
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Digital Twin Based Industrial Automation and Control System Security Architecture

Gehrmann, Christian; Gunnarsson, Martin

Published in:
IEEE Transactions on Industrial Informatics

DOI:
10.1109/TII.2019.2938885

2020

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Gehrmann, C., & Gunnarsson, M. (2020). A Digital Twin Based Industrial Automation and Control System
Security Architecture. IEEE Transactions on Industrial Informatics, 16(1), 669-680.
https://doi.org/10.1109/TII.2019.2938885

Total number of authors:
2

Creative Commons License:
CC BY-NC

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 21. Jun. 2024

https://doi.org/10.1109/TII.2019.2938885
https://portal.research.lu.se/en/publications/77e71135-cf75-4072-b311-93f97dd5006c
https://doi.org/10.1109/TII.2019.2938885


IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 1

A Digital Twin Based Industrial Automation and
Control System Security Architecture

Christian Gehrmann and Martin Gunnarsson

Abstract—The digital twin is a rather new industrial control
and automation systems concept. While the approach so far has
gained interest mainly due to capabilities to make advanced simu-
lations and optimizations, recently the possibilities for enhanced
security have got attention within the research community. In
this paper, we discuss how a digital twin replication model and
corresponding security architecture can be used to allow data
sharing and control of security-critical processes. We identify
design-driving security requirements for digital twin based data
sharing and control. We show that the proposed state synchro-
nization design meets the expected digital twin synchronization
requirements and give a high level design and evaluation of
other security components of the architecture. We also make
performance evaluations of a proof of concept for protected
software upgrade using the proposed digital twin design. Our new
security framework provides a foundation for future research
work in this promising new area.

Index Terms—security, digital twin, state replication, security
framework, security analysis

I. INTRODUCTION

Industrial Automation and Control Systems (IACS) is a very
broad term covering everything relating to control, monitoring
and production in different industries and encompasses all
parts of such systems.

While security for IACS in the past was neglected, in recent
years security has obtained a lot of attention in the research
community and indeed within the industry. Major security
incidents such as the STUXNET worm in 2010 [1], the
Shamoon Saudi Aramao spear-phishing attack in 2012 [2] and
the German steel factory attack in 2014 [3] have highlighted
the risk of attacks on IACS. Even if the attacks have been
of many different types and origins, they have highlighted the
need for enhanced security mechanisms and countermeasures.

Clear evidence that the industry nowadays takes security
issues seriously is the development of best practice security
guidelines [4] and the large number of security standards
targeting the IACS domain, like ISO/IEC 27000 series1, the

c©2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Work supported by framework grant RIT17-0032 from the Swedish Foun-
dation for Strategic Research as well as the EU H2020 project CloudiFacturing
under grant 768892.

C, Gehrmann is with the Dept. of Electrical and Information Tech-
nology, Lund University, Box 118, 221 00 Lund, Sweden (email: chris-
tian.gehrmann@eit.lth.se). M. Gunnarsson is wih the Dept. of Electrical and
Information Technology, Lund University, Box 118, 221 00 Lund, Sweden
and also with RISE, Ole Römers väg 5A, 223 63 Lund, Sweden (email:
martin.gunnarsson@ri.se)

1https://www.iso.org/isoiec-27001-information-security.html

ISA/IEC IEC 62443 series2 and the NIST SP800 series.
Among those, IEC 62443 is based on the very general ISO
27000 but specified for the IACS area and also the NIST
SP 800-82 [5] in the SP800 series is an IACS standard. In
addition, the industrial internet consortium has developed a
new security framework [6].

New technology trends affect IACS as well as the en-
tire society. Security solutions, security recommendations as
well as standards, need to adapt to the new technologies.
One clear current trend is the move from legacy ISA-95 to
highly distributed and cloud based architectures according to
the Industry 4.0 and RAMI 4.0 models [7]. This transition
is demanding in many ways, one challenge is control and
information sharing between production units and cloud based
control functions. This constitutes a major security risk and
requires careful system engineering not to jeopardize IACS
reliability [8]. We tackle this general security issue in this
paper by looking into the digital twin model as an enabler for
enhanced security when opening up IACS low level control
functions and data exchange according to the Industry 4.0
vision. Digital twins and state replication as security enablers
were recently proposed by different researchers [9], [10], [11].
Previous works have not taken an IACS holistic view and in
this paper we look into the problem from a system security
point of view. The work is focused on identifying main design
driving requirements for a digital twin based IACS security
architecture and with special attention to a state synchroniza-
tion model fulfilling the requirements. Detailed design of the
different components and protocols in the architecture as well
as formal security analysis of these are left for future work.
The main contributions of the paper are the following:
• We introduce a digital twin IACS adversary model and

identify security requirements for this model.
• We suggest a novel digital twin based security architec-

ture including a new state replication model.
• We evaluate the security of the proposed state replication

model as well as present a proof of concept imple-
mentation for a PLC software upgrade case including
performance figures.

We proceed as follows: we discuss the digital twin model and
make basic definitions which we use throughout the paper
(§II), we introduce our adversary model and derive security
requirements (§III), we suggest a new digital twin security
architecture and a novel digital twin design, including a state
replication model (§IV). We make a security analysis of the
proposed model and architecture (§V) and present a proof of

2ISA, ISA99, Industrial Automation and Control Systems Security,
https://www.isa.org/isa99/



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 2

concept implementation, including performance figures (§VI).
Lastly we discuss related work (§II-B) and conclude (§VII).

II. DIGITAL TWIN CONCEPT, RELATED WORK AND
DEFINITIONS

A. Digital twin model and scenario
The digital twin was according to Grives [12], a terminology

invented around 15 years ago by John Vickers of NASA
and the term was introduced publicly by NASA in 2010
[13]. Originally, the concept was used to refer to the digital
representation of a product used in simulations software but
has been expanded to a concept where not only a physical
product is represented in virtual form (software) but each
product is directly connected with a virtual counterpart, the
digital twin. The general model is depicted in Fig. 1.

Fig. 1. The original digital twin model.

