAIC greater than ten indicates that, compared with 

the model with the lower AIC value, the model with the higher value has 

“essentially no support” as the best model (Burnham and Anderson 2002). 

GAMM model building was done using the mgcv package (Wood 2011) in 

the R statistical environment (R Development Core Team 2016).  

2.5.2 Validation data sets 

The validation data sets were used to evaluate the best final regression 

models for the training data sets. Each of the four final models developed 

from the training data sets (for the province of Scania, and the Plains, 

Central and Woodland districts, respectively) was fitted to its respective 

validation data set and used to predict species richness in the squares 

belonging to the validation data set. The predictive capability of the final 

model, for each of the four validation data sets, was assessed with the help 

of Pearson correlation coefficient (r) values, the root mean square error of 

the prediction (RMSEP), and the normalized RMSEP (nRMSEP) of the 

relationship between the species richness predicted from the final model and 

the field-observed species richness. In addition, we calculated the 

percentage difference between the species richness predicted from the final 

model and the field-observed species richness for the squares within each of 

the four validation data sets. 

3. Results 

Levels of within-square species richness in the full Scanian data set and in 

each of the three geographic districts are summarized in Table 2, and the 

levels of within-square species richness for the full Scanian data set are also 

presented in Fig. 2. Summary statistics for the EH and SH explanatory 

variables for the full Scanian data set and each of the three geographic 

districts are shown in Tables S2, S3. The explanatory variables 

characterizing topographic heterogeneity (EHSD_elevation, EHR_elevation 

EHSD_slope, EHR_slope) were intercorrelated (r ≥ 0.70, p ≤ 0.05) within 

each of the eight data sets (the training and validation sets for Scania and 

each of the geographic districts, respectively), as were the land-cover 

variables (EHNP, EHTE, EHSHDI, and EHSHEI), and two of the SH 
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variables (SHSD_red and SHSD_NDVI). The correlation coefficients 

between all other pairs of explanatory variables were below 0.70 (p ≤ 0.05).  

 

Table 2. Summary statistics for vascular plant species richness within 2.5 km × 2.5 km grid squares for the 
training and validation data sets representing the whole province of Scania, and the subsets of squares 
representing the Plains, Central, and Woodland districts. SD = standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Species richness (pooled into six classes) within the 965 2.5 km × 2.5 km grid squares 
representing the whole province of Scania. The white squares were not included in the present study. 

  Species richness 

Training  Number  
Mean SD Range Min Max 

 data set of squares 

Scania 481 424 84 640 191 831 

Plains 84 378 79 371 191 562 

Central 184 436 86 624 207 831 

Woodland 213 432 78 442 245 687 

Validation              

data set             

Scania 484 426 82 560 212 772 

Plains 71 384 81 296 224 520 

Central 195 440 88 560 212 772 

Woodland 218 428 72 341 248 589 
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3.1 Relationships between species richness and the heterogeneity 

variables in the training data sets 

The final EH, SH and HH models differed in their ability to explain levels 

of within-square species richness in the full Scanian training data set (Table 

3). The adjusted r
2
 values for the relationships between the species richness 

predicted from the final models and the field-observed species richness 

ranged between 0.385 (HH model) and 0.072 (SH model) (Table 3). The 

HH model had the lowest AIC value, followed by the EH and SH models 

(Table 3). The ΔAIC was greater than ten between the HH and EH models 

(ΔAIC = 16), between the HH and SH models (ΔAIC = 107), and between 

the EH and SH models (ΔAIC = 91) (Table 3). The results suggest that the 

best (final) EH and SH models have no support compared with the best HH 

model, and that the best SH model has no support when compared with the 

best EH model explaining the variation in within-square species richness for 

the Scanian training data set (cf. Burnham and Anderson 2002; Monteiro et 

al. 2013). 

For the training data set representing the Plains district, the adjusted r
2
 

values for the relationships between the predicted and observed within-

square species richness varied between 0.446 (HH model) and 0.212 (SH 

model) (Table 3). The final HH model had the lowest AIC value, followed 

by the final EH and SH models (Table 3). The ΔAIC scores for the 

comparisons between the HH and the EH models (ΔAIC = 6), between the 

HH and SH models (ΔAIC = 11), and between the EH and SH models 

(ΔAIC = 5) indicate that (i) the best (final) EH model had considerably less 

support than the best HH model, (ii) the best SH model had no support 

compared with the best HH model, and (iii) the best SH model had 

considerably less support than the final EH model explaining the variation 

in species richness for the Plains district training set of squares (cf. 

Burnham and Anderson 2002; Monteiro et al. 2013).  

For the Central district training data set of squares, the adjusted r
2
 values for 

the relationships between the assessed and field-observed species richness 

within squares varied between 0.454 (EH model) and 0.158 (SH model) 

(Table 3). There were no combinations of EH and SH variables that 

delivered a model that was as good, or better, than the best (final) EH 

model, (no HH model is presented in Table 3). The ΔAIC  between the EH 

and SH models (ΔAIC = 54) suggests that the best SH model has no support 
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when compared with the best EH model explaining the within-square 

species richness in the Central district training set of squares. 

For the Woodland district training set, the adjusted r
2
 value for the 

relationships between the predicted and observed within-square species 

richness was somewhat higher for the final EH model (0.206) than for the 

final HH model (0.171), whereas the r
2
 value for the final SH model (0.113) 

model was lower than those of both the EH and HH models. However, the 

HH model had the lowest AIC value, followed by the values for the EH and 

SH models (Table 3). The differences in AIC scores between the HH and 

EH models (ΔAIC = 21) and between the HH and SH models (ΔAIC = 20) 

suggest that the best EH and SH models have no support compared with the 

best HH model for within-square richness. The difference in AIC score 

between the EH and the SH models (ΔAIC = 1) implies that both models are 

possible candidates for the best model. However, the higher r
2
 value of the 

relationship between the assessed and observed within-square species 

richness for the EH model compared with the SH model suggests that the 

performance of the best EH model was better than that of the best SH 

model.  

 

Table 3.  Adjusted r-squared values (r
2
), AIC values, root mean square error (RMSE), and normalized RMSE 

(nRMSE) for the best (final) model developed from each of the training data sets (representing the whole 
province of Scania, and the three geographic districts within Scania; the Plains, Central, and Woodland 
districts, respectively) for each of the three sets of explanatory variables (environmental heterogeneity (EH) 
variables, spectral heterogeneity (SH) variables, and a combination of EH and SH variables (“hybrid 
heterogeneity”). Variable (var) 1 – 5 lists the order in which the variables enter the models. 

Model type               

Scania var 1 var 2 var 3 var 4 var 5 r² AIC 

Environmental EH (PR +) EH (TE ∩∩) EH (STD_slope +) EH (soil PR +)  0.338 5313 

Spectral SH (R_NIR +) SH (R_NDVI +) 
   

0.072 5404 

Hybrid EH (PR +) EH (TE ∩∩) SH (STD_red ∩) EH (STD_slope +) SH (R_NIR +) 0.385 5297 

Plains               

Environmental EH (NP ∩)     0.421 932 

Spectral SH (R_NIR +) SH (R_red ∩)    0.212 937 

Hybrid EH (NP ∩) SH (R_NIR +)    0.446 926 

Central               

Environmental EH (SHDI +) EH (R_elevation +) EH (PR +)   0.454 2015 

Spectral SH (STD_NIR ∩) 
 

   0.158 2069 

Hybrid        

Woodland               

Environmental EH (soil PR +) EH (PR +) EH (NP -)   0.206 2348 

Spectral SH (R_NDVI +) SH (R_NIR +) 
 

  0.113 2347 

Hybrid SH (R_NDVI +) EH (soil PR +) EH (PR +) SH (R_NIR +)  0.171 2327 

Smoothing shapes: positive linear (+), negative linear (-), unimodal (∩), bimodal (∩∩) 
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3.2 The heterogeneity variables included in the final models for 

the training data sets 

The best EH model for the Scanian training data set included land-cover, 

topographic, and soil heterogeneity explanatory variables, whereas the best 

HH model included land-cover, spectral and topographic heterogeneity 

variables (Table 3). For the Plains training data set, only one land-cover 

variable (EHNP) was included in the final EH model, while both the EHNP 

and a spectral heterogeneity variable (SHR_NIR) were included in the final 

HH model (Table 3). The final EH model for the Central district training 

data set included land-cover and topographic heterogeneity variables. For 

the Woodland training data set, the final EH model included soil and land-

cover heterogeneity variables, whereas the final HH model included both 

spectral, soil and land-cover heterogeneity variables (Table 3). 

Individual spectral wavebands were more commonly included in the final 

models than the NDVI, which was only included in the final SH and HH 

models for the Woodland district (Table 3).  

The majority of the explanatory variables showed a positive, linear 

relationship with species richness (Table 3), indicating that an increase in 

the within-square environmental and spectral heterogeneity is associated 

with an increase in the level of within-square species richness. In the 

Scanian, Plains, and Central training data sets, a few explanatory variables 

(e.g. SHSTD_red, and EHNP, Table 3) showed unimodal relationships with 

species richness – indicating an initial positive trend in species richness at 

low levels of heterogeneity, but with a decreasing trend in species richness 

as heterogeneity increases. In the final EH and HH models for the Scanian 

training data set, the EHTE showed a bimodal relationship with species 

richness (Table 3). There was a single negative linear relationship (for 

EHNP in the final EH model for the Woodland training set) (Table 3).  

3.3 Relationships between species richness predicted from the 

training data sets, and the observed species richness in the 

validation data sets  

The final models that provided the best explanation of the within-square 

species richness in each of the four training data sets (Scania, and the Plains, 

Central and Woodland districts) were used to predict the within-square 
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richness in the corresponding validation data sets. The HH models were 

fitted to, and used to predict species richness in, respectively, the Scanian, 

Plains and Woodland validation sets. The EH model was used to predict 

within-square richness in the Central district. The correlation coefficients 

between the predicted and field-observed species richness were significant 

(p ≤ 0.001) for each of the four validation data sets (Table 4). The r values 

were lowest for the Woodland district (r = 0.38, p ≤ 0.001), and highest for 

the Central district (r = 0.61, p ≤ 0.001) (Table 4).  

 

Table 4. Pearson’s correlation coefficients (r), root mean square error (RMSE), and normalized RMSE 
(nRMSE (%)) between the species richness predicted from the best (final) models for each of the training 
data sets (484, 71, 195, 218 squares, representing the whole province of Scania and the Plains, Central, and 
Woodland districts, respectively), and the field-observed species richness for the squares in the independent 
validation data set. All the correlations are statistically significant (p ≤ 0.001). 

 

 

 

 

 

 

The difference between the predicted and observed species richness was 

calculated for each of the four validation data sets. The individual grid 

squares within each validation data set were then assigned to one of five 

classes on the basis of the differences (0 - 5.0%, 5.1 - 10.0%, 10.1 - 15.0%, 

15.1 - 20.0%, and > 20%) between predicted and observed richness within 

each square. The difference between predicted and observed species 

richness was less than 5.0% in 22.7% of the squares within the Scanian 

validation data set (Fig. 3). Within the validation data sets for the individual 

districts, 12.7% of the squares representing the Plains district, 30.3% of the 

squares representing the Central district, and 24.8% of the Woodland district 

squares had differences between predicted and observed richness that were 

less than 5.0% (Fig. 3). The differences between predicted and observed 

richness were lower than 20.0 % in approximately 80% of the squares 

within each validation data set (79.3% Scania, 75.7% Plains, 77.4 % 

Central, and 80.3% Woodland) (Fig. 3). 

 

Best model r RMSE nRMSE (%) 

Scania     

Hybrid model 0.55  68.5 12.2 

Plains        
Hybrid model 0.54  69.7 23.6 

Central       
Environmental model 0.61  69.6 12.4 

Woodland       
Hybrid model 0.38  66.8 19.6 
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Figure 3. The deviance between the species richness predicted from the best (final) heterogeneity model for 

each of the training data sets (representing the whole province of Scania, and the Plains, Central, and 
Woodland districts, respectively) and the field-observed species richness in the validation data set squares, 
sorted into groups based on the deviance in percent for each square. 

 

Within each of the four validation data sets, the predicted species richness 

tended to be underestimated for squares with high observed species richness 

and overestimated for squares with low observed species richness. For 

example, squares where species richness was underestimated by >20% had 

a significantly (p ≤ 0.05) higher mean observed species richness, and 

squares where species richness was overestimated by >20% had a 

significantly (p ≤ 0.05) lower mean observed species richness, than the 

overall mean observed richness within the squares in the validation data set. 

For the province of Scania, the observed species richness in the squares 

where species richness was overestimated by more than 20.0% ranged 

between 212 and 423 species, whereas the observed species richness for the 

squares where richness was underestimated by more than 20% ranged 

between 415 and 772 species (Fig. 4). Maps showing the locations of the 

validation data set squares associated with over- and underestimates of the 

predicted species richness, respectively, are presented in Fig. S1. 
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Figure 4. The deviance (%) between the species richness predicted from the hybrid heterogeneity model, 
and the field-observed species richness in the validation data set squares, plotted against the field observed 
species richness in the validation data set squares, for the whole province of Scania. 

4. Discussion   

The present study examined the ability of models based, respectively, on 

descriptors of environmental heterogeneity, spectral heterogeneity and a 

combination of environmental and spectral variables, to predict levels of 

vascular plant species richness within 2.5 km × 2.5 km grid squares in the 

Swedish province of Scania. The models were constructed using training 

data sets based on subsets of the grid squares, and the predictive ability of 

the models was tested with the help of species-richness data from an 

independent set of squares. The species richness models that included only 

variables characterizing environmental heterogeneity were superior to those 

based only on spectral heterogeneity in the data set for the whole of Scania, 

and in separate data sets for the Plains, Central and Woodland districts 

within Scania. A combination of EH and SH variables provided the best 

models for species richness within the Scanian, Plains and Woodland data 

sets, whereas the best model for the Central data set included only EH 

variables.  
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4.1 The best species richness models for the training data sets of 

squares  

The study showed that a combination of descriptors of spectral 

heterogeneity (calculated from unclassified Landsat data) and 

environmental heterogeneity (based on data on land-cover, topography and 

soil properties) provided the best explanations of within-square species 

richness for the province of Scania as a whole, and for the Plains and 

Woodland districts (Table 3). The results of the study support those of 

previous studies which show that unclassified Landsat data can provide a 

valuable complement to environmental data in explanatory models for 

species richness. Parviainen et al. (2013) showed, for example, that the 

distributions of red-listed plant species in NE Finland were better explained 

by species richness models including Landsat-based explanatory variables 

than by models based on only data on climatic and topographic variables.  

The extent to which remote sensing-based variables contribute to the 

explanation of species richness may vary between biogeographic regions. 

For example, Camathias et al. (2013) showed that the contribution of high-

resolution remotely sensed data to models for species richness in Swiss 

forests increased with decreasing regional variability in the coarse-scale 

topographic and climatic conditions. Our study also shows that the 

contribution of remotely-sensed variables to the explanation of species 

richness varies between regions. Whereas the species richness models based 

on a combination of EH and SH variables were superior to the models based 

on only EH or SH variables for the full Scanian data set, as well as for the 

Plains and Woodland data sets, the best species richness model for the 

Central data set included only EH variables. At the same time, the EH 

variables made a somewhat greater contribution to the explanation of 

within-square species richness in the Central district than in the other data 

sets.  

Variation in topography and climatic conditions has been shown to provide 

a good explanation of levels of species richness in mountainous regions 

(e.g. Moser et al. 2005), whereas land-cover provides a better explanation of 

species richness in regions with a limited altitudinal range (Waldhardt and 

Simmering 2004). Our study was carried out in a geographic area 

characterized by a relatively low altitudinal range and, in the final EH 

models for the squares within the province of Scania, and within the Plains, 

and Central districts, respectively, the explanatory variables with the lowest 
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AIC values were the land-cover EH variables. However, in the models for 

the Woodland district, the explanatory variable characterizing soil 

heterogeneity (EHSoil_PR) had the lowest AIC value. One possible 

explanation for the poorer contribution of the land-cover EH variables to the 

final species richness models for the Woodland data set compared with the 

other data sets may be related to the definition of the forest land-cover 

classes in the SMD classification (Table S1). The suite of forest land-cover 

classes in the SMD classification, from which the land-cover EH in our 

study was calculated, not only reflect the types of tree taxa that form the 

forest canopy but also include classes that represent different age-categories 

within managed coniferous forest. The SMD data were originally developed 

as a general tool for multi-disciplinary planning and may not be suitable for 

describing the environmental heterogeneity within forest regions.  

For the Woodland district, the best explanatory variable − among all the 

variables in both the SH and HH models − was the range of the NDVI. The 

relationship between the NDVI and a number of vegetation properties (e.g. 

leaf area index, fraction of intercepted photosynthetic active radiation, 

absorbed photosynthetically active radiation, green biomass and primary 

productivity, and leaf chlorophyll content) is well-documented (e.g. Boegh 

et al 2013). The NDVI is often used to describe vegetation productivity or 

the “greenness” of vegetation (see e.g. Pettorelli et al. 2006; Parviainen et 

al. 2010). However, in vegetation that has a high canopy-density, the 

saturation of the relationship between the NDVI and vegetation productivity 

may affect the accuracies of NDVI-based biomass estimations (Pettorelli et 

al. 2005; Mutanga et al. 2012). Our results indicate that the within-square 

variation of the NDVI captures information on aspects of the within-square 

habitat heterogeneity that are associated with species richness but are not 

captured by the forest land-cover classes in the SMD classification. Our 

results are consistent with those of previous studies which show that 

heterogeneity measures based on the NDVI can be used in the assessment of 

biodiversity within forests (e.g. Parviainen et al. 2010; 2013). Parvianen et 

al. (2010) showed that a combination of NDVI-based measures of 

productivity and heterogeneity could be used as an indicator of plant-species 

richness in a boreal forest landscape in Finland. The present study revealed 

a positive association between the within-square species richness and 

variation in the NDVI, whereas the study by Parviainen et al. (2010) 

revealed both unimodal as well as positive relationships between species 

richness and NDVI-based measures of productivity and heterogeneity. 
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The positive relationships between the levels of species richness and the 

levels of both EH and SH generally shown in the present study are in 

accordance with the expectation that a diversity of habitats or niches will 

promote levels of species co-existence at a range of spatial scales 

(Whittaker 1972; Silvertown 2004). Increasingly higher levels of spatial 

heterogeneity may, however, also be accompanied by a decrease in the 

habitat area suitable for particular species, explaining the humped-shaped 

relationships between heterogeneity and species richness that has also been 

observed in some studies (cf. Stein et al. 2014). Negative heterogeneity-

diversity relationships have occasionally been reported in the literature − 

particularly at fine spatial scales (e.g. Gazol et al. 2013). For the Woodland 

district, our results show a decrease in the level of species richness as the 

number of individual patches (irrespective of land-cover type) increases. 

The negative relationship between EHNP and species richness may, again, 

reflect the fact that the SMD land-cover classification of coniferous forest 

includes stand-age categories. Areas of forest where a mosaic of differently-

aged coniferous stands contributes to higher values of EHNP may not 

necessarily represent areas that are characterized by a high number of 

patches representing fundamentally different environmental conditions.   

4.2 Predicting species richness for the validation data sets with 

the help of the species richness models developed for the training 

data sets 

The species richness models developed for the training data sets could be 

used successfully to predict the observed within-square levels of species 

richness within the independent validation data sets for Scania, and the 

Plains, Central and Woodland districts, respectively (Table 4). The 

differences between the predicted and observed richness were low (< 20%) 

for the majority (ca. 80%) of the squares for all four validation data sets 

(Fig. 3). In addition, the predicted species richness differed by less than five 

percent from the observed richness in approximately 20% of the squares in 

the Scanian validation data set. The squares that were associated with the 

largest differences between the predicted and observed species richness 

tended to be characterized by either high or low levels of observed species 

richness (Fig. 4). However, although the species richness models tended to 

underestimate the levels of species richness in species-rich squares, and 

overestimate the levels of species richness in species-poor squares, the sets 
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of most and least species-rich squares were still correctly predicted. The 

tendency for predictive models for species richness to under- and 

overestimate the number of species in species-rich and species-poor areas, 

respectively, has been observed in other studies (e.g. Maes et al. 2005). 

Maes et al. (2005) pointed out that mismatches between the scales of the 

data source (from which the explanatory variables used in the predictive 

models are generated) and the scales on which the processes driving the 

species richness act, may limit the accuracy of predictive species richness 

models. In the present study, it is possible that the spatial resolution of the 

explanatory data we used (EH variables: 25 m × 25 m and 50 m × 50 m,  SH 

variables: 30 m × 30 m, Table 1) may be too coarse to fully capture the 

contribution of relict patches of semi-natural habitats (“small biotopes”) to 

the within-square heterogeneity. These small biotopes support a substantial 

proportion of the landscape-scale species richness in Scania (Irminger Street 

et al. 2015). Several additional factors may affect the performance of the 

models used to predict species richness in the independent validation data 

sets of squares in the present study. The explanatory variables used in the 

study only characterized within-square heterogeneity, and the levels of 

within-square plant species richness may also be influenced by a range of 

environmental variables that were not investigated in our study. The 

proportions of different land-cover types within squares may have an impact 

on the levels of within-square species richness. For example, the overall 

proportions of both cropland (Storkey et al. 2012) and forests (Cousins et al. 

2015) in the landscape have been shown to have negative effects on the 

levels of plant species richness. The levels of within square-species richness 

may also be influenced by the proportions of land-cover types and the 

environmental heterogeneity in the surrounding squares (cf. Roschewitz et 

al. 2005, Tscharntke et al. 2005), and the degree of connectivity between 

habitats is also expected to have an impact on levels of species richness 

(Taylor et al. 1993; Donald and Evans 2006). In addition, many recent 

studies reveal that levels of present-day plant species richness (particularly 

at fine-scales) are better explained by the land-cover and spatial properties 

of the historical landscape than by the properties of the contemporary 

landscape (e.g. Reitalu et al. 2010; Hájek et al. 2016). 
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5. Conclusions  

The results of the present study show that predictive models for species 

richness that were based only on descriptors of environmental heterogeneity 

were superior to models based on only variables characterizing spectral 

heterogeneity, and that predictive models based on a combination of 

environmental and spectral variables generally performed better than the 

models that were based on only EH or SH variables. Our results also 

indicate that the additional contribution of remote sensing-based 

explanatory variables to the explanation of species richness varies between 

different geographic regions.  

The importance of maintaining and promoting environmental heterogeneity 

has been emphasized in recent studies of biodiversity and conservation-

management in European landscapes (Benton et al. 2003; Tscharntke et al. 

2005). To prevent further declines in species diversity it will be essential to 

develop information sources that support future decision-making in 

conservation and management planning (cf. Pettorelli et al. 2014b). Our 

results show that relationships between species richness and land-cover 

heterogeneity can be revealed with the help of simple descriptors of both 

environmental heterogeneity and satellite data-based spectral heterogeneity 

that are based on information that is in the public domain – and can be 

accessed free-of-charge. Such descriptors can potentially be used to 

inventory and monitor species richness over wide areas in cultural 

landscapes, and make a practical contribution to conservation planning. 
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Supplementary information 

Table S1. ID-codes and class names for the 51 land-cover classes in the SMD data used in the present 
study. 

SMD ID SMD class name SMD ID SMD class name 

141 Green urban area 3131 Mixed woodland 

1422 Airport 3132 Mixed woodland mire 

1424 Golf course 3133 Mixed woodland rock 

1425 Nonurban park 3241 Scrub 

1426 Camping holiday homes 211 Arable land 

111 City center 222 Permanent crop 

121 Industrial area 231 Gr. grassl. 

122 Road railroad 321 Natural grassland 

123 Harbour 322 Moorland 

124 Airport 511 Watercourse 

132 Dumps 521 Coastal  lagoon 

133 Construction site 522 Estuary 

1122 Village 5121 Open lake pond 

1123 Rural settlement 5122 Covered lake pond 

1421 Sport leisure facility 5231 Open sea 

11211 City urban 5232 Covered sea 

11212 City suburb 331 Beaches dunes sand planes 

3122 Coniferous woodland mire 332 Bare rock 

3123 Coniferous woodland rock 1311 Sand gravel extraction 

3242 Clearing 1312 Mineral extraction 

3243 Young forest 411 Marshland 

312121 Coniferous woodland 5 - 15y 421 Saltmarsh 

312122 Coniferous woodland >15y 4121 Wet mire 

3111 Deciduous woodland 4122 Mire 

3112 Deciduous woodland mire 4123 Peat extraction site 

3113 Deciduous woodland rock   
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Table S2. Summary statistics for the environmental heterogeneity variables within the 2.5 km × 2.5 km grid 

squares representing the whole province of Scania and the Plains, Central, and Woodland districts, 
respectively. SD = standard deviation. 

 

 

Table S3. Summary statistics for the spectral heterogeneity variables within the 2.5 km × 2.5 km grid 
squares representing the whole province of Scania and the Plains, Central, and Woodland districts, 
respectively. SD = standard deviation. 

Scania (n = 965) 

 

Central (n = 379)  

Spectral var. Mean Min Max SD 

 

Spectral var. Mean Min Max SD 

SHSD_red 0.016 0.004 0.042 0.005 

 

SHSD_red 0.018 0.008 0.042 0.004 

SHR_red 0.13 0.044 0.355 0.046 

 

SHR_red 0.142 0.06 0.355 0.047 

SHSD_NIR 0.055 0.029 0.088 0.008 

 

SHSD_NIR 0.055 0.035 0.088 0.009 

SHR_NIR 0.369 0.21 0.543 0.05 

 

SHR_NIR 0.38 0.244 0.543 0.053 

SHSD_NDVI 0.109 0.028 0.227 0.032 

 

SHSD_NDVI 0.124 0.061 0.223 0.029 

SHR_NDVI 0.721 0.333 1 0.126 

 

SHR_NDVI 0.764 0.483 1 0.108 

           
           

Plains (n = 155) 

 

Woodland (n = 431) 

Spectral var. Mean Min Max SD 

 

Spectral var. Mean Min Max SD 

SHSD_red 0.019 0.012 0.038 0.004 

 

SHSD_red 0.13 0.004 0.041 0.004 

SHR_red 0.15 0.085 0.329 0.043 

 

SHR_red 0.112 0.044 0.355 0.038 

SHSD_NIR 0.052 0.036 0.075 0.008 

 

SHSD_NIR 0.056 0.029 0.08 0.007 

SHR_NIR 0.369 0.251 0.528 0.052 

 

SHR_NIR 0.36 0.21 0.495 0.045 

SHSD_NDVI 0.127 0.077 0.227 0.027 

 

SHSD_NDVI 0.09 0.028 0.203 0.026 

SHR_NDVI 0.797 0.527 1 0.096 

 

SHR_NDVI 0.657 0.333 1 0.119 

Scania (n = 965) 

 

Central (n = 379)  

Topography Mean Min Max SD 

 

Topography Mean Min Max SD 

EHSD_elevation 9.8 0.9 69.2 7.7 

 

EHSD_elevation 9.2 0.9 40.4 7.2 

EHR_elevation 46.1 4.9 187.5 28.6 

 

EHR_elevation 43.7 4.9 185.2 28.4 

EHSD_slope 1.3 0.2 6.7 0.8 

 

EHSD_slope 1.2 0.2 6.7 0.8 

EHR_slope 8.8 1.9 39.8 4.9 

 

EHR_slope 8.4 1.9 39.8 5.2 

Soil         

 

Soil         

EHSoil_PR 10.8 2 21 3.6 

 

EHSoil_PR 11.8 3 21 3.3 

Land-cover         

 

Land-cover         

EHNP 63 1 173 44.8 

 

EHNP 40.9 2 133 27.2 

EHTE 47854 0 110050 28689 

 

EHTE 34729 800 95740 20449 

EHPR 10.5 1 23 3.6 

 

EHPR 9.7 2 23 3.4 

EHSHDI 1.33 0 2.57 0.66 

 

EHSHDI 1.1 0.22 2.44 0.58 

EHSHEI 0.55 0 0.94 0.23 

 

EHSHEI 0.47 0.02 0.92 0.21 

           

Plains (n =  155) 

 

Woodland (n = 431)  

Topography Mean Min Max SD 

 

Topography Mean Min Max SD 

EHSD_elevation 6.8 2.2 21.7 3.6 

 

EHSD_elevation 11.4 2.9 69.2 8.7 

EHR_elevation 33.7 11.8 87.2 15.7 

 

EHR_elevation 52.6 14.5 187.5 30.5 

EHSD_slope 1.2 0.4 3.8 0.6 

 

EHSD_slope 1.5 0.3 5.7 0.8 

EHR_slope 7.8 3.2 22.8 3.8 

 

EHR_slope 9.6 2.4 36.1 4.8 

Soil         

 

Soil         

EHSoil_PR 13.7 6 18 2.9 

 

EHSoil_PR 8.9 2 19 2.9 

Land-cover         

 

Land-cover         

EHNP 21.3 1 92 17.3 

 

EHNP 97.3 5 173 38.8 

EHTE 19403 0 78275 15003 

 

EHTE 69627 4675 110050 21868 

EHPR 8 1 19 3.7 

 

EHPR 12.1 3 22 3 

EHSHDI 0.71 0 2.25 0.52 

 

EHSHDI 1.75 0.14 2.57 0.46 

EHSHEI 0.32 0 0.8 0.2 

 

EHSHEI 8.9 2 19 2.9 



34 

a)                                                                                         b) 

Figure S1. The spatial location of squares in which species richness, predicted from the hybrid heterogeneity 
model was (a) underestimated and (b) overestimated in the validation data set (484 squares) for the province 
of Scania.   

 

 

 

 



Paper II





1 

Comparisons of historical and contemporary Landsat 

data reveal relationships between present-day plant 

species richness and patterns of land-cover change in 

cultural landscapes 

Jonas Dalmayne, Honor C. Prentice, Karin Hall  

Abstract 

 

Changes in land-use/land-cover (LULC) are regarded as a global threat to 

biodiversity. Remote sensing techniques, based on satellite scenes, can be used to 

characterize patterns of LULC during different time-periods and can potentially be 

used to investigate the impact of changes in LULC on contemporary species 

diversity. The present study makes use of data on vascular plant species richness 

(collected between the years 1987 – 2005) within each of 473 2.5 × 2.5 km grid 

squares in the southern part of the Swedish province of Scania, together with 

Landsat scenes from the mid-1970s (historical Landsat scenes) and the period 

around the turn of the millennium (contemporary Landsat scenes) covering the 

same geographic area. We used growing-season Landsat data and support vector 

machines to provide a supervised classification of LULC classes in the historical 

and contemporary landscapes. We also investigated whether the inclusion of 

ancillary data (elevation data from a digital elevation model, and data on seasonal 

differences in the normalized difference vegetation index (NDVI) improved the 

classification accuracy. We also examined whether the LULC data could be used 

to assess changes in LULC composition and heterogeneity between the historical 

and contemporary landscapes. Finally we analysed the extent to which levels of 

contemporary within-square species richness could be explained by changes in the 

proportions of eight LULC classes and changes in levels of LULC heterogeneity, 

between the historical and contemporary landscapes. Satisfactory (≥85% overall 

accuracy) classifications for the LULC classes could be produced for both the 

historical and contemporary landscapes using a combination of growing-season 

Landsat data and ancillary data. Within-square proportions of cropland and 

coniferous forest decreased, while the proportions of grazed grassland and 

deciduous forest increased between 1975 and 2001. Levels of present-day species 
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richness were negatively related to the proportion of cropland, and positively 

related to the proportions of deciduous forest and wetlands in both the historical 

and contemporary landscapes. An increase in the within-square proportion of 

deciduous forest between 1975 and 2001 was positively correlated with species 

richness, and the 30 most species-rich squares showed a higher increase in the 

proportion of deciduous forest than in the 30 squares with the lowest species 

richness. Levels of LULC heterogeneity were positively correlated with species 

richness, and the 30 most species-rich squares showed a greater increase in 

heterogeneity than the 30 squares with the lowest species richness. We conclude 

that satisfactory LULC and heterogeneity data can be produced for the southern 

part of the Swedish province of Scania for the years 1975 and 2001 using Landsat 

data acquired during the growing season in combination with ancillary data. Even 

on the relatively short time-scale of 26 years, the contemporary within-square 

species richness of vascular plants shows significant associations with changes in 

the proportion of deciduous forest and levels of LULC heterogeneity.  

1. Introduction 

 Land-use change is one of the most important factors underlying the global loss of 

biodiversity (Lambin et al. 2001) and land-use change is expected to continue to 

drive the loss of biodiversity during the coming century (Chapin et al. 2000). In 

Europe, the traditional cultural landscapes evolved in response to hundreds of 

years of human land-use and were characterized by extensive areas of species-rich 

semi-natural habitats, such as pastures, meadows and forest margins, and high 

levels of species diversity (Poschlod and WallisDeVries 2002). Since the industrial 

revolution, land-use intensification has led to the loss, fragmentation and 

degradation of these species-rich semi-natural habitats in many areas of Europe 

(Poschlod and WallisDeVries, 2002), and to an overall reduction in the structural 

complexity of the landscape (landscape heterogeneity) (e.g. Benton et al. 2003). 

Many plant species are dependent on the remaining fragments of semi-natural 

habitat in the modern cultural landscape (Benton et al. 2003; Tscharntke et al. 

2005) and, together with deciduous forests and wetland habitats (Brinson and 

Malvárez 2002; Gilliam 2007), these relict fragments support a substantial 

proportion of the present-day species diversity. As the relict patches of semi-

natural habitat become increasingly more fragmented, disjunct and isolated (Ihse 

1995), habitat quality is increasingly affected by mineral fertilizers and 

agrochemicals from the surrounding landscapes (Robinson and Sutherland 2002). 

Changes in land-use and land-cover are now recognized as the primary cause of 

the dramatic biodiversity decline in many modern European cultural landscapes 

(e.g. Storkey et al. 2012).  
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Although it is accepted that large scale land-cover change is a major driver of 

biodiversity loss (Haines-Young 2009), studies of the impact of habitat loss and 

fragmentation on plant species richness typically have a focus on particular types 

of habitat, such as semi-natural grasslands (e.g. Helm et al. 2006; Reitalu et al. 

2012) and forests (e.g. Vellend et al. 2006). The majority of such studies are 

carried out on a relatively fine scale and examine the local loss of a specific habitat 

type. For example, in a fragmented agricultural landscape in Sweden, Reitalu et al. 

(2012) showed that the response of grassland species richness to the loss of semi-

natural grassland habitats differed between spatial scales (polygon or plot scale) 

and between habitat specialists and generalists. Fewer studies have examined 

relationships between large-scale patterns of land-cover change and species 

diversity (but see Hooftman and Bullock 2012; Cousins et al. 2015). However, in 

order to evaluate the overall impact of land-cover change on biodiversity, we not 

only need information on the way in which the number of species is affected by 

the pattern of loss, over time, of particular type of habitat, but also a more 

integrated overview of the way in which present-day species richness is related to 

overall changes in the proportions of different types of land-cover – at larger 

scales within landscapes or regions. 

Because different habitat types or land-use regimes provide suitable conditions for 

different suites of species, a decline in the proportion of a particular habitat type 

within the landscape is likely to be accompanied by the local or regional loss of 

the habitat specialist species that are dependent on that habitat (e.g. Reitalu et al. 

2012). In addition, again because different suites of species are adapted to 

different habitat conditions, there is a general expectation that overall species 

richness at the regional level will be related to land-cover heterogeneity 

(Tscharntke et al. 2005). Land-cover heterogeneity can be characterized in terms 

of the numbers of different land-cover classes (e.g. semi-natural grasslands, 

deciduous forest, wetlands), and their spatial distribution and configuration in the 

landscape (cf. Li and Reynolds 1995). A high level of land-cover heterogeneity is 

expected to be accompanied by a higher level of species richness than that found 

under more uniform land-cover conditions at the same spatial scale (cf. Stein et al. 

2014), and a decline in heterogeneity, over time, may be expected to have a 

negative impact on the overall species richness within a landscape (Tscharntke et 

al. 2005).  

