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Abstract—Efficient protection of huge amount of IoT produced
data is key for wide scale data analytic services. The most efficient
way is to use pure symmetric encryption as that allows both fast
decryption at the analytic engine side as well as energy efficient
encryption at the IoT side. However, symmetric encryption can
only be performed if there is a way to directly map an encrypted
object to the correct key. Typically, such mapping require a
unique IoT identity, which constitute a privacy problem. In
this paper, we present an IoT identity protection scheme for
symmetric IoT data encryption. We give basic security definitions
for this problem setting, present a new construction and give
security proofs of security level achieved with the construction.
Performance figures for a proof of concept implementation are
also given. The new scheme gives a fair trade-off between identity
privacy and complexity.

Index Terms—identity privacy, IoT security, analytics

I. INTRODUCTION

Internet-of-thing (IoT) is a network of physical objects
or things embedded with electronics, software, and sensors,
connected through the Internet to collect and exchange data
with manufacturers, operators and other connected devices.
IoT includes a variety of connected objects from tiny stuff
(e.g. smart dust) to enormous stuff (e.g. an entire city). Most
IoT devices are used in factories, businesses and healthcare
systems. By 2025, there might be more than 75.4 billion
connected devices 1 generating 175 trillion gigabytes of data2,
and total global worth of IoT technology would reach to USD
6.2 trillion by 20253. This trend opens up to completely new
possibilities with respect to data analysis services utilizing
device data from a huge number of distributed devices [1]. The
applications are very wide-ranging from healthcare and market
analytics to industrial systems. In this paper, we consider big
data IoT analytics from a privacy perspective. Even if the

©2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
Work supported by framework grant RIT17-0032 from the Swedish Founda-
tion for Strategic Research as well as the EU H2020 project CloudiFacturing
under grant 768892

1https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/

2https://www.seagate.com/gb/en/our-story/data-age-2025/
3https://www.intel.com/content/www/us/en/internet-of-
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IoT units producing the data are not necessarily owned by an
individual, the data they produce as well as communication
patterns can reveal important business and industry secrets
which should be avoided whenever possible [2] [3].

Huge scale analytic on powerful, third-party back-end cloud
resources raises security and privacy concerns. One problem
is that typically the cloud computing resources cannot be
fully trusted. Another related problem is that if an adversary
is able to observe the analytic operations or data storage
read/write requests, sensitive information might be leaked.
One way to tackle this problem is to use privacy-preserving
cryptographic techniques [4] [5], [6]. However, so far these
approaches have large overhead and thus severely limits the
type of analytic operations that can be supported in the system.
Especially the area of fully homomorphic encryption has
achieved lots of attentions even if it is not yet fully practical
[7]. An alternative approach is to operate on original data using
analytic engines executed in Trusted Execution Environments
(TEEs) such as Intel's SGX. This line of research has gained
quite a lot of attention during the past years [8] [9] [10]. In
these approaches, it is assumed that the data subject to data
analysis is already encrypted with a suitable encryption key
available to the trusted application running in the TEE. Hence,
before these protection techniques can be applied, the database
content must be properly encrypted with the expected keys.
In a scenario, where a large amount of IoT devices regularly
uploads new data items subject to analysis, the data items
must also be protected prior to arriving at the cloud storage
resources and they should be protected end-to-end without
leaking any information about the source IoT unit. How to
perform such encryption in an identity privacy-preserving and
efficient way is the problem tackled in this paper.

One key difference that needs to be taken into account when
designing an IoT system solution is that in many applications,
the IoT devices are resource-constrained [11]. They can, for
instance, be constrained both in terms of computation power,
as well as, being energy-constrained since they can be powered
by a battery. Besides being more resource-constrained, they
are also often deployed in a decentralized manner. These
constraints limits, to a varying degree, what kind of security
mechanisms that can be put in place, as well as, what kind of
algorithms that can be executed on the IoT units [12]. Hence
by efficient, we here mean to avoid the trivial solution using
public key encryption, which both is costly on the resource-
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constrained devices as well as when processing a large number
of data items on the cloud resources.

Using a model of the availability of trusted computing
engines in the cloud like the solutions in [9] and [10], we
consider the additional and orthogonal security problem of
privacy preserving data cloud upload of IoT subject to data
analysis. Especially, we consider this problem in the context of
not requiring any public key operation on the data collection,
i.e. IoT, side but pure symmetric operations. Furthermore, we
require IoT individual symmetric encryption keys as global
encryption keys constitute a major security risk (a compromise
of a single IoT unit will destroy the security for all or many
devices). In this context, the main challenge is to design a
symmetric data encryption scheme allowing fast encryption
and decryption while preventing an attacker, observing the
data in transfer or at cloud storage, deducing any information
bout the data origin like the identity of the IoT unit producing
the data. Still, it must be possible for the analytic engines
running at the cloud resources to efficiently to decrypt the
data. We address this challenge suggesting an data item
identity preserving encryption scheme and corresponding key
management scheme.