The overall goal with this concept is to be able to closely
follow products during production (the physical twin) and
simulate the process to adjust the production with results of
these simulations. This can be done in real-time or close to
real-time to optimize production flows etc. [14]. The concept
has then been extended to include all units (robot loading
stations, conveyor belts etc.) in a production system allowing
advanced simulations of a complete manufacturing system and
the units involved in an autonomous system [15]. Typically,
then the digital twin part is represented and executed on
cloud resources [16]. Fig. 2 illustrates the overall scenario and
model.

Fig. 2. Digital twin cloud system scenario.

As can be seen in Fig. 2, according to this model not only
are the products themselves reflected as digital twins in the

virtual (cloud) domain but also the manufacturing units or
what we here refer to as ”components”. Typical components
here are PLCs, historians, sensors, actuators data acquisition
units, HMI units etc. Several different models and principles
for reflecting such units are possible [11]. Here we focus on
the network and logical state of a physical twin rather than
the physical properties. The definitions and notations we use
are introduced in Section II-C below.

B. Related work
Lots of work has been devoted to security in IACS. We will

here briefly discuss literature surveys and how our architec-
ture relates to the main security issues previously identified.
Next, we will discuss some important previously introduced
digital twin models and their relations to our approach. We
mainly focus on prior work devoted to digital twin and state
replication as enablers for enhanced security.

Security in IACS in general has been treated in several good
surveys [17], [18]. The work by Krotifil and Gollmann [17]
focusing on different types of attacks on existing systems but
also concluding that most efforts so far have been devoted to
IDS. Many existing IDS are compatible with our suggested
architecture but it has the benefit that such systems can be
deployed in the virtual domain. A very broad systematic
overview of security in cyber-physical systems in general
(including IACS) is given in by Humayed et al. in [19]. The
authors identify that major security challenges in IACS are
change management (including SW update) as well as the
ability to handle legacy systems. Both these issues are tackles
with the architecture we proposed in this paper. In addition,
as we discussed in the introduction, several existing standards
and new standard initiatives, are addressing IACS security in
current and future systems. None of the main standardization
bodies have so far been working with the digital twin concept
as an enabler for enhanced security.

State machine replication has a very long history. Most of
the work in this domain has been devoted to fault tolerance
[20], [21]. Achieving state replication under the assumption
of fault is much more demanding than the security oriented
state replication we consider in this paper. We use a different,
simpler model, allowing to choose the correct level of state
reflection on the digital twin side depending on the security
needs (see our state replication model in Section IV-B). This
is justified by the fact that the design goal of a digital twin
security system is disparate from a fault tolerance system, as
the digital twin cannot replace the physical twin if it fails, but
is there to reflect the physical twin and protect it from direct,
potential hostile, external interactions.

The digital twin model was first introduced in [13]. Lots
of work has then been devoted to the topic in resent years
and good overview is given in [22]. The main focus has been
on support of health analysis and improved maintenance as
well as digitally mirroring the life of the physical entity. We
are following the second approach but different from prior the
majority of prior art, we are focusing on using the digital twin
as an enabler for enhanced security.

The usage of digital twins for penetrations testing is dis-
cussed in a recent work by Bitton et al. [9]. The author



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 3

investigate the relation behind a penetration test specification
and system realization with focus on system cost optimization.
A non-linear programming solution to find an optimal digital
twin implementation level needed to perform certain security
analysis tasks is presented. This is an approach that also is
applicable to the sub-problem of digital twin realization in a
system realizing the security architecture we present in this
paper.

In [23] the idea of using state synchronization as an IoT
security enabler was suggested. However, the model presented
in [23] does not cover state changes on the IoT device side
and no complete digital twin state synchronization model is
given. Most recently, a digital twin security framework was
presented in [11] and later extended in [10]. In [11], a digital
twin specification principle using Automation ML (AML)3

was described together with a proof of concept implementation
detecting a man-in-the-middle PLC attack. In the follow up
work, [10], also the state replication problem is considered. In
this work, a passive state replication model is presented where
state updates are purely done based on inputs in the physical
domain. The strength with such a model is that it avoids
the negative performance impacts of active state monitoring.
Inspired by the work in [11] and [10], we have also looked
into the problem area of state modeling as security enabler.
However, different from the work in [10], we are looking into
how digital twin can protect IACS from external attacks and
not attacks on the factory domain. With this goal, we have
proposed a different state propagation model and a security
design allowing to identify attacks at the virtual domain
and preventing them for even reaching the physical domain.
Furthermore, we have analyzed a complete digital twin system
scenario and proposed an overall security architecture for such
scenario.

C. Digital twin definition and notations

For the purpose of the paper we denote by u ∈ U , a
physical twin, where U denotes the set of physical twins in the
system. Similarly, we denote by u′ ∈ U ′, a digital twin where
U ′ is the set of digital twins in the system. Let then Su =
{su0, su1, ..., sum−1} and Su′ = {su′0, su′1, ..., su′n−1},m ≥
n, be the finite set of states of u and u′, i.e., we assumes that
the digital twin always only reflects a subset of the physical
twin states and no states which are not represented in the phys-
ical twin. Furthermore, denote by Iu = {iu0, iu1, ..., iur−1}
the set of possible finite inputs to physical twin u and by
Iu′ = {iu′0, iu′1, ..., iu′d−1}, the set of finite possible inputs
to digital twin u′. We denote by su,t ∈ Su, the state of
physical twin u at clock cycle t and by iu,t ∈ I the input
to u at clock cycle t. Similarly, denote by su′,t ∈ Su′ , the
state of digital twin u′ at clock cycle t and the input to u′

at clock cycle t by iu′,t ∈ I ′. Hence, the initial state of the
physical twin is su,0 and the initial state of the digital twin is
su′,0. Then we can define both the physical and digital twin
as finite state machines. We then let δu : Su × Iu → Su and

3Actually, automation ML for digital twin modelling was already suggested
by Grecyce et al. in 2016 [24] but not for any security applications.