Studies of regional land-cover change require detailed information on land-

use/land-cover (LULC) in both the contemporary landscape and in the historical 

landscape. And, if changes in LULC and landscape heterogeneity are to be related 

to levels of present-day species diversity, there is also a need for reliable, 

systematic inventories of biodiversity that cover the studied region. Local 

comparisons of LULC between historical and contemporary landscapes are 

generally based on data extracted from historical maps and/or aerial photographs 
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(e.g. Gerard et al. 2010). However, large-scale comparisons based on these types 

of data may be challenging. A recent study (Gerard et al. 2010) of land-cover 

changes across Europe between 1950 and 2000 highlighted some of the difficulties 

associated with the use of aerial photographs in the analysis of LULC change over 

wide areas. The study emphasised the need for standardized methodology and 

nomenclature, as well as the importance of the choice of spatial scale.  

Satellite-based data provide a remote sensing tool that is more appropriate than 

aerial photos for the assessment of LULC over wide geographic areas, and the 

advantages of using satellite-based remote sensing techniques for detecting, 

characterizing, and monitoring LULC reliably at different spatial and temporal 

scales are widely recognized (e.g. Honnay et al. 2003; Comber et al. 2016; 

Tarantino et al. 2016). A recent review (Willis 2015) identifies Landsat satellite 

data as being particularly useful for acquiring information on LULC and temporal 

changes in LULC. Landsat data are available (at no cost) from the 1970s to the 

present day (Willis 2015). However, there may be technical challenges associated 

with the use of historical and contemporary satellite scenes to classify LULC and 

assess temporal changes in land-cover. Historical satellite scenes have a poorer 

resolution than contemporary scenes (cf. Sloan 2012), and difficulties with 

discriminating between particular types of land-cover may reduce the 

classification accuracy of LULC classes – in both historical and contemporary 

satellite scenes.  

The generation of information on LULC from satellite data is commonly carried 

out with the help of supervised or unsupervised classification of the remote 

sensing data. Unsupervised classification approaches are directly based on the 

remote sensing data. Supervised approaches usually employ reference data 

(training data) derived from, for example, the interpretation of aerial photos or 

from field-based inventories, to build a model of the classification algorithm. The 

classification algorithm is then used to identify each LULC class within the 

geographic area covered by the entire remote sensing image. However, if LULC 

types are spectrally similar, the remote sensing-based information on land-cover 

types may be inaccurate. For example, it may be difficult to classify LULC classes 

such as cropland, pasture, and natural savanna vegetation, with the help of satellite 

data acquired within a single season – because of a lack of spectral dissimilarities 

between these types of land-cover during that season (Müller et al. 2015). Recent 

studies show that it may be possible to improve the classification accuracies for 

spectrally similar LULC classes by including spectral information on seasonal 

changes in the vegetation (e.g. Müller et al. 2015; Schuster et al. 2015; Zoungrana 

et al. 2015). For example, Müller et al. (2015) showed that the inclusion of multi-

temporal Landsat-derived measures of the normalized difference vegetation index 

(NDVI) (Rouse et al. 1973, Tucker 1979) in the classification procedure captured 

phenological variation in the vegetation characteristics, and improved the 
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classification accuracies of spectrally similar land-cover types in a savanna 

landscape in Brazil.  

In the present study of the Swedish province of Scania, we investigate whether 

supervised classification of Landsat data can be used to produce reliable 

information on eight LULC classes, within both the historical (mid-1970s) and 

contemporary (turn-of-millennium) landscapes. The three geographic districts 

within Scania represent a gradient in farming intensity and landscape 

heterogeneity – ranging from intensively farmed and homogeneous landscapes, 

through more heterogeneous agricultural landscapes, to landscapes that are 

dominated by forests. High-quality data on vascular plant species richness within 

2.5 km × 2.5 km grid squares were obtained from a modern floristic inventory of 

Scania (Tyler et al. 2007). We asked five main questions. 1) Can Landsat data be 

used to provide accurate classifications of LULC classes in both the historical and 

contemporary landscapes within the province of Scania and each of its three 

geographic districts?  2) Is the classification accuracy improved if the Landsat data 

are complemented with ancillary environmental data (topographic data) and data 

on seasonal changes in the NDVI? 3) Is present-day within-square vascular plant 

species richness (the total number of vascular plant species, red listed species, and 

grassland habitat specialists, respectively) related to Landsat-based information on 

the within-square proportions of LULC classes and measures of landscape 

heterogeneity in the historical and contemporary landscapes, respectively? 4) Are 

the three categories of present-day within-square vascular plant species richness 

related to changes in Landsat-based information on the proportions of LULC 

classes and land-cover heterogeneity between the historical and contemporary 

landscapes? 5) Does the level of change (between the historical and contemporary 

landscapes) in the proportions of LULC classes and measures of landscape 

heterogeneity differ between” hot” squares (squares with high present-day plant 

species richness) and “cold” squares (squares with low present-day species 

richness) in Scania?  

2. Methods 

2.1 Study area 

The study area was the southern part of the province of Scania in southern Sweden 

(Fig. 1a), and represents approximately 3 000 km2 (out of the 11 000 km2 covered 

by the whole province). Scania can be divided into three geographic districts, on 

the basis of differences in geological, edaphic, topographic and climatic conditions 

(Germundsson and Schlyter 1999) (Fig. 1a). The geology of the plains of  
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a)                                                                                         b) 

Figure 1. (a) the location of the province of Scania (inset) and map showing the study area grid squares in relation to 
the Plains, Central, and Woodland districts within Scania (b) map showing elevation (metres above sea-level). 

Southwestern Scania (the "Plains district") and Central Scania (the "Central 

district") (Fig. 1a) is dominated by sedimentary bedrock, generally overlaid by 

fertile, clayey moraine soils (Germundsson and Schlyter 1999). The "Woodland 

district" (Woodlands of Northeastern Scania) (Fig. 1a) is characterized by igneous 

rock that is typically overlaid by moraine soils with a low clay content 

(Germundsson and Schlyter 1999). The overall topography in the Plains and 

Central districts is generally flat or gently undulating, but the Central district has 

several horsts that contribute to local topographic heterogeneity (Fig. 1b). The 

topography in the Woodland district is generally hilly, with local elevations 

reaching > 200 m above sea-level (Fig. 1b). The mean temperatures within the 

province range from -2 °C (in the Woodland district) to -0.5 °C (Plains district) in 

January and from 15.5 °C (Woodland district) to 16.5 °C (Plains district) in July. 

The mean annual precipitation varies between 550 mm (Plains district) and 900 

mm (Woodland district) (Germundsson and Schlyter 1999). Whereas both the 

Plains and Central districts are characterized by arable cultivation (mainly cereal 

production), the agricultural intensity is lower in the Central district, which also 

contains a higher proportion of forest. The forest vegetation in the Plains and 

Central districts consists of planted stands of conifers and patches of deciduous 

forests. The main land-cover in the Woodland district is commercially managed 

mixed forest dominated by coniferous species (Germundsson and Schlyter 1999). 

The Plains, Central and Woodland districts represent a gradient of decreasing 

land-use intensity and increasing landscape complexity. 

2.2 Plant species data 

We used species data from a province-wide floristic inventory in Scania in which 

presence/absence data for all vascular plant species were collected, between 1987 

and 2005, from 1560 2.5 km × 2.5 km squares (together covering ca. 77 % of 
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Scania) (Tyler et al. 2007). A subset of 1406 2.5 km × 2.5 km squares were 

regarded as being fully inventoried (Tyler et al. 2007). In the present study, 

species richness in the 1406 fully inventoried squares was represented by; (i) the 

total number of vascular plant species, (ii) the total number of red listed species 

(Artdatabanken), and (iii) the total number of species that are classed as grassland 

habitat specialists ("grassland specialists") by Ekstam and Forshed (1992).  

2.3 Data used for the satellite data-based classification of land-use and 

land-cover classes 

2.3.1 Satellite data used for the classification of land-use and land-cover classes 

We searched the United States Geological Survey (USGS) Landsat archive and the 

Swedish Saccess satellite archive for Landsat images covering the province of 

Scania during the 1970s (historical satellite images) and the period around the turn 

of the millennium (contemporary satellite images). We retrieved a set of historical 

satellite images comprising three Landsat 2 MSS scenes (acquired 27 August 

1973, 27 February 1975, and 3 July 1975) consisting of four spectral bands with 

60 m spatial resolution, and a set of contemporary satellite images comprising 

three Landsat 7 ETM+ scenes (acquired 1 July 2001, 12 September 2002, and 23 

March 2003) consisting of eight spectral bands with 30 m spatial resolution (Table 

1). The Landsat data were supplied by the USGS Landsat archive as a level 1T 

product, with systematic radiometric and geometric corrections applied with the 

help of ground control points, and topographic corrections carried out using a 

digital elevation model (DEM). We transformed digital numbers to top-of-

atmosphere reflectance values (see Chander et al. 2009), and we also carried out a 

dark object subtraction to correct each Landsat scene for atmospheric disturbance. 

To match the spatial resolutions of the Landsat MSS and ETM+ images, the 

Landsat ETM+ images were resampled, using a cubic spline transformation, to a 

spatial resolution of 60 m. Out of the 1406 fully inventoried 2.5 km × 2.5 km 

squares in the floristic inventory in Scania (Tyler et al. 2007), we selected the 473 

squares (Fig. 1a) that were free from cloud or haze in all six Landsat images for 

use in the present study (Table 1). 

2.3.2 Ancillary data used to complement the Landsat data acquired during the 

growing season 

We used growing-season Landsat data to classify LULC classes in the historical 

(based on Landsat data acquired 3 July 1975) and contemporary (based on Landsat 

data acquired 1 July 2001) landscapes, respectively (Table 1). However, the fact        

that particular LULC classes such as, for example, cropland and grassland, may 

have similar spectral responses during the growing season (e.g. Vogelmann et al. 
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Table 1. Landsat satellite data used in the present study. 

 

 

 

 

 

 

 

 

 

 
1) Original MSS pixel size was 79 × 57 metres, production systems now resample the data to 60 metres 
2) Not used in the present study 

NDVI = normalized difference vegetation index, SVM = support vector machine 

 

1998) may affect the classification accuracies of the remote sensing-based classes. 

In the present study, we therefore examined whether the classification of LULC 

classes based on growing-season Landsat data could be improved by including 

additional data, on (i) seasonal changes in the NDVI (Rouse et al. 1973; Tucker 

1979) and (ii) topography, in the classification procedure. The NDVI − a spectral 

vegetation index that is often used to describe vegetation productivity or the 

“greenness” of vegetation and changes in plant phenology (cf. Goetz et al. 2005; 

Pettorelli 2005; Parviainen et al. 2010) − is calculated as: NDVI = (NIR-

VIS)/(NIR+VIS) where VIS and NIR represent reflectance measurements in the 

visible and near infrared spectral regions, respectively (e.g. Rouse et al. 1973; 

Tucker 1979). 

We calculated the NDVI for the historical growing-season (3 July 1975), 

senescence-season (27 August 1973) and dormant-season (27 February 1975) 

images, using the red (0.6 - 0.7 μm) and the near infrared 2 (0.8 - 1.1 μm) 

wavebands of the Landsat MSS scenes (Table 1). The NDVI for the contemporary 

growth-season (1 July 2001), senescence-season (12 September 2002) and 

Historical satellite data Wavelength Resolution 

Landsat 2 MSS  (micrometres) (metres)1) 

 

0.5-0.6, green 60 

 

0.6-0.7, red 60 

 
0.7-0.8, near infrared 1 60 

 0.8-1.1, near infrared 2 60 

Acquisition date Use in the present study 

27-Aug-73 Calculation of the senescence-season NDVI 

3-Jul-75 Base for SVM-based classification 

 
Calculation of the growth-season NDVI 

27-Feb-75 Calculation of the dormant-season NDVI 

Contemporary satellite data Wavelength  Resolution 

Landsat 7 ETM+ (micrometres) (metres) 

 

0.45-0.52, blue 30 

 

0.52-0.60, green 30 

 
0.63-0.69, red 30 

 0.77-0.90, near infrared  30 

 1.55-1.75, short-wave infrared 1 30 

 2.09-2.35, short-wave infrared 2 30 

 10.40-12.50, thermal infrared2) 60 

 
0.52-0.90, panchromatic2) 15 

Acquisition date Use in the present study  

1-Jul-01 Base for the SVM-based classification 

 
Calculation of the growth-season NDVI 

12-Sep-02 Calculation of the senescence-season NDVI 

23-Mar-03 Calculation of the dormant-season NDVI 
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dormant-season (23 March 2003) images was calculated from the red (0.63 - 0.69 

μm) and the near infrared (0.77 - 0.90 μm) wavebands of the Landsat ETM+ 

scenes (Table 1).  

The differences in the NDVI between the growing-season, senescence-season and 

dormant-season images were calculated for the historical and contemporary sets of 

Landsat scenes, respectively. The senescence-season NDVI should be able to 

discriminate between post-harvest agricultural fields (with a low cover of 

vegetation) and grasslands (with continued active growth), and the fact that 

differences between the growing-season NDVI and the senescence-season NDVI 

are likely to be greater for agricultural fields than for grasslands, is expected to 

contribute to an improved spectral separation and classification of cropland and 

grasslands. The dormant-season NDVI characterizes the vegetation at a time when 

productivity is low and leaves are absent from deciduous trees. The fact that 

differences in the NDVI between growth-season images and dormant-season 

images are likely to be greater in areas with deciduous trees than those with 

evergreen conifers has the potential to contribute to the separation and 

classification of deciduous and coniferous species during LULC classification 

procedure. 

Landscape relief affects patterns of land-use and vegetation-cover (Dorner et al. 

2002, Wrbka et al. 2004), and the incorporation of topographic data may improve 

the accuracy of land-cover classifications based on satellite data. In the present 

study, data on the mean altitude (metres) for each pixel in each of the 473 2.5 km 

× 2.5 km squares were extracted from a DEM (supplied by the National Land 

Survey of Sweden) with a spatial resolution of 50 m and an accuracy of ± 2 

meters.  

2.3.3 Training and validation data for the Landsat based historical and 

contemporary classifications of land-use and land-cover classes 

We used LULC information from the Swedish Land Cover Data (Svenska 

Marktäckedata, SMD) (http://gis-services.metria.se/nvfeed/atom/annex2.xml) 
to select training pixels for classifications (without and with ancillary data) of 

historical land-cover based on the Landsat scene from July 1975. The SMD 

(provided by the National Land Survey of Sweden) is an extension of the CORINE 

Land Cover project (http://www.eea.europa.eu/publications/COR0-
landcover), and records 51 LULC classes in the province of Scania at a spatial 

resolution of 25 m × 25 m for the reference year 2000 (Table S1). We pooled the 

51 classes into eight classes: cropland, grazed grassland, deciduous forest, 

coniferous forest, water, wetland, barren areas and built up areas (Table S1).  

A stratified random sampling procedure (based on the map of SMD classes), was 

used to select 100 sample (point) locations within each of the eight LULC classes: 

http://gis-services.metria.se/nvfeed/atom/annex2.xml
http://www.eea.europa.eu/publications/COR0-landcover
http://www.eea.europa.eu/publications/COR0-landcover
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the sampling procedure included the criterion that there should be a minimum 

distance of 300 m between locations. We then identified the positions of the 

selected points on black and white aerial photographs (0.5 m spatial resolution) 

from 1973 and 1975, and checked for dissimilarities between the SMD classes and 

the visually interpreted LULC categories in the historical aerial photographs. 

Where dissimilarities between the SMD and aerial photographs were detected, the 

position of the original training point was moved to the nearest polygon that 

represented the appropriate LULC class on the aerial images. A similar procedure 

was used to construct a training data set for classifications (without and with 

ancillary data) of the contemporary land-cover (based on the Landsat scene from 1 

July 2001). Although the SMD data (reference year 2000) and the Landsat scene 

(2001) both represent the early 21
st
 century, we checked for discrepancies between 

the SMD classes and the visually interpreted land-cover classes on colour-infrared 

(1.0 m spatial resolution, 2004) aerial photographs. Where discrepancies were 

detected, the position of the original training point was moved to the nearest 

polygon that represented the appropriate LULC class on the aerial image.  

Validation data for the evaluation of the LULC classifications of the historical and 

contemporary landscapes, respectively, were acquired following the same 

procedures that were used to construct the training data sets. As with the training 

data sets, the validation sets for each LULC class were based on 100 randomly 

selected sample points for each LULC class in the historical and contemporary 

landscapes, respectively. 

When the positioning of the training and validation sample locations was finalized, 

pixel values for each location were extracted for each of the four wavebands 

included in each of the three (historical) Landsat MSS images, and for each of the 

six wavebands included in each of the three (contemporary) Landsat ETM+ 

images (Table 1). Differences in the NDVI between the growing-season, 

senescence-season and dormant-season images, for the historical and 

contemporary sets of Landsat scenes, respectively, and information on the mean 

elevation (m) were also extracted for the pixel of each sample location. The data 

used for the satellite data-based classification of LULC classes were extracted 

using the ArcGIS 10.1 (ESRI), IDRISI Selva (Clarks Labs) and FRAGSTATS ver. 

4 (McGarigal et al. 2012) software.  

2.4 Classification procedure and assessment of classification accuracy  

2.4.1 Models used to classify the land-cover in the study area 

A support vector machine (SVM) classification approach was used, with the help 

of the training data (without and with ancillary variables), to produce Landsat-

based LULC classifications of the whole study area in the province of Scania (473 
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squares) (Fig. 1a) for the historical (mid-1970s) and contemporary (turn-of-

millennium) landscapes, respectively. A SVM (Vapnik 1995) is a machine 

learning technique, based on statistical learning theory, which delivers a 

supervised classification. The SVM approach has been shown to be superior to 

Maximum Likelihood, Neural Network and Decision Tree classification 

approaches for the remote sensing data-based classification of land cover classes 

(e.g. Huang et al. 2002, Foody and Mathur 2004), while requiring comparatively 

small amounts of input data (Pal and Mather 2004). The LIBSVM library (Chang 

and Lin 2011) in the Python programming environment was used to produce the 

SVM classifications in the present study. We used a radial basis function-kernel, 

with C and γ values produced by the cross-validation grid-search script “easy.py” 

included in the LIBSVM library.  

The LULC classifications in the historical landscape were based on; (i) Landsat 

MSS data (3 July 1975; including all four wavebands) (Classification Model 1a), 

and (ii) Landsat MSS data (3 July 1975, including all four wavebands) and 

ancillary data (elevation data, and seasonal differences in the NDVI) 

(Classification Model 1b) (Table 1). The sets of input data for the classifications in 

the contemporary landscape were (i) Landsat ETM+ data (1 July 2001; including 

six wavebands) (Classification Model 2a), and (ii) Landsat ETM+ data (1 July 

2001; including six wavebands) and ancillary data (elevation data, and seasonal 

differences in the NDVI) (Classification Model 2b) (Table 1).  

2.4.2 Assessment of classification accuracies  

The respective abilities of the four models to classify the eight LULC classes in 

the whole study area were quantified with the help of confusion matrices (based on 

100 validation pixels per class) for the classification results for each of the 

individual models (Classification Models 1a, 1b, 2a, 2b). Classification accuracies 

from the confusion matrices were used to calculate the producer’s accuracy and 

the user’s accuracy for each LUCL class for each classification model. The 

producer’s accuracy refers to the probability that a pixel associated with a specific 

LULC class in the validation data set will be assigned to the corresponding LULC 

class in the SVM-based classification procedure. The user’s accuracy represents 

the probability that a pixel classified (with the help of the SVM-based 

classification procedure) as belonging to a specific LUCL class is associated with 

the same class in the validation data. The overall accuracy and the Kappa statistic 

value (which assesses the inter-classifier agreement (Cohen 1960; Campbell 

2002), were calculated from each confusion matrix.  
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2.5 Analyses 

2.5.1 Proportions of land-use and land-cover classes, and measures of landscape 

heterogeneity and landscape change 

Each of the 473 squares within the whole Scanian study area (classified with the 

help of Classification Models 1a, 1b, 2a, 2b, respectively) was assigned to one of 

the three geographic districts in Scania; the Plains district (193 squares), the 

Central district (226 squares), or the Woodland district (54 squares) (Fig. 1a). The 

proportion (%) of each of the eight LULC classes was calculated for the squares 

within the whole study area and for squares within each district, for each of the 

classification models (Classification Models 1a, 1b, 2a, 2b). A set of five 

landscape heterogeneity indices were also estimated, for each of the squares for 

each classification model. The indices included descriptors of patch configuration 

(number of patches "NP"), patch complexity (total-patch-edge "TE"), and patch 

diversity (patch richness "PR", Shannon’s diversity "SHDI" and Shannon's 

evenness "SHEI") (e.g. Billeter et al. 2007; Plexida et al. 2014). The landscape 

heterogeneity indices were calculated using FRAGSTATS ver. 4 (McGarigal et al. 

2012) software. Changes in the LULC class proportions and in the measures of 

landscape heterogeneity between the historical and contemporary landscapes were 

calculated for each square within the whole study area as well as for the squares 

within each district, using each of the four classification models. 

2.5.2 Relationships between contemporary species richness, land-cover, landscape 

heterogeneity and the degree of landscape change 

Correlations between each of the species richness categories (total number of plant 

species, number of red listed species, and number of grassland specialists) and the 

proportions of LULC classes and measures of landscape heterogeneity in the 

historical and contemporary landscapes, respectively, were analysed separately for 

the squares within the whole study area and for the squares within each district. 

Species richness values for squares were also related to within-square changes in 

the proportions of the LULC classes and measures of landscape heterogeneity 

between the historical and contemporary landscapes. Because multiple tests may 

result in an increased risk of Type I error, the significance values of the 

correlations were assessed after Bonferroni correction. 

Finally, we examined whether the levels of change (between the historical and 

contemporary landscapes) in the proportions of LULC classes and in the measures 

of landscape heterogeneity differed between” hot” squares (squares with high 

plant species richness) and “cold” squares (squares with low species richness) with 

the help of two-tailed Student’s t-tests. For each of the categories of species 

richness (total number of plant species, number of red-listed species, and number 

of grassland specialists), the 30 squares (out of the total of 473 squares) with the 
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highest and lowest number of species were designated, respectively, as the hot and 

cold squares. 

3. Results 

Table 2 presents summary statistics for the within-square species richness for each 

of the species richness categories (total number of plant species, number of red 

listed species, and number of grassland specialists), for the whole study area in the 

province of Scania and for each of the three geographic districts within the study 

area (Fig. 1a). There were significant (p ≤ 0.05 for all pairs) pairwise correlations 

between all three species richness categories, in the whole study area and within 

each of the three districts (Table S2).  

 

Table 2. Summary statistics for species richness within each of three categories of vascular plants (total number of 
plant species, number of red-listed species, and number of grassland specialists) within 2.5 km × 2.5 km grid squares    
representing the whole province of Scania, and the subsets of squares representing the Plains, Central, and 
Woodland districts. SD = standard deviation. 

Total number of plant species 
Number of 

squares 
Mean SD Range Min Max 

Scania 473 389 89 688 58 746 

Plains 193 357 80 458 75 533 

Central 226 409 92 688 58 746 

Woodland 54 422 70 283 277 560 

Number of red-listed species       

Scania 473 12 6 38 2 40 

Plains 193 12 6 38 2 40 

Central 226 13 6 34 3 37 

Woodland 54 12 5 23 3 26 

Number of grassland specialist 

species 
      

Scania 473 72 19 133 12 145 

Plains 193 63 15 92 15 107 

Central 226 80 20 133 12 145 

Woodland 54 84 15 57 54 111 

3.1 Classification accuracies for the models based on Landsat data, 

with and without ancillary data 

For the classification of the LULC classes in the whole study area (473 squares), 

the classification model based on Landsat data in combination with ancillary data 

performed better than the model based only on Landsat data – for both the 

historical (mid-1970s) and the contemporary (turn-of-millennium) landscapes. In 

the historical landscape, the producer’s and user’s classification accuracies for the 

individual LULC classes in the study area varied between 53% and 99% for the 

classification model based on only growing-season Landsat data (Classification 
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Model 1a) (Table S3), and between 69% and 98% for the model based on 

growing-season Landsat data together with ancillary data (Classification Model 

1b) (Table 3). The overall classification accuracy and the Kappa statistic values 

were 77.8% and 0.746, respectively, for Model 1a and 86.4% and 0.844, 

respectively, for Model 1b (Tables 3, S3). In particular, the inclusion of ancillary 

data (Model 1b approach) gave better classification accuracies for cropland, 

grazed grassland, and wetlands than the Model 1a approach (Table 3, S3). For 

these three LULC classes, the inclusion of ancillary data led to, respective, 

increases of 10.0%, 17.0%, and 16.0% in the user’s accuracy, and of 25.9%, 

16.0%, and 10.4% in the producer’s accuracy (Table 3, S3).   

 

Table 3. Error matrix for the SVM classification for the historical landscape, based on 4 bands from a Landsat 2 MSS 
scene from 3 July 1975, with supporting data on seasonal changes in the NDVI, and data on topography. The 
diagonal indicating the correct class-assignments is shaded. 

 

 

For the classification of LULC classes in the whole study area in the contemporary 

landscape, the producer’s and user’s classification accuracies for the individual 

classes varied between 75% and 100% for the classification model based on only 

growing-season Landsat data (Model 2a) (Table S4), and between 84% and 99% 

for the model based on Landsat data together with ancillary data (Model 2b) 

(Table 4). The overall classification accuracy and the Kappa statistic values were 

89.3% and 0.877, respectively for Model 2a, and 91.6% and 0.904, respectively 

for Model 2b (Tables 4, S4). The inclusion of ancillary data (Model 2b) increased 

the user’s accuracy for wetlands by 14 % compared with the Model 2a approach, 

while leaving the user’s accuracy for the other classes relatively unchanged. The 

 Historical landscape  

Land-cover classes 

identified from Land-cover classes identified from the SVM-classified 4-band Landsat 2 MSS scene,   

aerial photos with support from data on seasonal changes in the NDVI, and data on topography    

 

Cropland Gr. grassl. Deciduous Conifer Water Wetlands Barren Built-up Total User's acc. 

Cropland 79 10 0 0 0 4 2 5 100 79.0% 

Grazed grassland 7 72 2 3 0 6 3 7 100 72.0% 

Deciduous 0 0 92 2 0 6 0 0 100 92.0% 

Conifers 0 0 0 98 0 2 0 0 100 98.0% 

Water 0 0 0 0 98 2 0 0 100 98.0% 

Wetlands 3 8 11 8 1 69 0 0 100 69.0% 

Barren 0 0 0 1 1 0 88 10 100 88.0% 

Built-up 3 0 0 0 0 0 2 95 100 95.0% 

Total 92 90 105 112 100 89 95 117 800 

 
Producer's acc. 85.9% 80.0% 87.6% 87.5% 98.0% 77.5% 92.6% 81.2%     

      

Overall accuracy = 86.4% 

             Kappa = 0.844   
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producer’s accuracy increased by 10%, 6.0 %, 5.5% and 5.1%, respectively, for 

cropland, grazed grassland, coniferous forest, and wetlands, whereas the 

producer’s accuracy decreased (relative to the 2a approach) by 7.5% for water in 

the Model 2b approach (Table 4, S4). 

 

Table 4. Error matrix for the SVM classification for the contemporary landscape, based on 6 bands from a Landsat 7 
ETM+ scene from 1 July 2001, with supporting data on seasonal changes in the NDVI, and data on topography. The 
diagonal indicating the correct class-assignments is shaded. 

  Contemporary landscape   

Land-cover classes 

identified from Land-cover classes identified from the SVM-classified 6-band Landsat 7 ETM+ scene,   

aerial photos with support from data on seasonal changes in the NDVI, and data on topography   

 

Cropland Gr. grassl. Deciduous Conifer Water Wetlands Barren Built-up Total User's acc. 

Cropland 89 4 0 0 2 3 1 1 100 89.0% 

Grazed grassland 2 86 1 0 1 7 1 2 100 86.0% 

Deciduous 1 1 97 0 0 1 0 0 100 97.0% 

Conifers 0 1 6 88 0 5 0 0 100 88.0% 

Water 0 0 0 0 99 1 0 0 100 99.0% 

Wetlands 0 6 2 0 3 89 0 0 100 89.0% 

Barren 1 0 0 0 0 0 96 3 100 96.0% 

Built-up 0 2 0 1 2 0 6 89 100 89.0% 

Total 93 100 106 89 107 106 104 95 800 

 
Producer's acc. 95.7% 86.0% 91.5% 98.9% 92.5% 84.0% 92.3% 93.7% 

 

  

      

Overall accuracy = 91.6% 

   

     

Kappa = 0.904   

 

Because, the models in which the growing-season Landsat data were 

complemented by ancillary data gave better overall classification accuracies and 

kappa statistics than the models without ancillary data, for both the historical 

landscape (Model 1b) and the contemporary landscape (Model 2b), only the 

results from Models 1b and 2b were used as the basis for further analysis.  

3.2 Changes in land-cover between the landscape in the mid-1970s and 

at the turn of the millennium 

Each of the 473 squares within the whole study area (classified using the Model 1b 

and 2b approaches, respectively), was assigned to one of the three geographic 

districts in Scania; the Plains district, the Central district, or the Woodland district. 

The proportion of crop land within the whole study area, and within each of the 

three districts, decreased between the mid-1970s and the turn of the millennium 

(Table 5). In contrast, the proportions of grazed grassland and deciduous forest 

increased: the increase in deciduous forest was particularly pronounced in the 

Woodland district (Table 5). In Scania as a whole, the increase in the area of 
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grazed grassland mainly reflected the conversion of cropland into grazed grassland 

(Table S5). At the same time, some areas of grazed grassland were transformed 

into cropland or deciduous forest (Table S5). In the Woodland district, the 

persistence of cropland was 61.6 % (61.6% of the pixels that were classified as 

cropland in the historical landscape were also classified as cropland in the 

contemporary landscape), while the persistence of cropland was 85.8% for the 

Plains district (Table 5). The persistence of grazed grassland, deciduous forest and 

water, in the whole study area, and in the individual districts, ranged between 

52.6% and 96.4%. The lowest persistence was shown for barren in the Woodland 

district (7.2%) (Table 5). 

 

 
Table 5. The proportions (%) of the land-cover classes in the historical and contemporary landscapes, respectively, 
and the levels of change and persistence of the land-cover classes between the historical and contemporary 
landscapes. Results are based on the SVM classifications using the Landsat 2 MSS scene from 3 July 1975, and the 
Landsat 7 ETM+ scene from 1 July 2001, with supporting data on seasonal changes in the NDVI, and data on 
topography. 

 

 

 

There were significant pairwise correlations between all five landscape 

heterogeneity indices (NP, TE, PR, SHDI, and SHEI) (p ≤ 0.05 for all pairs), in the 

whole study area and in each of the three districts for both the historical and 

contemporary landscapes (Table S6). In general, the individual measures of 

landscape heterogeneity were higher for the contemporary landscape than for the 

historical landscape (Table S7). 

Scania Cropland Gr. grassl. Deciduous Conifers Water Wetlands Barren Built-up 

Historical landscape (%) 55.3 15.9 6.7 5.6 1.3 5.2 0.9 9.1 

Contemporary landscape (%) 51.3 17.9 10.0 4.6 2.2 5.1 1.1 7.8 

Change (%) -4.0 2.0 3.3 -1.0 0.9 -0.1 0.2 -1.3 

Persistence (%) 80.5 55.0 80.7 47.3 90.7 19.0 16.1 53.3 

Plains         

Historical landscape (%) 67.9 10.6 2.0 1.0 0.9 2.5 1.5 13.7 

Contemporary landscape (%) 64.6 12.0 3.1 0.8 2.2 2.1 1.1 14.1 

Change (%) -3.3 1.4 1.1 -0.2 1.3 -0.4 -0.4 0.6 

Persistence (%) 85.8 52.6 81.3 28.0 75.5 13.8 11.6 65.9 

Central         

Historical landscape (%) 50.2 18.5 7.4 7.2 2.0 6.6 0.6 7.5 

Contemporary landscape (%) 46.4 21.1 10.7 6.8 2.6 6.6 1.1 4.6 

Change (%) -3.8 2.6 3.3 -0.4 0.6 0.0 0.5 -2.9 

Persistence (%) 78.1 56.7 77.6 54.6 96.4 21.1 24.8 35.8 

Woodland         

Historical landscape (%) 36.0 22.7 18.5 13.6 0.1 8.2 0.1 0.9 

Contemporary landscape (%) 28.5 24.3 29.0 7.8 0.2 9.1 0.6 0.6 

Change (%) -7.5 1.6 10.5 -5.8 0.1 0.9 0.5 -0.3 

Persistence (%) 61.6 53.2 85.3 36.7 93.1 17.4 7.2 25.0 
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3.3 Proportions of land-use classes, landscape heterogeneity and species 

richness  

Squares characterized by low levels of contemporary (1987-2005) species richness 

(for all three categories of species) tended to be associated with higher proportions 

of cropland than squares with high species richness – in both the historical and 

contemporary landscapes (Fig. 2, Table S8). Positive relationships (p ≤ 0.05 

between all three categories of species richness and the proportion of LULC 

classes such as grazed grassland, deciduous and coniferous forests, wetlands, and 

built-up areas in the squares were found within the whole study area and within 

each district -- in both the historical and contemporary landscapes (Fig. 2, Table 

S8). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Pearson’s correlation coefficients between proportions of land-cover classes in the historical landscape, and 
the contemporary species richness of grassland specialists within 2.5 km × 2.5 km grid squares representing the 
whole province of Scania (473 squares) and the subsets of squares representing the Plains (193 squares), Central 
(226 squares), and Woodland (54 squares) districts. Results are based on the SVM classification using 4 bands from 
Landsat 2 MSS scene from 3 July 1975, with supporting data on seasonal changes in the NDVI, and data on 
topography. Correlations marked * are statistically significant (p ≤ 0.05). 

 

Within-square species richness (for all three categories of species) was generally 

positively associated with the five measures of landscape heterogeneity in both the 

historical and contemporary landscapes (Fig. 3, Table S9). 
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Figure 3. Pearson’s correlation coefficients between measures of the heterogeneity of land-cover classes in the 
historical landscape, and the contemporary species richness of grassland specialists within 2.5 km × 2.5 km grid 
squares representing the whole province of Scania (473 squares) and the subsets of squares representing the Plains 
(193 squares), Central (226 squares), and Woodland (54 squares) districts.  Results are based on the SVM 
classification using 4 bands from a Landsat 2 MSS scene from 3 July 1975, with supporting data on seasonal 
changes in the NDVI, and data on topography. NP = number of patches, TE = total edge (m), PR = patch richness, 
SHDI = Shannon’s diversity index, SHEI = Shannon’s evenness index. Correlations marked * are statistically 
significant (p ≤ 0.05). 

3.4 Landscape change and species richness  

The within-square total species richness (for the whole study area and each 
of the three districts) was positively (p ≤ 0.05) related to the level of increase 
in the proportion of deciduous forest between the mid-1970s and the turn of 

the millennium (Table S10). The levels of change in the proportion of deciduous 
forest were also generally positively correlated (p ≤ 0.05) with the within-square 

number of red-listed species and the number of grassland specialists (Fig. 4, Table 

S10). There were significant (p ≤ 0.05) negative correlations between levels of 

change in the proportion of coniferous forest, and both the number of red-listed 

species (for the squares within the Central and Woodland districts, respectively) 

and the number of grassland specialists (for the squares within the whole study 

area and the Central district, respectively) (Fig. 4, Table S10). Within-square 

species richness was not related to the degree of change (between the historical 

and contemporary landscapes) in the proportions of grazed grassland, water, 

wetlands or barren. 
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Figure 4. Pearson’s correlation coefficients between change in the proportions of land-cover classes between the 
historical and contemporary landscapes, and the level of species richness of grassland specialists within 2.5 km × 2.5 
km grid squares representing the whole province of (473 squares) and the subsets of squares representing the Plains 
(193 squares), Central (226 squares), and Woodland (54 squares) districts in the contemporary landscape.  Results 
are based on the SVM classifications using the Landsat 2 MSS scene from 3 July 1975, and the Landsat 7 ETM+ 
scene from 1 July 2001, with supporting data on seasonal changes in the NDVI, and data on topography. Correlations 
marked * are statistically significant (p ≤ 0.05). 