The main contributions of the paper are the following:
• We identify main security requirements for large scale,

light-weight and identity privacy preserving, individual
IoT data encryption and give formal security definitions.

• We present a novel encryption and corresponding key
management scheme meeting the identified requirements.

• We evaluate the security properties of the proposed
scheme and prove the security of the scheme for a couple
of different attacker scenarios.

• We present a proof of concept implementation of the
encryption scheme and make a performance evaluation.

We proceed as follows: we present the system scenario we
are considering (§II), we introduce our adversary model and
derive security requirements as well as make formal security
definitions (§III), we give an overview of our novel IoT data
encryption scheme and introduce notations (§IV), we describe
our proposed key management solution (§V), we present the
detailed data encryption and decryption procedures (§VI), We
make a formal security analysis of the proposed solution
(§VII) and present a proof of concept implementation, includ-
ing performance figures (§VII). Lastly we discuss related work
(§IX) and conclude (§X).

II. SYSTEM SCENARIO

We consider a system consisting of distributed IoT units, a
management domain and a third-party cloud back-end (cloud
provider) responsible for IoT data storage as well as data
analytic operations. Figure 1 depicts an overall system scenario
which includes the following components:
• The Key Management System (KMS) deployed in a

management domain is responsible for generating dif-
ferent credentials for IoT units and cloud execution
containers, as well as the other entities running at a
Cloud Service Provider (CSP) that need key material. The
KMS may also collect analytic results.

• CSP Storage Resource (SR), which is a repository re-
sponsible for storing IoT data.

• Storage Manager (SM ) which is the interface for collect-
ing and accepting IoT data and storing it on the SR.

• IoT units or what we refer to as devices (u) producing
data which is sent securely to the SM component. The
architecture is agnostic with respect to how the devices
are deployed and in what type of network. All devices
are assumed to have global network connectivity.

• Database Manager (DM ) responsible for sharing IoT
data with analytic engines. The DM is deployed in a
suitable execution container on the cloud resources in
the form of a Virtual Machine (VM) or in a protected
execution container like SGX.

• Analytical engines (A) perform data analytics on IoT data
through the DM. The analytics engines in the system are
deployed on suitable execution containers on the cloud
resources in the form of Virtual Machines (VMs) or in
protected execution containers like SGX.

• Aanalytics consumer (C) which is authorized to receive
analytics results produced by an A.

The boundary of the CSP is the space that contains
SM,SR,DM and A. The management domain might also
be deployed in an cloud environment but must in the model
we are considering be fully trusted. We discuss the adversary
model and requirements in the next section.

III. PROBLEM SETTING

Next, we discuss the details of the data protection problem
we are considering. We start by defining our adversary model
and use this model to identify privacy requirements. Although
the system scenario and architecture we are considering im-
plies several additional requirements, the focus here are on
the privacy/security requirements under the assumption of
resource constrained IoT units. Next, we identify security and
functional requirements on the system we are considering.
Finally, we give formal security definitions.

A. Adversary model

We consider a powerful adversary who may control the CSP
network domain as well as having access to the SM and SR.
We do not consider denial-of-service (DoS) types attacks on
these nodes though and assume that SM and SR are being
able to operate properly. The adversary might also try to get
full access to the computing resources but we assume the A
and DM to be deployed in secure containers using secure
launch in combination with secure VMs or secure launch
of SGX machines. Hence, the adversary has no possibility
to directly modify or eavesdrop A or DM . This model is
motivated, as we stated in the introduction, with reference
to trusted computing techniques in combination with secure
launch as reported in [13] and protected SGX analytics as
described in [10]. Recent attacks like Metldown [14] and
Spectre [15] have shown that one cannot even trust the
fundamental hardware functions needed for secure isolation
currently in use. Despite this fact, the security with respect
to secure execution environment for virtualized systems is
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Fig. 1. System scenario.

steadily improving and we will in this paper disregard attacks
on the isolation properties of the execution containers.

In line with many other works on IoT and cloud security, we
assume that the adversary is acting according to the Dolev-Yao
adversarial model [16]. This implies that an attacker is able to
intercept, delete, change order or modify all communication
messages sent over the communication links between the IoT
units and the CSP domain. The adversary can also destroy
messages but is not able to break any cryptographic mecha-
nisms. The devices are assume to be semi-trusted. This means
that as long as an external attacker has not compromised a
unit, it will be trustworthy. However, we do not exclude the
possibility of that a limited set of the IoT units in the system
are completely taken over by the adversary.

The management domain including the KMS is assumed
to secure not in the control of the adversary.

B. Requirements

Starting from the previously presented system architecture
and the given adversarial model, we have identified the fol-
lowing security requirements:
R1. Data items confidentiality: All data items sent from a

device u needs to be confidentiality protected, all the
time, until they are processed by A in a secure execution
environment.

R2. Data items integrity: All data items sent from a device
u needs to be integrity protected, all the time, until they
are processed by A in a secure execution environment.

R3. Analytics results confidentiality and integrity: All
analytics results must be confidentiality and integrity
protected before they are returned to the C.