δu′ : Su′ × Iu′ → Su′ be the transition functions for the phys-
ical and digital twin respectively, i.e. su,t+1 = δu(su,t, iu,t)
and su′,t+1 = δu′(su′,t, iu′,t).

We assume a clock based digital twin state synchronization
model where a each clock cycle, t, the state of the twins
are synchronized with a message exchange starting with a
first synchronization message from the u′ to u and with a
response synchronization message from u to u′. We denote
these message as mu′→u(t) and mu→u′(t), respectively. These
messages are typically not transferred in clear between the
twin and intermediate nodes, but in protected/transformed
form. We denote protected version of the synchronization
messages by eu′→u(t) and eu→u′(t).

III. ADVERSARY MODEL AND SECURITY REQUIREMENTS

Next, using the digital twin model and definition introduced
in Section II, we describe a digital twin threat model. Using
this threat model we identify security requirements for a digital
twin based IACS architecture.

A. Adversary model

Adversary models for digital twin systems have not been
extensively treated in the literature as the concept mostly so
far has been used for production optimization and not security.
Certain security aspects regarding using digital twin as security
enablers in IACS are considered in [10] and [9]. The authors
in [10] consider state replication for active monitoring and
intrusion detection while [9] consider the problem of penen-
tration testing of IACS with focus on cost optimization for
specific security penetration tests (performed on simulated or
emulated digital twin or on an acutal physical component in
the IACS). However, since these works have very specific
security functions goals, they lack adversary model definitions
for the digital twin scenario we are considering. Hence, we
have developed a new adversary model below. This is not a
generic digital twin adversary model but a model that makes
sense in systems with cloud based data sharing and control in
IACS. We also give the main motivations for using this rather
restrictive adversary model.

Traditionally, IACS has been separated with firewalls from
other networks such as corporate network and the internet.
Several good architectures and recommendations are available
[6]. Here, we assume such principles are deployed and we
have adopted an adversary model where we do not consider
any attacks on the physical twin part or local factory network
part of the system but assume these parts can be properly
isolated from hostile external networks4.

We assume that the digital twin can run in a separate
process even on a third party cloud resource. Then the digital
twin can be realized using virtualization techniques where
the virtualization is offered on the most suitable level [25].
Providing strong isolation for virtualization and protection
against hostile cloud providers is a very challenging topic
which has been widely addressed with several different models
and solutions the past ten years [26]–[28]. Recent attacks

4Internal factory network attacks are of course also possible, but we do not
consider those in our adversary model.



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 4

Metldown [29] and Spectre [30] have shown that one can-
not even trust the fundamental hardware functions needed
for secure isolation currently in use. However, the security
with respect to secure execution environment for virtualized
systems is steadily improving and we will for simplicity in
this paper disregard attacks on the isolation properties of the
digital twin and assume that a secure execution environment
and data storage is provided for the digital twin in the system.

We adopt the Dolev-Yao model [31] and assume that the
attacker can influence the system in all other aspects including
the following capabilities of the adversary:
• The attacker is able to intercept, modify and replay all

communication from the physical domain to the digital
domain and vice versa.

• The attacker is able to launch input attacks by sending
arbitrary messages to a digital twin and input requests,
i.e. he or she can choose to send arbitrary input from the
set Iu′ to the digital twin u′.

• The attacker is able to launch intercept, modify and replay
any information sent between digital twins or between
digital twins and other units executing in the virtual
domain.

B. Security definitions

Next, we give basic security definitions. The basis of the
new security architecture is the introduction of state replica-
tion between the physical and digital twin. An expectation
from such model from robustness perspective is that the
synchronization is accurate over all system states and inputs.
The synchronization consistent expectation is fundamental for
deploying the architecture and very different from architec-
tures introduced in the literature before. The main reason
why consistency is important is that without it, one cannot
rely on that all system changes in the digital twin part are
correctly propagated to physical part of the system and vice
versa, which will make it impossible to use the model in
practise as the system behaviour would be unreliable. Hence,
even if the synchronization consistency not is a pure security
requirement, it is fundamental for the proposed architecture
and we make a precise definition of synchronization consistent
ency. It is also important to notice that one would expect from
a specific design and implementation of our architecture to
provide the synchronisation consistency property also under
attack conditions. Hence, it is important to introduce a proper
definition also in this regard.

Another fundamental, pure security expectation, with re-
spect to the synchronization is the confidentiality and integrity
of the synchronization process as such. Hence, we also provide
precise definitions for these two aspects. Apart from these def-
initions, we adopt widely used computer and communication
security definitions [32].

Definition III.1. A digital twin system is consistent if there
exist functions ∀u ∈ U, fu : Su → Su′such that the following
is true:

∀s ∈ Su, fu(δu(s, ∅)) = δu′(fu(s), ∅), (1)
su′,0 = fu(su,0). (2)

This definition reflects the requirement that when the digital
twin starts in a state consistent with the staring state of the
physical counterpart and whenever neither the physical twin
nor the digital twin receive any input, they are both always
transitioned to states that are consistent. i.e. the physical to
digital twin state mapping agree with the state of the digital
twin.

Definition III.2. A digital twin system synchronization pro-
tocol provides confidentiality protection if an adversary, who
observes information, eu′→u(t) and eu→u′(t)), sent from the
digital twin and from the physical twin respectively at time
t, cannot execute any attack, A, that in polynomial time will
allow the attacker to distinguish the state of the physical twin
from any randomly selected state, i.e., after execution of A,
the following is true:

∀s ∈ Su, P r(su = s|eu′→u(t), eu→u′(t)) = Pr(su = s) (3)

Definition III.3. A digital twin system synchronization proto-
col provides synchronization protection if the adversary cannot
execute any attack replacing message exchange eu′→u(t) with
e′u′→u′(t) and/or replacing eu→u′(t) with e′u→u′(t) which
will be accepted by u and u′ and making the twins out of
synchronization, i.e. fu(su,t) = su′,t is always true after suc-
cessful synchronization independent of adversary substitution
choices5.

Fig. 3. Security architecture overview.