 

Only changes in the landscape heterogeneity characterized with the help of the 

number of patches (NP) were correlated with the within-square species richness.  

The within-square total number of plant species and number of grassland 

specialists were positively related to the changes in the NP (0.13 ≤ r ≤ 0.20, p ≤ 

0.05), within the whole study area and within the Plains district. 

3.5 Landscape change, and species richness in hot and cold squares 

The increase in the proportion of deciduous forest between the historical and 

contemporary landscapes was significantly (p ≤ 0.05) higher in the hot squares 

than in the cold squares for both grassland specialists (Fig. 5) and the total number 

of species. The hot squares for grassland specialists were also significantly (p ≤ 

0.05) associated with a greater reduction in the proportion of cropland than the 

cold squares (Fig. 5). In addition, the hot squares for grassland specialists were 

associated with a reduction in the proportion of coniferous forest, whereas the cold 
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squares were associated with an increase in the proportion of coniferous forest 

(Fig. 5). The levels of change in the proportions of LULC classes did not differ 

between the hot and cold squares for the red-listed plant species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The mean change in proportions of land-cover classes between the historical and contemporary 
landscapes, in the 30 least and the 30 most species-rich 2.5 km × 2.5 km grid squares within Scania. Results are 
based on the SVM classifications using the Landsat 2 MSS scene from 3 July 1975, and the Landsat 7 ETM+ scene 
from 1 July 2001, with supporting data on seasonal changes in the NDVI, and data on topography. Land-cover 
classes marked * show significantly different mean levels of change between the 30 most ("mean top 30") and 30 
least ("mean bottom 30") species-rich grid squares within that class (Student’s 2-tailed t-test, p ≤ 0.05). 

 

The level of change in landscape heterogeneity (for NP) was higher for the hot 

squares than for the cold squares for each of the three categories of species 

richness. For the total number of plant species, the increase in the mean number of 

patches was 11.23 for the hot squares and 0.40 for the cold squares (p ≤ 0.05). For 

the red-listed plant species, the increase in the mean NP was 12.33 for the hot 

squares and 2.75 for the cold squares (p ≤ 0.05). For the number of grassland 

specialists, the increase in the mean NP was 8.77 for the hot squares and 1.20 for 

the cold squares (p ≤ 0.05). For the total number of plant species, there was a 

significant difference (p ≤ 0.05) in the level of change in the mean total-patch-

edge (TE) between the hot and the cold squares. The mean TE increased by 2.73 

km for the hot squares, while the mean TE decreased by 0.81 km for the cold 

squares between the mid-1970s and the turn of the millennium.  
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4. Discussion 

4.1 Classification accuracies  

In the present study of the southern Swedish province of Scania, the classification 

models that included both Landsat data acquired during the growing-season and 

ancillary data on topography and seasonal changes in the vegetation gave overall 

land-cover classification accuracies that were greater than 85% (cf. Foody 2002) 

(Tables 3,4). The study shows that a classification approach based on growing-

season Landsat data, together with ancillary environmental data and satellite-based 

data on seasonal changes in reflectance, improves the separation between 

spectrally similar land-cover classes such as cropland and grazed grassland – 

particularly when using historical Landsat data. Our results are consistent with 

those of other satellite-based studies which show that a multi-temporal approach 

may make a valuable contribution to the classification of spectrally similar land-

cover classes (e.g. Müller et al. 2015; Schuster et al. 2015; Zoungrana et al. 2015). 

Müller et al. (2015), for example, used Landsat-derived spectral/temporal 

variability metrics to distinguish between cropland, pasture and natural vegetation 

within a savanna landscape in the Brazilian Cerrado and, as in our study, showed 

that the inclusion of data on seasonal changes in the vegetation improved the 

classification accuracies of spectrally similar land-use classes. Schuster et al. 

(2015) carried out a land-cover classification of a German landscape that was 

dominated by woodlands but also contained a mosaic of heathlands, semi-natural 

grasslands and wetlands. The authors were able to produce a fine-scale 

classification of the vegetation types, with an overall accuracy of >90%, with the 

help of a multi-temporal set of satellite scenes (acquired over three years) that 

captured phenological variation in the characteristics of vegetation both within and 

between years.  

Remote sensing data acquired with the help of sensors with high radiometric 

resolution (the capacity of the sensor to distinguish differences in light 
intensity or reflectance) are better at detecting small differences in reflected or 

emitted energy than sensors with low radiometric resolution. The accuracy of a 

remote sensing-based classification of land-cover classes is expected to increase as 

the spectral resolution of the remote sensing data increases (e.g. Xu and Gong 

2007): the use of many wavebands delivers more detailed spectral information on 

land-cover classes than the use of few wavebands. In addition, remote sensing data 

collected with the help of sensors with a high spatial resolution (small pixel size) 

can be used to detect smaller features than sensors with a low spatial resolution 

(coarse pixel size). In the present study, the inclusion of ancillary data in the 

classification models improved the classification accuracies for the historical 



22 

landscape more than for the contemporary landscape. The somewhat poorer 

classification accuracies for the historical compared with the contemporary 

landscape (for the classifications both with and without ancillary data) are likely to 

be explained by the fact that the technological capabilities of the Landsat missions 

have increased and the instruments onboard the satellites have been improved 

since the launch of the first Landsat satellite in 1972 (cf. Sloane 2012). For 

example, the radiometric and spectral resolution of the Landsat MSS data (6 bits, 

four wavebands) used to classify the historical landscape in the present study is 

lower than that of the Landsat ETM+ data (8 bits, six wavelength bands) used to 

classify the contemporary landscape. In addition, the Landsat MSS data used to 

classify the historical landscape in our study are provided with an original pixel 

size of 79 × 57 m, whereas the Landsat ETM+ data used to classify the 

contemporary landscape are provided with a pixel size of 30 × 30 m.  

4.2 Land-cover change  

As well as the intensification of agriculture in many regions, there has also been a 

progressive increase in the area of abandoned cultivated land in several areas of 

Europe over the past decades (Cramer et al. 2008; Pullin et al. 2009). The decrease 

in the proportion of cropland and the increase in the proportion of grazed grassland 

observed in our study (Table 5) are supported by official statistics from Statistics 

Sweden. Official records report a reduction in the area of cropland by 5.6% 

between 1980 and 2000, and an increase in the area of grazed grassland of 5.4% 

(between 1980 and 2000) for the whole province of Scania (Statistics Sweden, 

http://www.statistikdatabasen.scb.se). An increase in the area of grassland at the 

expense of cropland (Table S5) is also observed in other parts of Europe where, in 

many regions, arable fields are gradually being transformed into grazed grasslands 

(MacDonald et al. 2000; Török et al. 2012). The official statistics revealed a 

decrease of 6.0% in the total forest cover in Scania (between 1980 and 2000) 

(http://www.statistikdatabasen.scb.se), while our study showed that the proportion 

of coniferous forests decreased between 1975 and 2001 in Scania. Our study also 

indicates that the proportion of deciduous forest in Scania has increased between 

1975 and 2001 – in agreement with the results from an inventory of beech (Fagus 

sylvatica) forest in Scania, which showed an 44.5% increase in the area of beech 

forest between 1976 and 1986 (Brunet and Berlin 2004). Results from the Swedish 

National Forest Inventory show an increase in the area of hardwood forest (from 

21,000 ha to 73,000 ha) in Scania between 1962 and 1999 (Brunet and Berlin 

2004). Data from Statistics Sweden (http://www.statistikdatabasen.scb.se) show 

that the total built-up area in Scania increased by 8.7% between 1980 and 2000. In 

the present study, however, the total built-up area was lower in the contemporary 

landscape than in the historical landscape, indicating that the approach we used to 
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investigate changes in built-up areas may not have been optimal. Previous studies 

have shown that the investigation of land-cover and land-cover change using 

historical satellite data with low spatial resolution may be problematic in built-up 

areas that contain a diversity of small features (e.g. rooftops, asphalt, parks, play-

grounds and ponds) (Getman et al. 2008). In our study, we re-sampled the pixel 

size of the ETM+ data to match the 60 m spatial resolution of the MSS data. Our 

results suggest that the relatively low radiometric and spectral resolution of the 

historical Landsat MSS data, compared with that of the contemporary Landsat 

ETM+ data, may have limited the accuracy of the comparison between the 

proportions of built-up areas in the two landscapes. In addition, the contemporary 

ETM+ data (with a higher radiometric and spectral resolution than the MSS data) 

may have a better ability than the MSS data to characterize the contribution of 

relict patches of semi-natural habitats (“small biotopes”) to the within-square 

heterogeneity in land-cover. The fact that the radiometric and spectral resolution 

of the Landsat MSS data may have been too coarse to fully characterize the 

contribution of small biotopes to the heterogeneity in the historical landscape may 

have contributed to the increase in landscape heterogeneity between the historical 

and the contemporary landscapes shown in our study. 

4.3 Species richness 

Our results agree with those of many ecological studies which show that the 

intensification of agriculture, and the associated conversion of semi-natural 

habitats into arable land, has had a negative effect on levels of species diversity in 

the present-day landscape in Europe (e.g. Benton et al. 2003; Tscharntke et al. 

2005; Billeter et al. 2008). For example, in Sweden, approximately a third of all 

red-listed species and 60 % of the red-listed vascular plant species are found 

within the agricultural landscape (Artdatabanken).  

The majority of the grasslands in the present-day agricultural landscape represent 

young grasslands on grazed fields which represent the earliest stages in the 

succession from arable cultivation towards species-rich old grasslands which have 

had a long continuity of grazing management (cf. Cousins et al. 2009). The 

transformation of arable land into grazed grassland (Table S5) is expected to offer 

new possibilities for the establishment of species-rich and diverse grassland 

vegetation (Ewers and Didham 2005; Plieninger and Gaertner 2011; Römermann 

et al. 2005). Our study showed that the squares with a high proportion of grazed 

grasslands within both the historical and contemporary landscapes tended to be 

associated with a higher level of within-square species richness (particularly for 

grassland specialists) than those squares that are characterized by a low proportion 

of grazed grassland (Fig. 2, Table S8). Earlier studies have shown that previously 

arable fields that have been grazed for more than 30 years can harbour relatively 
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high number of species of value for conservation (Lindborg 2006). Non-crop 

habitats (such as grazed ex-arable fields, field margins, wetlands and deciduous 

forests) may provide refugia and resources for a wide range of organisms, and 

enhance the dispersal of species through the landscape (e.g. Baudry et al. 2000; 

Marshall and Moonen 2002; Delattre et al. 2013). In intensively managed 

landscapes that have undergone a progressive loss of semi-natural habitats, 

wetlands and deciduous forests are recognized as being among the remaining 

habitats that are most important for maintaining biodiversity (cf. Brinson and 

Malvárez 2002; Gilliam 2007). Our study suggests that an increase in the within-

square proportion of deciduous forest between the mid-1970s and the turn of the 

millennium has a positive impact on the levels of present-day species richness 

(Figs. 4, 5, Table S10). High within-square proportions of wetlands in both the 

historical and contemporary landscapes were positively associated with the 

present-day levels of species richness.  

A substantial proportion of the coniferous forest within our study area – 

particularly within the Woodland district – is intensively managed. Managed 

coniferous forests are typically characterized by a low level of species richness 

which reflects the negative effects of drainage and fertilization as well as habitat 

damage by forest machinery (cf. Hartley 2002). In the present study, an increase in 

the proportions of coniferous forest in the Central and Woodland districts between 

the mid-1970s and the turn of the millennium appears to have had a negative 

impact on the within-square richness of red-listed species and, in the whole of 

Scania and the Central district, a negative impact on the number grassland species 

(Figs. 4, 5 Table S10). The hot squares (the 30 out of 473 squares with the highest 

plant species richness) for grassland specialists were characterized by a reduction 

in the proportion of coniferous forest, whereas the cold squares (the 30 out of 473 

squares with the lowest plant species richness) were associated with an increase in 

the proportion of coniferous forest. However, contrary to our expectations, the 

proportion of coniferous forests in both the historical and contemporary 

landscapes occasionally showed a positive association with the levels of species 

richness in the contemporary landscape in the whole of Scania and the Plains and 

Woodland districts (Table S8). In general, the proportions of the different land-

cover classes and the changes in those proportions between 1975 and 2001 

affected the different species-richness categories (total number of plant species, 

number of red listed species and number of grassland specialists) in a comparable 

way. However, the number of red-listed species showed a stronger association 

with the proportion of built-up area than was observed for the other species 

categories. In urban areas, habitats such as gardens, parks, and ponds may have a 

positive impact on species richness (Kowarik 1995). 

The positive relationships between the levels of species richness and the levels of 

landscape heterogeneity shown in the present study (Fig. 3, Table S9) are in 
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accordance with the expectation that a diversity of habitats or niches will promote 

levels of species co-existence at a range of spatial scales (Whittaker 1972; 

Silvertown 2004; Stein et al. 2014).  For example, the hot squares showed a 

greater increase in patch-number and the total length of the patch edges between 

the historical and contemporary landscapes than the cold squares. However, the 

red-listed species showed a somewhat weaker relationship with the landscape 

heterogeneity for both the historical and contemporary landscapes than the other 

species categories, possibly indicating the red-listed species may have already 

undergone a decline before the mid-1970s. The results of previous studies suggest 

that red-listed species may be affected by land-cover change earlier than other 

species-categories (Cousins et al. 2015; Irminger-Street et al. 2015).  

While our study reveals significant relationships between Landsat-based measures 

of landscape variables and field data on species richness, much of the observed 

variation in species richness remained unexplained by the satellite-based approach 

used in the present study. The levels of within-square plant species richness may 

be influenced by a range of environmental and landscape variables that were not 

investigated in our study. For example, the proportions of land-cover types and the 

landscape heterogeneity in the surrounding squares (cf. Roschewitz et al. 2005, 

Tscharntke et al. 2005), and the connectivity between habitats (Taylor et al. 1993; 

Donald and Evans 2006) are also expected to have an impact on levels of species 

richness. 

5. Conclusions 

An improved understanding of the way in which the distributions of different 

types of land-cover, and changes in the distribution of land-cover classes, are 

related to present-day species richness requires detailed information on both the 

historical and contemporary landscape. Our study shows that Landsat satellite data 

have the potential to deliver the necessary information. The inclusion of ancillary 

data, on topography and on seasonal variation in the spectral properties of the 

vegetation enhanced the reliability of the satellite-based land-cover classifications. 

The ancillary data made a particularly valuable contribution to the classification of 

historical land-cover classes, which was based on satellite data that have a 

relatively low radiometric and spectral resolution. The results from the present 

satellite-based study are consistent with the results from ecological studies which 

show that increasing proportions of cropland and coniferous forests are associated 

with declining levels of landscape species richness. Our study supports the 

conclusions, based on ecological studies, that there are positive relationships 

between levels of species richness and the availability of ecologically valuable 
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habitats (such as grazed grasslands, deciduous forests and wetlands), and between 

species richness and levels of landscape heterogeneity. 
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Supplementary information 

 

Table S1. ID-codes and class names for the original 51 land-cover classes in the SMD data, and the class names 

after reclassifying into the eight classes used in the present study. 

 

SMD ID SMD class name Classes in the 

present study 

SMD ID SMD class name Classes in the 

present study 

141 Green urban area Built-up  3131 Mixed woodland Deciduous  

1422 Airport Built-up  3132 Mixed woodland mire Deciduous   

1424 Golf course Built-up  3133 Mixed woodland rock Deciduous 

1425 Nonurban park Built-up  3241 Scrub Deciduous 

1426 Camping holiday homes Built-up  211 Arable land Cropland 

111 City center Built-up  222 Permanent crop Cropland 

121 Industrial area Built-up  231 Grazed  grassland Grazed grassland 

122 Road railroad Built-up  321 Natural grassland Grazed grassland 

123 Harbour Built-up  322 Moorland Grazed grassland 

124 Airport Built-up  511 Watercourse Water 

132 Dumps Built-up  521 Coastal  lagoon Water 

133 Construction site Built-up  522 Estuary Water 

1122 Village Built-up  5121 Open lake pond Water 

1123 Rural settlement Built-up  5122 Covered lake pond Water 

1421 Sport leisure facility Built-up  5231 Open sea Water 

11211 City urban Built-up  5232 Covered sea Water 

11212 City suburb Built-up  331 Beaches dunes sand planes Barren 

3122 Coniferous woodland mire Conifers  332 Bare rock Barren 

3123 Coniferous woodland rock Conifers  1311 Sand gravel extraction Barren 

3242 Clearing Conifers 1312 Mineral extraction Barren 

3243 Young forest Conifers 411 Marshland Wetlands 

312121 Coniferous woodland 5 - 15y Conifers 421 Saltmarsh Wetlands 

312122 Coniferous woodland >15y Conifers 4121 Wet mire Wetlands 

3111 Deciduous woodland Deciduous  4122 Mire Wetlands 

3112 Deciduous woodland mire Deciduous 4123 Peat extraction site Wetlands 

3113 Deciduous woodland rock Deciduous    
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Table S2. Pearson’s correlation coefficients between each of three vascular plant species richness categories; total 

number of plant species (total no. spp.), number of red-listed species (no. red-listed spp.) and number of grassland 
specialists (no. grassland specialist spp.), within 2.5 km × 2.5 km grid squares representing the whole province of 
Scania, and the subsets of squares representing the Plains, Central, and Woodland districts. All the correlations are 
statistically significant (p ≤ 0.05). 

 

   total no. spp./ total no. spp./ no. red-listed spp./ 

 
Number of squares 

no. red-listed spp. 
no. grassland 

specialist spp. 

no.grassland 

specialist spp. 

Scania 473 0.70 0.93 0.63 

Plains  193 0.66 0.92 0.52 

Central 226 0.75 0.94 0.77 

Woodland  54 0.73 0.93 0.69 

 

 

Table S3. Error matrix for the SVM classification for the historical landscape, based on 4 bands from a Landsat 2 
MSS scene from 3 July 1975. The diagonal indicating the correct class-assignments is shaded. 

 

 

 

 

 

 

 

 

  Historical landscape   

Land-cover classes 

identified from 

  aerial photos Land-cover classes identified from a SVM-classified 4-band Landsat 2 MSS scene   

 

Cropland Gr. grassl. Deciduous Conifers Water Wetlands Barren Built-up Total User's acc. 

Cropland 69 16 0 0 0 8 2 5 100 69.0% 

Grazed grassland 27 55 1 2 0 6 1 8 100 55.0% 

Deciduous 1 1 87 2 0 9 0 0 100 87.0% 

Conifers 1 0 0 96 0 3 0 0 100 96.0% 

Water 0 0 0 4 95 0 1 0 100 95.0% 

Wetlands 13 5 15 14 0 53 0 0 100 53.0% 

Barren 3 0 0 0 1 0 78 18 100 78.0% 

Built-up 1 9 0 0 0 0 1 89 100 89.0% 

Total 115 86 103 118 96 79 83 120 800 

 
Producer's acc. 60.0% 64.0% 84.5% 81.4% 99.0% 67.1% 94.0% 74.2% 

  

      

Overall accuracy = 77.8% 

             Kappa = 0.746   
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Table S4. Error matrix for the SVM classification for the contemporary landscape, using 6 bands from a Landsat 7 

ETM+ scene from 1 July 2001. The diagonal indicating the correct class-assignments is shaded. 

 

  Contemporary landscape   

Land-cover classes 

identified from 

  aerial photos Land-cover classes identified from a SVM-classified 6-band Landsat 7 ETM+ scene   

 

Cropland Gr. grassl. Deciduous Conifers Water Wetlands Barren Built-up Total User's acc. 

Cropland 90 7 2 0 0 0 0 1 100 90.0% 

Grazed grassland 2 88 2 0 0 7 0 1 100 88.0% 

Deciduous 1 1 95 0 0 3 0 0 100 95.0% 

Conifer 6 0 1 85 0 8 0 0 100 85.0% 

Water 0 0 0 1 98 1 0 0 100 98.0% 

Wetlands 4 11 4 5 0 75 0 1 100 75.0% 

Barren 0 1 0 0 0 0 94 5 100 94.0% 

Built-up 2 2 0 0 0 1 6 89 100 89.0% 

Total 105 110 104 91 98 95 100 97 800 

 
Producer's acc. 85.7% 80.0% 91.3% 93.4% 100.0% 78.9% 94.0% 91.8% 

  

      

Overall accuracy = 89.3% 

             Kappa = 0.877   
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Table S5. Land cover transition matrix. The diagonal (shaded) shows the percentage of the landscape that persists 

between the historical (year 1975) and contemporary (year 2001) landscapes for each class of land-cover. The rows 
show the percentage of the landscape that a land-cover class (row) has lost to another land-cover class (column) 
during the transition from the historical landscape to the contemporary landscape. The columns show the percentage 
of the landscape that a land-cover class (column) has gained from another land-cover class (row) during the transition 
from the historical to the contemporary landscape. 

 

 

Table S6. Pearson’s correlation coefficients between measures of land-cover heterogeneity, within the historical and 
contemporary landscapes, respectively, in Scania. Results are based on the SVM classifications using the Landsat 2 
MSS scene from 3 July 1975, and the Landsat 7 ETM+ scene from 1 July 2001, with supporting data on seasonal 
changes in the NDVI, and data on topography. NP = number of patches, TE = total edge (m), PR = patch richness, 
SHDI = Shannon’s diversity index, SHEI = Shannon’s evenness index, SD = standard deviation. All correlations are 
statistically significant (p ≤ 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land-cover transition matrix between the historical (year 1975) and contemporary (year 2001) landscapes 

 

Cropland Gr. grassl. Deciduous Conifers Water Wetland Barren Built-up Total 1975 Loss 

Cropland 44.52% 6.06% 0.80% 0.11% 0.31% 1.33% 0.52% 1.67% 55.32% 10.80% 

Gr. grassl. 3.42% 8.75% 1.20% 0.32% 0.21% 1.34% 0.11% 0.57% 15.92% 7.17% 

Deciduous 0.16% 0.21% 5.37% 0.43% 0.01% 0.45% 0.01% 0.01% 6.65% 1.29% 

Conifers 0.20% 0.44% 0.98% 2.65% 0.12% 0.81% 0.06% 0.35% 5.60% 2.95% 

Water 0.01% 0.02% 0.01% 0.00% 1.21% 0.01% 0.02% 0.05% 1.33% 0.12% 

Wetland 1.05% 0.54% 1.53% 0.90% 0.12% 0.99% 0.02% 0.05% 5.19% 4.20% 

Barren 0.16% 0.21% 0.01% 0.02% 0.03% 0.01% 0.14% 0.31% 0.90% 0.75% 

Built-up 1.80% 1.73% 0.08% 0.14% 0.15% 0.18% 0.16% 4.84% 9.09% 4.25% 

Total 2001 51.31% 17.96% 9.98% 4.58% 2.16% 5.13% 1.05% 7.83% 100.00% 31.53% 

Gain 6.79% 9.21% 4.62% 1.93% 0.95% 4.14% 0.91% 2.99% 31.53% 

 

 

Historical landscape 

 

NP TE PR SHDI SHEI 

NP 1 0.95 0.45 0.77 0.71 

TE 0.95 1 0.43 0.79 0.75 

PR 0.45 0.43 1 0.57 0.33 

SHDI 0.77 0.79 0.57 1 0.95 

SHEI 0.71 0.75 0.33 0.95 1 

      
 

Contemporary landscape 

 

NP TE PR SHDI SHEI 

NP 1 0.95 0.61 0.8 0.72 

TE 0.95 1 0.56 0.81 0.75 

PR 0.61 0.56 1 0.64 0.44 

SHDI 0.8 0.81 0.64 1 0.96 

SHEI 0.72 0.75 0.44 0.96 1 



36 

Table S7. Measures of landscape heterogeneity for the historical and contemporary landscapes, respectively. The 

heterogeneity measures were calculated from 8 land-cover classes (Table S1), classified with the help of Landsat 
data, together with supporting data on seasonal changes in the NDVI, and data on topography. NP = number of 
patches, TE = total edge (m), PR = patch richness, SHDI = Shannon’s diversity index, SHEI = Shannon’s evenness 
index, SD = standard deviation.  

 

  Historical landscape Contemporary landscape 

Scania Mean SD Range Mean SD Range 

NP 36.1 21.2 105 45.0 27.1 130 

TE 21275 11378 49620 23185 12894 51540 

PR 5.9 1.24 8 6.6 1.3 8 

SHDI 0.97 0.43 1.82 1.01 0.45 1.88 

SHEI 0.54 0.23 0.97 0.53 0.22 0.95 

Plains 
      

NP 24.2 12.1 73 32.2 20.2 102 

TE 14643 7460 38520 16105 9903 49140 

PR 5.8 1.32 8 6.3 1.4 8 

SHDI 0.77 0.39 1.76 0.81 0.44 1.83 

SHEI 0.43 0.2 0.95 0.43 0.21 0.88 

Central 
      

NP 41.0 21.4 104 50.8 28 129 

TE 24020 11163 47040 26014 12404 51480 

PR 6.2 1.16 7 6.8 1.3 7 

SHDI 1.07 0.42 1.79 1.11 0.43 1.77 

SHEI 0.59 0.21 0.95 0.58 0.2 0.88 

Woodland 
      

NP 57.9 20.7 94 66.1 23.1 107 

TE 33490 8826 43500 36651 8412 41880 

PR 5.4 1.0 7 6.4 1.1 6 

SHDI 1.24 0.33 1.49 1.27 0.27 1.35 

SHEI 0.74 0.18 0.77 0.69 0.12 0.56 
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Table S8. Pearson’s correlation coefficients between the proportion of land-cover classes within the historical and 

contemporary landscapes (based on Landsat classifications with supporting data on seasonal changes in the NDVI, 
and data on topography), and the contemporary within-square species richness within each of three categories of 
vascular plants (total number of plant species, number of red listed species, and number of grassland specialists), 
respectively. The shaded information is presented graphically in Fig. 2. All correlations that are not marked "ns" are 
statistically significant (p ≤ 0.05). 

 

ns = non-significant 

 

 

 

 

 

 

 

 

 

 

  
 

Historical landscape Contemporary landscape 

Total number of plant 

species 
Scania Plains Central Woodland 

 
Scania Plains Central Woodland 

Cropland -0.33 -0.34 -0.21 ns  -0.35 -0.35 -0.23 -0.39 

Gr. grassl. 0.24 ns 0.31 ns  0.22 ns 0.22 ns 

Deciduous 0.24 0.22 ns ns  0.33 0.31 0.26 ns 

Conifers 0.17 ns ns ns  0.15 ns ns 0.39 

Water ns 0.21 ns ns  ns 0.23 ns ns 

Wetland 0.35 0.27 0.27 ns  0.36 0.31 0.30 ns 

Barren -0.18 ns -0.29 ns  -0.14 ns -0.26 ns 

Built-up ns 0.25 ns ns  ns ns ns ns 

Number of red-listed 

species 
    

 
    

Cropland -0.33 -0.43 -0.25 ns  -0.32 -0.40 -0.26 ns 

Gr. grassl. 0.21 ns 0.33 ns  0.19 ns 0.25 ns 

Deciduous ns ns ns ns  0.14 ns 0.24 ns 

Conifers ns ns ns 0.42  ns ns ns 0.37 

Water ns 0.29 ns ns  ns 0.22 ns ns 

Wetland 0.13 ns ns ns  0.15 ns 0.19 ns 

Barren ns ns ns ns  ns ns ns ns 

Built-up 0.23 0.43 ns 0.41  0.18 0.35 ns 0.50 

Number of grassland 

specialist species 
    

 
    

Cropland -0.36 -0.35 -0.21 ns  -0.39 -0.35 -0.25 ns 

Gr. grassl. 0.37 0.36 0.33 ns  0.35 0.32 0.27 ns 

Deciduous 0.31 0.27 ns ns  0.41 0.36 0.27 ns 

Conifers 0.25 ns ns ns  0.20 0.22 ns ns 

Water ns ns ns ns  ns 0.30 ns ns 

Wetland 0.38 0.30 0.24 ns  0.46 0.44 0.33 ns 

Barren -0.19 ns -0.26 ns  -0.13 ns -0.23 ns 

Built-up -0.15 ns ns ns  -0.19 ns ns ns 
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Table S9. Pearson’s correlation coefficients between the measures of landscape heterogeneity within the historical 

and contemporary landscapes (based on Landsat classifications with supporting data on seasonal changes in the 
NDVI, and data on topography), and the contemporary within-square species richness within each of three categories 
of vascular plants (total number of plant species, number of red listed species, and number of grassland specialists), 
respectively. The shaded information is presented graphically in Fig. 3. NP = number of patches, TE = total edge (m), 
PR = patch richness, SHDI = Shannon’s diversity index, SHEI = Shannon’s evenness index, SD = standard deviation. 
All correlations that are not marked "ns" are statistically significant (p ≤ 0.05). 

 

 

 

Table S10. Pearson’s correlation coefficients between the change in the proportions of cropland, deciduous forest 
and coniferous forest (based on Landsat classifications with support from data on seasonal changes in the NDVI, and 
data on topography) between the historical and contemporary landscapes, and the contemporary within-square 
species richness within each of three categories of vascular plants (total number of plant species, number of red listed 
species, and number of grassland specialists) for the whole study area in Scania and each of the districts in Scania. 
The shaded information is graphically presented in Fig. 4. All correlations that are not marked "ns" are statistically 
significant (p ≤ 0.05). 

 

 

Historical landscape Contemporary landscape 

Total number of plant 

species 
Scania Plains Central Woodland Scania Plains Central Woodland 

NP 0.46 0.47 0.39 ns 0.46 0.47 0.35 0.42 

TE 0.50 0.51 0.43 ns 0.50 0.47 0.41 ns 

PR 0.45 0.47 0.48 ns 0.46 0.46 0.43 0.52 

SHDI 0.49 0.48 0.38 0.40 0.51 0.52 0.39 0.48 

SHEI 0.39 0.38 0.26 ns 0.43 0.50 0.25 ns 

Number of red-listed 

species 
        

NP 0.23 0.30 0.25 ns 0.24 0.29 0.21 ns 

TE 0.23 0.27 0.26 ns 0.22 0.23 0.23 ns 

PR 0.37 0.32 0.39 ns 0.30 0.24 0.31 0.44 

SHDI 0.33 0.36 0.32 ns 0.33 0.34 0.31 0.39 

SHEI 0.26 0.31 0.24 ns 0.28 0.33 0.24 ns 

Number of grassland 

specialist species 
        

NP 0.52 0.46 0.36 ns 0.49 0.48 0.29 ns 

TE 0.56 0.50 0.38 ns 0.54 0.48 0.35 ns 

PR 0.38 0.45 0.40 ns 0.40 0.43 0.34 0.54 

SHDI 0.52 0.52 0.32 0.41 0.54 0.58 0.32 0.49 

SHEI 0.46 0.44 0.23 ns 0.49 0.56 0.22 0.35 

ns = non-significant         

 
Total number of plant species Number of red-listed species Number of grassland specialists 

 
Cropland Deciduous Conifers Cropland Deciduous Conifers Cropland Deciduous Conifers 

Scania ns 0.32 ns ns 0.23 ns -0.15 0.4 -0.15 

Plains ns 0.35 ns ns ns ns ns 0.4 ns 

Central ns 0.22 ns ns 0.32 -0.22 ns 0.29 -0.22 

Woodland ns 0.37 ns ns 0.29 -0.35 ns ns ns 

ns = non-significant          
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Small fragments of non-crop habitat make a significant 

contribution to landscape-scale vascular plant richness in 

agricultural landscapes 

Therese Irminger Street, Jonas Dalmayne, Ola Olsson, Honor C. Prentice, Henrik 

G. Smith, Torbjörn T. Tyler, Karin Hall 

Abstract 

The positive influence of non-crop habitat on farmland biodiversity has been 

widely recognized but the relative contribution of different types of non-crop 

habitat towards farmland biodiversity is less well known. In the present study, we 

used an information-theoretic approach with multimodel inference, to examine the 

extent to which vascular plant species richness at the landscape-scale (2.5×2.5 km) 

was influenced by land use and land cover, including small fragments of non-crop 

habitat such as road verges, field margins and field islets. Three regions, which 

differed in their degree of structural complexity, were included in the study. Our 

results show that the most important non-crop habitat types differed between 

regions: in the most simplified landscapes (“Plain districts”) only the most widely 

distributed habitat types were important for landscape scale species richness of 

vascular plants whereas the extent of non-crop fragments contributed to both total 

and grassland species richness within the more complex landscapes (“Central 

districts” and “Forest districts”). However, it is possible that small biotopes 

influence the abundance of plant species within all three regions, in which case 

their importance for maintaining the farmland flora may well have been 

underestimated, especially in the most simplified landscapes.   

     

   

KEYWORDS: landscape-scale species richness, vascular plants, grassland 

species, landscape complexity, non-crop habitat, small biotopes, multi-model 

inference 
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1. Introduction 

Increases in agricultural intensity over the past half-century have been 

accompanied by major changes in management practices (Krebs et al., 1999; 

Tscharntke et al., 2005). There has been a general shift from small-scale mixed 

farming to large farming units within simplified, regionally specialized, 

agricultural landscapes, and an abandonment of farmland within marginal areas 

(Stoate et al., 2009). These changes have been accompanied by a widespread 

decline in farmland biodiversity (Benton et al., 2003; de Heer et al., 2005; Kleijn 

et al., 2009). Although agri-environment schemes have been directed, with varying 

degrees of success, towards mitigating the negative effects of intensification 

(Kleijn and Sutherland, 2003; Berendse et al., 2004; Kleijn et al., 2006), only 7 % 

of the habitat types linked to agriculture within the European Union are considered 

as being likely to continue to prosper without any change in their management 

(Commission of the European Communities, 2009).  

In intensively cultivated areas, small fragments of habitat, such as drainage 

ditches, stone walls, permanent field margins, field islets, semi-natural pastures 

and patches of woodland, all enhance landscape heterogeneity. These different 

types of non-crop elements represent different environmental conditions and 

different histories of land use, and can provide habitat, resources and refugia for a 

wide range of farmland species (Duelli and Obrist, 2003; Smart et al., 2006; 

Billeter et al., 2008; Lindborg et al., 2014). Even small fragments of permanent 

vegetation, such as midfield islets, field margins and road verges (hereafter 

referred to collectively as “small biotopes”), can harbour grassland specialist 

plants (Cousins and Lindborg, 2008; Hamre et al., 2010). Hedgerows can harbour 

forest species (de Blois et al., 2002; Aavik et al., 2008), ditches wetland species 

(Aavik et al., 2008; Herzon and Helenius, 2008) and, in traditional agricultural 

landscapes, Wuczynski et al. (2014) found that approximately one in five field 

margins harboured red-listed plants species. Small biotopes can also ameliorate the 

negative effects of habitat fragmentation by facilitating the dispersal of organisms 

through the landscape (Burel, 1996; Tikka et al., 2001; van Dijk et al., 2014). Non-

crop habitats within the farmland mosaic can thus have a positive effect on both 

the local and the landscape-scale richness of a range of organism groups, including 

vascular plants (e.g. Duelli and Obrist, 2003; Billeter et al., 2008; Aavik and Liira, 

2009; Ernoult et al., 2013) and the importance of maintaining non-crop habitat 

within the agricultural landscape is widely recognised (e.g. Benton et al., 2003; 

Billeter et al., 2008; Lindborg et al., 2014). 