R4. Data items identity privacy: It shall not be possible for
an external adversary or a compromised IoT unit, u′ to
determine which data item that is produced by a, non
compromised, specific IoT unit, u. This implies that it
shall not be possible to trace data items from different
IoT units through potential identities used in protected
data items.

Many of the devices might be placed in internal network not
accessible from the outside. Furthermore, a particular device,
u, might for security reasons be restricted not to set up secure
sessions with external entities. It might also be an advantage
if several data items can be buffered at an intermediate node,
before they are transferred to the SM for storage. Altogether,
this gives us the following additional design requirement on
the wanted solution:
R5. IoT unit isolation: A data transfer from u shall not

require any direct interactions (session) between the IoT
unit and the SM .

Among these, requirements, it is particular challenging to
fulfill requirement R4 in combination with R1 and R2 for
the scenario we are considering. This is due to the fact, that
it shall be possible for analytic engines deployed in the cloud,
to quickly decrypt data items uploaded to the cloud using
symmetric encryption only. This on the other hand, requires
that the symmetric key for the data items must be available
which in turn typically means that the data item must be
”marked” with a key identity to allow symmetric key lookup.
If a fixed identity is used, we do not fulfil R4 and this is the
main security design challenge we address in this paper.

C. Formal security definitions

Next, we give formal security definitions. We here focus on
formally defining R1, R2 and R4. The reason for this choice
is that R3 can be fulfilled with standard secure channel and
security association techniques and it is not the main problem
we address here even this is a requirement for a complete
system solution. Furthermore, R5 is not a security requirement
as such, but a property on the solution we want to have in order
to offer practical and broadly applicable solution. Hence, we
here do not either give a formal definition for R5.

Denote by u ∈ U an arbitrary IoT unit and by m ∈ Mn,
where Mn is a plain text space index by n (message of length
n bits), a data item produced by such unit. Furthermore, let
Ke ∈ Ke and Kmac ∈ Kmac, be a symmetric encryption
and integrity keys respectively, known to the u and the
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DM . We then denote by c = EKe
(r,m) the encryption

of m with Initialization Vector (IV) = r ∈ R and using
a suitable symmetric encryption algorithm, E. Similar, we
denote by x = MACKmac

(m), the message tag calculation
for a message, m, using a suitable MAC function , MAC4.

Let K be an arbitrary key space and v = fK(u,m),K ∈
K be the random packaging of message m for unit u. Here
the function fK denotes the combination of one or several
encryption and/or MAC functions for a particular unit. v is
then the actual message ”observed” by an external entity when
the message is transferred to SM.

We use the classical security by indistinguishability defi-
nition to define the expected confidentiality property of the
scheme [17].

Definition III.1. An IoT protection schemes provides confi-
dentiality protection if for all (non-uniform) polynomial time
limited adversaries, AT , there exist a negligible function ε(n),
such for all ∀m0,m1 ∈Mn,∀r ∈ R:

|Pr[AT (EKe
(r,m0)) = 1]− Pr[AT (EKe

(r,m1)) = 1]|
< ε(n), (1)

where the probability is taken over all choices of Ke and coin
tosses by AT .

Let the adversary, AT having access to MACKmac
. We then

consider the following security game (unforgeability under
chosen message attack):

Game UF-CMA

• Setup: Kmac ←R Kmac

• Query phase: AT makes a set of quires, by selection of
message m ∈M to get x = MACkmac

• Guess phase: AT → (m′, x′)
• Verify: If m′ /∈ M and x′ = MACKmac(m

′), AT wins,
else AT loose.

We then use the classical unforgeability MAC security defini-
tion for message integrity security.

Definition III.2. A family of functions, MAC, is said to be
(q, l, ε) unforgeable under chosen message attack if for all
adversaries, AT who makes q queries with total size of the
queries bits maximum equal l:

Pr[AT win game UF-CMA] ≤ ε (2)

Definition III.3. An IoT data protection scheme which pro-
tects messages by a (q, l, ε) unforgeable MAC is said to
provide integrity protection if q is greater than the maximum
number of MAC values that the attacker can observe from
a single IoT unit, ε i negligible and l is greater than the
maximum number of bits in d, i.e, the maximum number of
bits produced by any IoT unit for a single message.

Next, we give our identity privacy definitions. Now, let the
adversary, AT having access to the output of fk. We consider
the following security game (Identity attack):

4In the scheme we consider the encryption and message authentication
message scopes are not always the same. However, for simplicity, we here
just use the notion of m for the message input both to a encryption function
and a MAC function

Game IDA

• Setup: K ←R K
• Query phase: AT makes a set of queries to get v =
fK(u,m) together with u for random u ∈ U and chosen
message m ∈M .

• Observe phase: For random û and chosen m ∈ M , AT
observes v′ = fK(û,m)

• Guess: AT → u′

• Verify: If u′ = û, AT wins, else AT loose.

Definition III.4. A data and identity protection scheme, f , is
said to be (q, p) unforgeable if for all adversaries, AT who
makes q queries:

Pr[AT win game IDA] ≤ p (3)

Furthermore, we say that a (q, p) unforgeable protection
scheme with p ≤ 1/k, for an integer k, provides k-anonymity.