C. Requirements

We have used the previously presented adversary model and
security definitions to identify a set of system security, perfor-
mance and accuracy requirements. This is not an exhaustive
list but the major identified system architecture requirements.

5This definition does not take a DoS attack into account and assumes that
the synchronization messages arrives at each time slot.



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 5

R1. Synchronization security: We require the digital twin
state replication model and protocol to be consistent
(Definition III.1), provide confidentiality protection (Def-
inition III.2) and synchronization protection (Definition
III.3).

R2. Synchronization latency: The synchronization message
exchange must not cause any delays which prevent time
critical control functions to be propagated to from the
physical to the digital twin. The precis requirements are
application dependent.

R3. Digital twin external connections protection: All con-
nections between the digital twin and the external en-
tities must be authenticated. According to the adopted
adversary model, we assume each digital twin to run in a
protected execution environment but all request external
to this environment must be properly authenticated and all
information sent from the digital twin to external trusted
parties must be confidentiality and integrity protected.

R4. Access control: The digital twin itself or a secure entity in
direct connection with the digital twin needs to make sure
access control is applied on on all incoming requests. This
includes request and information exchange with external
parties as well as information exchange with other digital
twins.

R5. Software security: The physical twin software must
always be in a trustworthy state. This implies that the
physical twin must be protected from installation of
harmful software. Mechanisms shall be in place to recover
the system in case of zero-days attacks on the physical
twins.

R6. Local factory network isolation: The local factory net-
work shall not accept any connection requests except for
protected synchronization requests with the digital twin
(see R1 above). Physical twins should be protected from
DoS attacks through boarder unit such as a gateway or
firewall making sure that only protected synchronization
requests reach a physical twin and no other outside traffic.

R7. Digital twin Denial-of-Service (DoS) resilience: The
digital twin must be protected from DoS attacks such as
network flooding or distributed DoS directly targeting a
digital twin. Proper DoS filters and router configurations
must be deployed in the factory cloud domain to prevent
or limit the DoS possibilities of the attacker. At the
same time, filters and router policies must not prevent
synchronization exchanges to reach the digital twins in
the system.

IV. A DIGITAL TWIN BASED SECURITY ARCHITECTURE
AND STATE REPLICATION DESIGN

A. Security architecture

We now have the definitions and requirements in place to
define a generic digital twin security architecture. Fig. 3 gives a
high-level picture of the proposed architecture. We have here
focused on the main security properties and entities in the
system. This is not a complete design in all details but a high
level design including main components and their roles in the
architecture. We verify the key digital twin design of it in

our proof of concept evaluation but leave detailed design and
evaluation of other components for future work.

A basic security assumption in this architecture is the
possibility to launch digital twins as well as security services
in trusted execution containers as Virtual Machines (VMs) on
suitable cloud resources. The architecture is completely agnos-
tic on the virutalization technique used for this or on which
actual level the vitalization is applied [25] [23]. However, the
architecture requires the virtualization technology to provide
trusted execution in the sense that different VMs are strongly
isolated from each other and that they have access to protected
volatile and non-volatile storage.

Using the numbering introduced in Fig. 3, we discuss the
different properties of the components in the architecture
below.

1) Digital twin component: The digital twin component is
running as a VM in an isolated environment. An overview
picture of the main logical functions of the twin is given
in Fig. 4. The core functionality of the digital twin is the
actual simulation of the physical counterpart. Only two direct
external network interactions are allowed: the synchronization
(which occurs over the synchronization GW) and the exchange
with external requests and responses. This takes place either
through the cloud server which takes all incoming requests
and responses from external entities or directly to other digital
twins or back-end components. The virtual domain external
connections are protected through the cloud Virtual Private
Network (VPN) (see Section IV-A9). The state of the digital
twin is exported directly to a common (for several digital twins
in a system) security analysis component (see also Subsection
IV-A7). Also the intermediate state, ŝu′ , is exposed to an
analyzer in this way. This implies that an external analyzer
can have access (if allowed by the access policy) to all digital
twin states in the system. This in turn allows abortion of state
propagation in case of detection of a fatal security issue by the
external analyzer. The digital twin has access to a secure clock,
t, for precise synchronization operations with the physical
twin. The actual state propagation design we use is described
in Section IV-B.

Twin	core-simulator

Twin	State
Ŝu'	Su'

Synchronization
module

Network	stack

Secure	clock
t

Digital	twin To/from	
external	server

To/from	
synch.	GW

State	property	to	
security	analyzer

Abortion-signals
from	security
analyzer

Fig. 4. Digital twin main functions

2) Physical twin component: An overview picture of the
main logical functions of the physical twin is given in Fig. 5.
Similar to the digital counterpart, the physical twin executes



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 6

the defined synchronization protocol. Depending on if the
physical twin actually has network connectivity or not, it
might run the synchronization itself or it is done through
a ”measurement unit”6. A physical twin deployed in an
isolated factory network will only exchange synchronization
information with a dedicated synchronization GW on the
same network. On the other hand, a single deployed physical
twin outside such a network will need to directly exchange
synchronization information with the synchronization GW in
the virtual domain and needs access to the key material needed
for such secure interactions. The physical twin will apart from
this, not need any specific security adaptations at all. The state
propagation design applicable to the physical twin is described
in Section IV-B.

Physical	twin	or
physical	twin

measurement	unit

Twin	State
Ŝu	Su

Synchronization
module

Network	stack

Secure	clock
t

Physical	twin Factory-local
interactions

Synch.	GW	
keys

To/from	synch.
GW

Fig. 5. Physical twin main functions.

3) Protected connection between synchronization gateways:
The connection between the synchronization GW on the local
factory and the virtual domain is protected through a secure
channel. We have chosen this principle instead of end-to end
synchronization protection as we assume it will be possible
to deploy synchronization GWs in trusted containers in the
virtual domain. Standard IPsec [33] VPN or a TLS/DTL
channels [34] [35] are assumed. A major advantage with such
solution from security management point of view is that this
allows a single security relation between the physical and
digital domain. Such single relation is very easy to maintain
from security perspective. For instance, can a pres-shared key
TLS or DTLS relation for instance be used. This can be
compared to a situation where external entities are allowed to
directly connect to the physical domain. In such situation, each
external connection would need a separate security relation
with the physical domain. Now, such relations are instead
moved to the digital domain, where the security risk is much
lower and where it is much less complex to handle such
relations from a security configuration management point of
view.