Landscape indices are metrics that can be used to describe and quantify landscape 

structure and patterns of land use. These indices are increasingly being used to 

study how landscape structure influences ecological processes (Uuemaa et al., 
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2013) and landscape indices based on the amount of non-crop habitat have been 

proposed as potential indicators of overall farmland biodiversity (Billeter et al., 

2008; Banks-Leite et al., 2011). However, because landscape indices are 

influenced by the accuracy, scale, grain and thematic resolution (number of 

classes) of the maps on which they are based (Langford et al., 2006; Bailey et al., 

2007b; Buyantuyev and Wu, 2007; Corry and Lafortezza, 2007; Simova and 

Gdulova, 2012), observed relationships between spatial patterns and the 

distribution of species are dependent on the quality of the data on which the 

calculations are based. Careful consideration therefore needs to be given both to 

the choice of data used to calculate the metrics and to the choice of the landscape 

metrics themselves (Dramstad, 2009).  

Studies that analyse the drivers of species richness within agricultural landscapes 

often handle non-crop habitats as a single variable or pooled into broad habitat 

categories (e.g. Burel et al., 2013; Duflot et al., 2014; Loos et al., 2015, but see 

e.g. Honnay et al., 2003). Because small biotopes are seldom included in large-

scale studies, and when included are often not treated separately from larger areas, 

little is known about the contribution of these habitat fragments to the overall 

species richness at the landscape-scale. Landscape context can influence species 

distribution patterns at the local scale and within a particular habitat type (e.g. 

Aavik and Liira, 2009; Concepcion et al., 2012) and may also be expected to 

influence the relative importance of different non-crop habitat types for landscape-

scale species richness. However, the relative contribution of non-crop habitat to 

the species richness within landscapes of differing complexity is poorly 

understood. 

In the present study, we aimed to determine the relative importance of different 

types of non-crop habitat for landscape-scale species richness of vascular plants 

within agricultural landscapes. We were particularly interested in the potential 

influence of small biotopes on large-scale species richness and therefore 

developed a proxy that was used to estimate the extent of small biotopes within 

south-Swedish agricultural landscapes. Because we were interested in whether-or-

not the most influential non-crop habitat habitats differed between landscape 

types, we carried out the study in three types of agricultural landscapes, with 

differing degrees of structural complexity.   

 

 



4 

2. Methods 

2.1 Description of the study region 

The study was carried out in Scania, the southernmost Swedish province, which 

covers an area of approximately 11,000 km
2
 (Fig. 1). The mean temperatures in 

the province range from 0 to -2°C in January and from 15.5 to 17°C in July, and 

the mean annual precipitation ranges from 500 to 900 mm (Germundsson and 

Schlyter, 1999). Scania can be divided into three agricultural regions (also known 

as production areas), on the basis of differences in edaphic, topographical and 

climatic conditions: the Plain, Central and Forest districts of Götaland (Fig. 1). 

The bedrock is mainly sedimentary in the Plain and Central districts, whereas 

gneiss and granites dominate within the Forest districts (Germundsson and 

Schlyter, 1999). 

 

 
Figure 1: The province of Scania, Sweden showing the 1005 landscapes (2.5×2.5 km squares) included in the study.  
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The Plain districts contain Sweden’s most productive soils: crop yields are among 

the highest in the country and the landscape is dominated by large arable fields, 

primarily used for annual crops (StatisticsSweden, 2014). The Central districts are 

also dominated by farmland, but pastures and patches of woodland are more 

common than in the Plain districts, the landscape is more heterogeneous and the 

soils are less fertile (Germundsson and Schlyter, 1999). Arable fields are smaller 

than in the Plain districts and both cereal farming and animal husbandry are 

widespread, although not necessarily co-occurring within the same farming unit. A 

mix of deciduous and coniferous forests dominates within the Forest districts 

(Germundsson and Schlyter, 1999), where only a quarter of the land area is used 

for agricultural activities, primarily as ley fields and pastures. Fields are smaller 

and the structural complexity higher than in the other two districts. The three 

regions in Scania thus represent a gradient in landscape complexity and farming 

intensity, ranging from the intensively farmed and simplified landscapes of the 

Plain districts to the more complex agricultural landscapes of the Central districts 

and finally to the forest dominated landscapes of the Forest districts where the 

farmland is more complex than in the Central districts.  

2.2 Vascular plant data 

The species occurrence data used in the present study are derived from the project 

“Skånes Flora” (SF), a regional floristic survey coordinated by the Lund Botanical 

Society, which collected presence/absence data for all vascular plant taxa within 

Scania (Table 1). The survey was based on a grid with 1983 (2.5×2.5 km) cells 

(Tyler et al., 2007a), and was carried out by volunteer recorders between 1987 and 

2005. The recorders were asked to report every taxon found in each cell at least 

once, and 1523 of the 1983 grid-cells were fully surveyed (at least 80 % of the 

taxa that could be expected to be present, on the basis of the number of taxa 

reported in neighbouring cells, had been recorded within the cell). Voucher 

specimens were required for critical taxa and these were verified by specialists. 

Taxa known to reproduce spontaneously in the province were considered to be 

resident.  

For each of the 1523 grid-cells (hereafter referred to as landscapes) in the present 

study, we extracted information on (i) the number of regionally resident taxa 

(excluding only ill-defined or insufficiently documented/recorded infraspecific 

taxa) and (ii) the number of vascular plant taxa characteristic for grasslands 

(according to Ekstam and Forshed (1992)), giving us data on landscape-scale (i) 

richness of taxa, hereafter referred to as “species richness” (SR) and (ii) richness 

of grassland taxa, (GR) for 77 % of Scania. The list of regionally resident taxa was 

obtained from Tyler et al. (2007a) which follow the criteria for residency set up by 
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Jonsell (2004) and also used in the national Swedish check-list (Karlsson and 

Agestam).  

 
Table 1: Landscape descriptors. The variables used in the present study were extracted from, or calculated on the 
basis of, information derived from six different data sources 
 

Name of data 

set 

Source Description Reclassification 

 

Project Skånes 

Flora (SF) 

 

The Lund 

Botanical 

Society 

 

Presence/absence data for all 

vascular plants within 2.5×2.5 

km squares in a grid covering 

Scania.  
 

 

No, but some pooling of 

taxa was carried out 

 

Svensk 

Marktäckedata 

(SMD) 

 

Lantmäteriet, 

the National 

Land Survey 

of Sweden  

 

CORINE-based, digital land 

cover map with 51 classes 

present within Scania. 

Spatial resolution of 25 m. 

 

Yes, 8 broader classes 

defined. 
 

 

Blockdatabasen 

(IACS)  

 

Swedish 

Board of 

Agriculture 

 

Data on land use for all 

registered farmland with 71 

classes. 

 

 

Yes, 6 broader classes 

defined.  

 

 

Bedrock map 

(BR) 

 

Geological 

Survey of 

Sweden 

 

Digital bedrock map with 69 

classes.  

Spatial resolution of 50 m. 

 

Yes, 4 broader classes 

defined. 

 

National road 

database 

(NVDB) 

 

Swedish 

transport 

administration 

 

Database over all roads in 

Sweden.  

 

No. 

 

Digital elevation 

map (DEM) 
 

 

Lantmäteriet, 

the National 

Land Survey 

of Sweden 

 

Digital elevation map. 

Spatial resolution of 50 m. 

 

No. 

    

2.3 Environmental variables 

2.3.1 Land cover and land use data from national databases  

The land cover categories used in the Swedish Land Cover Data (SMD) database 

(Table 1) do not necessarily reflect biologically relevant habitat categories. We 

therefore reclassified the 51 land cover classes in the SMD into eight broad habitat 

classes considered relevant for the present study; cultivated land (CULT), semi-

natural grassland (SNG), deciduous forest (DECID), coniferous forest (CONIF), 

water (WATER), wetland (WETL), sparsely vegetated areas (SPARSE) and built-

up areas (BUILT) (see appendix A for reclassification details). For each landscape 

(2.5×2.5 km), we calculated the percentage of the total area that was covered by 

each of the eight land cover classes (Table 2). We also used the reclassified land 
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cover classes to calculate Simpson’s diversity index (SIDI), an index which, at the 

level of thematic resolution (i.e. the number of land use classes) used in the 

present study, has been shown to correlate well with total plant species richness in 

agricultural landscapes (Bailey et al., 2007a). All metrics were calculated using 

Fragstats v. 4 (McGarigal et al., 2012).  

The timing and intensity of disturbance regimes influences landscape-scale 

richness of vascular plants (Buhk et al., 2007) and differs greatly between different 

land use categories within agricultural landscapes, a variability which is not 

captured by the broad class CULT. For farmland, we therefore extracted additional 

information about land use from Blockdatabasen, an annually updated Integrated 

Administration and Control System (IACS) from the Swedish Board of 

Agriculture (Table 1). The 71 original land use classes and crop types were 

reclassified into 6 broader classes which were expected to reflect the main 

differences in terms of disturbance; annual crops (ANNU), ley (LEY), fallow 

(FALL), riparian buffer zones (RIP), pasture (PAST) and other (OT), which 

together represent the total farmland area (FARM) (Table 2; appendix B). The 

IACS was first launched in 1998 and has, since then, been updated yearly 

(Jordbruksverket, 2009). To avoid using the earliest versions of the IACS, but still 

match the period during which the plant survey was performed (1987-2005), we 

extracted information from the IACS of 2001.  

After including the variables extracted from the IACS, the variable CULT became 

redundant and was therefore excluded from further analyses as was the variable 

OT, which included a broad range of crops that could not be expected to influence 

the flora in a uniform manner (eg. Salix sp., Picea sp., Phalaris arundinacea, and 

fruit and berry plantations). For grasslands, we instead combined information from 

the IACS and the SMD and created a new layer "SNG_tot", in which all pastures 

from the IACS were combined with semi-natural grassland areas on non-farmland 

from the SMD.  

2.3.2 Developing a proxy for small biotopes   

Information on the presence of small fragments of non-crop habitat, which were 

the central focus of the present study, could not be extracted directly from the 

IACS or the SMD. We, therefore, used an indirect approach, based primarily on 

the structure of the data stored in the IACS, to estimate the extent of small 

biotopes (SB) within each landscape.  

In the IACS all agricultural land is divided into “blocks”, where each block is a 

continuous area of uniform land use (i.e. agricultural fields, hay meadows or 

pastures) delimited by a permanent boundary (Fig. 2). The block-edges can 

therefore be used as a proxy definition for uncultivated field margins (Persson et 

al., 2010). In addition, we hypothesised that the number of non-agricultural 
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polygons (i.e. "holes") within agricultural blocks could be used to estimate the 

number of point-elements within agricultural fields by selecting only those holes 

that were between 0.01 and 0.1 ha and thus fit the size requirement for small 

biotopes in agricultural landscapes set up by the Swedish Board of Agriculture. 

The reliability of this approach was verified by extracting the number of point 

elements within the 180 (1 km
2
) Scanian study sites used by Persson et al. (2010) 

and comparing our estimate (272 point elements) with that obtained by Persson et 

al. (2010) through manual interpretation of aerial photographs (292 habitat 

fragments).  

 

 
Figure 2: An illustration of the way in which agricultural blocks are delimited within the IACS. In the left-hand picture, 
block edges are shown in black and the "holes" that were extracted and referred to as point elements are shown in 
white. 

 

 

The area of road verges within each landscape was estimated by extracting the 

total road length from the Swedish National Road Database (NVDB) (Table 1) and 

multiplying the road length by twice the width of a 1.6 m template (to account for 

both sides of the road). The template represented the mean width of road verges, 

measured at 622 locations in Scania (T. Irminger Street, unpublished data). For 

field margins, a mean width of 2.4 m (Persson et al., 2010) was assumed when 

converting boundary length to area. A mean size of 0.045 ha was assumed for the 

point-elements. Field margins, point elements and road verges were merged into 

the variable "small biotopes" (SB). 

2.3.3 Abiotic variables 

Bedrock 
Soil properties, which, in their turn, largely depend on the properties of the 

bedrock from which they are derived, strongly influence the distribution of 
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vascular plants (Tyler, 2007b). In Scania, the underlying bedrock provides a 

reasonable representation of the properties of the overlying moraine, despite soil 

movements by ice, wind and water (Persson and Tyler, 2007), and the distribution 

of many plant species in Scania show a clear separation between areas with 

igneous and sedimentary bedrock (Weimarck and Andersson, 2007). Furthermore, 

lime influences soil pH, and hence soil properties and the distribution of species 

(Tyler, 2007b). To account for the main differences in substrate, we reclassified 

the digital bedrock map into four broad categories: igneous rocks (IG), calcareous 

sedimentary rocks (i.e. limestone and marl) (CALC), non-calcareous sedimentary 

rocks (SED) and ultrabasic bedrock types (UB) (see appendix C for 

reclassification details). The proportions of these bedrock categories were included 

in the statistical models to account for the expected influence of the bedrock on the 

richness of vascular plants. 

Topography 

In mountainous regions, the landscape-scale diversity of vascular plants is closely 

linked to topographical variability (Hofer et al., 2008) but topography also 

influences the flora in flatter regions such as Scania (where altitude ranges from 0 

to 212 m a.s.l.) (Moeslund et al., 2013). We therefore calculated the standard 

deviation of the elevation (in metres), a commonly used measure of topographical 

roughness (see e.g. Luoto, 2000; Hofer et al., 2008; Aguilar-Santelises and del 

Castillo, 2013). The calculations were based on a digital elevation model of Scania 

with a spatial resolution of 50 m. 

Operations and calculations were done in the software Matlab R2010a 

(Mathworks Inc.), ArcGIS 10.1 (ESRI) and Fragstats v. 4 (McGarigal et al., 2012). 

2.4 Data analyses 

2.4.1 Data preparation 

We excluded all landscapes in which the total cover of built-up areas and/or open 

water exceeded 40 % as well as landscapes that were within 2.5 km from the 

coastline (to reduce a potential influence from the sea), leaving 1006 landscapes 

for which plant data were available (Fig 1). Of these landscapes, 312 were located 

in the Plain districts, 279 in the Central districts and 415 in the Forest districts. 

Preliminary analyses revealed that one of the landscapes in the Forest districts, in 

which the extent of calcareous bedrock was five times greater than in any of the 

other Forest district landscapes, had a high leverage (Cook’s distance close to 0.5) 

and that landscape was therefore excluded from further analyses. All variables that 

represented a proportion of the landscape were arcsine-square-root transformed 

prior to analyses. 
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2.4.2 Statistical models 

The environmental variables (Table 2) were fitted to each of the two response 

variables (SR and GR), within each of the three regions, using linear models and 

an information-theoretic approach to account for model uncertainty when 

analysing the consequences of many potential explanatory variables (Burnham and 

Anderson, 2002). The interdependence between all potential explanatory variables 

was first explored using correlation matrices and variance inflation factors (VIF). 

The VIF measures the degree to which the variance of the regression coefficients 

is inflated because of correlation with other variables, and VIF > 5 indicates 

potential problems with multicollinearity (Rogerson, 2001) (Appendix Correlation 

a, b and c). The variables CONIF, FARM and SED showed a high level of 

interdependence with at least one other variable within all three regions (Pearson’s 

correlation coefficient ≥ 0.7) and were excluded from the full models for all the 

regions. The variable LEY was excluded from the models for the Forest districts, 

where it was highly correlated with the variable SB. The global (full) models for 

the Plain and Central districts thus contained 16 explanatory variables, whereas the 

global models for the Forest districts contained 15 explanatory variables (Table 2). 

Linear models were fitted for each of the global models using the gls-function (R 

package nlme; Pinheiro et al., 2011). Models were fitted without any correction for 

spatial autocorrelation and with five commonly used correlation structures 

(exponential, Gaussian, linear, rational and spherical) (Zuur et al., 2009) and the 

models were ranked on the basis of their AICc-values (AIC with a second-order 

correction for small sample). We found only small differences between the models 

fitted with an exponential, Gaussian, rational or spherical correlation structure 

whereas the models fitted with a linear correlation structure performed relatively 

poorly (ΔAICc +1.5 to +59.6 compared with the “best” model), as did the 

uncorrected models (ΔAICc +15.5 to +82.4). Because none of the correlation 

structures consistently performed best, we arbitrarily chose to use the global 

models fitted with an exponential correlation structure (which at most had a ΔAICc 

of +3.3 compared to the “best” model) as a baseline for further model selection. 

We used the dredge function (MuMIn package; Bartón, 2014) to run all possible 

combinations of the variables defined in each of the global models. Restrictions 

were added so that highly correlated (≥ 0.7) variables that remained within a 

global model (DECID, ANNU and SIDI in the Plain districts, ANNU and SIDI in 

the Central districts and ANNU and FALL in the Forest districts) were prevented 

from being present in the same model. However, SNG_tot and SIDI were allowed 

to co-occur when modelling species richness and grassland richness in the Plain 

districts, despite a correlation of 0.71, since the VIF-value remained relatively low 

(VIF = 4.2). The maximum number of terms to be tested within a single model 

was set to seven in order to obtain a manageable level of complexity. With these 

restrictions, all VIF-values were below five.  
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Table 2. The range (min-max) and mean values for all variables within the 1005 (2.5×2.5 km) landscapes 

representing the three types of agricultural regions in the study (the number of landscapes in each type of district is 
shown in parentheses). Variables that were included in the statistical analyses are shown in bold.  
 

 
* The variable was arcsine square root-transformed prior to analyses. Untransformed values are presented here 
1
 According to Ekstam and Forshed(1992) 

2
 Not included in the global model for the Forest district because of high correlation with the variable SB. 

 
The influence of the explanatory variables was examined using a multimodel 

inference approach in which we used Akaike model weights to estimate the 

relative importance of the different variables within each data set (Burnham and 

Anderson, 2002). The Akaike model weight (wi) represents the likelihood that a 

given model is the best fitted model, amongst all considered models, and is 

calculated by dividing the relative likelihood of model i by the sum of the relative 

likelihood values of all R models within the model set. 

 

 

Data set 
Variable Explanation Min-max (mean) 

 
  

Plain  

Districts (312) 

Central  

districts (279) 

Forest  

Districts (414) 

      

SF SR No. of regionally resident vascular plant taxa 178-653 (374) 282-587 (425) 210-560 (372) 

 GR No. of grassland specialists1 35-186 (98) 71-178 (122) 66-160 (112) 

      

SMD BUILT* Built-up areas (%)  0-39 (6.1) 0-37 (3.6) 0-33 (2.4) 

 CONIF* Coniferous forest (%) 0-70 (6.1) 0-86 (17) 0.74-89 (38) 

 CULT* Cultivated land (%) 0-100 (72) 0.48-98 (49) 0-97 (17) 

 DECID* Deciduous forest (%) 0-59 (7.4) 0-59 (16) 0.17-65 (29) 

 SNG Semi-natural grassland (%) 0-40 (6.8) 0.02-86 (12) 0-45 (9.1) 

 SPARSE*  Sparsely vegetated areas (%) 0-9.0 (0.20) 0-7.6 (0.12) 0-8.3 (0.13) 

 WATER* Water (%) 0-30 (1.0) 0-38 (2.3) 0-40 (2.1) 

 WETL* Wetland (%) 0-15 (0.31) 0-15 (0.53) 0-46 (2.1) 

 SIDI Simpson Diversity Index 0-0.81 (0.36) 0.041-0.80 (0.56) 0.063-0.80 (0.63) 

      

IACS ANNU* Annual crops (%) 0-92 (55) 0-78 (28) 0-56 (5.1) 

 FALL* Fallow (%) 0-18 (4.9) 0-20 (4.0) 0-13 (0.76) 

 LEY2*  Ley (%) 0-31 (6.4) 0-56 (13) 0-35 (9.6) 

 OT* Other (%) 0-9.3 (0.59) 0-20 (0.86) 0-4.4 (0.17) 

 PAST* Pasture (%) 0-29 (3.9) 0-59 (8.5) 0-45 (6.8) 

 RIP* Riparian buffer zones (%) 0-1.0 (0.22) 0-1.2 (0.11) 0-0.83 (0.030) 

 FARM* Total farmland (%) 0.60-96 (71) 2.8-95 (54) 0-92 (23) 

      

SMD + 

IACS 

SNG_tot* Semi-natural grassland (%) 0-44 (6.6) 0.92-60 (13) 0.26-53 (11) 

      

IACS + 

NVDB 

SB* Small biotopes (%) 1.1-4.4 (2.5) 0.88-4.0 (2.4) 0.67-4.3 (2.0) 

      

BR CALC* Calcareous sedimentary bedrock (%)  0-100 (34) 0-100 (29) 0-2.6 (0.016) 

 IG* Igneous bedrock (%) 0-100 (15) 0-100 (33) 0-100 (87) 

 SED* Non-calcareous sedimentary bedrock (%) 0-100 (50) 0-100 (37) 0-100 (9.3) 

 UB* Ultrabasic bedrock (%) 0-22 (1.1) 0-6.8 (0.63) 0-100 (3.9) 

      

DEM TOPO Topographical roughness 0.88-45 (8.1) 1.2-42 (11) 2.5-55 (10) 
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By summarizing the wi of all models within ΔAICc 6 of the best-fitted model, we 

obtained an estimate of the relative importance of each variable for each data set. 

Because highly correlated variables were prevented from occurring together 

during the model selection procedure, the model sets were not balanced. Two 

highly correlated variables that were prevented from occurring together would, in 

a situation where one of the variables was always present and both variables 

occurred equally often, both obtain a relative variable weight of approximately 

0.5. Both variables would in this case be considered to be un-influential. If instead 

only one of the variables had been included in the global model, and that variable 

was included in all models, then the relative variable importance would be 1 and 

the variable would instead be considered highly influential. Therefore, when 

interpreting the results, we also considered the summed importance of variables 

that had been prevented from occurring together.  

To ensure that the explanatory variables (CONIF, FARM, SED and, in the Forest 

districts, LEY) that had been excluded a priori from the models, were not more 

influential than the included variables with which they were highly correlated, we 

created a new model for each data set with all variables that had a variable weight 

of at least 0.5. The “included variables” were replaced, one-by-one, by the 

“excluded variables” and the AICc-values of the original and the modified models 

were compared. As an example, in the models for the Forest districts, the variable 

SB was first replaced by FARM and then by LEY, and the AICc-values of the two 

models were compared to the AICc-value of the model with SB. All the model 

analyses were carried out in R, version 3.1.0 (R Core Team, 2014). To visualize 

the effects of the main explanatory factors in the generalized linear mixed models 

we used effects plots (package effects; Fox, 2003). 

3. Results 

A total of 1440 regionally resident vascular plant species were recorded within the 

1005 landscapes included in the present study. Most of the species were recorded 

within all three regions.  
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3.1 Total species richness 

The relative importance of the different variables within each data set was 

calculated on the basis of 243 models for species richness within the Plain 

districts, 319 models for species richness within the Central districts and 83 

models for species richness within the Forest districts. The relative variable 

importance was generally higher for variables related to land cover than for 

variables related to crop type or to environmental heterogeneity, although the 

extent of fallow (Plain districts) and topographical roughness (Central and Forest 

districts) were also important (Table 3). The most important land cover types 

were: semi-natural grasslands, built-up areas and deciduous forests within the 

Plain districts; semi-natural grasslands, small biotopes and water within the 

Central districts and finally; built-up areas, small biotopes and water within the 

Forest districts.  

 

Table 3: Estimates, adjusted standard error (Adj SE) and relative variable importance (RVI) for species richness 
within each region. Estimates are based on model-averaged coefficients with shrinkage (i.e. the variable estimator 
was set to zero when the variable was not included in the model). Variables considered to be at least moderately 
influential (RVI≥0.7) are shown in bold text. For definition of variables see Table 2. 
 

 Plain  Central   Forest   

 Estimate Adj SE RVI Estimate Adj SE RVI Estimate Adj SE RVI 

          

Intercept 232.8 28.3  270.1 50.9  196.9 31.2  

SNG_tot* 186.3 33.1 1.00 99.9 40.5 0.98 4.77 17.8 0.15 

TOPO 0.17 0.48 0.21 1.00 0.72 0.80 1.43 0.49 1.00 

BUILT* 130.2 24.3 1.00 36.6 38.2 0.59 174.2 22.5 1.00 

SB* 41.3 144.4 0.17 460.3 338.9 0.77 584.7 196.9 0.99 

DECID* 139.6 30.8 1.001 15.9 30.2 0.32 55.6 27.2 0.52 

WATER* 21.6 40.1 0.33 65.4 36.6 0.90 71.0 23. 5 1.00 

SIDI 3.3e-04 14.9 0.101 42.9 42.7 0.611 57.9 44.5 0.74 

FALL* 134.8 48.7 1.00 0.84 13.5 0.08 85.4 49. 5 0.341 

UB* -8.79 32.4 0.17 -46.1 71.0 0.41 0.41 6.07 0.07 

WETL* 28.9 61.8 0.28 16.6 43.1 0.21 -10.0 23.5 0.23 

IG* 3.96 10.3 0.23 0.06 2.74 0.07 -0.71 3.81 0.10 

SPARSE*  68.7 89.7 0.48 22.7 65.2 0.19 13.7 40.8 0.18 

LEY* 9.12 24.1 0.22 -16.5 30.5 0.32 NA NA NA 

CALC* -0.38 3.19 0.12 0.28 2.54 0.08 10.0 49.7 0.11 

RIP* 8.01 54.4 0.12 -12.6 65.2 0.11 -34.8 102.5 0.17 

ANNU* 0.87 10.0 0.111 0.50 7.05 0.051 1.75 9.81 0.081 

          

 
* Arcsine square root-transformed variable 
1 
Highly correlated variables that were prevented from occurring together during the model selection procedure  

 
Replacing highly correlated variables with their excluded counterpart(s) did not 

lead to an improvement for any of the models. Within the Plain districts, DECID 

appeared to be a better predictor of total species richness than any of the variables 

with which it was highly correlated: AICc increased by 12.37 when DECID was 

replaced by FARM and by 15.14 when replaced by CONIF. Within the Central 

districts, AICc decreased by 0.20 when SIDI was replaced by FARM and increased 

by 2.33 when SIDI was replaced by CONIF. Within the Forest districts, SB was a 
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better predictor of total species richness than the variables with which it was 

highly correlated (AICc increased by 9.99 when replaced by LEY and by 6.44 

when replaced by FARM). Adding CONIF, FARM and SED where appropriate 

did not improve any of the models.  

3.2 The richness of grassland species 

The relative importance of the different variables within each data set was 

calculated on the basis of 530 models for grassland richness within the Plain 

districts, 993 models for grassland richness within the Central districts and 152 

models for grassland richness within the Forest districts. The relative importance 

of individual variables did not always follow the same pattern as for species 

richness, but the general trend was the same for both the response variables, with 

variables related to land cover being more important than variables related to crop 

type or environmental heterogeneity (Table 4). The most important land cover 

types were: semi-natural grasslands and deciduous forests within the Plain districts 

(Fig 3); semi-natural grasslands and small biotopes within the Central districts and 

finally; semi-natural grasslands, built-up areas, small biotopes and water within 

the Forest districts.  

 

Table 4: Estimates, adjusted standard error (Adj SE) and relative variable importance (RVI) for the richness of 
grassland species within each region. Estimates are based on model-averaged coefficients with shrinkage. Variables 
considered to be at least moderately influential (RVI≥0.7) are shown in bold. 
 

 Plain  Central   Forest   

 Estimate Adj SE RVI Estimate Adj SE RVI Estimate Adj SE RVI 

          

Intercept 54.3 8.83  72.9 14.6  69.2 8.66  

SNG_tot* 93.7 12.3 1.00 64.5 10.4 1.00 21.0 13.4 0.83 

TOPO 0.57 0.28 0.93 0.096 0.16 0.38 0.34 0.13 0.98 

BUILT* 0.60 5.08 0.21 -3.19 7.27 0.28 23.1 6.65 1.00 

SB* 5.90 34.4 0.14 123.2 90.6 0.81 129.9 60.8 0.94 

DECID* 19.5 14.5 0.75 13.0 12.0 0.68 1.98 5.21 0.20 

WATER* 2.13 7.41 0.17 0.58 3.59 0.13 10.3 8.61 0.71 

SIDI 8.39 11.9 0.43 5.20 9.36 0.35 17.1 14.0 0.71 

FALL* 42.7 15.1 1.00 -0.15 4.77 0.11 1.13 5.42 0.11 

UB* -3.66 11.7 0.19 -33.7 26.8 0.76 -0.04 1.54 0.07 

WETL* 2.05 10.1 0.13 8.76 16.1 0.35 -2.84 6.44 0.25 

IG* 4.05 5.24 0.49 1.54 2.82 0.34 0.005 0.72 0.07 

SPARSE*  6.31 16.6 0.22 2.03 12.3 0.13 0.91 6.26 0.09 

LEY* 4.49 9.16 0.29 -3.14 7.37 0.26 NA NA NA 

CALC* -0.88 1.97 0.27 -0.35 1.34 0.17 25.7 52.8 0.28 

RIP* -1.25 15.2 0.11 -2.59 19.0 0.12 -15.9 35.9 0.25 

ANNU* -1.01 4.29 0.14 0.35 2.75 0.10 -1.11 3.80 0.15 

          

 
* Arcsine square root-transformed variable 
1
 Highly correlated variables were prevented from occurring together during the model selection procedure  
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Fig 3: The relationship between the richness of grassland species and the variables that had a relative variable 
importance of at least 0.7 in each of the three districts. Only variables that had a weight of 0.5, or more, were included 
in the model. 
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Replacing highly correlated variables with their excluded counterpart(s) did not 

improve any of the models: within the Plain districts, the AICc-value only changed 

marginally when DECID was replaced by CONIF, whereas it increased by 4.16 

when DECID was replaced by FARM. In the Central districts, AICc-values 

increased by 3.65 when DECID was replaced by FARM and by 4.49 when 

replaced by CONIF. And finally, within the Forest districts, SB was a better 

predictor for grassland richness than both LEY (ΔAICc+5.65) and FARM (ΔAICc 

+6.80) were. None of the models were substantially improved by the addition of 

CONIF, FARM or SED, where appropriate. 

To estimate model uncertainties, we examined all models on which the relative 

variable importance had been based, and found that many of the models contained 

uninformative parameters (Δ AICC< 2 when compared to a more parsimonious 

model) (Arnold, 2010). However, because the uninformative parameters were only 

included in models sporadically, their relative importance was low, whereas the 

variables within the more parsimonious model were included more frequently and 

hence the ones that were interpreted as influential.  

4. Discussion 

We show that the relative importance of different non-crop habitat types depends 

on landscape context and that even small fragments of non-crop habitat, such as 

small biotopes, can increase landscape-scale species richness of vascular plants. 

Although previous studies have found a positive relationship between land use 

heterogeneity and diversity (e.g. Stein et al., 2014), we found that the extent of a 

number of different non-crop habitat categories was generally a better descriptor 

of species richness patterns than land use heterogeneity per se was. 

4.1 Non-crop habitat and land use  

4.1.1 The Plain districts 

The positive effect of non-crop habitat types on total and grassland species 

richness within the highly simplified Plain districts was expected and in 

accordance with previous studies (e.g. Deutschewitz et al., 2003; Billeter et al., 

2008). However, the influence on species richness was limited to the most 

widespread non-crop habitat types (i.e. semi-natural grasslands, built-up areas and 

deciduous forests for species richness and semi-natural grasslands and forests for 

grassland richness), whereas small biotopes, wetlands, and other habitat categories 

that covered less than a few percent of the landscape, did not appear to influence 
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landscape-scale species richness (Tables 2, 3 and 4). These results are, at least in 

part, in accordance with Edvarsen et al. (2010) who found that woodlands and 

pastures contributed towards overall species richness, whereas midfield islets and 

several border habitat types were dominated by species typical of intensively used 

agricultural land and thus contributed little to overall species richness.  

Not only the most widespread non-crop habitat types, but also the extent of fallow 

had a positive influence on total and grassland species richness within the Plain 

districts. The richness of arable fields has been shown to decrease exponentially 

with land use intensity (Kleijn et al., 2009). Fallows are less intensively managed 

than cultivated fields, and may consequently be considerably richer than other 

field types (Koellner and Scholz, 2008). Field margins and hedgerows adjacent to 

fallows may also be richer than margins adjacent to other types of arable fields (de 

Blois et al., 2002). We therefore interpret the positive influence of fallow on 

species richness and grassland richness within the present study as an effect of the 

agricultural land being less intensively used. Either, because the overall land use 

intensity decreases within a landscape as the extent of fallow in the crop rotation 

increases, or because fallows are more likely to be found within the less 

intensively farmed parts of the Plain districts.  

4.1.2 The Central districts 

The extent of non-crop habitats also had a positive effect on species richness 

within the Central districts, but the influence on species richness was not limited to 

the most widespread habitat types. Semi-natural grasslands, water and small 

biotopes were the most important habitat types for total species richness, whereas 

semi-natural grasslands, small biotopes and, to some extent, deciduous forests 

were the most important habitat types for grassland species richness (Tables 3 and 

4). Hence, in these more complex agricultural landscapes, small-sized non-crop 

habitats also had a positive effect on species richness and the association between 

size and influence was less strong than in the Plain districts. Several studies have 

shown that small biotopes may make an important contribution to local species 

richness and to the richness of a particular habitat type (e.g. Gabriel et al., 2005; 

Aavik et al., 2008; Janisova et al., 2014); here we show that they can also be of 

importance for the richness of species at the landscape-scale. 

The top-ranking models for the Central districts were more variable than within 

the other two regions, which caused an overall reduction in the relative variable 

importance of the most influential variables within this region. We suggest that 

this is, at least partly, explained by a greater variation between landscapes within 

the Central districts as compared with the other two regions. If different processes 

govern species richness patterns within the same region, then one model will not 

be able to capture the “full” picture.  
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4.1.3 The Forest districts 

As within the Central districts, both total and grassland species richness was 

increased by non-crop habitat types with a limited distribution (Tables 2, 3 and 4). 

However, within the Forest districts, total species richness was mainly explained 

by land use complexity (SIDI) and by built-up areas, water and small biotopes, 

none of which covered more than a low percent of the landscapes. More widely 

distributed land use classes, such as forest and semi-natural grasslands, on the 

other hand, were less influential although, and not surprisingly, the extent of semi-

natural grasslands was important for the richness of grassland species.   

4.2 Small biotopes 

In our study, the positive influence of small biotopes increases with landscape 

complexity and hence, the marginal importance of small biotopes does not appear 

to decrease as the extent of non-crop habitat within the surrounding landscape 

increases. On the contrary, a sufficient amount of other non-crop habitat types 

appear to be necessary for small biotopes to be of importance for landscape-scale 

richness of vascular plants. Likewise, Aavik and Liira (2009) found that small 

fragments of non-crop habitat alone were insufficient to influence plant diversity 

at the landscape-scale. However, contrary to the suggestion by Aavik et al. (2009), 

we found that much of the positive influence of non-crop habitats within our study 

sites could be attributed to the extent of small biotopes and not just to the 

availability of stable conditions within larger habitat patches. These results hold 

true for both total species richness and for the richness of grasslands specialists 

and are hence likely not to simply reflect an increase in the number of generalist 

plant species. Although we cannot separate the effect of small biotopes alone, 

from that of small biotopes in combination with other habitat types, we believe 

that there are synergistic effects between large non-crop patches and small 

fragments of non-crop habitat so that the influence of large and small patches may 

be mutually reinforcing, as found by Grashof-Bokdam et al. (2009) in a study of 

forest species within large woodland patches and small woody fragments. 

Small biotopes vary considerably in their local habitat conditions – from dry to 

moist, from shaded to sunny and from highly disturbed to relatively stable. 

Different types of small biotope are thus likely to support species with different 

life history traits (Baudry et al., 2000; Aavik et al., 2008). In the Plain districts of 

Scania, the small biotopes are likely to be more influenced by farming activities 

than within the other two regions: in part because of a higher overall intensity of 

agricultural activities but also because the small biotopes are mainly located 

between two arable fields, and not between an arable field and another habitat 

type. Hence small biotopes in the Plain districts are likely to have become 
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impoverished to a larger extent, and to contain more agro-tolerant species 

(Cousins, 2006; Aavik and Liira, 2009; Ma et al., 2013), than the small biotopes 

within the Central and Forest districts which could, in part, explain the lack of 

influence of small biotopes on landscape-scale species richness within the Plain 

districts. Small biotopes in the Plain districts are also, on average, more isolated 

from other non-crop habitats types than within the other two regions and 

differences in edaphic conditions between arable fields and small biotopes are 

smaller within the (highly fertile) Plain districts than within the (less fertile) 

Central districts and (nutrient poor) Forest districts. Furthermore, road verges 

often have a higher pH than the surrounding landscape within the Forest districts, 

which enables species that are not found outside the road network to persist there. 