IV. DESIGN OVERVIEW AND NOTATIONS

Our goal is to provide confidentiality, integrity and identity
privacy of cloud uploaded data items. The goal with the design
has been to use, due to resource consumption reasons, pure
symmetric key algorithms and without any requirement on
session handling at the IoT side and with individual encryption
keys on the IoT side avoiding that a single or few compromised
IoT units will destroy the security of the complete system.

Our solution is based on the following assumption:
• Referring to solutions like the one presented in [10]

[13], a trusted analytics provider is able to securely
launch analytics applications (A) as well as a database
manager (DM ) on secure/isolated VM/containers on the
CSP computing resources. The DB server is working
on encrypted data stored at general available storage
resources (SR) in the provider cloud.

We suggest a solution where the DB server is pre-configured
(prior to secure launch) with IoT data item symmetric key
material that will allow it to read encrypted data items stored
on the provider storage resources. Similarly, all IoT units are
pre-configured with matching (but not the same) symmetric
key material allowing them to upload or release (for instance
through a third entity in the local network) encrypted data
items to the provider storage resources.

Data items are directly or indirectly uploaded to the storage
resources (SR) through the SM in the provider network. The
solution is agnostic with respect to how the data items are
uploaded to the SM . The encryption of the data items are
done so that an attacker who only observes stored or sent data
items neither can obtain the clear text of the individual data
items nor being able to know which particular IoT node that
uploaded the protected data item.

Once a set of new data items are uploaded to the provider
storage resource, the DM is able to immediately fetch any new
items, and with low computational overhead (only symmetric
encryption), decrypting these items. When the items have been
decrypted, the DM updates the internal database index such
that efficient search of the data items are possible. The DM
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server keeps the index in internal protected memory and/or in
protected external non-volatile memory.

The data analytic application, or applications, can contact
the DM through a protected channel to issue database quires
on the encrypted data items. The DM server then efficiently
fetches encrypted data items using the internal index and the
clear text of the data items are obtained using the symmetric
encryption scheme together with the shared (with the IoT
units) key management scheme.

Table I summarizes the notations we use throughout the rest
of the paper.

TABLE I
NOTATIONS.

U Set of devices in the system
|U | Cardinality of set U
{U0, U1, · · · , Uq−1} = U Set of q distinct subsets of U
u ∈ U A device in the system
i Device index
t Group index
ui Device with index i
d Data item produced by a device
IK System wide integrity protection key
KM1 First symmetric master key
KM2 Second symmetric master key
KM3 Third symmetric master key
IKi Device unique integrity protection key
K1i First device unique encryption key
K2i = K2t Group unique,

second device encryption key
IV 1 First Initialization Vector (IV)
IV 2 Second IV
c1 First ciphertext
c2 Second ciphertext
ho Outer message authentication tag
hin Inner message authentication tag
r, n1, n2 Random numbers
||a|| Size of parameter a
a||b Concatenation of value a and b
Li = {li0, li1, · · · , liw−1} Set of indices given to unit ui

EK(a,m) Symmetric encryption of message m
with key K and IV = a.

DK(a, c) Decryption of ciphertext c
using key K and IV = a

MACK(m) Message authentication code for
key K and message m

PRF(K,a) A Pseudo Random Function taking a
key K and additional data, a, as input

V. KEY GENERATION AND DISTRIBUTION

Next, we describe the principles for key generation and
distribution in the system. According to our design, the KMS
is responsible for generating keys and to distribute them to the
IoT units as well as the DB manager (DM ), analytic engine
(A) and storage manager (SM ) in the system.

The design is based on the usage of four different master
keys: IK,KM1,KM2 and KM3. The IK is a system global
integrity protection key and the other keys different encryption
master keys. Before system deployment, the KMS uses a
good random source to generate these four different keys.
The key IK is securely transferred and stored at SM while
KM1,KM2 and KM3 are all securely transferred to the
DB.

To give a k-anonymity on visible device index, the set of
IoT units, U , is divided IoT subsets of at least size k:

U = {U0, U1, . . . , Us−1},∀t, 0 ≤ t ≤ s− 1, |Ut| ≥ k. (4)

Each IoT unit is associated with a random index, i selected by
the KMS. i is configured into the DB together with the rest
of the key material but is not given to the device (u) itself.
Instead, each device ui ∈ U is given a device unique index
set:

Li = {li0, li1, . . . , liw−1}, lip = r||EKM3(r, i), (5)

where r is chosen uniformly and at random by the KMS and
EKM3 is suitable symmetric encryption function. The device
uses the index to ”mark” data items produced by the item
(see Section VI for the detailed data protection procedure). In
addition, ui is configured with three different symmetric keys:
• IK: the global integrity protection key.
• IKi = PRF(KM1, ”MAC”||i): an individual integrity

protection key.
• K1i = PRF(KM1, ”Enc”||i): a symmetric inner en-

cryption key
• K2i = K2t = PRF(KM2, t): a symmetric outer

encryption key
Figure 2 gives an overview of the different key configurations
done during system deployment.