4) Protected connection from isolated physical twin to
synchronization gateway: A physical twin not deployed in a
protected local factory network, needs to directly connect to
the synchronization GW in the virtual domain. This connec-
tion then obviously needs to be confidentiality and integrity
protected using a suitable secure channel (see Section IV-A3).

5) Production system external server: The architecture
assumes all external requests arrives in the virtual domain,

6For a physical twin that is in production, it could be that it has no program
execution capabilities, but its state is only measured through external sensors
for instance.

i.e. external input to digital twin u′ from the set Iu′ arrives
to the production system external server prior to (potential)
being forwarded to the digital twin u′. Similar responses from
a digital twin are routed through this sever as well. This
allows advanced network filtering at a single point and avoids
having such functionality duplicated at each digital twin virtual
instance7.

6) Intrusion Detection System (IDS): State-of-the art IDS
are best deployed at the boarder to the internet [36]. We adopt
this principle and assume the actual intrusion analysis to be
done by a VM with direct access to the external network
interface traffic.

7) Security analysis service: The core benefit from a secu-
rity perspective with a digital twin model like the one we have
defined, is the possibility to do security analysis directly on
the digital twin state and even on the states of a whole family
of digital twins. By letting the analyzing engine having access
not only to the final states, but also intermediate states, i.e. the
ŝu′ states in the system, it is possible for a security analysis
function to detect harmful state transitions (prior to the state
propagating to the physical twin) and take direct action in the
digital domain (see also Fig. 4).

8) Central access control: By letting all external digital
twin access be subject to a single point access control,
system wide policies can easily be deployed in the system.
Advanced security policies can be defined through standard
access control frameworks such as Extensible Access Control
Markup Language (XACML) [37]. In order to allow direct
interaction between digital twins, this is preferably combined
with component local policy enforcement through tokens
issued at the central access control entity using standard tokens
such as SAML [38] or OAuth [39].

9) Protected virtual network: Most cloud providers of-
fer network isolation between VMs launched on cloud re-
sources89. Even if we have not assumed all trusted execution
services to be deployed as complete, ”traditional” VMs in the
virtual domain, higher layer VMs can be launched on such
VMs allowing re-use of standard principles for network iso-
lation. There are also other, non-provider dependent solutions
to achieve this [40].

B. State replication model and design

Several different state replication principles for digital twins
are possible. Recently, a specification-based state replication
model for digital twins was proposed [10]. We have adopted
a similar physical and digital twin state transition model.
However, the state replication design in [10] is built upon
measurement of input values and that the physical and digital
twin runs functional identical programs or what the authors
refers to as ”passive state replication”. This is an approach
that is efficient if the main purpose of the design is to evaluate
security breaches stemming from the physical domain. Instead,

7Recall that in our adversary model we assume all inputs to a physical twin
to be trustworthy and not subject to direct security analysis

8https://docs.aws.amazon.com/vpc/index.html#lang/en us
9https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-

overview



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 7

we in our security architecture use the digital twin as a
”guard” against all, potential hostile, external stimuli on the
physical domain. Hence, even if demanding from real-time
perspective, we instead have adopted a direct state replication
or what the authors in [10] refers to as ”active monitoring”.
This different security goal and approach also allow us to
abandon the functional identical program requirements. We
assume a model, where the physical and digital twin are
synchronized on regular basis. Without loss of generality, we
assume that a synchronization is done at each clock cycle.
Let zu : Su × Su′ → Su be a synchronization function and
hu : Su → Su′ a physical to digital state mapping function
for twin u. The complete synchronization (including the twins
state updates) then consists of the following operations:

ŝu,t+1 = δu(su,t, iu,t), (4)
ŝu′,t+1 = δu′(su′,t, iu′,t), (5)
su,t+1 = zu(ŝu,t+1, ŝu′,t+1), (6)
su′,t+1 = hu(su,t+1). (7)

This synchronization model works such that the physical and
digital twin treat their respective inputs independently. We
assume that the input will change the state of the (respective)
twins independently, and then at the next time slot, they will
synchronize their states to make them consistent considering
the inputs received before last synchronization.

The choice of the functions zu and hu will depend on the
digital twin model and the exact relation between the physical
and digital twin. Many different models are possible. For the
purpose of this paper, we choose a simple twin model but still
a model allow to cover several important security cases as
we show in Section VI. Denote by Su = S1u

⋃
S2u

⋃
S3u,

we then make the following assumption: S1u
⋂
S2u =

S1u
⋂
S3u = S2u

⋂
S3u = ∅. Let Su′ = S1u′

⋃
S2u′ and

we assume that S1u′
⋂
S2u′ = ∅. Then we can write the state

of the physical twin as su = (s1u, s2u, s3u) and the state
of the digital twin as su′ = (s1u′ , s2u′). We then apply the
following restrictions:

S2u = S1u′ , (8)
S3u = S2u′ , (9)

∀su ∈ Su,∀iu ∈ Iu, δu(su, iu) =

= (δ1u(su, iu), δ2u((s2u, s3u), iu), s3u), (10)
∀su′ ∈ Su′ ,∀iu′ ∈ Iu′ , δu′(su′ , iu′) =

= (s1u′ , δ2u′(su′ , iu′)) (11)

In addition, we let

su′,0 = (s1u′,0, s2u′,0) = (s2u,0, s2u′,0), (12)
su,0 = (s1u,0, s2u,0, s3u,0) = (s1u,0, s2u,0, s2u′,0) (13)

With these restrictions, we then let zu(ŝu,t, ŝu′,t) =
(ŝ1u,t, ŝ2u,t, ŝ2u′,t) and

hu(su,t+1) =

{
(s2u,0, s3u,0) if t < 0
(ŝ2u,t+1, ŝ2u′,t+1) otherwise (14)