4.3 The influence of environmental variability within the three regions 

Total species richness within the Central and Forest districts, and grassland species 

richness within the Plain and Forest districts all increased with increasing 

topographical roughness (Tables 3 and 4). Topography influences habitat 

conditions in terms of soil moisture, solar radiation and wind exposure (Moeslund 

et al., 2013) and thus influences the micro-climatic variability within the 

landscapes. With a greater topographical roughness, local site conditions become 

more variable, thus enabling more species to co-occur. But topography also 

reflects (past and present) land use (Persson and Tyler, 2007): within Scania, flat 

areas are likely to be/have been cultivated whereas areas with a more rugged 

terrain are likely to have had a history as pasture or forest. We believe that the 

influence exerted by topographical roughness on the flora within our study sites 

reflects both of these aspects.  

Although many distribution maps for species within Scania (Tyler et al., 2007a) 

show a clear separation between areas with igneous and sedimentary bedrock, the 

underlying bedrock generally had very little influence on species richness patterns 

within the present study. The overlying soil may locally differ from that of the 

underlying bedrock, which could partly explain the lack of influence, but a more 

probable explanation is that the main differences are between, rather than within, 

regions and will hence not be captured when the three regions are analysed 

separately. However, the difference in species richness between the three regions 

could in part be a reflection of differences in the substrate.  
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5. Conclusions 

Detailed, large-scale inventories of vascular plants are expensive both in terms of 

time and resources. Nevertheless, information from such surveys may be 

necessary when choosing where management should be applied and how limited 

(financial) resources for the conservation of biodiversity should be used. Finding 

alternative approaches to the prediction of patterns of species richness is therefore 

of interest. In the present study we take one step towards such an understanding by 

disentangling the relative importance of different habitat types for total and 

grassland species richness within agricultural landscapes of varying complexity.  

The different non-crop land cover types were generally more important predictors 

of landscape-scale species richness than land cover heterogeneity (SIDI) was, and 

the habitat types with a large contrast in relation to the dominant land use were 

generally the most influential for landscape-scale species richness. The greater 

importance of small biotopes within the more complex landscapes, as compared to 

in the Plain districts, suggests that, from a plant richness perspective, small 

biotopes are mainly important for maintaining landscape-level species richness 

within landscapes where a sufficient amount of non-crop habitat still remains. 

However, we only look at the richness of plant species within each landscape, not 

at how abundant the different species are. Had data on abundance been available, 

the importance of small biotopes for vascular plants may well have been higher 

within all three regions. 
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Appendix A: Original land cover classes and reclassification details 

Original class After reclassification  Original class After reclassification  

141 Built-up areas 3111 Deciduous forests   

1422 Built-up areas 3112 Deciduous forests   

1424 Built-up areas 3113 Deciduous forests   

1425 Built-up areas 3131 Deciduous forests   

1426 Built-up areas 3132 Deciduous forests   

111 Built-up areas 3133 Deciduous forests   

121 Built-up areas 3241 Deciduous forests   

122 Built-up areas 211 Cultivated 

123 Built-up areas 222 Cultivated 

124 Built-up areas 231 Semi-natural grasslands 

132 Built-up areas 321 Semi-natural grasslands 

133 Built-up areas 322 Semi-natural grasslands 

1122 Built-up areas 511 Water bodies 

1123 Built-up areas 521 Water bodies 

1421 Built-up areas 522 Water bodies 

11211 Built-up areas 5121 Water bodies 

11212 Built-up areas 5122 Water bodies 

3122 Coniferous forests 5231 Water bodies 

3123 Coniferous forests 5232 Water bodies 

3242 Coniferous forests 331 Sparsely vegetated areas 

3243 Coniferous forests 332 Sparsely vegetated areas 

312121 Coniferous forests 1311 Sparsely vegetated areas 

312122 Coniferous forests 1312 Sparsely vegetated areas 

  411 Wetlands 

  421 Wetlands 

  4121 Wetlands 

  4122 Wetlands 

  4123 Wetlands 
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Appendix B: Original code in the IACS and reclassification details for 

all farmland 

                                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code ANNU PAST LEY LIM FALL OT 

1 1 

     
2 1 

     
3 1 

     
4 1 

     
5 1 

     
7 1 

     
8 1 

     
9 1 

     
11 1 

     
12 1 

     
13 1 

     
14 1 

     
15 1 

     
16 1 

     
20 1 

     
21 1 

     
22 1 

     
23 1 

     
24 1 

     
25 1 

     
26 1 

     
27 1 

     
30 1 

     
31 1 

     
32 1 

     
33 1 

     
36 1 

     
37 1 

     
40 1 

     
41 1 

     

Code ANNU PAST LEY LIM FALL OT 

45 1 

     
46 1 

     
47 1 

     
48 1 

     
49 

  

1 

   
50 

  

1 

   
51 

  

1 

   
52 

 

1 

    
53 

 

1 

    
54 

 

1 

    
60 

    

1 

 
64 

     

1 

65 

     

1 

67 

     

1 

68 

     

1 

70 

     

1 

71 

     

1 

72 

     

1 

73 1 

     
74 1 

     
75 

   

1 

  
76 

   

1 

  
77 

   

1 

  
80 1 

     
81 1 

     
83 

     

1 

84 

     

1 

89 

 

1 

    
99 

     

1 
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Appendix C: The original bedrock categories with reclassification 

details. 

Class UB IG SED CALC Class UB IG SED CALC 

Basisk bergart  1 

   

Metaarenit   1  

Gabbro  1 

   

Kvartsit  1   

Kvartsmonzodiorit  1 

   

Glimmerkvartsit  1   

Amfibolit  1 

   

Paragnejs  1   

Grönsten  1 

   

Kvartsit  1   

Amfibolit  1 

   

GNEJS  1   

Grönsten  1 

   

INTRUSIV BERGART  1   

Ultramafit  1 

   

Syenitoid  1   

Basalt  1 

   

Monzonit/kvartsmonzonit  1   

Amfibolit  1 

   

Monzonit  1   

Grönsten  1 

   

Kvartsmonzonit  1   

Metaandesit 1 

   

Syenit  1   

Diabas 1 

   

Tonalit  1   

Gnejs 

 

1 

  

Granodiorit  1   

Kvartsdominerad hydrot. 

gång/segr. 

 

1 

  

Granit  1   

Silicifierad bergart 

 

1 

  

Pegmatit  1   

SEDIMENTÄR BERGART 

  

1 

 

Aplit  1   

Konglomerat 

  

1 

 

Gnejsgranodiorit  1   

Sandsten 

  

1 

 

Gnejsgranit  1   

Kvartsarenit 

 

1 

  

Metamonzonit  1   

Arkosisk arenit 

  

1 

 

Ortognejs  1   

Kalkförande sandsten 

   

1 Felsisk bergart  1   

Siltsten 

  

1 

 

Dacit/ryolit  1   

Slamsten 

  

1 

 

Metadacit  1   

Lerskiffer 

  

1 

 

Metaryolit  1   

Kalksten 

   

1 Metaandesit/-dacit  1   

Alunskiffer 

  

1 

 

Silt   1  

Märgelsten 

   

1 Lera till silt   1  

Sand 

  

1 

 

Lera till sand   1  

Silt 

  

1 

 

Lera   1  

Lersten 

  

1 

 

Felsisk bergart till amfibolit  1   

Lera 

  

1 

 

Lera till siltsten   1  

Märgel 

   

1 Märgel till märgelsten    1 

METASEDIMENTÄR 

BERGART 

  

1 

 

Märgel till sand    1 
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Plant species beta diversity is influenced by spatial heterogeneity in the environment. This heterogeneity can
potentially be characterised with the help of remote sensing. We used WorldView-2 satellite data acquired
over semi-natural grasslands on The Baltic island of Öland (Sweden) to examine whether dissimilarities
in remote sensing response were related to fine-scale, between-plot dissimilarity (beta diversity) in
non-woody vascular plant species composition within the grasslands. Fieldwork, including the on-site
description of a set of 30 2 m × 2 m plots and a set of 30 4 m × 4 m plots, was performed to record the
species dissimilarity between pairs of same-sized plots. Spectral data were extracted by associating each
plot with a suite of differently sized pixel windows, and spectral dissimilarity was calculated between pairs
of same-sized pixel windows. Relationships between spectral dissimilarity and beta diversity were analysed
using univariate regression and partial least squares regression. The study revealed significant positive
relationships between spectral dissimilarity and fine-scale (2 m × 2 m and 4 m × 4 m) between-plot
species dissimilarity. The correlation between the predicted and the observed species dissimilarity was
stronger for the set of large plots (4 m × 4 m) than for the set of small plots (2 m × 2 m), and the association
between spectral and species data at both plot scales decreased when pixel windows larger than 3 × 3 pixels
were used. We suggest that the significant relationship between spectral dissimilarity and species dissimilarity
is a reflection of between-plot environmental heterogeneity caused by differences in grazing intensity (which
result in between-plot differences in field-layer height, and amounts of biomass and litter). This heterogeneity
is reflected in dissimilarities in both the species composition and the spectral response of the grassland
plots. Between-plot dissimilarities in both spectral response and species composition may also be caused by
between-plot variations in edaphic conditions. Our results indicate that high spatial resolution satellite data
may potentially be able to complement field-based recording in surveys of fine-scale species diversity in
semi-natural grasslands.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The maintenance of diversity in plant communities has been an
important question in ecosystem studies for many years (e.g. Connell,
1978; Hutchinson, 1961). Semi-natural grasslands, once widespread
throughout Europe (Poschlod and WallisDeVries, 2002), show high
levels of species richness, particularly at smaller spatial scales (e.g.
Kull and Zobel, 1991). The area of semi-natural grassland in Europe
has declined dramatically over the last century with the increasing
intensification of agriculture (Poschlod and WallisDeVries, 2002). The
remaining fragments of old grassland are of great importance for the
overall species richness in agricultural landscapes (Cousins and
Lindborg, 2008) and therefore also for the preservation of ecosystem
services (Tscharntke et al., 2005). Semi-natural grasslands are identified

as a priority for conservation throughout Europe (cf. Janišová et al.,
2011).

Levels of species diversity at the scale of individual grassland
fragments may be influenced by a range of spatial, historical and
ecological factors, and by interactions among these factors (e.g. Luoto
et al., 2003; Raatikainen et al., 2009; Reitalu et al., 2010). In particular,
fine scale habitat heterogeneity may have an influence on species diver-
sity (e.g. Bruun, 2000; Gazol et al., 2012). Heterogeneous habitats are
expected to support a greater diversity of potential niches for species
than habitats with more homogenous conditions (Silvertown, 2004;
Whittaker, 1972) and environmental heterogeneity has been shown to
have a positive effect on species diversity in studies of grassland com-
munities (e.g. Bruun, 2000; Öster et al., 2007). When different species
are favoured by different environmental conditions, high environmental
heterogeneity may lead to high dissimilarity (turnover) in species com-
position between plots (Kneitel and Chase, 2004; Nekola and White,
1999). Levels of turnover between sampled plots may be related to the
spatial size of the plots (Keil et al., 2012; Nekola and White, 1999), and
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the use of smaller plots is generally assumed to result in higher
estimates of between-plot turnover than the use of larger plots
(Nekola and White, 1999). The amount of between-plot turnover in
species composition is characterised by beta diversity (Anderson et al.,
2011; Koleff et al., 2003). Levels of beta diversity offer insights into
spatial and temporal patterns of biodiversity (Whittaker, 1972) and pro-
vide essential information for conservationmanagement (e.g. McKnight
et al., 2007).

Field-based inventories of species diversity for management plan-
ning may be time consuming and it has been suggested that remote
sensing may have the potential to support and supplement direct
inventories of species diversity (Gillespie et al., 2008; Rocchini et al.,
2010a; Turner et al., 2003). For example, spectral information ac-
quired with the help of Earth Observation satellite data have shown
to be related to local-scale plant species richness (number of species
per unit area) in a newly burned area in Spain (Viedma et al., 2012).
The WorldView-2 satellite is a recently launched Earth Observation
satellite that provides broadband spectral data (data based on optical
sensors with broad spectral bands) in eight wavebands and with high
spatial resolution (2 m).

There has been considerable recent progress in the development
of methods for handling and analysing remote sensing data (cf.
Boyd and Foody, 2011), including improvements in the methodology
for examining variability within spectral responses (cf. Rocchini et al.,
2010a), and improved statistical methods for estimating habitat
properties (e.g. Feilhauer and Schmidtlein, 2011). Partial least
squares regression (PLSR; Wold et al., 2001) is increasingly used in
remote sensing and has been shown to be a useful technique for
studying grassland vegetation (e.g. Chen et al., 2009; Darvishzadeh
et al., 2008; Feilhauer and Schmidtlein, 2011) and in the monitoring
of species diversity (Feilhauer and Schmidtlein, 2009). PLSR has com-
monly been used in studies based on hyperspectral sensors (sensors
that collect data in many narrow and contiguous spectral bands)
and recent studies demonstrate that the technique also has a good
potential for use with broadband satellite data (Feilhauer et al., 2012).

In remote sensing, vegetation properties such as the leaf area
index, the fraction of intercepted photosynthetic active radiation,
absorbed photosynthetically active radiation, green biomass and
primary productivity, and leaf chlorophyll content can be interpreted
in terms of vegetation indices (VIs) (mathematical transformations of
vegetation reflectance into dimensionless indicators) (e.g. Boschetti
et al., 2007; Cristiano et al., 2010; Vescovo and Gianelle, 2008). A rou-
tinely used index for the estimation of vegetation properties is the
normalised difference vegetation index (NDVI) (Rouse et al., 1974),
which is based on the contrast between absorption in the red band
by chlorophyll pigments and reflectance in the near infrared (NIR)
band caused by internal scattering within leaves. NDVIs calculated
from different WorldView-2 satellite bands have been used for the
estimation of above-ground biomass (Mutanga et al., 2012).

Differences in environmental conditions between plots may be
expected to result in between-plot dissimilarities in the remotely
sensed spectral response (cf. Rocchini et al., 2010a). Because levels
of turnover in species composition are often related to environmental
heterogeneity (Kneitel and Chase, 2004), spectral dissimilarities be-
tween plots or sites have been shown to function as a useful predictor
of plant species turnover and plant species beta diversity in a variety
of vegetation types (e.g. Rocchini et al., 2009, 2010b). For example,
Rocchini et al. (2010b) used hyperspectral data to analyse the relation
between spectral variation and beta diversity at local scales in high-
land savannahs, and satellite data have also been used for estimating
plant species turnover in semi-natural grassland sites (Hall et al.,
2011). Landsat data have been used to describe environmental
heterogeneity when modelling the beta diversity of forest trees in a
fragmented landscape (Cayuela et al., 2006). Spectral distances
based on the MODIS NDVI have shown to be related to beta diversity
at the county level in the USA (He et al., 2009), and the MODIS NDVI

has been used as a surrogate for productivity in studies of beta diver-
sity on a global scale (He and Zhang, 2009).

Strategic conservation planning requires information on species
distributions at different spatial levels (Auestad et al., 2008; Turner
et al., 2003) and there is still a need for studies on the potential of
Earth Observation satellite-based sensors for collecting fine-scale infor-
mation on plant species beta diversity. In the present paper, we exam-
ine whether dissimilarities in spectral response are related to vascular
plant species beta diversity between semi-natural grassland plots.
The study has a focus on the relationships betweenWorldView-2 satel-
lite spectral dissimilarity and fine-scale species dissimilarity, using
different sizes of plot (2 m × 2 m and 4 m × 4 m) and satellite pixel
window (between 1 × 1 pixel and 11 × 11 pixels). Univariate regres-
sion and regression modelling of VIs, and PLSR modelling using the
full set of WorldView-2 satellite bands are used to analyse the relation-
ships between satellite and field data. We ask the following questions:
(1) is WorldView-2 satellite spectral dissimilarity related to fine-scale
species dissimilarity? (2) are the possible associations between
spectral dissimilarity and fine-scale species dissimilarity affected by
the spatial extent of (a) the grassland plots and (b) the satellite pixel
windows?

2. Material and methods

2.1. Study area

The study area (centred on 56°40′49″N, 16°33′58″E) is located on
the Baltic island of Öland in SE Sweden (Fig. 1a) and covers approxi-
mately 22.5 km2. The bedrock of the area consists of Cambro-Silurian
limestone and the overall topography is flat, with a few low ridges
and deposits of glaciofluvial material. The mean temperature is 7 °C
(July mean = 16 °C; January mean = −1 °C) and the mean annual
precipitation is 468 mm (Forslund, 2001). In the early 19th century,
approximately 80% of the study area was covered by grassland
(Johansson et al., 2008). The present-day landscape consists of a mo-
saic of arable fields, villages, forest, and grasslands. The majority of
the remaining grasslands (approximately 10% of the landscape
(Johansson et al., 2008)) are grazed, with varying intensity, mainly
by cattle.

2.2. Vegetation sampling

With the help of a land-use map of the study area (Johansson
et al., 2008), interpretation of aerial photographs, and field invento-
ries, we identified a total of 77 dry grassland sites that were larger
than 0.25 ha, and which had been managed by grazing for more
than 50 years. The grassland sites were separated from each other
and the surrounding landscape by walls or fences. Within each dry
grassland site, two coordinate points were randomly positioned in
open (not covered by shrubs or trees) grassland vegetation, with
the constraints that they were at least 25 m apart, at least 13.5 m
from the site boundary, and at least 13.5 m from shrubs or trees.
We also used a bioassay approach, based on the presence/absence
of indicator species (cf. Prentice and Cramer, 1990; Reitalu et al.,
2009) to exclude vegetation with high levels of eutrophication. The
15 grassland sites that could accommodate these constraints were
used for the vegetation sampling (Fig. 1b).

Plots of two sizes: (i) 2 m × 2 m plots, nested within (ii) 4 m × 4 m
plots were centred over each of the two coordinate points within each
of the 15 sites. A total of 30 2 m × 2 m plots and 30 4 m × 4 m plots
were inventoried. The presence of all non-woody vascular plants was
recorded within each individual 2 m × 2 m and 4 m × 4 m plot. The
2 m × 2 m and 4 m × 4 m plots were treated as two separate datasets.
Each dataset was divided into a training and a validation subset by
randomly assigning the two plots from each site to one or other of the
two subsets (Fig. 1c).
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A hand-held differential global positioning system (DGPS) receiv-
er (Topcon GRS-1 GNSS, equipped with a PG-A1 external antenna
(Topcon Corporation, Japan)) connected to a real-time positioning
service (SWEPOS) was used to log (with an accuracy of ~1 cm) the
ground coordinates of the plot centres.

The field-work was carried out between 15 May and 15 July 2011.

2.3. Species beta diversity

The abundance-based Bray–Curtis dissimilarity index (Clarke et al.,
2006)was used to quantify dissimilarity in species composition between
pairs of plots. Assuming x[ij] equals the quantity x of a given species i in
plot j, and x[ik] equals the quantity x of a given species i in plot k, the dis-
similarity index was calculated using the vegan package (Oksanen et al.,
2012) in the R programming environment (R Development Core Team,
2011) as ∑(abs(x[ij] − x[ik]))∕∑(x[ij] + x[ik]).

A pairwise beta diversity dissimilarity matrix was computed for
each of the four subsets (training and validation subsets representing
the two plot sizes 2 m × 2 m and 4 m × 4 m, respectively). Within
each subset, the Bray–Curtis dissimilarity index was calculated for
the 105 pair-wise relations between 15 plots. The Bray–Curtis dissim-
ilarity index ranges between 0 and 1. When the species composition
between pairs of plots is similar, the Bray–Curtis dissimilarity index
will be low, and the index value will increase as the between-plot
dissimilarity in species composition increases.

2.4. Satellite data

We used remote sensing data acquired on 21 May 2011 by the
WorldView-2 satellite (DigitalGlobe). WorldView-2 provides eight-
band multispectral imagery 400–450 nm (costal), 450–510 nm (blue),
510–581 nm (green), 585–625 nm (yellow), 630–690 nm (red),

705–745 nm (red edge), 770–895 nm (NIR1), and 860–1040 nm
(NIR2) with a spatial resolution of 2 m. The imagery was orthorectified
and geometrically corrected by the satellite data providers. The pixel
digital numbers (DNs) were converted to top-of-atmosphere band-
averaged reflectance according to Updike and Comp (2010).

2.5. Extracting spectral data

GPS readings of plot-centre coordinates were used to identify the
plot pixel (i.e. the 2 × 2 m pixel whose coordinates were closest to
the centre of the plot) in the satellite image. Spectral data extracted
from six different sizes of pixel windows, were retrieved by overlaying
the plot pixels with windows ranging in size from 1 × 1 pixel to
11 × 11 pixels. The mean spectral values of WorldView-2 bands,
calculated for pixels falling within the individual pixel windows were
used to compute three normalised difference-based VIs (NDVI =
(NIR1 − red) / (NIR1 + red), NDRE = (NIR1 − red edge) / (NIR1 +
red edge), NDVI2 = (NIR2 − red) / (NIR2 + red)).

Finally, the Euclidean spectral differences (for each individual band
and the VIs) between all pairs of same-sized pixel windowswere calcu-
lated. A pair-wise spectral dissimilarity matrix was computed; for each
size of pixel window, each band, and each VI, and for each of the four
subsets (training and validation subsets representing the two plot
sizes 2 m × 2 m and 4 m × 4 m, respectively).

2.6. Statistical analyses

For the training subsets, the relationship between spectral dissim-
ilarity and field-observed species dissimilarity was investigated using
(i) univariate regression (including VIs) and (ii) “leave-one-out”
cross-validated partial least squares regression (PLSR) (including
the full set of WorldView-2 satellite bands).

Fig. 1. (a) The Jordtorp study area on the Baltic island of Öland, Sweden. (b) The distribution of the 15 semi-natural grassland sites included in the present study. (c) The distribution
of field sample plots within four grassland sites.
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The validation subsets were used to evaluate the regression
models for the training subsets (i) with the help of the reduced
major axis (RMA) regression-modelling approach (Cohen et al.,
2003; Curran and Hay, 1986; Heiskanen, 2006) and (ii) by fitting
the final cross-validated PLSR models of the training subsets to the
validation subsets. Following Piñeiro et al. (2008), the regression
models for the training subsets were evaluated by regression of the
observed species dissimilarity values of the validation subsets (on
the y-axis) versus the predicted dissimilarity values of the validation
subsets (on the x-axis). To test the significance of the relationship
between spectral dissimilarity and species dissimilarity, a Mantel
test with 999 permutations was performed, using the vegan package
(Oksanen et al., 2012) in the R programming environment (R
Development Core Team, 2011). The spectral dissimilarity variables
were log-transformed before the statistical analyses.

2.6.1. Univariate regression and regression-modelling using vegetation
indices

The coefficient of determination (R2), the root mean square error
(RMSE), and the relative RMSE (rRMSE, %) of the linear relationship
between the spectral dissimilarity (calculated from VIs (NDVI, NDRE,
NDVI2)) and the Bray–Curtis dissimilarity index were computed for
the training subsets. With the help of the RMA regression-modelling
approach (Cohen et al., 2003; Curran and Hay, 1986; Heiskanen,
2006), the regression models for the training subsets were applied
to the validation subsets and used to predict the Bray–Curtis index
from the spectral dissimilarity for the validation subsets. The quality
of the predictions was assessed with the help of Pearson correlation
coefficient (r) values and the root mean square error of the prediction
(RMSEP) of the relationship between the beta diversity predicted from
VI-based spectral dissimilarities and the observed beta diversity.

2.6.2. PLSR using the full set of WorldView-2 satellite bands
PLSR is a multivariate analysis method used for modelling the

relationship between two matrices consisting, respectively, of a set of
several predictor variables (X) (in this case the set of spectral dissimi-
larities calculated from individual WorldView-2 satellite bands) and
one or more dependent variable(s) (Y) (in this case dissimilarities
in species composition computed by the Bray–Curtis dissimilarity
index). PLSR allows statistical analysis of data sets where the predictor
variables are not only numerous, but also strongly correlated and sub-
ject to noise (Wold et al., 2001). PLSR is built on the assumption that
there are only a few variables (Latent Variables (LVs)) that influence
the process under study. The PLSR-model attempts to model the LVs
by constructing X-scores (or components) by creating linear combina-
tions of the original X-variables, weighted so as to maximise the covari-
ance of X and Y. X-scores are, therefore, predictors of Y but, at the same
time, are also modelling X. The relative importance of individual
predictor variables in a PLSR model can be described by the variable
importance in projection (VIP) (Eriksson et al., 1999). The higher the
VIP value of an X-variable, the greater its contribution to the model.
The most influential predictor variables in a model are those that
have VIP-values greater than 1. Using the PLS package (Mevik et al.,
2011) in the R programming environment (R Development Core
Team, 2011), two methods were used to quantify the predictive capa-
bilities of PLSR models:

(i) “Leave-one-out” cross validation was employed on the training
subsets to measure the predictive fits (measured as R2CV) and
the predictive errors (measured as root mean square error
(RMSECV) and relative RMSECV (rRMSECV, %)). The appropriate
number of model components was identified by adopting the
rule that the RMSECV must be reduced by >2% by the addition
of another component (e.g. Chen et al., 2009; Cho et al., 2007).

(ii) The final cross-validated models of the training subsets were
fitted to the validation subsets and Y was predicted on the

basis of new X-variables. The predictive capabilities of the
models were measured by Pearson correlation coefficient (r)
values, and the root mean square error of the prediction
(RMSEP) of the relationship between the beta diversity pre-
dicted from WorldView-2 satellite data and the observed beta
diversity.

3. Results

Table 1 presents summary statistics for the species richness and
the Bray–Curtis dissimilarity index values within the training and val-
idation subsets for the 2 m × 2 m and 4 m × 4 m plots, respectively.
The five most abundant species recorded within the grasslands were
Plantago lanceolata, Galium verum, Ranunculus bulbosus, Poa pratensis,
and Achillea millefolium.

The WorldView-2 satellite visible bands (coastal, blue, green, yel-
low and red) were correlated with each other within each of the dif-
ferent sizes of pixel window (0.60 ≤ r ≤ 0.88, p b 0.001), and the
red-edge band and the near infrared bands were also intercorrelated
(0.70 ≤ r ≤ 0.83, p b 0.001) with each other within each of the dif-
ferent sizes of pixel window.

3.1. Training subsets

3.1.1. Univariate regression using vegetation indices
For each set of plots (2 m × 2 m and 4 m × 4 m), the results of

the Mantel permutation tests showed that, for each of the different
sizes of pixel window, the spectral dissimilarity calculated from
each of the three normalised difference-based VIs (NDVI, NDRE, and
NDVI2) was significantly (p b 0.002) and positively correlated with
the Bray–Curtis dissimilarity index. Our results indicate that an in-
crease in the species dissimilarity between plots was accompanied
by an increase in the spectral dissimilarity between the plots. The
NDVI showed slightly stronger relationships between spectral dissim-
ilarity and species dissimilarity than the other VIs.

The strength of the relationship between spectral dissimilarity
and species dissimilarity for the two sets of plots (2 m × 2 m and
4 m × 4 m) was comparable. Using the two smallest pixel windows
1 × 1 pixel (2 m × 2 m) and 3 × 3 pixels (6 m × 6 m), the NDVI-
based spectral dissimilarity explained approximately 30% of the vari-
ation in the species dissimilarity for each individual set of plots. For
example, using the 2 m × 2 m plot set for the 1 × 1 pixel window
resulted in a R2 value of 0.32 (p b 0.001), a RMSE of 0.105, and a
rRMSE of 18.4% (Fig. 2a). Using the 4 m × 4 m plot set for the
3 × 3 pixel window produced a R2 value of 0.33 (p b 0.001) and
RMSE and rRMSE values of 0.106 and 17.4%, respectively (Fig. 2b).

Table 1
Summary statistics for non-woody vascular plant species richness and the Bray–Curtis
dissimilarity index between grassland plots within the Jordtorp study area on the Baltic
island of Öland, Sweden. The Bray–Curtis dissimilarity index is calculated between
pairs of same-sized plots (2 m × 2 m and 4 m × 4 m) within the training and valida-
tion subsets, respectively. In each of the four subsets (representing the two plot sizes
in both the training and validation subsets), n = 15 for species richness and n = 105
for the Bray–Curtis dissimilarity index.

Training subsets Validation subsets

2 × 2 m 4 × 4 m 2 × 2 m 4 × 4 m

Species richness
Total 105 125 107 128
Mean 37.4 47.7 37.7 48.9
Minimum 21 32 26 37
Maximum 48 60 45 61

Bray–Curtis index
Minimum 0.23 0.20 0.21 0.19
Maximum 0.80 0.81 0.83 0.78
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The association between spectral dissimilarity and species dissimi-
larity became progressively poorer when windows larger than
3 × 3 pixels were used (Fig. 3a,b), implying that the spectral response
captured from increasingly larger pixel windows had a successively
lower ability to characterise the species dissimilarity at fine-scales com-
pared with the spectral response acquired from smaller windows. The
R2 values decreased from above 0.30 (p b 0.001) using the two smallest
pixel windows to approximately 0.26 (p b 0.001), using the largest
window of 11 × 11 pixels (22 m × 22 m) (Fig. 3a,b).

3.1.2. PLSR using the full set of WorldView-2 satellite bands
The RMSECV values were used to determine howmany components

should be used for modelling the species dissimilarity. Adopting the
rule that the RMSECVmust be reduced by>2% by the addition of anoth-
er component (Chen et al., 2009; Cho et al., 2007), gave the inclusion of
two components in all PLSRmodels. The red, NIR1 and NIR2 bandswere
associated with VIP values higher than 1 in all PLSR models and the red
and NIR1 bands had higher VIP values than the NIR2 band in all PLSR
models.

The relationships between the predicted and the observed species dis-
similarity were similar in both the 2 m × 2 m and 4 m × 4 m sets of
plots. For example, R2CV values equal to or higher than 0.35, were
obtained for each individual set of plots using the two smallest pixel win-
dows (1 × 1 pixel (2 m × 2 m) and 3 × 3 pixels (6 m × 6 m)). Using
the 1 × 1 pixel window for the 2 m × 2 m plot set gave a R2CV of 0.38,
a RMSECV of 0.098 and a rRMSECV of 17.2% (Fig. 4a). Using the
3 × 3 pixel window for the 4 m × 4 m plot set resulted in R2CV = 0.35,
RMSECV = 0.104 and rRMSECV = 17.1% (Fig. 4b). R2CV values decreased
and RMSECV/rRMSECV values increased when windows larger than
3 × 3 pixels were used (Fig. 5a,b). For example, R2CV values decreased
from equal to or higher than 0.35 using the two smallest windows to ap-
proximately 0.28 using the largest window of 11 × 11 pixels (Fig. 5a,b).

3.2. Validation subsets

Both the RMA regression-modelling and the PLSR modelling
resulted in correlation coefficients between the field-observed and the
predicted species dissimilarity that were higher for the 4 m × 4 m
plot set compared with the 2 m × 2 m plot set (Table 2), indicating
that the spatial size of the plots influenced the association between
the satellite-based spectral dissimilarity and the beta diversity. For ex-
ample, for the 2 m × 2 m plot set, both the RMA and the PLSR ap-
proaches gave r values that were between 0.32 and 0.33 (p b 0.001)
using the two smallest pixel windows (1 × 1 pixel and 3 × 3 pixels),
whereas for the 4 m × 4 m plot set, these window sizes resulted in r

values that were between 0.37 and 0.39 (p b 0.001) (Table 2). For
both the 2 m × 2 m and 4 m × 4 m plot sets, the relationships
between the predicted and the observed species dissimilarity decreased
when larger pixel windows were used and, for the largest analysed
window (11 × 11 pixels), the r values were lower than 0.30
(p b 0.01) (Table 2).

4. Discussion

Positive associations between spectral dissimilarity and fine-scale
(2 m × 2 m and 4 m × 4 m) species dissimilarity were found in the
training subsets of plots. The correlation between the predicted and
the observed species dissimilarity for the validation subsets was
stronger for the set of large plots (4 m × 4 m) than for the set of
small plots (2 m × 2 m). Spectral data acquired over windows of
1 × 1 pixel (2 m × 2 m) and 3 × 3 pixels (6 m × 6 m) performed
better in the assessment of fine-scale (2 m × 2 m and 4 m × 4 m)
species dissimilarity than the spectral response extracted over larger
pixel windows. Other remote sensing studies have shown that PLSR
models may represent a valuable complement to univariate statistical
methods (e.g. Darvishzadeh et al., 2008; Fava et al., 2010), and PLSR
models were found to be associated with higher R2 values than
models based on linear and nonlinear regression of VIs in the estima-
tion of biomass in grasslands (Chen et al., 2009). In our study, the
models based on PLSR also had higher R2 values than those based
on univariate, VI-based models. Spectral information may be lost
when only two wavelengths are used for VIs and the use of several
spectral bands in PLSR models is expected to improve the relation-
ships between response and explanatory variables (cf. Darvishzadeh
et al., 2008; Fava et al., 2010).

4.1. The relationship between spectral dissimilarity and species
dissimilarity

The reflectance in the red wavelength rises over areas with low
vegetation cover, while the reflectance in the NIR wavelengths rises
as the vegetation cover and density increase — because of increased
multiple scattering within the canopy (e.g. Thenkabail et al., 2012).
In the present study, the spectral dissimilarities based on the NDVI,
which uses the contrast between the red and the NIR1 bands, showed
slightly stronger relationships with the species dissimilarity than the
other VIs. The red and the NIR1 bands were also the most influential
predictor variables in the PLSR models. Previous studies have shown
that information provided by spectral data may be useful for the esti-
mation of field-layer height and above-ground biomass in grasslands

Fig. 2. Linear relationships between the NDVI-based spectral dissimilarity and the field-observed Bray–Curtis dissimilarity index for the training subsets. (a) Plot size 2 m × 2 m,
pixel window 1 × 1 pixel (2 m × 2 m): R2 = 0.32 (p b 0.001), intercept = 0.45 (p b 0.001), n = 105. (b) Plot size 4 m × 4 m, pixel window 3 × 3 pixels (6 m × 6 m): R2 = 0.33
(p b 0.001), intercept = 0.41 (p b 0.001), n = 105.
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(e.g. Boschetti et al., 2007; Poças et al., 2012). It has also been shown
that the amount of dead above-ground biomass (litter) may influence
the spectral response from vegetation, particularly in the red and NIR
bands (Zhang and Guo, 2008).

The productivity–diversity relationship (Al-Mufti et al., 1977) has
received much attention in ecology but the nature of the processes
that underlie the relationship is still under debate (e.g. Adler et al.,
2011; Gillman and Wright, 2006). Biomass may be well-correlated
with productivity and it has often been used as a proxy for productiv-
ity (e.g. Ni et al., 2007). The NDVI has been used as a surrogate for
productivity in studies of species diversity relationships (e.g. He and
Zhang, 2009; Psomas et al., 2011). For example, Psomas et al.
(2011) used estimates of biomass based on spectral data as a proxy
for productivity in studies of the relationship between biomass and
plant species richness in grassland habitats. However, it has been
pointed out that biomass may not necessarily be a reliable surrogate
for productivity (Gillman and Wright, 2006). The relationship between
biomass and productivity can, for example, vary between different
plant species and may be influenced by the level of disturbance in
the habitat and the management regime (cf. Gillman and Wright,
2006; Guo, 2007).