Fig. 2. Deployment key configurations.

VI. DATA PROTECTION

We are considering a model where a huge number of IoT
devices regularly uploads new data items to the storage server
SM . According requirement R5, this shall be possible to
do without the need for any security sessions. A straight
forward way to handle this is to use an object security model.
Object security for the IETF session protocol for constraint
devices, CoAP [18] is standardized in the Object Security for
Constrained RESTful Environment (OSCORE) standard [19].
While this is a very resource efficient protocol, it gives not
identity anonymity of the sending party. Furthermore, it is
closely aligned to the CoAP protocol. In our scenario, we do
not want to just protect the data from the sending device to
the storage manager end-to-end as offered by OSCORE, but
actually also data storage at the SR as we considering a model
where the attacker might have access to both the SM and
SR. Hence, we have defined a new privacy preserving object
security format. The format is completely independent of the
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actual bearer protocol but can for instance be transferred over
CoAP as standard non-protected payload. Below, we describe
the encryption procedure (at the device side) and format as
well as decryption procedures (database side of the system).

A. Data encryption procedure

Each devices regularly uploads data to the SM in protected
format. We suggest the following encryption procedure:

1) ui uses a good random source to generate two random
values: n1, n2.

2) ui selects uniformly and at random an index, lip, from
the set Li.

3) ui selects a first encryption IV, IV 1 = lip||n1.
4) ui selects a second encryption IV, IV 2 = t||n2.
5) ui encrypt the data item, d to obtain a first ciphertext:

c1 = EK1i(IV 1, d).
6) ui encrypt IV 1 to obtain a second ciphertext: c2 =

EK2i(IV 2, IV 1).
7) ui calculates a inner message authentication cod: hin =

MACIKi
(IV 2||c2||c1)

8) ui calculates a message authentication code over
IV 2||c2||c1||hin: ho = MACIK(IV 2||c2||c1||hin).

Finally, ui sends the protected message, IV 2||c2||c1||hin||ho,
using an arbitrary communication channel to SM , which ver-
ifies the message authentication tag, ho, and if the verification
is successful, stores IV 2||c2||c1||hin for future processing at
SR. The protected message format is illustrated in Figure 3.

Fig. 3. Protection format.

B. Data decryption procedure

According to the system scenario we are considering, the
DB is responsible for decryption protected IoT data items on
SR and to index them for future processing. However, there
is no need for the DB to re-encrypt the data items but they
can be kept in protected form on the SR as the decryption
process is quick as we show below. The decryption procedure
is as follows:

1) DB fetches a protected data item from the SR:
IV 2||c2||c1|hin

2) DB extracts t from IV 2.
3) DB calculates: K2t = PRF(KM2, t).
4) DB decrypts c2 to obtain: IV 1 = DKM2(IV 2, c2).
5) DB extracts l = r||c from IV 1.
6) DB obtains the true device index i through decryption:

i = DKM3(r, c) (corresponding to the index encryption
in (5)).

7) DB calculates KIi = PRF(KM1, ”MAC”||i).
8) DB calculates h′in = MACIKi(IV 2||c2||c1). If h′in

equals hin, the data, the item is accepted, otherwise it
is rejected.

9) DB calculates K1i = PRF(KM1, ”Enc”||i).
10) DB uses K1i and IV 1 to obtain the clear text data item

d′ = DK1i(IV 1, c1) .

VII. SECURITY ANALYSIS

Next, we analysis the security properties of the proposed
protection scheme. The focus of the analysis is the security
requirements R1, R2 and R4 (see Section III-B). R3 is here
omitted as this is a pure back-end system property that can be
achieved by state-of-the-art protection mechanisms.

Proposition 1. Given that the symmetric encryption algo-
rithm, E, provides confidentiality protection and for a non-
compromised IoT unit encryption key, K1i, the proposed
scheme provides confidentiality protection.

Proof. The worst case attack scenario given the prerequisites
in the proposition, is when the attacker has full knowledge
of IV 1 but no knowledge of the key K1i. In this case, for
all different data items, d0, d1 and corresponding encrypted
cipher texts, c0 = EK1i(IV 1, d0), c1 = EK1i(IV 1, d1), the
distinguish probability (1) equals the very same probability
for the used symmetric encryption algorithm. This proofs the
Proposition.

According to our attacker model, adversary knowledge of
K1i only happens when the IoT unit ui is compromised.
However, if this IoT input is compromised, the attacker will
have access to all data protected by this particular unit anyway,
and our any protection scheme is not useful. Hence, we
conclude that the proposed scheme give good protection for
the data for the majority of the IoT units. This is true as we
assume it will only be feasible for an attacker to compromise
a limited number of the IoT units in the system.

Proposition 2. For a non-compromised IoT unit ui, given
that the chosen function MAC is (q, l, ε) unforgeable, the
proposed scheme provides data item integrity if: l is greater
than the maximum number of bits in d, q is larger than
the maximum number of messages produced by ui and ε is
negligible.