To send the complete state at each synchronization occasion
is very inefficient. Instead, the state changes (deltas) are
calculated:

mu′→u(t) = ∆ŝu′ = Diff(ŝu′,t+1, su′,t), (15)
mu→u′(t) = ∆su′ = Diff(ŝ2u,t+1, s2u,t), (16)

This implies that the digital twin calculates a first delta, ∆ŝu′ ,
and sends it to the physical twin. This delta is then used by the
physical twin to reconstruct ŝu′,t+1, which is the input to the
z function, i.e. equation (6). Next, the physical twin calculates
the ”return delta”, ∆su′ , that is sent back to the digital twin.
The principle is illustrated in Fig. 6 below. Observe, that we
here only illustrate the synchronization information exchange
and not the protection of the synchronization messages as
such. The protection principles we apply was described in
Section IV-A.

Physical	twin
current	state:

Su,t

Physical	twin
intermediate	state:

Ŝu,t+1

Physical	twin	
final	state:
Su,t+1

Digital	twin
current	state:

Su',t

Digital	twin
intermediate	state:

Ŝu',t+1

Digital	twin
final	state:
Su',t+1

Real	space Virtual	space

Input:	iu,t Input:	iu',t

Synch:	Δ	ŝu'

Syn
ch:
	Δ	
s u'

Fig. 6. Synchronization principle.

It is important to notice from real-time and communication
overhead perspectives that when no input is received neither
on the physical or digital side, there is no need for the twins
to exchange any deltas. This is true given a consistent digital
twin system synchronized with accurate clocks.

V. SECURITY ANALYSIS

Next, we analyze the proposed framework from security
and performance perspectives. We here mainly focus on the
synchronization security characteristics. We also give argu-
ments regarding how the proposed architecture meets the
other security requirements listed in Section III-C. As the
architecture in many aspects only include a high level design,
we here postpone detailed security evaluation of these aspects
to future work and for specific implementation designs.

1) Synchronization security:

Proposition 1. The digital twin synchronization model and
protocol is consistent.

Proof. Let:

fu(s) = fu((s1, s2, s3)) = (s2, s3). (17)

From (13) we have that su,0 = (s1u,0, s2u,0, s2u′,0) and from
(12) and (14), it then follows that fu(su,0) = hu(su,0) =



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 8

(s2u,0, s3u,0) = (s1u′,0, s2u′,0) = su′,0, which fulfils condi-
tion (2).

Now, using the assumptions (8),
(9), (10) and (11), let: δ̂u(su, iu) =
(δ1u(su, iu), δ2u((s2u, s3u), iu), δ2u′((s2u, s3u), ∅).
Then, it follows from (17), fu(δ̂u(su, ∅)) =
(δ2u((s2u, s3u), ∅), δ2u′((s2u, s3u, ∅)). Similar, let:
δ̂u′(su′ , iu′) = (δ2u((s1u′ , s2u′), ∅), δ2u′(su′ , iu′)). Then
by direct calculation: δ̂u′(fu(su), ∅) = δ̂u′((s2u, s3u), ∅) =
(δ2u((s2u, s3u), ∅), δ2u′((s2u, s3u), ∅)) = fu(δ̂(su, ∅)). By
then letting the state su taking any value in Su, it follows
that also condition (1) is fulfilled.

Proposition 2. If the secure channel used for communication
towards and between synchronization GW in the architecture
provides confidentiality, the digital twin synchronization de-
sign also provides confidentiality.

Proof. According to our attacker model, an adversary can
intercept any message sent from the digital twin to the syn-
chronization GW in the virtual domain or any messages sent
between synchronization GWs. He or she might also intercept
message sent from physical twins towards the GW deployed
in the virtual domain. The attacker has no other option to
intercept any synchronization information. According to (15)
and (16), at each clock cycle, one delta message is sent from
the digital twin towards the physical twin and a replay delta
message is sent in return. An adversary has two options to
intercept the first message, eu′→u(t); Either he or she intercept
it when it is sent from the digital twin the synchronization
GW in the virtual domain or when it is forwarded from
the synchronization to the GW in the factory domain (or
physical twin in the second option). As long as both these
channels provide confidentiality the attacker will not get any
information on su. As the return message follows the very
same path, the also the return message, eu→u′(t) , will have
the very same protection and equation (3) is fulfilled.

Proposition 3. If the secure channel used for communication
towards and between synchronization GW in the architecture
provides integrity and replay protection, the digital twin syn-
chronization design also provides synchronization protection.

Proof. According to Proposition 1 the proposed synchroniza-
tion model is consistent and consequently if no input is
received on neither the digital nor physical twin, hu(su,t+1) =
su′,t+1. Furthermore, if the synchronization messages also
arrives unmodified equation (7) guarantees that hu(su,t+1) =
su′,t+1 holds also in this case. Hence, the only option for
an attacker would be to modify any messages eu′→u(t) or
eu→u′(t)). In analogue with the proof of Proposition 2, if the
used secure channels provides integrity and replay protection,
such modification will be detected and a modified or replayed
message will be rejected.

2) Latency: The architecture as such does not make any
direct assumption regarding the synchronization real-time be-
haviour. Depending on the specific IACS application, the net-
works must be chosen and configured accordingly. Similarly,
the synchronization GW must be implemented on platforms

powerful enough to fulfill real-time requirements. For some
applications, deploying the virtual domain on an edge cloud
[8] can be used to meet R2.

3) External connections: The architecture assumes all ex-
ternal connection to be intermediates by the external server en-
tity at the boarder of the external network. The external server
will only accept authenticated requests. Furthermore, the final
hop for the external server to the digital twin runs through the
virtual domain VPN. This, if properly implemented, implies
that the system fulfills the requirement R3.

4) Access control: According to the proposed security
architecture, the centralized access control VM deployed in the
virtual domain makes sure all access requests towards the dig-
ital twin are properly authorized. Access control enforcement
then takes place at the digital twin VM. This means that the
main building blocks are included to fulfil R4. However, the
actually authorization and access control mechanisms which
are supported are subject to detailed design, which have been
left for future work.