In semi-natural grasslands, a reduction in management (grazing
or mowing) intensity is followed by an increase in field-layer height
(and amount of above-ground biomass) and changes in the light con-
ditions in the vegetation canopy (e.g. Werger et al., 2002). These

changes, in their turn, have an effect on the species composition of
grassland habitats (Kull and Zobel, 1991; Luoto et al., 2003; Marion
et al., 2010) by allowing more competitive, and often generalist,
species to become dominant. Decreasing grazing intensity may also
increase the accumulation of litter within grasslands (cf. Jensen and
Gutekunst, 2003), which in its turn, influences plant community com-
position and species diversity (Galvánek and Leps, 2012). We suggest
that the positive associations between spectral dissimilarity and beta
diversity in the present study may be related to differences in grazing
intensity between plots. Increased between-plot differences in grazing in-
tensitymay be accompanied by increased between-plot differentiation in
both spectral response and species composition— and an increase in beta
diversity that is reflected in the spectral dissimilarity.

Spectral data may also be influenced by abiotic factors such as
soil properties (Huete, 1988). Edaphic conditions may have a signif-
icant influence on the species composition within semi-natural
grasslands (e.g. Pärtel and Helm, 2007) and between-plot dissimi-
larities in soil properties may also contribute to the positive associ-
ations between spectral dissimilarity and species dissimilarity in the
present study.

4.2. The spatial extent of plots and pixel windows

The effect of the spatial size of the sampling unit on the relation-
ship between spectral variability and beta diversity has previously

Fig. 3. The coefficient of determination (R2) and the root mean square error (RMSE) of the linear relation between the NDVI-based spectral dissimilarity and the field-observed
Bray–Curtis dissimilarity index for the training subsets using six pixel windows, ranging between 1 × 1 pixel (2 m × 2 m) and 11 × 11 pixels (22 m × 22 m). (a) Plot size
2 m × 2 m: n = 105. (b) Plot size 4 m × 4 m: n = 105. All the R2 values are significant (p b 0.001).

Fig. 4. The field-observed versus the predicted Bray–Curtis dissimilarity index using partial least squares regression (PLSR) analysis for the training subsets. (a) Plot size 2 m × 2 m,
pixel window 1 × 1 pixel (2 m × 2 m): R2CV = 0.38, RMSECV = 0.098, rRMSECV = 17.2%, n = 105. (b) Plot size 4 m × 4 m, pixel window 3 × 3 pixels (6 m × 6 m): R2CV = 0.35,
RMSECV = 0.104, rRMSECV = 17.1%, n = 105.
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been studied in African highland savannahs using plot sizes of
10 m × 10 m and 20 m × 50 m (Rocchini et al., 2010b). Whereas
Rocchini et al. (2010b) showed that correlations between spectral
variation and species turnover were weaker for small plots than for
large plots, the strength of the relationship between NDVI-based
spectral dissimilarity and species dissimilarity was similar for both
the training subsets (2 m × 2 m and 4 m × 4 m) in our study. And,
in contrast to the results of Rocchini et al. (2010b), the PLSR analysis
showed a slightly stronger relationship between spectral dissimilarity
and species dissimilarity for the set of small plots (2 m × 2 m) than
for the set of large plots (4 m × 4 m) within the training subset.
However, in agreement with the results of Rocchini et al. (2010b),
the validation subset of small plots was characterised by poorer cor-
relations between predicted and field-observed beta diversity than
the validation subset of large plots (Table 2). Rocchini et al. (2010b)
concluded that the relationship between spectral variability and
beta diversity was comparatively stronger for large plots than for
small plots, because species data recorded in small plots are likely
to be more affected by random disturbances than data recorded in
large plots.

The species pool hypothesis (Hodgson, 1987; Zobel, 1997), pro-
poses that the local species diversity will be related to the size of
the regional pool of species that are potentially capable of coexisting

within a particular community. The role of species pools in determin-
ing plant species diversity has been studied on a variety of scales. For
instance, Franzén and Eriksson (2001) showed that the species diver-
sity at the 1 dm × 1 dm scale could be explained by the size of the
species pool at the 2 m × 2 m scale within Swedish semi-natural
grasslands. The influence of the species pool on local species diversity
may be driven by migration and dispersal processes as well as by en-
vironmental “filtering” (Zobel, 1997). Because the size of the species
pool at larger scales affects the availability of species at smaller scales,
measures of species diversity at different spatial scales within
semi-natural grasslands are usually correlated with each other
(Franzén and Eriksson, 2001; Öster et al., 2007; Pärtel and Zobel,
1999). The present study focuses only on fine-scale variation and
the spatial extent of the plots and the size difference between the
plots were small. The lack of distinctly different relationships
between spectral dissimilarity and species dissimilarity for the two
studied grain dimensions in our study is likely to reflect the fact
that the species composition within the 2 m × 2 m plots represents
a subset of the species pool in the 4 m × 4 m plots.

The relationships between spectral dissimilarity and species
dissimilarity became progressively somewhat poorer when pixel
windows larger than 3 × 3 pixels (6 m × 6 m) were used (Figs. 3
and 5). Semi-natural grasslands are often characterised by a small-
scale environmental heterogeneity, which may influence the fine-
scale spatial composition and distribution of species within grassland
sites (Bruun, 2000; Ekstam and Forshed, 1992; Gazol et al., 2012). Our
results suggest that the spectral response captured with the help of
pixel windows that corresponded approximately to the size of the
plots was better at characterising the environmental conditions
(e.g. field layer-height, amount of biomass and litter, and soil proper-
ties) that shape the pattern of species composition at fine scales
(2 m × 2 m and 4 m × 4 m) than the spectral response captured by
larger pixel windows. It is likely that the spectral information
extracted over increasingly larger pixel windows was influenced by
a progressive increase in environmental heterogeneity that lead to a
gradual attenuation of the relationship between spectral dissimilarity
and fine-scale (2 m × 2 m and 4 m × 4 m) beta diversity.

4.3. Conclusion

In the present study we usedWorldView-2 satellite spectral dissim-
ilarity to infer environmental heterogeneity in dry semi-natural grass-
lands. Our results revealed a significant positive association between
spectral dissimilarity and fine-scale (2 m × 2 m and 4 m × 4 m)
plant species beta diversity, suggesting that the satellite-based
measurement of environmental variation may provide a promising

Fig. 5. The predictive fit (R2CV) and the root mean square error (RMSECV) for the relation between the predicted and the field-observed Bray–Curtis dissimilarity index using partial
least squares regression (PLSR) analysis for the training subsets for six pixel windows, ranging between 1 × 1 pixel (2 m × 2 m) and 11 × 11 pixels (22 m × 22 m). (a) Plot size
2 m × 2 m: n = 105. (b) Plot size 4 m × 4 m: n = 105.

Table 2
Correlation coefficients (r) and root mean square error (RMSE_P) values between pre-
dicted and field-observed fine-scale beta diversity derived from (a) reduced major axis
(RMA) regression modelling (using the normalised difference based vegetation index
NDVI (NIR − red) / (NIR + red)) and (b) partial least square regression (PLSR) of
WorldView-2 satellite data for the validation subsets (n = 105 at the 2 m × 2 m and
4 m × 4 m plot size, respectively). All the r values are significant (p b 0.01).

Pixel window 2 × 2 m plot 4 × 4 m plot

r RMSE_P r RMSE_P

a. RMA modelling
1 × 1 0.33 0.12 0.37 0.12
3 × 3 0.32 0.12 0.37 0.12
5 × 5 0.32 0.12 0.35 0.12
7 × 7 0.29 0.13 0.32 0.12
9 × 9 0.26 0.13 0.31 0.12
11 × 11 0.25 0.13 0.28 0.13

b. PLSR
1 × 1 0.32 0.13 0.37 0.12
3 × 3 0.33 0.13 0.39 0.12
5 × 5 0.33 0.12 0.37 0.12
7 × 7 0.30 0.12 0.33 0.12
9 × 9 0.26 0.13 0.32 0.12
11 × 11 0.26 0.14 0.29 0.13
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approach to the detection of variability in species composition at de-
tailed spatial scales. We conclude that very high spatial resolution
data, such as theWorldView-2 satellite data may potentially contribute
to the development of improved methods for use in basic ecological
research and in the monitoring of plant species beta diversity in
semi-natural grasslands at fine scales. However, our study had a focus
on a specific type of species-rich grassland vegetation, and further
research in other types of semi-natural grassland habitats is needed
before it will be possible to fully assess the potential of satellite data
as an operational tool for monitoring grassland plant species beta
diversity at fine scales.
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Abstract: Semi-natural grasslands with grazing management are characterized by high fine-scale
species richness and have a high conservation value. The fact that fine-scale surveys of grassland
plant communities are time-consuming may limit the spatial extent of ground-based diversity surveys.
Remote sensing tools have the potential to support field-based sampling and, if remote sensing data
are able to identify grassland sites that are likely to support relatively higher or lower levels of
species diversity, then field sampling efforts could be directed towards sites that are of potential
conservation interest. In the present study, we examined whether aerial hyperspectral (414–2501 nm)
remote sensing can be used to predict fine-scale plant species diversity (characterized as species
richness and Simpson’s diversity) in dry grazed grasslands. Vascular plant species were recorded
within 104 (4 m ˆ 4 m) plots on the island of Öland (Sweden) and each plot was characterized by a
245-waveband hyperspectral data set. We used two different modeling approaches to evaluate the
ability of the airborne spectral measurements to predict within-plot species diversity: (1) a spectral
response approach, based on reflectance information from (i) all wavebands, and (ii) a subset of
wavebands, analyzed with a partial least squares regression model, and (2) a spectral heterogeneity
approach, based on the mean distance to the spectral centroid in an ordinary least squares regression
model. Species diversity was successfully predicted by the spectral response approach (with an
error of ca. 20%) but not by the spectral heterogeneity approach. When using the spectral response
approach, iterative selection of important wavebands for the prediction of the diversity measures
simplified the model but did not improve its predictive quality (prediction error). Wavebands
sensitive to plant pigment content (400–700 nm) and to vegetation structural properties, such as
above-ground biomass (700–1300 nm), were identified as being the most important predictors of
plant species diversity. We conclude that hyperspectral remote sensing technology is able to identify
fine-scale variation in grassland diversity and has a potential use as a tool in surveys of grassland
plant diversity.

Keywords: arable-to-grassland succession; northern Europe; species richness; inverse Simpson’s
diversity index; HySpex spectrometer; partial least squares regression

1. Introduction

The threats to biodiversity from habitat loss, fragmentation and climate change continue to
escalate [1], and the mapping of habitats and the investigation of the processes that determine
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local patterns of biodiversity have become increasingly important tasks [2]. Extensively managed,
semi-natural grasslands are among the most diverse ecosystems in Europe, and both agricultural
intensification and the abandonment of grazing management have led to a decrease in the plant species
diversity in grassland habitats (cf. [1]). The conservation and monitoring of grazed semi-natural
grasslands has become a high priority within the European Union [3] and target areas for habitat
conservation need to be identified and prioritized in order to maintain and enhance biodiversity [4].
In the future, the conservation of species diversity in modern agricultural landscapes will require the
development of techniques for monitoring and predicting patterns of grassland species diversity: the
need for tools that are applicable at detailed spatial scales and over large areas has been identified as a
central problem [5].

While a range of edaphic, topographic, historical and stochastic processes may act as drivers of
species diversity within grazed semi-natural grasslands (e.g., [6,7]), many studies show that local plant
species richness is influenced by present-day variation in grazing intensity [8] and by the historical
continuity of grazing management (e.g., [9]). The activity of grazing animals influences the availability
of essential resources, such as light and soil nutrients (the resource availability hypothesis) [10]. The
activity of grazers may also lead to a greater spatial heterogeneity of resources, as a result of trampling
or patchy removal of above-ground biomass (the spatial heterogeneity hypothesis) [10]. Heterogeneous
habitats are expected to contain a greater diversity of potential niches for species rather than habitats
with more homogeneous conditions [11], and environmental heterogeneity has been shown to promote
fine-scale species diversity in grassland communities (e.g., [3,6]). Plant species richness (SR) is regarded
as an important ecosystem characteristic [2] and may also provide an indication of ecosystem health
and resilience [12]. Whereas data on the numbers of species (SR) recorded within a particular sample
or habitat are important in conservation planning, diversity indices that account for both the number
of species present and the abundance of each species (e.g., the inverse Simpson’s diversity index,
iSDI) are often preferred in ecological studies because it is assumed that the most dominant species
are likely to contribute most to processes within local communities [13]. Species diversity indices,
such as SR and iSDI, are usually estimated on the basis of standardized field sampling or ground
surveys, and the fact that detailed field inventories are time-consuming may limit the spatial extent
of diversity surveys. Remote sensing techniques have the potential to play a valuable supporting
role in the mapping of plant species diversity, and in the identification of habitat patches that may
be of conservation interest [14] if, for example, spectral data correlate with species diversity or with
vegetation properties that are associated with species diversity (cf. [15]).

Nagendra [16] identified three categories of methods for the assessment of species diversity
using remotely sensed data: (1) mapping individual organisms or communities; (2) mapping habitat
characteristics that are expected to be associated with species diversity; and (3) modeling-based
methods by which species diversity is predicted from the direct relationship between spectral data
and field-based measures of species diversity. Modeling-based approaches have been shown to be
successful in the prediction of fine-scale plant species diversity using remote sensing data acquired with
the help of hyperspectral sensors (sensors that collect data in many narrow and contiguous spectral
bands) within a range of different grassland habitats and geographic regions [17–19]. The direct
relationship between hyperspectral data and species diversity has also been examined using measures
of the spatial variation of remotely sensed data (hereafter referred to as spectral heterogeneity).
The spectral heterogeneity is expected to be associated with the environmental heterogeneity (the
spectral variation hypothesis (SVH); [20]), and can, thus, be used as a proxy for species diversity
(cf. [21]). Hyperspectral data have also been used, in combination with topographic data, for predicting
plant distributions in French and Swiss alpine grasslands [22]. To our knowledge, no studies have
modeled the direct relationship between hyperspectral data and plant species diversity in northern
European grasslands.

In the present study, we explore the ability of hyperspectral remote sensing technology to
characterize fine-scale plant species diversity in dry, grazed grassland habitats in an agricultural
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landscape on the Baltic island of Öland (Sweden). We compare the performance of two modeling-based
approaches to the prediction of species diversity in 4 m ˆ 4 m plots, using data from airborne HySpex
hyperspectral imagers (415–2345 nm). We ask the following questions: can hyperspectral data be used
to predict the SR and iSDI in dry grazed grasslands via the direct relationship between reflectance
data and field-based measures of plant species diversity using (1) an analysis of reflectance, based
on information from (i) all wavebands; and (ii) a subset of wavebands, analyzed with a partial least
squares regression model (hereafter referred to as the spectral response approach); and (2) an analysis
of spectral heterogeneity, based on the mean distance to the spectral centroid in an ordinary least
squares regression model (hereafter referred to as the spectral heterogeneity approach)? We also
investigate whether the possible relationship between hyperspectral data and species diversity is
influenced by environmental conditions (grazing continuity, nutrient and moisture status, field-layer
height, and soil- and litter-cover fractions).

2. Materials and Methods

2.1. Study Area and Site Selection

The study area is located in the southeast of Sweden on the Baltic island of Öland (Figure 1a;
centered on 56˝4014911N, 16˝3315811E) and covers approximately 22.5 km2. The bedrock consists mainly
of Ordovician limestone, and the area is characterized by a generally flat topography (cf. [9]). The
climate on the island is maritime (mean annual temperature: 7 ˝C, mean annual precipitation: 468 mm)
(cf. [9]). The present-day landscape consists of a mosaic of arable fields, deciduous forest, villages
and grazed grasslands; the majority of the grasslands are grazed by cattle at varying intensities.
The grassland sites in the landscape represent different stages of succession—ranging from young
grasslands on recently abandoned arable fields to grassland sites with a history of grazing of more
than 280 years.
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Figure 1. (a) The location of the study area on the Baltic Island of Öland, Sweden; (b) the distribution
of grassland sites included in the present study (n = 52); (c) an example of the distribution of field plots
within some of the grassland sites.

A total of 299 grassland sites were identified within the study area, with the help of the most recent
(2005) land-use map (B.C. Schmid, unpublished data) and field visits. An overlay analysis of land-use
maps from different time periods was used to assign each of the grassland sites into one of three age
classes within the arable-to-grassland succession (young grasslands: 5–14 years, intermediate-aged
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grasslands: 15–49 years, and old grasslands: ě50 years of grazing management). The overlay analysis
was based on land-use maps from 2005 (B.C. Schmid, unpublished data), 1994, 1959 and 1730 (cf. [9]).
The land-use map from 2005 was developed from a digital color infrared aerial orthophoto (0.5 m pixel
size) geometrically corrected with the help of a digital terrain model. The land-use maps from 1994 to
1959 were developed from aerial photos (1994: color infrared, 1959: black and white) at the scale of
1: 30,000. The land-use map from 1730 was based on a set of large-scale (1: 4000), high-quality survey
maps from the early 18th century (cf. [9]).

Within each of the 299 sites, we randomly positioned two coordinate points in open (i.e., not
covered by shrubs or trees) grassland vegetation with the constraints that they had to be at least 25 m
apart, at least 13.5 m from the site boundary (to minimize edge effects in the vegetation), and at least
13.5 m from shrubs or trees that were higher than 50 cm (to minimize shading effects in the vegetation).
A total of 239 out of the 299 grassland sites could accommodate these constraints. A hand-held
differential global positioning system (GPS) receiver (Topcon GRS-1 GNSS, equipped with a PG-A1
external antenna; Topcon Corporation, Japan) was used to log the ground coordinates of the points.

Sixty sites (20 young, 20 intermediate, and 20 old) were randomly selected from the 239 sites.
Within these 60 sites, a bioassay approach (cf. [23]) based on indicator species, such as Sesleria caerulea
and Molinia caerulea, was used to identify sites with “dry” grassland vegetation, and to exclude moist
grassland vegetation. A total of 52 sites (17 young, 18 intermediate, and 17 old) out of the 60 sites were
characterized as dry grassland vegetation; these sites were used for the field-based vegetation and
remote sensing sampling (Figure 1b).

2.2. Field Sampling

2.2.1. Vascular Plant Species Richness and Diversity

The fieldwork was carried out between 15 May and 15 July 2011. A 4 m ˆ 4 m plot (divided into
a grid of 16 sub-plots, each 1 m ˆ 1 m), was centered over each of the two coordinate points, within
each of the 52 chosen sites (Figure 1c). The presence of all non-woody vascular plants was recorded
within each 1 m ˆ 1 m sub-plot. The within-plot species diversity was characterized: (a) in terms of
species richness (SR), calculated as the total number of vascular plant species present in a 4 m ˆ 4 m
plot and (b) in terms of the inverse Simpson diversity index (iSDI)

iSDI “ 1{
S

ÿ

i“1

p2
i (1)

where S is the number of species in the plot and pi is the proportion of the ith species in a plot [24].
The inverse Simpson diversity index assigns a lower weight to rare species, thus emphasizing the
most abundant species in the vegetation canopy [25]. Because the inverse Simpson diversity index
characterizes the dominance structure of plant communities (which, in its turn, contributes to the
spectral signal of vegetation canopies), it may be particularly informative in remote sensing studies [17].
From a statistical point of view, the number of species within a specific area represents discontinuous
data, and thus has a Poisson or negative-binomial distribution. Because the partial least squares
regression (PLSR) and ordinary least squares regression (OLSR) analyses used in the present study
(Section 2.4) assume a normal distribution, we ln-transformed the SR values before analysis, so that
the ln(SR) data approximate to a normal distribution. Ln(SR) and iSDI were calculated using the vegan
package [26] in the R programming environment [27].

2.2.2. Environmental Variables

Each of the 4 m ˆ 4 m plots was assigned values for the following environmental variables:
grazing continuity, nutrient and moisture status, field-layer height, and soil- and litter-cover fractions
(Table A1). Soil nutrient and moisture status were assessed indirectly, with the help of Ellenberg
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indicator values for nutrient (Ellenberg N) and moisture (Ellenberg M) availability [28]. For each of the
sampled plant species, values for Ellenberg N and M were extracted from the JUICE database [29].
A community-weighted mean value (CWM) [30] was calculated for N and M within each plot:

CWM pxq “
ÿ

i

pi ˆ xi (2)

where pi is the relative frequency of the ith species and xi is the Ellenberg indicator value of the ith
species. The CWM for Ellenberg N (Ellenberg mN) and Ellenberg M (Ellenberg mM) were calculated
using the FD package [31] in the R programming environment [27]. Field-layer height (cm) was
estimated as the mean vegetation height at 100 points in the 1 m ˆ 1 m sub-plot in the south-west
corner of each 4 m ˆ 4 m plot. Mean percentage covers of soil and litter fractions, respectively, for
each of the 4 m ˆ 4 m plots were based on the cover values (visually estimated by experienced field
ecologists) within each of the 16 1 m ˆ 1 m sub-plots.

2.3. Remote Sensing Data

2.3.1. Spectral Data Collection

Hyperspectral data were acquired by the company Terratec AS, Lysaker, at around solar noon on
9 July 2011. Two airborne HySpex hyperspectral imagers (Norsk Elektro Optikk, Lörenskog, Norway),
VNIR-1600 and SWIR-320m-e, were used in the push broom scanning mode (Table A2). The flight
altitude was approximately 1500 m and the weather conditions were cloud-free. A total of 25 flight
lines (conducted either from north to south or from south to north, to minimize illumination effects)
were recorded.

2.3.2. Preparation of Spectral Data

Wavebands between 962–985 nm, 1322–1496 nm, 1803–2050 nm, and 2351–2501 nm were deleted
from the hyperspectral data set because of strong atmospheric interference or detector overlap, leaving
245 wavebands that were used for further analysis. ATCOR-4 software [32], which is based on the
radiative transfer model MODTRAN 5 [33], was used for atmospheric and topographic corrections
of the hyperspectral data. The atmospheric correction was carried out using the settings for rugged
terrain, the desert aerosol model, a water vapor column of 1.0 g¨m´2, visibility of 28.4 km, and an
ozone concentration of 330 Dopson units. The radiance was converted into reflectance using the
Fontenla-2011 solar irradiance spectrum [34]. The images were orthorectified with an accuracy of
approximately 0.3 m, by the data providers, using the PARGE software [35]. To match the spatial
resolution of the two HySpex sensors, the spectral data originating from the VNIR-1600 spectrometer
were resampled to a spatial resolution of 1 m, using a triangulated nearest neighborhood method, and
a spectral resolution of 6 nm, using locally weighted scatterplot smoothing (LOESS) interpolation [36].
High frequency noise in the spectral data was reduced by using a cubic Savitzky–Golay filter [37] with
a kernel size of 21 nm. The resampling was done using the signal [38] and raster packages [39] and the
filtering was done using hyperSpec package [40] in the R statistical environment [27].

2.3.3. Calculating Mean Spectral Reflectance and Spectral Heterogeneity

Vector polygons of the grassland sites were overlaid onto the hyperspectral imagery, and each
individual 4 m ˆ 4 m field plot was located on the HySpex image using the GPS coordinates taken
during the field work. Although we used a GPS receiver with a high accuracy, GPS errors may exist. To
account for possible positional uncertainties, a pixel window of 8 ˆ 8 pixels (8 m ˆ 8 m) was centered
on each of the 4 m ˆ 4 m field plots and the reflectance of each pixel (n = 64) within each pixel window
from the 245 individual wavebands was extracted.

Prior to the spectral response analyses, the reflectance was log10(1/Rλ) transformed (where
Rλ is the reflectance at each waveband). The mean transformed reflectance of each pixel window
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was obtained by calculating the mean spectral value of the pixels (n = 64) for each of the 245
individual HySpex wavebands. Log10(1/Rλ) transformed reflectance shows a near-linear relationship
with the concentration of absorbing land surface components [41], and may provide important
information on the environmental and ecological processes underlying any potential associations
between hyperspectral data and plant species diversity [42].

Several different methods have been used to compute spectral heterogeneity in remotely
sensed data. For example, Viedma [43] used methods based on spectral texture data, while
Heumann [44] applied an approach using measures of statistical dispersion to represent spectral
diversity. Warren [45] compared two categories of spectral heterogeneity metrics—one category
calculated with the help of principle component analysis (PCA) and one category developed from
semivariogram descriptors—and found that both types of metrics performed equally well as predictors
of species diversity. Oldeland [17] and Rocchini [46] also used spectral heterogeneity calculated with
the help of PCA to model species diversity. Following Oldeland [17] and Rocchini [46], we applied
a PCA-based approach to calculate spectral heterogeneity. The PCA was conducted on the spectral
data set (n = 245) within each pixel window consisting of 64 pixels, using untransformed reflectance
data. The spectral heterogeneity was calculated as the mean of the Euclidean distances between
each of the 64 pixels and the centroid of the pixel-cloud within the PCA space using the first five
principal components, which summarized at least 97% of the total spectral variation. We predicted that
increasing within-plot environmental heterogeneity should be accompanied by an increasing mean
distance to the spectral centroid (see [17,46]).

2.4. Data Analysis

The 104 plots were divided into a calibration subset and a validation subset by randomly assigning
the two plots from each of the 52 grassland sites to one or other of the two subsets (Figure 1c). Two
plots (one each from the calibration and validation subset) that had an unusually low reflectance in
the spectral range 900–1300 nm were excluded from further analyses. The exclusion of the two plots
resulted in a total of 102 plots (51 plots in each subset) used for the data analysis (Figure 2).

Figure 2. Schematic overview of the workflow used in the present study.
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The Pearson correlation between the species diversity indices (ln(SR) and iSDI) and the mean
spectral reflectance of each pixel window for individual wavebands were analyzed for all plots (n = 102).
In the spectral response approach, the relationships between hyperspectral data and field-observed
ln(SR) and iSDI were investigated for the plots in the calibration subset, using “leave-one-out”
cross-validated PLSR of (i) the full set of 245 (Model 1) and (ii) a subset (Model 2) of HySpex wavebands
(Figure 2). Earlier studies showed that the exclusion of wavebands that provide little information
related to the response variable improves the PLSR-based prediction of vegetation variables [47].
We used iterative variable deletion to identify the wavebands used in Model 2 (i.e., the bands
most important for prediction of species diversity). Marten’s uncertainty test [48] and the variable
importance in projection (VIP) values [49] were calculated for each waveband to identify the least
important wavebands (variables) within each iterative step. Variables that were non-significant and had
a VIP value lower than 0.8 were deleted before recalibrating the model. This procedure was repeated
until none of the remaining variables could be deleted. The relationships between hyperspectral
data and field-observed species diversity were also examined using spectral heterogeneity and OLSR
analysis (Model 3) (Figure 2). The validation subset was used to evaluate the regression models of the
calibration subset.

2.4.1. Partial Least Squares Regression Analysis (PLSR)—Models 1 and 2 (Spectral
Response Approach)

A PLSR analysis [49] between each of the two diversity indices (dependent variables) and the
average spectral reflectances (explanatory variables) was carried out. PLSR is a method of multivariate
analysis that is suitable for the analysis of data sets that include a larger number of (highly correlated)
explanatory variables than samples [50]—which is often the case in remote sensing–based species
diversity studies. Several studies have shown that the PLSR method outperforms other methods
(e.g., OLSR) when analyzing highly co-linear hyperspectral remote sensing data sets [51]. The PLSR
algorithm attempts to find latent variables (LVs) that summarize the variation in the explanatory
matrix and, at the same time, maximize the covariance with the dependent variable (see [52]).

The optimal number of LVs needs to be identified in order to avoid model over-fitting in PLSR
analyses, but there is, at present, no consensus about the best method to use [53]. The number of LVs is
usually determined by a cross-validation procedure, which is used to find the lowest cross-validated
root mean square error (RMSECV) of the PLSR model. It has been shown that the use of the global
minimum of the RMSECV can lead to erroneous and over-fitted prediction models [53]. To avoid
over-fitting, the first local minimum of the RMSECV is usually used [54]. However, this approach may
lead to model under-fitting, if the minimum error results in a negative coefficient of determination for
the cross-validated predicted dependent variables (R2

CV). Negative values of R2
CV indicate that the

model residuals exceed those obtained from the mean observation as predictors. We used the number
of LVs which resulted in the first local minimum absolute RMSECV (aRMSECV) and a positive R2

CV

value. To allow comparison between Models 1 and 2, we normalized the aRMSECV (nRMSECV, %)
values by the range of the field-observed values for ln(SR) and iSDI of the calibration subset.

The PLSR was run in two ways: (i) using all wavebands from the full reflectance spectrum (n = 245;
Model 1); and (ii) using the subset of spectral wavebands that were most important for the prediction
of species diversity (Model 2). Cross-validation was carried out using “leave-one-out” cross-validation,
with each plot being excluded in turn, and the calibration model based on the remaining plots used
to predict the excluded plot. Both the models (Model 1 and Model 2) for each of the two species
diversity indices were validated with the plots from the independent validation subset. The root mean
square error of the predicted values (absolute value: aRMSEP) and the squared correlation coefficient
(R2

P) between the field-observed and predicted ln(SR) and iSDI for the validation subset were used
to evaluate the predictive qualities of the models. The aRMSEP was normalized (nRMSEP, %) by the
range of the field-observed ln(SR) and iSDI values of the validation subset. A good validation result is
characterized by low values for both aRMSEP and nRMSEP and high values for R2

P, indicating that the
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hyperspectral data have a good ability to predict the species diversity indices. To assess the robustness
of the predictive performance of the calibrated PLSR models, the validation subset was bootstrapped
1000 times (with replacement), building 1000 “new” validation subsets. The calibration model was
applied to each of the 1000 validation subsets and the nRMSEP (%) and R2

P between the field-observed
and predicted ln(SR) and iSDI were calculated for each validation subset. Mean nRMSEP (%) and R2

P

values, and 95% confidence levels were then calculated for the 1000 validation subsets.

2.4.2. Residual Analysis of Models 1 and 2 (Spectral Response Approach)

The residuals of Models 1 and 2 were separately correlated with the environmental variables
Ellenberg mN and mM, field-layer height, bare ground and litter-cover fractions (Table A1), to examine
whether the relationships between hyperspectral data and species diversity was influenced by the
environmental variables characterizing the plots. The significance of the correlations was tested using
a two-sided Student’s t-test. Because multiple tests may result in an increased risk of Type I error,
the significance values of the correlations were assessed after Bonferroni correction. To investigate
whether the relationships between hyperspectral data and species diversity were influenced by the
age-class of plots (young grasslands: 5–14 years, intermediate-aged grasslands: 15–49 years, and old
grasslands with ě50 years of grazing continuity), we examined if there were significant differences
between the residuals associated with each of the three grassland age-classes. Because the residuals
were not normally distributed we used the Kruskal-Wallis test [55]. All analyses were conducted in
the R statistical environment [27], using the pls package [54].

2.4.3. Ordinary Least Squares Regression Analysis (OLSR) and Reduced Major Axis
Regression—Model 3 (Spectral Heterogeneity Approach)

Previous studies successfully applied OLSR to examine the relationship between spectral
heterogeneity and plant species diversity [17]. In the present study, separate OLSR analyses of
the relationships between each of the species diversity indices (dependent variables) and the spectral
heterogeneity (explanatory variable) were carried out on the calibration subset (Model 3) (Figure 2).
Model 3 was tested on the validation subset using a reduced major axis (RMA) regression. Curran [56]
showed that RMA is an appropriate method for the remote sensing–based prediction of grassland
variables, in cases where there is no available information on measurement error. The nRMSEP and
R2

P were used to evaluate the performance of the validation.

3. Results

The summary statistics for the dependent variables for the plots within each grassland age-class
(young, intermediate-aged, and old grasslands) are presented in in Table A3. The Pearson’s correlation
coefficients between the ln(SR) and the iSDI were significant for both the calibration (r = 0.98, p < 0.001)
and validation subsets (r = 0.97, p < 0.001). There were significant negative correlations (p < 0.05)
between the reflectance associated with wavebands in the near-infrared (758–1316 nm) (NIR) part
of the electromagnetic spectrum and the ln(SR) (Figure 3). There were positive but non-significant
correlations between the reflectance at wavebands in the blue (415–499 nm) and red (602–752 nm) parts
of the spectrum and the dependent variables, and (non-significant) negative correlations between the
reflectance at wavebands in the green (505–595 nm) and SWIR (1502–2345 nm) parts of the spectrum
and the dependent variables (Figure 3).



Remote Sens. 2016, 8, 133 9 of 19

Remote Sens. 2016, 8, 133 9 of 19 

 

 
Figure 3. Pearson’s correlation coefficients (r) between single wavebands and the species richness 
ln(SR) (red), and the inverse Simpson’s diversity index iSDI (black) for the whole data set (n = 102). 
Correlations below the dotted line are significant (p < 0.05). 

3.1. Spectral Reflectance—Models 1 and 2 (Spectral Response Approach) 

3.1.1. PLSR Using the Full Set of 245 HySpex Wavebands—Model 1 

The inclusion of seven LVs gave the first local minimum absolute aRMSECV in the PLSR model 
developed from the calibration subset (Model 1; Figure 2), for both the ln(SR) (aRMSECV = 0.34) and 
the iSDI (aRMSECV = 8.87) (Table 1). 

Table 1. Summary of the ability of PLSR models, based on spectral reflectance using the full set of 
wavebands (Model 1) or a subset of wavebands (Model 2), to predict the species richness (ln(SR)) and 
the inverse Simpson’s diversity index (iSDI). The cross-validated error of the calibration models (n = 
51) is indicated by the absolute (aRMSECV) and normalized RMSECV (nRMSECV, %). LV indicates the 
number of latent variables used in the PLSR models. The absolute and normalized prediction errors 
(aRMSEP, nRMSEP (%)) indicate the ability of the model to predict the observed species diversity 
measure. The squared correlation (R2P) indicates the fit between the predicted and observed diversity 
values from the validation subset (n = 51). 

  aRMSECV nRMSECV LV aRMSEP nRMSEP R2P No. of 
Wavebands 

ln(SR) Model 1 0.34 21% 7 0.29 19% 0.43 245 
Model 2 0.37 23% 5 0.34 22% 0.19 25 

iSDI Model 1 8.87 23% 7 6.77 20% 0.45 245 
Model 2 9.29 25% 4 7.07 21% 0.40 35 

The correlations between the field-observed and predicted measures of species diversity were 
significant for both the ln(SR) (R2P = 0.43, p < 0.001) and the iSDI (R2P = 0.45, p < 0.001) (Table 1, Figure 
4a,b). The nRMSEP values were approximately 20% for both the ln(SR) (nRMSEP = 19%) and the iSDI 
(nRMSEP = 20%) (Table 1, Figure 4a,b). Out of the 245 wavebands used in Model 1, 25 bands were 
most important for the prediction of the ln(SR) (Figure 5a, Table A4), while 35 bands were most 
important for the prediction of the iSDI (Figure 5b, Table A4). The relationships between the residuals 
associated with the prediction of both dependent variables (using Model 1) and the values for 
individual environmental variables (Ellenberg mN and mM, field-layer height, and soil- and litter-
cover fractions) were non-significant (Figure 6a,b). There were significant (p < 0.05), positive 
associations between the residuals (in the prediction of both the ln(SR) and the iSDI) and the 
grassland age: the shorter the grazing continuity of the grassland, the more the values for ln(SR) and 
iSDI were overestimated (negative residuals) (Figure 6c,d). 
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3.1. Spectral Reflectance—Models 1 and 2 (Spectral Response Approach)

3.1.1. PLSR Using the Full Set of 245 HySpex Wavebands—Model 1

The inclusion of seven LVs gave the first local minimum absolute aRMSECV in the PLSR model
developed from the calibration subset (Model 1; Figure 2), for both the ln(SR) (aRMSECV = 0.34) and
the iSDI (aRMSECV = 8.87) (Table 1).