Proof. A data item produced by ui is first encrypted into c1,
which in turn is protected by (q, l, ε) unforgeable MAC using
key IKi. Hence, if IKi is not compromised. d is (indirectly)
protected by a (q, l, ε) unforgeable MAC. Furthermore, it fol-
lows from the assumptions in the Proposition that l is greater
than the maximum number of bits in d, that ε is negligible
and that q > maximum number of messages produced by
ui. Hence, the Proposition follows directly from Definition
III.3

The same reasoning around IoT encryption key compro-
mise, K1i for unit ui applies also to integrity key compromise,
IKi of the unit. Hence the scheme also give good integrity
data protection for the majority of the IoT units.

Proposition 3. Given that the symmetric encryption algo-
rithm, E, provides confidentiality protection and for a non-
compromised group encryption key, K2t, the proposed pro-
tection scheme provides k-anonymity.
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Proof. In the IDA game, the attacker, for chosen mes-
sages m ∈ M observes q different evaluations of
fK2i(ui,m) = c1, c2, hin together with ui. Here we have,
c2 = EK2t(IV 2, IV 1), where IV 1 is an encrypted index, lip
randomly mapped from random selections of ui. As the input
to the calculation of c1, c2, and consequently, also the input
to the calculation of hin are depending on random numbers
n1, n2, these values are randomly distributed on the encryption
and MAC spaces independently of the chosen message, m.
Next, the attacker can choose any previously observed value t
(part if IV 1) and corresponding previously observed message
m and get the corresponding, v′ = c1′, c2′, h′in. If c1′, c2′

equals a previous observed c1, c2, the attacker wins with
probability one as he/she can choose, in this case, a previously
observed, hin. This probability is less than the probability
that just c2′ equals a previously observed crypto text c2.
Due to the random selections of n1, n2, lip by the IoT
unis, observation of a previously observed c2 happens with
probability less than 2log2(q)−log2(w)−log2(||n1||)−log2(||n2||) = ε.
If, c2′ does not equal a previously observed crypto text, an
attacker that tries to decrypt c2′ to obtain l′, can in the worst
case map l′ to a particular user u′. However, since, the group
key, K22, not is known to the attacker, and the encryption
algorithm gives confidentiality protection, it follows from (1)
that this attack game succeeds with a probability of at most
ε(n). Hence, in case of that c2′ does not equal a previous
observed crypto text, a random selection of u′ ∈ Ut (as t is
known to the attacker) gives the best chance of success. As
|Ut| ≤ k, Pr(u′ = û) ≤ 1/k, this gives an overall probability
of success ε+ (1− ε) · (1/k) ≈ 1/k.

This proposition shows that as long as the group unique key
not is leaked, the scheme provided k-anonymity. However, as
the size of a group can be rather large (equal to t), compromise
of this key cannot be excluded in same cases. However, even
in this situation, the proposed scheme gives some anonymity
guarantees as showed by the following proposition.

Now, denote by Bin(q; k/|U |) the binomial distribution, i.e.
with the density function:

P (X = j) =

(
q
j

)
(k/|U |)j(1− (k/|U)q−j .

Then let:
BSum[(k,w),Bin(q; k/|U |)] =

q∑
j=0

1
k− j

w

P (X = j), if q ≤ w(k − 1)

w(k−1)∑
j=0

1
k− j

w

P (X = j) +
q∑

w(k−1)+1

P (X = j) otherwise

Proposition 4. Assume, q < w|U |, then the
proposed protection scheme is (q, q/(w|U | + (1 −
q/w|U |)BSum[(k,w),Bin(q; k/|U |)]) unforgeable.

Proof. A worst case scenario is an attacker with full knowl-
edge of K2t for all possible choices of t. Under these
circumstance, the attacker can ask for q number of different
values fLi(ui) = IV 1 = (lip, n1) together with ui (outer
encryption and message selection can be disregarded in this

case). Next, in the game, the attacker observes v′ = fLi
(û). If

v′ has been previously observed, the attacker wins the game
with probability one. For each data protection occasion at most
q different (li, ui) pairs have been recorded by the attacker.
Furthermore, as û is selected at random and the index li is
chosen at random among the w different available indices,
the probability that v′ has previously been observed is then
less than q/(w|U |). This follows from the fact that the total
number of (li, ui) pairs equals w|U | and that maximum q
unique different pairs have been observed by the attacker.
If v has not previously been observed, an optimal game
strategy for the attacker is to choose u′ as the identity of
the least number of previously observed identities in {v′}
belonging to set Ut. Denote this number by z. Furthermore,
assume, the number of observed elements Ut equals j. Then
the probability of successful attack for this strategy is less
than (w − z)/(wk − j) ≤ w/(wk − j) = 1/(k − (j/w)),
if j ≤ w(k − 1). While if j > w(k − 1), the probability
is less than 1. The probability of having j elements in the
previous observation belong to set Ut is due to the random
selections, equal to the binomial density function. Hence, by
taking the expected value of 1/(k − (j/w)) for the binomial
distribution and summing up to the number of observations,
q, we end up with the an expected probability which is less
than BSum[(k,w),Bin(q; k/|U |)].