5) Software security: The software state of the physical
twin can be replicated to the digital counterpart. A security
service with direct access to the twin state can be launched.
This service then controls the physical twin software state and
upgrade. This is a very efficient way to both monitor the SW
status and control upgrades as we show with the experimental
evaluation in Section Section VI. Even if this is an important
step to meet R5, further SW monitoring tools needs to be
deployed in the system to give the wanted software security
level.

6) Network isolation and DoS resilience: The architecture
adopts best practise for factory network isolation [5] to meet
R6. In addition, external interaction with the factory domain is
only possible indirectly through the protected synchronization.
All direct requests towards digital twin are subject to IDS and
filtering and additional security protection mechanism can be
launched as security service VMs in the virtual domain. With
proper design and implementation, such measures will provide
network isolation and DoS resilience as required by R7.

VI. PROOF OF CONCEPT AND PERFORMANCE EVALUATION

In order to test the feasibility of the proposed architecture
and approach, we have implemented a low complexity system
with digital twins using our proposed state synchronization
protocol. Our main goal here is to get an impression of how the
proposed synchronization framework, which is the fundamen-
tal basis of the proposed architecture, affects the production
units in the system as well as the bandwidth consumption10.
It was argued in [10] that direct state synchronization or what
the authors refer to as active monitoring is not feasible in
real-time critical systems due to large bandwidth overhead.
While we argue that this is not the case for low complexity
digital twin state models and for moderate synchronization
frequencies, we are interested to measure the production unit
actual computation and bandwidth overhead in a real system.

10We recall that the synchronization including the protection of the synchro-
nization is the only parts of the architecture that directly affects the production
domain.



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 9

To make the evaluation feasible, we here focus on the first
three components in the architecture in Fig. 3. We have
implemented a simple manufacturing scenario, as seen in
Fig. 7 consisting of a PLC unit, u1, controlling an industrial
process. In addition, we have a software upgrade server, u2,
holding software upgrade information, that is deployed in the
factory local network. The PLC and the upgrade server are
reflected as digital twins: u′1, u

′
2. The goal with introducing

the virtual domain is to allow secure software control and
upgrade of the production system units. To facilitate this, the
software state and software control state are replicated to the
digital twin domain.

It should be noted, that additional components and more
complex production scenarios, will give a more detailed pic-
ture of how the proposed synchronization model effects the
system performance. However, as the proposed synchroniza-
tion protocol scales linear with the number of units with
respect to bandwidth consumption, we argue that measure-
ments in a small systems will give a good view of the
overall system impact. Furthermore, the actual effect in terms
of computational overhead on a particular production unit,
will obvious depend on the computational power of the unit.
Here, we use a fairly constrained platform, a RaspberryPI, for
the evaluation. Other platforms and systems will be affected
in similar ways but obviously platforms with less resources
will be affected more. How, different platforms with different
resources are affected, is left for future work as our main goal
here is to verify the general feasibility of the approach.

Our proof-of concept implementation shows that as long
as we have moderate state changes and the synchronization
happens less than 100 times a second, clock synchronization
is not an issue. The platform we have worked with can
timely process a request and send a response without major
delays. Hence there is no need to have a more precise clock
synchronization. Here we let the digital twin act as a ”master”
and the physical twin as a ”slave” unit at each synchronization
occasion.

Update-
server

digital twin
u'2 

PLC digital
twin
u'1 

Operator w

PLC
u1Update server

u2 

Industrial process

Fig. 7. Setup of out digital twin and software update scenario.

The state information for the supported twins are selected
to be: su′

1
= [ctrl_flag, ctrl_url, sw_state]

and su′
2

= [ctrl_url, sw_package]11. ctrl_flag

11Here is actually no state information with origin from the physical twin,
u2, but just digital twin state information which is propagated to the physical
twin.

is a value holding software upgrade request control and
error information and the ctrl_url is a URL of a new
software package to be installed. sw_state is a list of all
current software packages and versions installed on a unit and
sw_package is a new software package. We also assumes
a remote operator, w, to be present in the system controlling
software upgrades through a remote user device over standard
internet.

A. PLC software update process

w identifies a new software package, q, and connects to
the external server u′2. w then downloads q to u′2 and w
receives a ctrl_url value for the package in return. u′2
then updates the state ŝu′

2,0
to reflect the storage of the new

software package. Then a synchronization takes place between
u′2 and u2. The synchronization is done by sending ∆ŝu′

2
=

ctrl_url+q from u′2 to u2. This in turn, triggers u2 through
the functions hu2

and zu2
, to update its internal state, resulting

in the storage of q which can be downloaded from ctrl_url
to other units within the local factory network.
w makes a second request using the newly received

ctrl_url and with information regarding the new soft-
ware packages towards u′1. The request trigger u′1 to update
states su′

1,1
: ctrl_flag, ctrl_url, sw_state, where

ctrl_flag contains ”available software update indicator”,
ctrl_url contains the URL to the new software package
on u2 and sw_state contains version information for the
pending new software. In the clock cycle 2, this information
is propagated to u1 through ∆ŝu′

1
. This values in combination

with the functions hu1
and zu1

give an updated state su1,2.
The SW update flag in state su1,2 triggers u1 to set the
state to update pending allowing to u2 using ctrl_url to
download and install the new SW package, q. Once, the update
is finalized, the update status information as well as the new
SW state information is propagated back to u′1 through updates
of the ctrl_flag and sw_state.

B. Performance evaluation

We have implemented the scenario, described above, with a
SW update process using digital twins. As the PLC u1 we have
used OpenPLC [41], a free, open source PLC implementation,
running on a RaspberryPI12. The Raspberry Pi we have used is
a model 2 v1.1 with an ARM Cortex-A7 quad-core processor,
clocked at 900MHz.

The digital twins u′1, u
′
2 are running as separate processes in

a Ubuntu 18.04 desktop host. The same host also functions as
the update server u2. Since the physical entities synchronize
with digital-twins outside the protected factory network the
synchronization protocol is secured by DLTS.