Table 1. Summary of the ability of PLSR models, based on spectral reflectance using the full set of
wavebands (Model 1) or a subset of wavebands (Model 2), to predict the species richness (ln(SR)) and
the inverse Simpson’s diversity index (iSDI). The cross-validated error of the calibration models (n = 51)
is indicated by the absolute (aRMSECV) and normalized RMSECV (nRMSECV, %). LV indicates the
number of latent variables used in the PLSR models. The absolute and normalized prediction errors
(aRMSEP, nRMSEP (%)) indicate the ability of the model to predict the observed species diversity
measure. The squared correlation (R2

P) indicates the fit between the predicted and observed diversity
values from the validation subset (n = 51).

aRMSECV nRMSECV LV aRMSEP nRMSEP R2
P

No. of
Wavebands

ln(SR)
Model 1 0.34 21% 7 0.29 19% 0.43 245
Model 2 0.37 23% 5 0.34 22% 0.19 25

iSDI
Model 1 8.87 23% 7 6.77 20% 0.45 245
Model 2 9.29 25% 4 7.07 21% 0.40 35

The correlations between the field-observed and predicted measures of species diversity were
significant for both the ln(SR) (R2

P = 0.43, p < 0.001) and the iSDI (R2
P = 0.45, p < 0.001) (Table 1,

Figure 4a,b). The nRMSEP values were approximately 20% for both the ln(SR) (nRMSEP = 19%)
and the iSDI (nRMSEP = 20%) (Table 1, Figure 4a,b). Out of the 245 wavebands used in Model 1,
25 bands were most important for the prediction of the ln(SR) (Figure 5a, Table A4), while 35 bands
were most important for the prediction of the iSDI (Figure 5b, Table A4). The relationships between
the residuals associated with the prediction of both dependent variables (using Model 1) and the
values for individual environmental variables (Ellenberg mN and mM, field-layer height, and soil-
and litter-cover fractions) were non-significant (Figure 6a,b). There were significant (p < 0.05), positive
associations between the residuals (in the prediction of both the ln(SR) and the iSDI) and the grassland
age: the shorter the grazing continuity of the grassland, the more the values for ln(SR) and iSDI were
overestimated (negative residuals) (Figure 6c,d).
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index (iSDI) in grassland plots using the calibration subset (n = 51). The black line represents the mean 
spectral reflectance curve for grassland plots in the whole data set (n = 102). 

Figure 4. Correlations between field-observed and predicted (left column) species richness (ln(SR))
and (right column) inverse Simpson’s diversity (iSDI) for the validation subset (n = 51). (a,b) show the
field-observed versus the predicted correlations for the PLSR model based on the full set of wavebands
(Model 1) (n = 245); (c,d) show the field-observed versus the predicted correlations for the model based
on a subset of wavebands (Model 2) (n = 25 (for ln(SR)) or 35 (for iSDI)). The normalized prediction error
(nRMSEP, %) indicates the quality of the model in predicting the observed species diversity measure,
and the squared correlation (R2

P) indicates the fit between the predicted and observed diversity value.
The age-class of the grassland plots is also displayed (key: # young, ∆ intermediate, and + old). Black
lines indicate the relationship between the predicted and the measured values.
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Figure 5. Important wavebands (grey bars) selected with the help of an iterative variable deletion
procedure, for estimating (a) the species richness (ln(SR)) and (b) the inverse Simpson’s diversity index
(iSDI) in grassland plots using the calibration subset (n = 51). The black line represents the mean
spectral reflectance curve for grassland plots in the whole data set (n = 102).
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and Model 2 (light). 
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21%) (Table 1, Figure 4c,d). In the Model 2 approach, there were significant negative correlations (p < 
0.05) between the residuals (associated with the prediction of ln(SR) and iSDI) and the Ellenberg mN: 
the higher the Ellenberg mN, the more the values for ln(SR) and iSDI were overestimated (negative 
residuals) (Figure 6a,b). There were also significant (p < 0.05) associations between the residuals (in 
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Figure 6. (a,b) Pearson’s correlation coefficients of the residuals of the PLSR models’ (Model 1 = dark;
Model 2 = light) predictions of (a) the species richness (ln(SR)) and (b) the inverse Simpson’s diversity
index (iSDI) with different environmental variables (moisture availability, Ellenberg mM; nutrient
availability, Ellenberg mN; field-layer height, FLH; cover of bare ground, Bare ground; and cover of
litter, Litter); (c,d) Distribution of the residuals of (c) the species richness (ln(SR)) and (d) the inverse
Simpson’s diversity index (iSDI), within the three grassland age-classes, predicted by Model 1 (dark)
and Model 2 (light).

3.1.2. PLSR Using the Subset of HySpex Wavebands—Model 2

Using the subsets of HySpex wavebands (Model 2; Figure 2), the inclusion of five LVs gave the
first local minimum aRMSECV in the PLSR model for ln(SR) (aRMSECV = 0.37) (Table 1). For the
prediction of iSDI, the inclusion of four LVs gave the first minimum aRMSECV (aRMSECV = 9.29)
(Table 1). The correlations between the field-observed and predicted measures of plant diversity
for the validation subset were significant for ln(SR) (R2

P = 0.19, p < 0.001) and iSDI (R2
P = 0.40,

p < 0.001) (Table 1, Figure 4c,d). The nRMSEP values were above 20% for ln(SR) (nRMSEP = 22%)
and iSDI (nRMSEP = 21%) (Table 1, Figure 4c,d). In the Model 2 approach, there were significant
negative correlations (p < 0.05) between the residuals (associated with the prediction of ln(SR) and
iSDI) and the Ellenberg mN: the higher the Ellenberg mN, the more the values for ln(SR) and iSDI were
overestimated (negative residuals) (Figure 6a,b). There were also significant (p < 0.05) associations
between the residuals (in the prediction of ln(SR) and iSDI) and the grassland age: the shorter the
grazing continuity of the grassland, the more the values for ln(SR) and iSDI were overestimated
(negative residuals) (Figure 6c,d).

3.1.3. The Robustness of the Prediction Models (Models 1 and 2)

The bootstrapping procedure revealed that the mean R2
P were higher and the mean nRMSEP

were lower when using the PLSR-based models developed from the full set of bands (Model 1) than
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when using the models developed from the subset of bands (Model 2) to predict both the dependent
variables (Table 2).

Table 2. Bootstrap results showing the ability of the PLSR models based on the spectral reflectance
in the full set of wavebands (Model 1) and the subset of wavebands (Model 2) to predict the species
richness (ln(SR)) and the inverse Simpson’s diversity index (iSDI). Mean R2

P and mean nRMSEP (%)
are the average squared correlation coefficients and normalized prediction errors for the validation
subset, based on 1000 bootstraps. The 95% confidence limit indicates the upper and lower confidence
intervals of the mean values.

Mean R2
P 95% Confidence Limit Mean nRMSEP 95% Confidence Limit

ln(SR)
Model 1 0.39 ˘0.010 20% ˘0.1%
Model 2 0.17 ˘0.009 23% ˘0.1%

iSDI
Model 1 0.43 ˘0.008 21% ˘0.1%
Model 2 0.38 ˘0.007 22% ˘0.1%

3.2. Linear Regression Based on Spectral Heterogeneity—Model 3 (Spectral Heterogeneity Approach)

When the regression models (Model 3; Figure 2) developed from the calibration subset using
the spectral heterogeneity approach were applied to the validation subsets, the results showed
non-significant relationships between both the field-observed and predicted SR (R2 = 0.06, p > 0.05)
and the field-observed and predicted iSDI (R2 = 0.04, p > 0.05). The nRMSEP values were above 30%
for both ln(SR) (nRMSEP = 31%) and iSDI (nRMSEP = 35%).

4. Discussion

4.1. The Relationship between Hyperspectral Reflectance Measurements and Plant Species Diversity (Spectral
Response Approach—Models 1 and 2)

The spectral response approach, using both Model 1 and Model 2, resulted in good predictions,
with a relative error (nRMSEP) of approximately 20% of both ln(SR) and iSDI (Figure 4, Tables 1 and 2).
PLSR-based approaches have been used in the past to predict plant species diversity in grassland
ecosystems with the help of hyperspectral remote sensing [18,19]. The study by Fava [18] used
ground-based hyperspectral measurements and PLSR to assess plant species diversity (species richness
and Shannon diversity) in alpine meadow systems and showed a somewhat lower average error (<15%)
for the plant diversity estimates than was found in the present study. The relatively higher error values
in the present study may reflect the fact that airborne spectrometric measurements are affected by
noise caused by, for example, effects of atmospheric scattering. Carter [19] used airborne spectrometric
measurements (400–2500 nm) to estimate species richness in mesic grasslands, and revealed somewhat
weaker relationships between the spectral data and species diversity than those in the present study.
The analyses in Carter [19] were based on simple linear regression using individual wavebands and
band ratios, whereas our analyses used a PLSR-based approach involving multiple bands. The use of a
limited number of wavebands may result in poorer relationships between remote sensing data and
vegetation parameters compared with the use of many spectral bands. Although much information in
a hyperspectral data set may be redundant, important spectral information may nevertheless be lost
when only a small number of wavebands are used to predict vegetation variables [57].

4.2. The Most Important Hyperspectral Wavebands for Predicting Plant Species Diversity Using the Spectral
Response Approach (Models 1 and 2)

Previous studies revealed that the soils of young grasslands with a short history of grazing
management often contain high levels of nitrogen and phosphorus as a result of their recent use as
fertilized arable fields [58]. Over time, the continuous removal of above-ground biomass by grazing
animals leads to a progressive decrease in soil nutrient levels [58]. Nutrient-poor conditions promote



Remote Sens. 2016, 8, 133 13 of 19

the maintenance and establishment of plant species with a low competitive ability. Grasslands with a
long grazing continuity, such as the old grasslands in our study (Table A3), are often associated with
a lower above-ground biomass and a higher plant species diversity than young grasslands [59,60].
An increase in the amount of above-ground biomass is often accompanied by an increase in the
reflectance in the NIR region of the spectrum because of increased multiple scattering within the
canopy (e.g., [61]). Relationships between species richness and above-ground biomass have been
extensively studied (e.g., [12]) and have increasingly been used to interpret the relationship between
reflectance and species diversity measures in grasslands (e.g., [18,62]. For example, [18] explained the
relationship between reflectance in the NIR wavebands and species richness in terms of a negative
relationship between biomass and plant diversity. In the present study, the identification of key
wavebands for predicting species diversity in the PLSR models 1 and 2 showed that several NIR
wavebands were important for the assessment of species diversity (Figure 5). Significant negative
correlations between reflectance and diversity in the NIR spectral region (Figure 3) indicate that the
species diversity increased as the above-ground biomass decreased. Other studies have shown that
the visible wavebands may also contain important information for the assessment of plant species
richness (e.g., [18]). The relationships we identified between wavebands in the visible and SWIR
parts of the spectrum and the species diversity are in line with those findings (Figure 5). The positive
associations that we observed between reflectance and diversity in the chlorophyll absorption regions
of the spectrum (blue and red) and the negative associations with the green and the water absorption
parts (SWIR bands) of the spectrum (Figure 3) suggest that the species-poor plots were characterized
by higher levels of plant chlorophyll content and vegetation water content than the species-rich plots.

4.3. Residual Analysis of Models 1 and 2 (Spectral Response Approach)

The lack of significant relationships between the residuals of Model 1 and the environmental
variables indicates that none of these variables had an effect on the species diversity that was not
predicted by the full set of hyperspectral wavebands (Figure 6a,b). In contrast, the significant
relationships between the residuals for Model 2 and nutrient status suggest that the unexplained
variance in the models based on a subset of wavebands may be related to within-plot soil nutrient
availability (Figure 6a,b). In the present study, the use of a subset of wavebands (Model 2) may have
resulted in the loss of spectral information on the variation in nutrient status, which may, at least partly,
explain the poorer prediction of species diversity in Model 2 compared with that for Model 1 (Figure 4,
Tables 1 and 2).

For both Model 1 and Model 2, the residuals differed significantly between the age-classes,
indicating that the unexplained variance was related to the grazing continuity within the plots
(Figure 6c,d). Thus, in Model 1 and Model 2, the grazing continuity had effects on the species diversity
that were not predicted from the spectral data. Although young grasslands are often associated with
higher amounts of above-ground biomass and lower species diversity than old grasslands [60], the
current grazing intensity is expected to influence the amount of biomass within the grasslands. Some of
the young grassland sites may be subject to relatively high grazing intensity, and thus be characterized
by a relatively low amount of above-ground biomass, which may explain the overestimation of the
predicted species diversity in some of those plots (Figure 4). The overestimation of ln(SR) in low ln(SR)
plots tended to be more accentuated in the Model 2 approach than in the Model 1 approach (Figure 4a,c).
The full set of wavebands may include individual bands that were important for the prediction of
particular (heavily grazed) low ln(SR) plots—and these bands were excluded in the backward deletion
procedure which may explain the poorer R2 value in Model 2 than in Model 1. A higher number of
wavebands were retained in Model 2 for the iSDI response variable than for the ln(SR) variable, and
there was little difference between the Model 1 and Model 2 results for iSDI (Figure 4b,d). Although
the number of LVs may not always be a good measure of model complexity [63], the lower number of
LVs in the Model 2 analyses (Table 1) indicate that the Model 2 analyses were more parsimonious than
the Model 1 analyses.
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4.4. The Relationship between Spectral Heterogeneity and Plant Species Diversity (Spectral Heterogeneity
Approach—Model 3)

Relationships between spectral heterogeneity and measures of species diversity have been
investigated in recent studies [17,46]. However, these studies were carried out at relatively coarse
spatial scales (sampling areas ě100 m2) [17,46]. Large sampling areas may be characterized by a
greater variability in the environmental conditions than smaller areas (cf. [64]), and the strength
of the relationship between spectral heterogeneity and plant species diversity has been shown to
increase with the size of the spectral and vegetation sampling areas [43]. In the present study, spectral
heterogeneity failed to predict species diversity within our comparatively small (4 mˆ 4 m) vegetation
plots. Whereas our study was based on a pixel size of 1 m, previous studies of patterns of plant species
co-existence within the same study area revealed heterogeneity in the plant community composition
at a scale of decimeters rather than meters [65]. The failure to detect a significant relationship between
spectral variability and species diversity in our study is, therefore, likely to reflect the fact that the
scale (dictated by the pixel size) at which we worked was too large to detect ecologically relevant
heterogeneity in the grassland community composition.

4.5. Limitations

One possible explanation for the discrepancy between the field-observed and predicted species
diversity, in both the spectral response approach and the spectral heterogeneity approach, may be
the mismatch between the size of the pixel windows (8 m ˆ 8 m) and the size of the vegetation plots
(4 m ˆ 4 m). Although the paired spectral and vegetation plots belong to the same grassland age
categories, and there is no variation in grazing intensity between the spectral plot and its corresponding
vegetation plot, we cannot exclude the possibility that the relationship may have been influenced
by environmental conditions in the 2 m zone surrounding the vegetation plots. However, species
diversity levels at different spatial scales often show a positive relationship within semi-natural
grasslands (e.g., [66,67]). For example, within Swedish semi-natural grassland the species diversity at
the 1 dm ˆ 1 dm scale was explained by the size of the species pool at the 2 m ˆ 2 m scale [66].

5. Conclusions

The monitoring of biodiversity is regarded as a central task for nature conservation, and
hyperspectral remote sensing has recently been identified as a method that has the potential to make a
substantial contribution to the mapping of habitat and species diversity at local to regional scales [68].
The present study presents a novel methodology for the assessment of fine-scale (4 m ˆ 4 m) vascular
plant species diversity in dry grasslands based on hyperspectral data obtained with the help of airborne
spectrometers covering 414 to 2501 nm. We used two different approaches to evaluate the ability
of hyperspectral measurements to predict fine-scale grassland species diversity (characterized with
the help of the species richness (SR) and the inverse Simpson’s diversity index (iSDI)). The spectral
response approach included information on reflectance based on (i) all wavebands (Model 1), and (ii) a
subset of wavebands (Model 2), input into a partial least squares regression (PLSR) model. The spectral
heterogeneity approach was based on the spectral variation hypothesis, and included an analysis of
spectral variation, based on the mean distance to the spectral centroid, in an ordinary least squares
regression model (Model 3).

Our study demonstrates that a spectral response approach using airborne hyperspectral data
can be used to predict fine-scale species diversity in dry grasslands. The relationships between the
field-observed and predicted measures of plant species diversity were significant for both the SR and
the iSDI with a normalized root mean square error of approximately 20% for the predicted values
of both the diversity indices. The PLSR-based approach allows a large number of hyperspectral
wavebands to be compressed into a few latent variables (LVs) while decreasing the risk of model
overfitting. Although the average prediction quality for both SR and iSDI was poorer for the Model 2
procedure than for the Model 1 procedure, the lower number of LVs in the Model 2 analyses indicated
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that the Model 2 analyses were more parsimonious. The prediction quality of the PLSR algorithm
is dependent on the optimal selection of LVs used in the final prediction model. Although there are
different ways of selecting LVs, there has been no systematic comparison of the performance of the
different approaches. We suggest, therefore, that alternatives to the first-local-minimum rule—such
as the total minimum cross-validated error or an overall F-test of the loss function [53]—should
be evaluated further in future studies. There was a negative correlation between the reflectance in
the NIR spectral region and species diversity, indicating that the species diversity increased as the
above-ground biomass decreased. Although the prediction errors of the two PLSR models derived
from the spectral response approach are low for both the species diversity indices, a certain amount of
variation within the predicted diversity indices remained unexplained in our study. We suggest that the
unexplained variance in the predicted species diversity may, at least in part, result from between-site
variation in grazing intensity (particularly in the younger grasslands on recently abandoned arable
fields) that results in between-site differences in the amount of biomass.

The spectral heterogeneity approach, using spectral variability as a proxy for habitat heterogeneity,
was unable to predict species diversity. Our results, together with results from earlier ecological
studies [65], suggest that the relevant scale for the investigation of the relationships between
environmental heterogeneity and fine-scale grassland species diversity in our study system may
be smaller than the 1 m ˆ 1 m pixels used in the study. We suggest that future studies should
examine a wide range of pixel sizes to identify the scale, or scales, at which a relationship between
environmental heterogeneity and species diversity can be identified.

In the present study, we used remotely sensed data acquired at a single time-point in July.
If leaf senescence in response to summer drought is associated with lowered levels of spectral variation
within and between the grassland plots, then a multi-temporal approach might improve the ability to
predict grassland species diversity with the help of remotely sensed data. The use of unmanned aerial
vehicles (UAVs), which can provide high levels of both spatial and temporal resolution, is attracting
increasing attention within the field of fine-scale remote sensing (e.g., [44,68]). Future studies should
examine the potential use of UAVs to deliver improved spectral data that can be used in the assessment
of grassland species diversity.
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Appendix A

Table A1. Mean values and standard deviations (stdev) for the environmental variables, measured in
4 m ˆ 4 m plots belonging to the validation subset (n = 52).

Environmental Variables Mean Stdev

Ellenberg M 3.55 0.53
Ellenberg N 3.57 0.84

Field-layer height (cm) 3.56 4.00
Soil-cover (%) 6.13 8.18

Litter-cover (%) 7.29 17.01
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Table A2. Technical characteristics of spectral sensors used in the study.

VNIR Sensor SWIR Sensor

Sensor name VNIR-1600 SWIR-320m-e
Spectral coverage (nm) 415–992 967–2501

Spectral sampling interval (nm) 3.7 6.0
Spectral bands 160 256

Field of view (FOV) 17 13.5
Ground sampling distance (m) 0.5 1.0

Radiometric resolution (bit) 12 14

Table A3. Summary statistics for the ln-transformed species richness ln(SR) and the inverse Simpson’s
diversity index (iSDI) values within the calibration and validation subsets for the 4 m ˆ 4 m plots
within each of the three grassland age-classes (young, intermediate-aged and old grasslands). The five
most abundant species recorded within each grassland age-class are also presented.

ln(SR) iSDI Five Most Abundant Species

Mean Stdev Min Max Mean Stdev Min Max

Young Calibration
(n = 16) 3.28 0.41 2.64 4.23 19.41 9.66 10.10 47.97 Taraxacum agg., Dactylis

glomerata, Poa pratensis, Lolium
perenne, Convolvulus arvensisValidation

(n = 17) 3.34 0.40 2.56 3.91 20.00 7.13 9.68 38.60

Intermediate Calibration
(n = 18) 3.59 0.33 2.89 4.17 25.70 7.73 13.49 44.14 Poa pratensis, Dactylis glomerata,

Taraxacum agg., Festuca rubra,
Ranunculus bulbosusValidation

(n = 17) 3.51 0.35 2.83 4.01 24.03 8.44 12.42 39.95

Old Calibration
(n = 17) 3.87 0.18 3.47 4.11 34.49 6.05 20.63 43.21 Plantago lanceolata, Galium

verum, Achillea millefolium,
Ranunculus bulbosus, Poa

pratensis
Validation

(n = 17) 3.89 0.12 3.69 4.09 34.38 5.24 24.62 43.97

Table A4. Number of important wavebands selected with the help of an iterative variable deletion
procedure, for predicting the ln-transformed species richness ln(SR) and the inverse Simpson’s diversity
index (iSDI) in grassland plots using the calibration subset (n = 51).

ln(SR) iSDI

Number of
Wavebands

Part of the
Electromagnetic Spectrum Number of Wavebands Part of the

Electromagnetic Spectrum

6 Green (529–559 nm) 7 Blue (439–475 nm)
3 Red (680–692 nm) 9 Green (517–565 nm)
14 NIR (818–1316 nm) 7 Red (650–686 nm)
2 SWIR (1791, 1797 nm) 8 NIR (1274–1316 nm)

4 SWIR (1779–1797 nm)
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Abstract: Plant communities differ in their species composition, and, thus, also in their 

functional trait composition, at different stages in the succession from arable fields to 

grazed grassland. We examine whether aerial hyperspectral (414–2501 nm) remote sensing 

can be used to discriminate between grazed vegetation belonging to different grassland 

successional stages. Vascular plant species were recorded in 104.1 m2 plots on the island of 

Öland (Sweden) and the functional properties of the plant species recorded in the plots 

were characterized in terms of the ground-cover of grasses, specific leaf area and Ellenberg 

indicator values. Plots were assigned to three different grassland age-classes,  

representing 5–15, 16–50 and >50 years of grazing management. Partial least squares 

discriminant analysis models were used to compare classifications based on aerial 

hyperspectral data with the age-class classification. The remote sensing data successfully 

classified the plots into age-classes: the overall classification accuracy was higher for  
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a model based on a pre-selected set of wavebands (85%, Kappa statistic value = 0.77) than 

one using the full set of wavebands (77%, Kappa statistic value = 0.65). Our results show 

that nutrient availability and grass cover differences between grassland age-classes are 

detectable by spectral imaging. These techniques may potentially be used for mapping the 

spatial distribution of grassland habitats at different successional stages. 

Keywords: arable-to-grassland succession; Ellenberg indicator values; HySpex spectrometer; 

imaging spectroscopy; partial least square discriminant analysis 

 

Abbreviations 

ATCOR Atmospheric and Topographic Correction 

CWM Community-Weighted Mean 

DEM Digital Elevation Model 

DGPS Differential Global Positioning System 

GIS Geographic Information System 

LDMC Leaf Dry Matter Content 

LiDAR Light Detection and Ranging 

LMA Leaf Mass per Area 

LOESS Local Polynomial Regression 

LV Latent Variable 

MICE Multivariate Imputation by Chained Equations 

MODTRAN Moderate Resolution Atmospheric Transmission 

NEO Norsk Elektro Optikk 

NIR Near-Infrared 

PARGE Parametric Geocoding 

PLS Partial Least Squares 

PLS-DA Partial-Least-Squares Discriminant Analysis 

SLA Specific Leaf Area 

SWIR Short-Wave Infrared 

VIP Variable Importance in Projection 

VNIR Visible and Near Infrared 

1. Introduction 

The rationalization of European agricultural landscapes during the last century has resulted in the 

fragmentation and loss of species-rich semi-natural habitats, leading to a dramatic decrease in farmland 

biodiversity across Europe [1]. The remaining old fragments of grazed semi-natural grasslands are 

among the most species-rich habitats within the agricultural landscape [2], and they are of great 

importance for the overall species richness of agricultural landscapes [3]. As well as agricultural 

intensification in many areas, there has also been a successive increase in the area of abandoned 
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cultivated land in several parts of Europe over the past 50 years [4]. In many European regions, 

abandoned arable fields are gradually being transformed into grazed grasslands [5,6]. The majority of 

the grasslands in the present-day agricultural landscape are grazed fields that represent early stages in 

the succession from arable cultivation towards species-rich old grasslands [7]. 

The transformation of abandoned arable land into grazed grassland is expected to offer new 

possibilities for the establishment of species-rich and diverse grassland vegetation and to mitigate 

biodiversity loss in agricultural landscapes [8,9]. If species diversity in cultivated landscapes is to be 

maintained and enriched in the future, species will need to be able to disperse from old, species-rich 

grassland fragments into younger grasslands [10]. Optimization of the spatial distribution of grassland 

fragments will require information that discriminates between land cover belonging to different stages 

in the succession from arable fields to old semi-natural grasslands. It may be difficult to collect explicit 

spatial information on grassland age and habitat characteristics over wide areas solely from field-based 

assessments [11]. Field-based inventories of grasslands are time consuming and are therefore often 

based on plot-scale sampling within spatially restricted areas (cf. [12]). 

Remote sensing technology has the ability to support and supplement field-based habitat  

inventories [13,14], and the potential of remote sensing data as a source of information both within 

vegetation science [15] and as a tool within conservation biology has recently been highlighted [16]. 

The development of remote sensing-based methods that can be used for the mapping of habitats at 

detailed scales is considered to be particularly important [16]. Aerial photographs and broadband 

satellite-based spectral data have been used to map and monitor grassland properties. For example, 

Waldhardt and Otte [17] showed that grassland vegetation of different ages could be discriminated 

with the help of the colour tonal values from false-colour infrared aerial photographs. Kawamura et al. [18] 

used spectral information acquired from satellite data to assess grazing intensity in grasslands. 

However, the low spectral resolution of aerial photographs and broad-band sensors limits the 

collection of detailed information on vegetation properties [19,20]. 

Hyperspectral remote sensing (imaging spectroscopy) is a particularly good method for assessing 

and monitoring vegetation characteristics [21–23]. Spectral measurements acquired by hyperspectral 

sensors provide detailed information on the structural and biochemical properties of vegetation [24,25]. 

For example, plant functional traits and properties, such as leaf nitrogen content, leaf chlorophyll 

content, leaf water content, and leaf area index, have been successfully estimated with the help of 

hyperspectral data [26–29]. Ecological indicators, such as Ellenberg values [30], are commonly used to 

describe relationships between vegetation and environment [31]. Schmidtlein [12] mapped gradients of 

community-weighted mean Ellenberg indicator values for nutrient and moisture availability in 

montane pastures, and Klaus et al. [32] predicted mean Ellenberg indicator values for nutrient and 

moisture availability in agricultural grasslands using spectroscopy data. 

Previous studies have shown that grassland plant communities representing different stages in the 

arable-to-grassland succession are characterized by different habitat conditions and plant community 

characteristics [33,34]. Old grasslands have lower community-weighted mean values for Ellenberg 

indicators for nutrient and moisture availability than young grasslands [34]. In addition, old grasslands 

are typically characterized by lower community-weighted mean values for specific leaf area (SLA), 

canopy height, and leaf size, and by higher mean values for leaf dry matter content (LDMC) than 

young grasslands [33]. Because SLA is associated with the assemblage of leaf chemicals that control 
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photosynthesis, positive relationships between SLA, nutrient availability, chlorophyll content and leaf 

water content can be expected [33,35–39]. 

There has been considerable recent progress in the development of methods for both handling and 

analysing spectral data (e.g., [40,41]) and characterizing and discriminating between habitats with the 

help of spectral data [42]. Partial least squares (PLS) [43] regression is commonly used in hyperspectral 

remote sensing and has shown to be a powerful technique for studying grassland vegetation [44–46]. 

In addition, partial least squares discriminant analysis (PLS-DA), using pre-selected wavebands,  

is increasingly used in remote sensing-based classification of plant communities (e.g., [47]). 

Here, we examine whether a combination of airborne hyperspectral data and PLS-DA can be used 

to discriminate between grazed, dry grasslands belonging to different age-classes in an agricultural 

landscape on the Baltic island of Öland (Sweden). We used data from HySpex hyperspectral spectrometers 

(414–2501 nm) to classify grassland age at a spatial resolution of 3 m × 3 m. We compare the 

classification accuracies using two different PLS-DA models: Model 1 based on the full set of HySpex 

wavebands and Model 2 based on a pre-selected subset of wavebands. We explore the dissimilarities in 

plant community and spectral characteristics between grasslands representing different age-classes and 

ask the following questions: (1) can grassland age-classes be classified with the help of hyperspectral 

HySpex data and PLS-DA? In addition, (2) can the classification accuracies of grassland age-classes 

be improved by pre-selecting the hyperspectral wavebands that are used in the PLS-DA model? 

2. Materials and Methods 

2.1. Study Area 

The study area (centred on 56°40′49″N, 16°33′58″E) covers approximately 22.5 km2 and is located 

on the Baltic island of Öland in SE Sweden (Figure 1A). The bedrock consists of Cambro-Silurian 

limestone, the average elevation is approximately 36 m above sea level, and the overall topography is 

flat [48]. The area is crossed by a few low ridges of glaciofluvial deposits. The mean annual temperature 

is 7 °C and the mean annual precipitation is 468 mm [48]. The present-day landscape consists of  

a mosaic of arable fields, villages, forests, and grasslands. The majority of the grasslands are grazed, 

with varying intensity, mainly by cattle. 

Detailed information on the historical land use within the study area is available [49]. Whereas the 

study area was dominated by grasslands during the 18th century [49], most (>80%) of the ancient 

grasslands have been transformed to arable land during the last 300 years [49]. Approximately 15% of 

the current grasslands have developed during the last 50 years on previously arable land [49]. 

2.2. Grassland Sites and Grassland Age-Classes 

Using historical and present-day land-use maps, aerial photographs [49] and field inventories,  

we identified 299 grazed grassland sites that were separated from each other and the surrounding 

landscape by walls or fences. With the help of geographic information system (GIS) overlay analysis 

of the land-use maps and aerial photographs, the sites were categorized according to their grazing 

continuity (grassland age) and assigned to one of three age-classes within the arable-to-grassland 
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succession; 5–15 (young grasslands), 16–50 (intermediate-aged grasslands), and >50 (old grasslands) 

years of grassland continuity (Figure A1). 

Figure 1. (A) The Jordtorp study area on the Baltic Island of Öland, Sweden;  

(B) The distribution of grassland sites included in the present study; (C) An example of the 

distribution of field sample plots within grassland sites. 

 

Within each site, two sampling points were randomly positioned in open (not covered by shrubs or 

trees) grassland vegetation, with the constraints that they should be at least 25 m apart (to minimize 

effects of spatial autocorrelation in the vegetation), at least 13.5 m from the site boundary (to minimize 

edge-effects in the vegetation [50]), and at least 13.5 m from shrubs or trees higher than 50 cm  

(to minimize shading-effects). In total 239 grassland sites (89 young, 73 intermediate, and 77 old) out 

of the 299 sites could accommodate these constraints. From these 239 grassland sites, we randomly 

selected 60 sites (20 young, 20 intermediate, and 20 old). Within these 60 sites, a bioassay approach 

(cf. [51,52]) based on indicator species (such as Sesleria caerulea and Molinia caerulea) was used to 

define sites with “dry” grassland vegetation, and exclude moister grassland vegetation. A total of 52 sites 

(17 young, 18 intermediate, and 17 old) out of the 60 sites were characterized by dry grassland 

vegetation and used for the vegetation and remote sensing sampling (Figure 1B). Of the 17 “old” sites, 

13 sites had a management continuity of >280 years [49]: the vegetation in these sites falls within the 

Natura 2000 habitat type “Fennoscandian lowland species-rich dry to mesic grasslands”. 

A hand-held differential global positioning system (DGPS) receiver (Topcon GRS-1 GNSS, 

equipped with a PG-A1 external antenna (Topcon Corporation, Japan)) connected to a real-time 

positioning service (SWEPOS) was used to log (with an accuracy of ~1 cm) the ground coordinates of 

the two sampling points within each of the 52 grassland sites. The sampling points were divided into 
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two data sets (a training and a validation data set) by randomly assigning the two sampling points from 

each site to one or other of the two data sets (Figure 1C). 

2.3. Plant Community Characteristics 

Vegetation sampling was carried out between 15 May and 15 July 2011. A 1 m × 1 m plot was 

centred over each of the two sampling points within each of the 52 sites. Each of the 104 (1 m × 1 m) 

plots was divided into a grid of 100 (10 cm × 10 cm) sub-plots, and the presence of all non-woody 

vascular plants was recorded within each sub-plot (Table A1). For each 1 m × 1 m plot, the frequency 

of each species was calculated as the number of sub-plots in which the species was present. 

The plant species recorded in the 1 m × 1 m plots were assigned values for SLA and two Ellenberg 

indicator values (for nutrients and moisture availability). The trait information was compiled from the 

LEDA trait database [53], which provides species-level SLA values that represent aggregated trait 

values. The LEDA values are based on multiple individuals per species, measured under different 

environmental conditions. Trait data were not available for the full set of species (n = 185) in the 

present study. For SLA, previous grassland studies have shown that imputation methods based on 

multiple imputation by chained equations may be used for filling gaps in functional trait databases [54]. 

Following Taugourdeau et al. [54], estimates for missing values (approximately 9% of the species) 

were obtained using the multivariate imputation by chained equation (MICE) method [33,55,56]. 

Ellenberg indicator values were extracted from the JUICE database [57]: values for the four species 

that were not found in the database were extracted from Ellenberg et al. [58]. A frequency-weighted 

mean value (CWM) [35] was calculated, for SLA and each of the Ellenberg values, for each plant 

community: = ∑ × , where pi is the relative frequency of the ith species and xi is the 

trait or Ellenberg index value of the iith species. 

The percentage ground cover of grasses was estimated within four 50 cm × 50 cm sub-plots within 

each 1 m × 1 m plot, and a mean within-plot value for grass cover (excluding dead litter) was 

calculated for each plot. 

2.4. Remote Sensing Data 

Remote sensing data over the study area were acquired on 9 July 2011. Twenty-five flight lines 

were recorded at around solar noon, using two airborne HySpex hyperspectral spectrometers (Norsk 

Elektro Optikk AS (NEO), Lörenskog, Norway), and a push-broom scanning mode at a flight altitude 

of approximately 1500 m. The flight was carried out by Terratec AS, Lysaker, Norway. All flight lines 

were conducted either from north to south or from south to north to minimize illumination effects.  

The output from the two HySpex spectrometers (VNIR-1600 operating over the 414 to 991 nm range 

and SWIR-320m-e operating over the 966 to 2501 nm range) consisted of 416 wavebands with spectral 

resolutions of 3.7 nm (VNIR-1600) and 6.0 nm (SWIR-320m-e) (Figure 2). The spatial resolution 

(pixel size) of the image captured from the VNIR-1600 spectrometer was 0.5 m × 0.5 m and the spatial 

resolution of the SWIR-320m-e image was 1.0 m × 1.0 m. A digital elevation model (DEM) was 

created with the help of LiDAR data recorded during the flight. 
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Figure 2. Hyperspectral data cube showing examples of data associated with (A) young; 

(B) intermediate-aged; and (C) old grassland sites within a subarea of 0.71 km2 within the 

Jordtorp study area (see Figure 1B). The colour-composite on the top was obtained using 

three hyperspectral wavebands (861 nm, 651 nm, and 549 nm). 

 

2.4.1. Pre-Processing of HySpex Data 

Physically based atmospheric correction of the HySpex data was carried out with the help of the 

ATCOR-4 software [59], which is based on the radiative transfer model MODTRAN 5 [60].  