This proposition is proved under the scenario that all keys
K2t are leaked which is typically not possible to achieve for
a limited attacker. Even under this circumstance, as the propo-
sition shows, the scheme still provides a level of anonymity.
The strength of the anonymity can be tuned using the size of
the parameter w. However, a larger w comes with higher IoT
non-volatile memory cost. It is important to also notice though,
that unforgeability is made under the worst chosen message
attack scenario and in many practical situations it will not be
possible for an attacker to gather enough number of clear text
(li, ui) pairs for protected data items. Especially, it is hard for
an attacker to get knowledge of the real identity behind an
observed index value, li.

VIII. PERFORMANCE FIGURES

A. Proof of Concept Implementation

To evaluate the feasibility of our suggested privacy pro-
tection scheme, we have implemented a proof of concept
system. We have developed an application for IoT devices
that generate data items that are encrypted according to our
proposed scheme. These encrypted data items are then sent to
a SM where h0 is verified and then to DM where they are
decrypted. The KMS is left out of scope. Our IoT application
for data encryption is written in C and is running on Contiki-
NG5, an open source operating system for constrained IoT
devices. The IoT devices that we have run our tests on
are Zolertia Firefly6 development boards based on the Texas
Instruments cc2538 [20] system on chip. The cc2538 features
an ARM Cortex-M3 clocked at 32MHz, with 32KB of RAM

5https://github.com/contiki-ng/contiki-ng/
6https://zolertia.io/product/firefly/
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and 512KB of ROM. The back-end system that consists of
the SM and DM is written in Java and running on a Linux
host, specifically a Lenovo T460 laptop with an Intel Core
i7-6600U CPU clocked at 2.60 GHz. We have chosen the
following algorithms in our implementation:
• EK(m)&DK(c) AES128-CTR
• PRF (K, a) HKDF-SHA256
• MACK(m) HMAC-SHA256

The AES128-CTR algorithm and the SHA265 algorithm used
was implemented in software on the IoT devices. The en-
crypted device indexes lip was selected to be 8 Bytes long,
the IoT device was provisioned with |Li| = 10. The encrypted
data items were transferred from the IoT device to the back-
end using CoAP [18]. The transfer of data is left out-of-
scope for these performance measurements since our proposed
scheme is independent of underlying protocols.

B. IoT Device Performance

As discussed in Section I, energy is a major concern for IoT
devices, especially those that rely on battery power. CPU-time
is also limited on constrained systems. Both these metrics are
important when considering solutions aimed at IoT devices.
We have measured the time taken to encrypt data items. To
investigate how the performance depends of the size of time
data item d we have tested the following sizes of d; 1,8,16,32
and 64 bytes. For each size of data items d we did the
encryption 500 times. The times were measured and the energy
consumption was calculated from the times and the stated
power consumption in the cc2538 data-sheet. The results can
be seen in Figure 4.

Fig. 4. Execution time and energy consumption for encrypting data. The
graphs show the mean of the of the execution times and derived energy
consumption with a 95% confidence interval.

C. Back End Server Performance

To evaluate how the throughput of a back-end server
would be affected by the privacy protection scheme we have
measured the time taken to verify h0, furthermore we have
measured the time taken to decrypt the data item d including

verifying hin. The performance was measured running in a
single thread. We have measured the for different encrypted
payloads d; 1,8,16,32 and 64 bytes. The times for a single
payload size d varies considerably, we have made 2000
measurements for each payload size. The times can be seen
in Figure 5.

Fig. 5. Execution time, left graph shows verifying h0, right graph decryption
of encrypted d and verifying hin. The graphs show the means of the of the
execution times with a 95% confidence interval.

To give an estimation of the throughput of our solution we
use conservative numbers of 50µs for verifying h0 and 150µs
for decrypting and verifying d, this gives us a total time of
200µs for one data item. The total throughput for one core
would then be 5000 data items per second.

D. Memory usage on IoT devices

IoT devices have limited resources in terms of memory,
any scheme developed for such a device must keep this in
mind. Here we present numbers for the memory utilization of
our implementation. The total utilization of ROM was 2344
Bytes and 426 Bytes of RAM. This was used by SHA256
836 Bytes, HMAC-SHA256 114 Bytes, AES128-CTR 1026
Bytes, Encryption Function 368 Bytes. The RAM was divided
between 144 Bytes of keys in RAM and buffers for the
encryption process of 282 Bytes. This is manageable amounts
of memory needed for such a scheme. If the cipher and hash
algorithms would be hardware-accelerated the memory usage
would be even lower.

IX. RELATED WORK

Privacy is a major concern in the IoT paradigm [21].
People and devices are surrounded by billions of IoT devices
gathering zettabytes of data, device manufacturers still do not
pay enough attention to privacy while IoT devices are not
capable of handling costly solutions to preserve privacy.

When discussing privacy it is worthwhile to note that
there are several types of privacy [22]. Data privacy aims at
preserving privacy by not revealing data created or owned by
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an entity, while identity privacy aims at protecting the identity
of a user or entity. There are also the notion of spatial or
location privacy, here the goal is to hide or obfuscate the
location of the user or entity. This is mostly relevant in the
domain of mobile devices [23] but can also have an impact
for V2X networks and IoT networks. Location privacy is not
directly related to the work we present in this paper.

The principle of k-anonymity was first introduced 1998 by
Pierangela and Sweeney and has been extensively use as an
annonymization measure in different privacy settings [24]. An
overview of different k-anonymity approaches is given in [25].
In our paper we adapt the k-anonymity principle in an IoT
identity privacy setting.

General privacy-preserving solutions include differential
privacy [26], homomorphic encryption [27] [28], and secure
multi-party computation [29]. Another general line of research
which is relevant to the IoT paradigm is privacy-preserving ag-
gregation of time-series data [30] [31] [32] [33]. Many sensors
periodically generate data on e.g. temperature and sends it to
a server for analysis. A recent summary of these more general
problems can be found in [34]. Bista et. al. provides a survey
of privacy-preserving data aggregation protocols for wireless
sensor networks (WSN). In [35], a scheme for anonymous
data transfer using only symmetric key operations is presented.
The paper introduces the notion of twin-keys, keys negotiated
between two nodes where the nodes does not know the identity
of the other node in the pair. This provides anonymity of
individual devices when doing data aggregation.

However, all these approaches are so far elusive for the IoT
paradigm: they are too computationally costly for resource-
constrained IoT devices.

Going into solutions aimed specifically at IoT it is worth to
note that IoT includes a wide spectrum of devices and tech-
nology. While different solutions have been proposed for IoT,
the work has primarily aimed at data privacy. One application
of IoT is smart electricity meters (SM), a device measures
the electricity consumption at a customer. The measurements
needs to be forwarded to the utility-company for billing, but
the customers privacy needs to be considered. Learning when
the customer utilizes electricity can reveal the users habits.
In [36] Silva et. al. presents a scheme for data aggregation in
smart electricity meters using an Intel SGX enclave to perform
the data aggregation while providing end user privacy.

In [37] Zhang et. al. survey the entire fields of security
and privacy in edge computing. They give an overview of
edge computing, list issues regarding security and privacy, list
requirements. They also provide descriptions of key technolo-
gies: Identity-based encryption, Attribute-based encryption,
proxy re-encryption, homomorphic encryption and searchable
encryption. They give an overview of state-of-the-art solutions
for data confidentiality, data integrity, privacy preserving and
more. They have a section on both data-privacy and identity-
privacy, they list some proposed schemes for identity privacy.

Identity privacy has been researched primarily in the fields
of Mobile Communications and Vehicular Networks. in the
field of Mobile Communications Khan et. al. presents their
scheme for dynamic credential generation in [38], they also
provide an extensive overview of work in the field. Their

proposed scheme uses public-key encryption, which makes
their proposed solution too computationally intensive for our
use-case.

In the field of Vehicular Networks Identity privacy is impor-
tant [39] since a vehicle broadcasting the the identity of the
vehicle or driver would enable location tracking of the vehicle
or driver. Most of the identity privacy issues of Vehicular
networks are solved by pseudonyms, the vehicle is issued with
a public-key pair that is periodically changed. Much research
has been done on how to improve these schemes [40], [41].
However, since the basis of these systems are based on public-
key cryptography they are to computationally complex for
constrained IoT devices.

X. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel principle for IoT
identity protection when using pure symmetric key based data
confidentiality and integrity protection. The symmetric key
approach has big advantages compare to a public key-based
approach as it allows fast analytic processing directly on the
protected data items on cloud resources. Identity privacy in
this context has not been treated in the literature before and
we provided basic security definitions. Using these definition,
we presented a novel combined identity protection, encryption
and integrity protection scheme for IoT data objects. The
suggested protection scheme gives not full privacy in all
adversary scenarios but, as we view it, gives a fair trade-
off between identity protection and complexity. In particular,
the proposed schemes uses a two layered protection approach
where an ”outer” protection schemes gives k-anonymity based
on symmetric keys shared by several IoT units. If such
key would be compromised, an ”inner” identity protection
schemes based on random encryption gives a second level of
privacy defense. The security analysis we presented, shows
that a reasonable level of identity privacy is achieved with
this approach, as long as the adversary not has access to a
large number of compromised IoT units or a large number
of mappings between specific protected data items and the
IoT identity behind the data items. Furthermore, by tuning
the protection parameters, increased privacy can be achieved
thought the price of more memory usage at the IoT device
side. Our proof of concept implementation verifies that the
proposed principle indeed offers both low energy consumption
encryption at the IoT side as well as fast decryption at the
analytic engine side. In future work, we intend to make a
full-scale implementation of the approach on IoT data from
an industrial control system. In this extended system trial, we
will also integrate the solution with a selected set of state-
of-the art analytic engines. It is also left for future work to
investigate if even more efficient identity privacy preserving
schemes for symmetric encryption can be constructed.
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