In accordance with the standard procedure in the ATCOR-4 software, the following atmospheric 

parameters were used during the correction process: desert aerosol model, water vapour column  

of 1.0 g·m−2, visibility of 28.4 km, and an ozone concentration of 330 Dopson units. The conversion of 

radiance into reflectance was based on the Fontenla-2011 solar irradiance spectrum [61,62]. While the 

overall topography within the study area is flat, there are local differences in elevation. To account for 

surface elevation, slope, and orientation, the correction for topographic illumination effects was carried 

out in the “rugged terrain” model of the ATCOR-4 software using the DEM created with the help of 

the LiDAR data recorded during the flight. The spectral data acquired with the help of the VNIR-1600 

spectrometer were resampled to a spatial resolution of 1 m × 1 m (with the help of a triangulated 

nearest neighbourhood method) and to a spectral resolution of 6.0 nm (by LOESS interpolation) to 

match the data collected from the SWIR-320m-e spectrometer. A Savitzky-Golay smoothing  

filter [63], with a degree of 3 and a width of 9 was used to reduce the effect of random noise in the 

spectral data. Following [64], brightness normalization was carried out to dampen differences in the 
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brightness of the spectra caused by subpixel shade. The interpolation was done using the hyperSpec 

package [65] and the filtering was done using the signal package [66] in the R statistical  

environment [67]. The images were orthorectified by the HySpex data providers (Terratec AS, 

Lysaker, Norway) using the PARGE software [60] to a spatial accuracy of approximately 0.3 m for 

both the VNIR-1600 and SWIR-320m-e spectral bands. 

2.4.2. Extracting HySpex Data 

Spectral bands that (i) overlapped between the two spectrometers (962–985 nm) and (ii) were in 

spectral domains that are strongly influenced by atmospheric water vapour absorption (1321–1443 nm, 

1803–2032 nm and 2420–2501 nm) were deleted (cf. [68,69]). A pixel window of 3 × 3 pixels (3 m × 3 m) 

for the remaining 269 bands (414–2417 nm) was centred on each of the 52 coordinate points associated 

with the training and validation data sets. The mean spectral value for each of the 269 HySpex bands 

was calculated for the pixels falling within each of the 104 pixel windows. 

2.5. Statistical Analyses 

2.5.1. Partial Least Squares Discriminant Analysis 

PLS regression [43] allows statistical analysis of data sets where the explanatory variables are 

strongly correlated and where the number of explanatory variables is similar to or higher than the 

number of samples [70,71]. Whereas the use of a high number of inter-correlated explanatory variables 

may influence random noise, which, in its turn, may lead to model overfitting and reduced model 

accuracy, PLS regression builds on the assumption that only a few variables influence the process that 

is under study. By combining the information in a large number of inter-correlated explanatory variables 

into a few latent components, the risk of model overfitting is reduced in PLS [72]. The latent variables 

(LVs) are identified by finding the loading weights for each explanatory variable that maximize the 

covariance between the explanatory variables and the dependent variables. In the case of binary 

dependent variables, the PLS algorithm [43] can be used for discriminatory purposes [73]. 

A PLS-DA based on hyperspectral data and vegetation data was carried out to assess whether (i) the 

three grassland age-classes can be classified with the help of HySpex data, and (ii) it is possible to 

identify a subset of HySpex wavebands that can be used for the classification of the grassland  

age-classes. Two PLS-DA models—Model 1 developed from the full set of HySpex bands and Model 2 

from a subset of HySpex bands—were generated and the capabilities of the two models for classifying 

grassland age-classes were compared. 

The two models were developed using a similar PLS-DA-based procedure. Initially, a binary 

membership vector was built for each grassland age-class individually. For each of the three individual 

grassland age-class membership vectors, each individual plot was defined as 1 (belonging to  

a particular age-class) or 0 (not belonging to a particular age-class). The three membership vectors 

were used to build the dependent matrix. The explanatory matrix was generated from the HySpex 

bands representing the plots associated with the training data set (n = 52). An increasing number of 

latent variables will normally improve the predictive capability of a PLS-DA model because several 

variables can carry more information than a few [74]. However, because too many latent variables can 
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overfit the final model, the optimal number of latent variables needs to be identified (cf. [75]). In the 

present study, the number of latent variables that gave the lowest misclassification rate was used in the 

final model. 

The training data sets associated with the two models were used to quantify their accuracies for 

classifying grassland age-classes with the help of tenfold cross-validated discriminant analysis.  

The validation data sets associated with the models were used to evaluate them for the training data 

sets by fitting the final cross-validated PLS-DA models of the training data sets to the validation data 

sets. The calculations were implemented in the R statistical environment [67] using the pls package [76]. 

2.5.2. Explanatory Matrices Used in the Two PLS-DA Models 

The explanatory matrix used for Model 1 included 269 spectral bands. The relative importance of 

each individual predictor variable (i.e., each HySpex band) in Model 1 was described by the variable 

importance in projection (VIP) value [77]. The HySpex bands associated with VIP values greater than 

0.8 (cf. [78]) in Model 1 were assigned to a subset of spectral bands. The explanatory matrix used for 

Model 2 was then based on the subset of HySpex bands. 

2.5.3. Accuracies of the PLS-DA Models Used for the Classification of Grassland Age-Classes 

Two approaches were used to quantify the ability of each of the two PLS-DA models to classify 

grassland age-classes: 

(i) Tenfold cross-validation was used on the training data set and a confusion matrix was created to 

assess the accuracy of the HySpex based classification of the three grassland age-classes. With the help 

of the confusion matrix, the producer’s accuracy and the user’s accuracy were calculated for each  

age-class. The producer’s accuracy refers to the probability that a plot associated with a specific 

grassland age-class on the ground will be assigned to the correct age-class on the basis of the grassland 

spectral response acquired from the plot. The user’s accuracy represents the probability that  

a grassland plot classified (with the help of the grassland spectral response acquired from the plot)  

as belonging to a specific grassland age-class is associated with this class on the ground. The overall 

prediction accuracy and the Kappa statistic value [79,80], which assesses the interclassifier agreement, 

were also calculated from the confusion matrix. 

(ii) The final cross-validated model of the training data set was fitted to the validation data set and 

used to classify the age-class of each plot associated with the validation data set. The predictive 

capability of the PLS-DA model was investigated by calculating the producer’s and user’s accuracy for 

each age-class associated with the validation data set. The overall prediction accuracy and Kappa 

statistic value [79,80] for the classification results based on the validation data set were also calculated. 

3. Results 

3.1. Classification Based on the Full Set of 269 HySpex Wavebands (Model 1) 

The misclassification rate decreased progressively with the number of latent variables (from 57.7% 

with one latent variable), reaching a minimum (30.8%; Figure 3) with the first four latent variables 

before increasing again. We used the first four latent variables in the final model. 
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The producer’s and user’s classification accuracies for the individual grassland age-classes varied 

between 47% and 100% for the training data set, and between 65% and 94% for the validation data set 

(Table 1). 

The overall classification accuracy and the Kappa statistic value were 77% and 0.65, respectively, 

for both the training and the validation data set (Table 1). 

Figure 3. The relationship between the number of LVs and the misclassification rate in 

Model 1 (the PLS-DA model developed from the full set of HySpex hyperspectral 

wavebands) (n = 269). Tenfold cross-validation was used to determine the lowest 

misclassification rate on the training data set. The arrow indicates the optimal (giving the 

lowest misclassification rate) number of LVs.  

 

Table 1. Confusion matrix produced from Model 1 (the partial least squares discriminant 

analysis (PLS-DA) model based on the full set of HySpex hyperspectral wavebands)  

(n = 269). The producer’s and user’s classification accuracies are shown for the training and 

the validation data for each of three grassland successional stages, represented by young  

(n = 17), intermediate-aged (n = 18), and old (n = 17) grassland plots. Values in bold 

represent the number of correctly classified grassland plots. 

Grassland Age-Class  
Classified from HySpex Data 

Grassland Age-Class as Derived from Land-Use Maps, 
Field Inventories, and Aerial Photographs 

Training Data Set Young Intermediate Old User’s Accuracy (%) 

Young 8 0 3 73 
Intermediate 6 18 0 75 

Old 3 0 14 82 

Producer’s accuracy (%) 47 100 82  

Validation data set     
Young 11 0 5 69 

Intermediate 4 17 0 81 
Old 2 1 12 80 

Producer’s accuracy (%) 65 94 71  

For the training data set: overall classification accuracy = 77%, Kappa statistic value = 0.65. For the 

validation data set: overall classification accuracy = 77%, Kappa statistic value = 0.65. 
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3.2. The HySpex Wavebands That are Most Important for the Classification of Grassland Age-Classes 

The VIP value is an indicator of the relative influence of each predictor in a PLS model. Out of the 

269 HySpex bands used as explanatory variables in the PLS-DA model, 177 bands had VIP values 

greater than 0.8, indicating that these bands were the most important predictor variables in the remote 

sensing-based classification of grassland age-classes (Figure 4). In total, 14 wavebands in the blue 

region (414–499 nm), 16 wavebands in the green region (505–596 nm), 20 wavebands in the red 

region (602–716 nm), 17 wavebands in the red-edge portion (722–818 nm), 23 wavebands in the NIR1 

part (824–969 nm), 39 wavebands in NIR2 part (975–1394 nm), and 48 wavebands in the SWIR 

portion (1448–2417 nm) of the electromagnetic spectrum were associated with VIP scores greater than 

0.8 (Figure 4). 

Figure 4. VIP values as a function of the wavelengths used in Model 1 (the PLS-DA 

model developed from the full set of HySpex hyperspectral wavebands) (n = 269).  

The higher the VIP value of a waveband, the greater its contribution to the model.  

The most influential wavebands in the PLS-DA model (with VIP values >0.8) are marked 

in red. The orange, green, and blue lines represent the scaled mean spectral reflectance 

curves obtained using the training subsets for young, intermediate-aged, and old grassland 

plots, respectively. 

 

3.3. Classification Based on a Reduced Set of HySpex Wavebands (Model 2) 

The subset of HySpex bands used to develop Model 2 included the 177 spectral bands that were 

associated with VIP values greater than 0.8 in the model based on the full set of 269 HySpex bands. 

The inclusion of four latent variables gave the lowest misclassification rate in the second PLS-DA model. 
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The producer’s and user’s classification accuracies for the individual grassland age-classes for 

Model 2 varied between 65% and 94% for the training data set (Table 2). The classification accuracies 

for the individual grassland age-classes for the validation data set ranged between 74% and 94% 

(Table 2). The overall classification accuracy and the Kappa statistic value were 81% and 0.71, 

respectively, for the training data set and 85% and 0.77, respectively, for the validation data set (Table 2). 

For the validation data sets, the overall classification accuracy and the Kappa statistic value were 

higher for Model 2 than for Model 1 (Tables 1 and 2). The differences in classification accuracies 

between the two models were 8% for the overall accuracy and 0.12 for the Kappa statistic value 

(Tables 1 and 2). 

Table 2. Confusion matrix produced from Model 2 (the PLS-DA model based on a subset 

of HySpex hyperspectral wavebands) (n = 177). The producer’s and user’s classification 

accuracies are shown for the training and the validation data for each of three grassland 

successional stages, represented by young (n = 17), intermediate-aged (n = 18), and old  

(n = 17) grassland plots. Values in bold represent the number of correctly classified 

grassland plots. 

Grassland Age-Class 
Classified from HySpex-Data 

Grassland Age-Class as Derived from Land-Use  
Maps, Field Inventories, and Aerial Photographs 

Young Intermediate Old User’s accuracy (%) 
Training data set 

Young 11 1 2 79 
Intermediate 3 17 1 81 

Old 3 0 14 82 
Producer’s accuracy (%) 65 94 82  

Validation data set 
Young 14 2 3 74 

Intermediate 1 16 0 94 
Old 2 0 14 88 

Producer’s accuracy (%) 82 89 82  

For the training data set: overall classification accuracy = 81%, Kappa statistic value = 0.71. For the 

validation data set: overall classification accuracy = 85%, Kappa statistic value = 0.77. 

3.4. Plant Community and Spectral Characteristics of Grasslands Representing Different Age-Classes 

The first four latent variables (LV1–LV4) in Model 2 explained 34%, 41%, 12%, and 10% of the 

variation in the explanatory matrix (spectral data), respectively. Old (negative scores) and 

intermediate-aged (positive scores) grassland plots were separated on the first latent variable (LV1), 

whereas LV2 discriminated between young (positive scores) and intermediate-aged (negative scores) 

plots (Figure 5A). 

Correlation coefficients between the scores for grassland plots on the first two latent variables,  

and the ecological variables (SLA, Ellenberg indicator value for nutrients and moisture availability, 

and the percentage cover of grasses) were calculated with the help of multiple regressions.  

Significance values for the correlation coefficients were based on 9999 permutations. The correlation 

coefficients are represented as arrows in Figure 5A, with the direction and length of the arrow 

indicating, respectively, the sign and the strength of the correlation coefficient. The scores for the 
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grassland plots were significantly associated with the mean within-plot Ellenberg indicator values for 

nutrient availability (p = 0.010), and with the within-plot cover of grasses (p = 0.045). The young plots 

were characterized by the highest and the old plots by the lowest indicator values for nutrients, 

whereas the intermediate-aged plots were characterized by the highest cover of grasses (Figure 5A). 

The mean within-plot SLA and Ellenberg indicator value for moisture were not significantly associated 

with the plot scores in the PLS-DA. 

Figure 5. Plots of the first two latent variables from Model 2 (the PLS-DA model based on 

177 HySpex wavebands) using the training data set. (A) Arrows representing the 

correlation coefficients between the score values for grassland plots and the values for four 

ecological variables (Ellenberg indicator value for nutrient (Nutrients) (p = 0.010) and 

moisture availability (Moisture) (p = 0.053), specific leaf area (SLA) (p = 0.087),  

and cover of grasses (Grasses) (p = 0.045); (B) Loadings for individual HySpex wavebands 

coloured into seven spectral regions (blue (414–499 nm), green (505–596 nm),  

red (602–716 nm), red-edge (722–818 nm), NIR1 (824–969 nm), NIR2 (975–1394 nm), 

and SWIR (1448–2417 nm)). 

 

The old plots were associated with negative loadings for the blue, red, and SWIR regions on the 

first latent variable, and the intermediate-aged plots were associated with positive loadings for the  

red-edge and NIR1 regions (Figure 5B). The old plots, which are characterized by lower indicator 

values for nutrients than the intermediate-aged plots (Figure 5A), had higher reflectance values than 

the intermediate-aged plots in the blue, red, and SWIR regions. The intermediate-aged plots, which are 

characterized by higher cover of grasses than the old plots (Figure 5A), had higher reflectance values 

than the old plots in the green, red-edge, and NIR1 regions (Figure 5B). 

On LV2, the young plots were associated with positive loadings for the red-edge, NIR1, and NIR2 

regions, while the intermediate-aged plots were associated with negative loading for the green region 

(Figure 5B). The young plots, which are characterized by higher indicator values for nutrients than the 

intermediate-aged plots (Figure 5A), had higher reflectance values than the intermediate-aged plots in 

the red-edge, NIR1, and NIR2 regions (Figure 5B). The intermediate-aged plots, which are characterized 
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by higher cover of grasses than the young plots (Figure 5A), had higher reflectance than the young 

plots in the green region (Figure 5B). 

Species lists for each of the three grassland age-classes are provided in Table A1 (Supporting 

information). Figure A1 (Supporting information) shows a field photograph of a sample plot 

representing each of the three grassland age-classes. 

4. Discussion 

4.1. PLS-DA Based Classification of Grassland Age-Classes 

The three age-classes in our study were successfully classified using a pre-selected set of 

hyperspectral wavebands and PLS-DA, indicating that fine-scale hyperspectral measurements are able 

to accurately identify grassland successional stages within a local landscape. Our results are consistent 

with those of earlier studies of other types of vegetation that also show that the exclusion of wavebands 

that provide little information related to the response variable improves the PLS-DA based 

classification of plant communities [47,81]. For example, using airborne AISA Eagle hyperspectral 

imagery, Peerbhay et al. [47] showed that a PLS-DA model based on the 78 wavebands that were most 

relevant for the classification of forest species gave 8.17% higher overall classification accuracy than a 

model utilising all 230 AISA Eagle wavebands. Our results are also consistent with the results of  

Peerbhay et al. [47] in that they show that a high number of hyperspectral wavebands can be 

compressed into a few latent variables with the help of PLS, reducing the risk of model overfitting and, 

at the same time providing a successful classification of different vegetation types. 

4.2. Spectral Dissimilarities between Grasslands Belonging to Different Age-Classes 

The majority of the present-day grazed grasslands in Sweden originate from abandoned arable 

fields that have been cultivated as leys [82] and seeded with grasses, such as Lolium perenne, Festuca 

pratensis, Poa pratensis, and Phleum pratense (cf. [83]). The effects of the addition of nutrients during 

arable cultivation may persist during the early stages of the arable-to-grassland succession [84,85]. 

Recently cultivated fields, such as the young grasslands in our study (Figure 5A), are generally 

characterized by a high availability of nutrients that allows nitrophilous and ruderal species  

(fast growing and disturbance-tolerant species) to invade and restricts the establishment of less 

competitive species during early succession (cf. [33]). Early-successional grasslands are typically 

characterized by species that are adapted to nutrient-rich environments (e.g., Dactylis glomerata,  

Poa pratensis, and Geranium molle [86]) and nutrient-rich vegetation commonly contains plants with  

a relatively high SLA [87]. An increased availability of nutrients may result in greater above-ground 

production of biomass (cf. [85]), which, in its turn, influences the light conditions within the vegetation 

canopy: an increased leaf area represents a common adaptation to low light environments [38,88]. 

Residual effects of fertilization during arable cultivation may still persist within the intermediate-aged 

grasslands in our study (cf. [84,85]). However, the fact that continuous grazing management contributes 

to the removal of nutrients explains the reduced abundance of nitrophilous species during the second 

successional time step. Previous investigations within the study area have shown that grasslands with  

a grazing continuity of 16–50 years (corresponding to the intermediate-aged grasslands in the present 
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study) are characterized by significantly lower community mean values for SLA than grasslands that 

have been grazed for 5–15 years (corresponding to the young grasslands in the present study) [33]. 

During the third successional time step, a long continuity of grazing management has contributed to 

a substantial reduction of nutrient levels, allowing species with a low competitive ability to establish in 

the old grasslands. Purschke et al. [33] showed that, within the study area, values of community-level 

SLA are lower in grassland sites that have been grazed for more than 51 years (corresponding to the 

old grasslands in the present study) than in sites with a shorter grazing continuity. Long grazing 

continuity is essential for the maintenance and establishment of species-rich ancient grassland 

vegetation characterized by, for example, Festuca ovina and Helianthemum nummularium [89]. 

Changes in habitat conditions during the arable-to-grassland succession have been shown to be 

accompanied by changes in plant functional composition and vegetation properties within the same 

study area [33,90]. In addition, changes in, for example, leaf nitrogen content, SLA, leaf chlorophyll 

content, leaf water content, and above-ground biomass have shown to be followed by changes in the 

vegetation spectral response within a range of different habitats [26,91–93]. For example, previous 

remote sensing studies have revealed that differences in leaf nitrogen content have strong influence on 

the reflectance from vegetation across the electromagnetic spectrum (visible (400–700 nm) [94],  

NIR (700–1300 nm) [95], SWIR (1300–2500 nm) [96]). The red-edge region has, been used to 

estimate the nitrogen concentration in ryegrass (Lolium spp.) [97], and SLA has previously been 

shown to influence reflectance in several wavebands. For example, Lymburner et al. [98] estimated 

SLA at the landscape scale with the help of broadband satellite data, and Asner et al. [99] showed that 

hyperspectral measurements were related to the SLA of tropical forest leaves. The SWIR wavelengths 

have been shown to be most important for estimation of leaf mass per area (the inverse of SLA [100]). 

In the present study, differences in ecological variables (availability of nutrients and cover of 

grasses) between grassland age-classes are associated with differences in the spectral response from 

the grasslands (Figure 5). The low blue (414–499 nm) as well as the red (602–716 nm) and the high 

red-edge (722–818 nm) reflectance for the young plots (Figure 5B) suggest that these plots have  

a higher chlorophyll content in the vegetation than the old plots. Earlier remote sensing studies have shown 

that the chlorophyll content in grasslands can be assessed at both fine and landscape scales [46,101], 

and Darvishzadeh et al. [46] used the red-edge region to map canopy chlorophyll content in 

heterogeneous grasslands. 

The higher cover of grasses (excluding dead litter) in the intermediate-aged plots compared with the 

young and old plots can be expected to lead to higher green (505–596 nm) reflectance in the 

intermediate-aged plots. Spectral measurements near the green reflectance peak at 550 nm have 

previously been shown to be important for the classification of vegetation communities (e.g., [47]). 

The high red-edge (722–818 nm) and NIR1 (824–969 nm) reflectance for the young and 

intermediate-aged plots suggest that these plots were associated with larger above-ground biomass 

than the old plots (cf. [45]). The low NIR2 (975–1394 nm) reflectance for the intermediate-aged and 

the low SWIR (1448–2417 nm) reflectance for the young plots indicate that these were characterized 

by higher canopy moisture than the old plots. The SWIR wavelengths are strongly affected by water 

absorption [100]; in particular, the moisture-sensitive bands around 1200 nm (located in the NIR2 

region in the present study) have been shown to be sensitive to the water content of vegetation in 

mixed woodland [102] and in grasslands [68]. 



Remote Sens. 2014, 6 7747 

 

 

Trampling by grazing animals is likely to lead to differences in the cover of bare soil between the 

different age-classes. Spectral dissimilarities between the grasslands belonging to different successional 

stages may also be explained by between-site edaphic dissimilarity (cf. [103]). The red part of the 

visible electromagnetic spectrum has been shown to be highly influenced by variation in soil  

properties [104]. Furthermore, increased levels of shading are expected within the vegetation cover as 

the above-ground biomass increases. Increased amounts of shadow are accompanied by a decrease in 

reflectance in all wavebands [105]. The presence of shadows may also have contributed to  

between-stage spectral dissimilarities in the present study. Monocotyledonous plants, such as grasses, 

have a compact leaf mesophyll structure, and a lower reflectance in the NIR than plants with a more 

porous mesophyll structure [106]. The high cover of grasses within the intermediate-aged grasslands in 

our study may have contributed to between-grassland stage spectral differences in the NIR.  

Grazing management decreases the accumulation of dead above-ground biomass [107] and the amount 

of litter has shown to affect the spectral response of grassland vegetation [108]. Our different-aged 

grassland plots—characterized by different continuity of grazing—may be expected to be associated 

with different amount of litter, which, in its turn, may have contributed to the spectral dissimilarities 

between the plots. 

The results of our study are consistent with the results from previous ecological studies,  

which show that plant community characteristics such as the cover of grasses and community-weighted 

mean Ellenberg indicator values for nutrient availability, change during grassland succession [34,109]. 

The results of the present study also agree with those of previous interdisciplinary studies within 

remote sensing and ecology. Earlier studies have shown, for example, that hyperspectral reflectance 

measurements in grasslands are related to community-weighted mean Ellenberg indicator values for 

nutrient availability and for plant functional traits, such as SLA [12,32,93]. 

Although the accuracy of the predictions we obtained using models 1 and 2 were high,  

some grassland plots in our sample study were not classified correctly by either model. There are  

a number of possible reasons for this discrepancy. First, we conducted the spectral measurements in 

early July, when leaf senescence in response to summer drought is likely to have reduced the spectral 

differences between grassland age-classes. Second, hyperspectral images are known to be affected by 

radiometric noise [110]. While we used the commonly applied Savitzky-Golay filter [63],  

other denoising methods, such as the Minimum Noise Fraction (MNF) transform [111], might have 

improved the noise-reduction in our data. Thirdly, PLS-DA may not be the most optimal method for 

classifying grassland age-classes. Other classification methods, such as artificial neural networks or 

support-vector machines (cf. [112]), which are able to take into account non-linear relationships 

between dependent and explanatory variables, might provide better discrimination between grassland 

successional stages. 

4.3. Future Directions 

Future research targeting the improvement of hyperspectral methods for classifying grassland 

successional stages may include the development of vegetation spectral indices (e.g., [93]),  

which could potentially provide enhanced information on the plant community characteristics 

associated with different grassland successional stages. There is also a need for studies that focus on 
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the development of classification methods for discriminating between age-classes at the scale of entire 

grassland sites. In addition, in order to be able to develop the possible use of hyperspectral data as  

a source of information within ecological research, we need a better understanding of the ways in 

which different plant community variables (characterizing different grassland successional stages) 

influence the hyperspectral response. The spectral response of vegetation canopies changes over the 

vegetation period as a result of temporal variation in the biochemical and structural properties that 

influence the reflectance of the vegetation canopy [44]. Additional studies will need to explore 

seasonal variation in the relationships between hyperspectral data and plant community variables. 

5. Conclusions 

In the present study we demonstrate that remote sensing data, acquired with the help of two 

airborne HySpex hyperspectral spectrometers (together covering 414 to 2501 nm), can be used to 

discriminate between dry grassland vegetation associated with different stages of arable-to-grassland 

succession within a local agricultural landscape in Sweden. Differences between the spectral responses 

of different grassland successional stages were associated with differences in the Ellenberg indicator 

value for nutrient availability and in the ground-cover of grasses. 

We analysed the hyperspectral data using partial least squares discriminant analysis—a recently 

introduced method for the remote sensing-based classification of vegetation (e.g., [47])—and 

successfully classified grasslands into three different grassland age-classes, representing 5–15, 16–50, 

and >50 years of grazing management, respectively. We used an independent validation dataset to 

evaluate the classification-accuracy of our method. 

The study shows that the variable importance in projection method [77] can be used to identify the 

wavebands that are the most important predictor variables in the hyperspectral classification of 

grassland age-classes. The accuracy of a partial least squares classification based on a subset of 177 

wavebands, identified with the help of the variable importance in projection approach as those that 

were most important for discriminating between successional stages, was 85% (8% higher than for  

a classification based on the full set of 269 bands). Among the 177 hyperspectral wavebands that gave 

the most efficient discrimination between grassland age-classes, 50 wavebands were located in the 

visible region (414–716 nm), 79 wavebands in the red-edge to near-infrared regions (722–1394 nm), 

and 48 wavebands in the shortwave infrared region (1448–2417 nm) of the electromagnetic spectrum. 

The fact that the best wavebands for discriminating between grassland age-classes fell within the 

operating range of both the HySpex VNIR-1600 spectrometer (414 to 991 nm) and the HySpex  

SWIR-320m-e spectrometer (966 to 2501 nm) suggests that data from specific wavebands covering the 

full 400–2500 nm spectral range are likely to provide the best classification of grassland successional 

stages. Our results also show that the partial least squares-based classification procedure is a suitable 

method for the classification of grasslands successional stages, allowing a large number of hyperspectral 

wavebands to be compressed into a few latent variables while decreasing the risk of model overfitting. 

In our study, the first four latent variables explained approximately 97% of the variation in the  

spectral data. 

A recent horizon-scan review [16] identifies 15 issues, or emerging topics, that are expected to have 

increasingly important implications for the global conservation of biological diversity, and which 
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require wider consideration. The potential use of remote sensing-based techniques for monitoring land 

cover change is recognized as one of the 15 topics, and the review identifies the need to develop 

remote sensing methods for monitoring land cover change at detailed spatial scales and over large 

areas. Native grasslands are specifically mentioned as a type of land cover that is currently relatively 

difficult to monitor with the help of remote sensing techniques [16]. The results of the present study 

demonstrate that airborne hyperspectral data are capable of capturing detailed-scale information that 

discriminates between grassland plant communities representing different stages of an arable-to-grassland 

succession within a local landscape—suggesting that a similar approach may hold promise for the 

remote sensing-based mapping of grasslands belonging to different successional stages over larger areas. 

There are a number of possible ways in which the methodology that we used might be improved in 

future studies. For example, whereas the present study was based on remote sensing data from a single 

time-point, a multi-temporal approach is likely to improve the ability to discriminate successfully 

between grasslands belonging to different successional stages. Future studies should use spectral data 

collected at different time-points during the vegetation season. In our study, we only used one method 

(the Savitzky-Golay filter) to reduce radiometric noise in the hyperspectral data: subsequent studies 

should explore the relative efficiencies of different denoising methods. Finally, because aerial remote 

sensing systems have a smaller coverage area than satellite-based remote sensing systems,  

future studies should investigate the possibility of using hyperspectral satellite data, for example data 

acquired with the help of the Hyperion satellite [113] and the planned EnMAP satellite [114],  

for monitoring grassland successional stages over wider areas in agricultural landscapes. 
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Appendix 

Table A1. List of recorded species (taxa). The presence (1) and absence (0) for each species 

within grasslands of 5–15 (Yng), 16–50 (Int) and >50 (Old) years of grazing management. 

Nomenclature mainly follows Mossberg & Stenberg (2010) [115]. 

Species (Taxon) Yng Int Old 

Achillea millefolium 1 1 1 
Agrimonia eupatoria 0 1 1 
Agrostis capillaris 1 1 1 

Agrostis gigantea/stolonifera 1 1 1 
Agrostis vinealis 1 1 1 
Alchemilla sp. 1 1 1 

Allium vineale/oleraceum 1 1 1 
Alopecurus pratensis 0 1 0 

Anagallis arvensis 0 1 0 
Anthemis arvensis 1 1 1 

Anthoxanthum odoratum 1 1 1 
Anthriscus sylvestris 1 0 0 
Anthyllis vulneraria 1 1 1 
Aphanes arvensis 1 1 1 

Arabidopsis thaliana 0 1 1 
Arabis hirsuta 1 1 1 

Arenaria serpyllifolia 1 1 1 
Arrhenatherum elatius 1 1 1 
Artemisia absinthium 1 1 1 
Artemisia campestris 0 0 1 

Asperula tinctoria 0 0 1 
Barbarea vulgaris 1 0 0 

Bellis perennis 1 1 1 
Brachypodium sylvaticum 0 1 0 

Briza media 1 1 1 
Bromopsis erecta 1 1 0 

Bromopsis inermis 1 1 0 
Bromus hordeaceus 1 1 1 

Campanula persicifolia 1 1 1 
Campanula rotundifolia 0 0 1 
Capsella bursa-pastoris 1 1 1 

Cardamine hirsuta 0 0 1 
Carex caryophyllea/ericetorum 0 1 1 

Carex echinata 0 1 0 
Carex flacca 1 1 1 
Carex hirta 0 1 0 

Carex spicata group 1 0 0 
Carex sylvatica 1 1 0 

Carex tomentosa 0 0 1 
Carlina vulgaris 1 1 1 
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Table A1. Cont. 

Species (Taxon) Yng Int Old 

Centaurea jacea 1 1 1 
Centaurea scabiosa 1 1 1 

Centaurium erythraea 0 1 0 
Cerastium sp. 1 1 1 

Cerastium arvense 1 1 0 
Chenopodium album 0 1 0 
Cichorium intybus 1 1 0 

Cirsium acaule 1 1 1 
Cirsium arvense 1 1 1 

Convolvulus arvensis 1 1 1 
Crepis tectorum 1 1 1 

Cynosurus cristatus 1 1 1 
Dactylis glomerata 1 1 1 

Daucus carota 1 1 1 
Deschampsia cespitosa 0 1 0 

Dianthus deltoides 1 1 1 
Draba muralis 1 1 1 

Elytrigia repens 1 1 1 
Erodium cicutarium 1 0 1 

Erophila verna 0 0 1 
Falcaria vulgaris 1 0 0 

Festuca ovina 1 1 1 
Festuca pratensis 1 1 1 

Festuca rubra 1 1 1 
Filipendula vulgaris 0 1 1 

Fragaria vesca/viridis 1 1 1 
Gagea sp. 0 1 0 

Galium album 1 1 1 
Galium boreale 0 1 1 
Galium verum 1 1 1 

Geranium columbinum 1 1 1 
Geranium dissectum 1 0 0 

Geranium molle 1 1 1 
Geum urbanum 1 1 1 

Helianthemum nummularium 0 0 1 
Helianthemum oelandicum 0 0 1 

Helictotrichon pratensis 0 1 1 
Helictotrichon pubescens 1 1 1 

Herniaria glabra 1 0 0 
Hypericum perforatum 1 1 1 
Hypochoeris radicata 1 1 0 

Knautia arvensis 1 1 1 
Lactuca serriola 0 0 1 
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Table A1. Cont. 

Species (Taxon) Yng Int Old 

Lapsana communis 0 1 0 
Lathyrus pratensis 1 0 0 

Leontodon autumnalis 0 1 0 
Leucanthemum vulgare 1 1 1 

Linaria vulgaris 0 1 1 
Linum catharticum 1 1 1 

Listera ovata 1 0 0 
Lolium perenne 1 1 1 

Lotus corniculatus 1 1 1 
Luzula campestris 1 1 1 

Malva neglecta 1 0 0 
Matricaria perforata 0 1 0 

Medicago falcata 1 1 1 
Medicago lupulina 1 1 1 

Moehringia trinervia 0 1 0 
Myosotis arvensis/ramosissima 0 0 1 

Myosurus minimus 1 0 0 
Odontites vulgaris 1 0 0 

Ononis spinosa 1 1 1 
Orchis mascula/militaris 0 0 1 

Origanum vulgare 1 0 0 
Ornithogalum angustifolium 1 1 0 

Oxytropis campestris 0 0 1 
Papaver sp. 1 0 0 

Phleum phleoides 0 1 1 
Phleum pratense 1 1 1 

Pilosella officinarum 1 1 1 
Plantago lanceolata 1 1 1 

Plantago major 0 1 0 
Plantago media 0 1 0 
Platanthera sp. 0 0 1 

Poa annua 1 1 1 
Poa bulbosa 0 0 1 

Poa compressa 1 1 1 
Poa pratensis 1 1 1 
Poa trivialis 1 0 0 

Polygala amarella 0 1 0 
Polygala comosa/vulgaris 1 1 1 

Polygonum aviculare 1 1 1 
Potentilla anserina 1 0 0 
Potentilla argentea 1 1 1 
Potentilla reptans 1 1 1 

Potentilla tabernaemontani 1 1 1 
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Table A1. Cont. 

Species (Taxon) Yng Int Old 

Primula veris 1 1 1 
Prunella grandiflora/vulgaris 1 1 1 

Prunus spinosa 1 1 1 
Pulsatilla pratensis 0 0 1 
Ranunculus acris 1 1 1 

Ranunculus auricomus 0 1 0 
Ranunculus bulbosus 1 1 1 
Ranunculus ficaria 0 1 0 

Ranunculus illyricus 0 0 1 
Ranunculus repens 0 1 0 

Rosa sp. 0 0 1 
Rubus sp. 1 0 1 

Rumex acetosa 1 1 1 
Rumex acetosella 1 1 0 
Rumex longifolius 0 1 0 
Sanguisorba minor 1 1 0 

Satureja acinos 1 1 1 
Saxifraga granulata 0 0 1 
Scabiosa columbaria 0 0 1 
Scleranthus annuus 0 0 1 

Sedum acre 1 1 1 
Senecio jacobaea 1 1 1 
Sesleria caerulea 0 1 1 

Sherardia arvensis 1 1 0 
Silene nutans 1 0 1 

Stellaria graminea 0 1 1 
Stellaria media 1 1 0 

Tanacetum vulgare 0 1 0 
Taraxacum agg. 1 1 1 

Thalictrum flavum 1 0 0 
Thlaspi sp. 1 1 0 

Thymus serpyllum 0 1 1 
Tragopogon pratensis 1 1 1 

Trifolium arvense 1 0 1 
Trifolium campestre/dubium 1 1 1 

Trifolium pratense 1 1 1 
Trifolium repens 1 1 1 

Valeriana officinalis 1 0 0 
Valerianella locusta 0 1 0 
Veronica arvensis 1 1 1 

Veronica chamaedrys 1 1 1 
Veronica hederifolia 0 1 0 
Veronica officinalis 0 1 1 
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Table A1. Cont. 

Species (Taxon) Yng Int Old 

Veronica persica 1 1 0 
Veronica serpyllifolia 1 1 0 

Veronica spicata 0 0 1 
Vicia angustifolia 1 1 0 

Vicia cracca 0 1 0 
Vicia hirsuta 1 1 1 

Vicia lathyroides 1 0 0 
Vicia tetrasperma 0 0 1 

Viola arvensis 0 0 1 
Viola hirta 1 1 1 

Figure A1. Field photographs of sample plots representing each of the three grassland  

age-classes. (a) Young grassland with a grazing management of 5–15 years; 

(b) Intermediate-aged grassland with a grazing management of 16–50 years; (c) Old 

grassland with a grazing management of >50 years. 

 
(a) (b) (c) 
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