1) Update time depending on synchronization frequency:
In order to evaluate the state synchronization protocol we
have looked at the SW update scenario. We want to examine
how the state synchronization process affects other processes
running on the system.

First we ran tests without state synchronization to establish
a base line for how long time the update process takes. Then

12https://www.raspberrypi.org



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 10

we ran the SW update process with state synchronization at
different frequencies. We evaluated performance at 1, 10 and
100 state synchronizations per second. The result can be seen
in Fig. 813.

As can be seen from the figure the performance impact of
the state synchronization is very small. Only at a large number
of synchronizations per second is the performance noticeable.

Fig. 8. Update times when using state synchronization at different frequencies.

2) Compassion of DTLS Cipher Suites: We have compared
different DLTS cipher suites to evaluate if this impacts perfor-
mance. The default strong suite AES-256-GCM with SHA384
was compared to the weaker AES-128-GCM with SHA256.
The results can be seen in Figure 9. It can be noted that
the choice of ciphers has only a very small impact on the
performance of the update process.

Fig. 9. Comparison of update times with different DTLS cipher-suites.

3) Computation cost: A PLC is not a constrained device
in a traditional sense, however, since it controls a time-
critical process CPU-time is limited. Any added features must
consider this so time-critical deadlines are kept.

We have measured the CPU-time needed by the PLC to
implement our state synchronization protocol. By running the
protocol over an extended time we have come to the following
numbers as seen in Table I.

As shown in the table the CPU-time needed by the PLC to
implement the state synchronization protocol is very small.
An even slower CPU will still be able to run the state
synchronization without overloading the processor.

4) Network performance: Evaluating network performance
for the state synchronization process is difficult to do without
real ICS network traffic to base an evaluation scenario on.
Hence, instead we evaluated the performance in an isolated
system. We measured the bandwidth consumption for the PLC

13In the simple system we are using, actually, the state exchange can be
omitted in most cases as we very seldom have state changes, but in our
evaluation, we anyway forced a state exchange to take place in order to test
the synchronization frequency performance impact.

CPU-time (ms)
per synchronization

CPU-load
10 synchronizations/s

CPU-load
100 synchronizations/s

0.3772 (s = 0.0602) 0.0038% 0.0377%
TABLE I

MEASUREMENTS OF CPU-TIME PER STATE SYNCHRONIZATION MESSAGE
AND CPU-LOAD.

Bandwidth to PLC Bandwidth from PLC
No synch 0.97 KB/s 2.06 KB/s
1 synch/s 1.20 KB/s 2.38 KB/s
10 synch/s 2.16 KB/s 3.35 KB/s
100 synch/s 10.88 KB/s 12.06 KB/s

TABLE II
BANDWIDTH TO AND FROM THE PLC WHEN UPDATING.

during the update process. We then measured the bandwidth
for the update process while synchronizing with the PLC’s
digital-twin. The synchronization messages were of size 22
bytes in each direction. The bandwidth consumption can be
seen in Table II. As can be seen from the Table the bandwidth
consumption is reasonable for small synchronization frequen-
cies.

VII. CONCLUSION AND FUTURE WORK

Motivated by the need for new security models and prin-
ciples in IACS to open up the systems for cloud based
processing and data sharing, we investigated how digital twins
can work as a security enablers in IACS. We introduced a
new adversary model, made basic security definitions, identi-
fied security requirements, made a novel security architecture
and in particular state replication design for a digital twin
based IACS. The new state replication design as well as the
architecture were then security evaluated against the identified
requirements. We showed that the proposed synchronization
design meets the introduced digital twin synchronization re-
quirements. Furthermore, we made a high-level design of
the other security components in the architecture and argue
about how the suggested functions will help in meeting the
identified security requirements. Through our proof of concept
implementation and performance evaluation, we also showed
that the new digital twin synchronization model works well in
practice for a small but real production case with reasonable
performance impact. Especially, we show that as long as we
have not too high update frequency, the performance impact
on a platform like RaspberryPI is negligible. As expected, the
bandwidth increases linear with the synchronization frequency.
In our evaluation, we only reflected a few PLC states, and
obviously, the more fine grain states that are reflected, the more
impact it will have on the system performance and bandwidth
consumption.

The results shows that a digital twin based security ar-
chitecture can be a promising way to protect IACS while
open them up for external data sharing and access. We have
here worked with defining a suitable overall architecture and
synchronization model. In order to develop a fully working
system based on our architecture and approach, more work is
needed. Below, we discuss the most important future work:
• Performance: We have here made first proof of concept

of the architecture. In order to see the effect of the ar-



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 11

chitecture on different platform and production scenarios,
more performance evaluations on different platform, with
more complex digital twin state models and with larger
amount of production nodes are needed.

• Intrusion detection: In our security architecture, we
have only show how on principle level how to integrate
intrusion detection at the boarder to the virtual domain. It
is left for future research to design and integrate intrusion
detection in a fully working system.

• Access control: The architecture allows for advanced
access control in the virtual domain. The main advantage
with this approach is that this can be supported with-
out affecting the production domain at all. It remains
to design and evaluate this approach in a full system
implementation of the architecture.

• Formal security analysis: We have proven the con-
sistency of the proposed synchronization protocol and
showed that the security of the protocol depends on the
security of the underlying used secure channel. Formal
analysis of the security of the complete system design
and all protocols are left for future work.

• Security analysis services: Apart from IDS and access
control enforcement in the virtual domain, additional
security analysis services may be supported as virtual
components as we showed in our architecture design. This
include services such as virus scan, DoS prevention etc.
The design and evaluation of such services is left to future
research as well.

ACKNOWLEDGEMENT

We would like to thank the SSF SEC4FACTORY project
team for valuable discussions regarding the research direction
and results presented in the paper. In particular we would
like to thank the TetraPak project members for their valuable
feedback and suggestions.

REFERENCES

[1] N. Falliere, Murchu, and E. Chien, “W32.Stuxnet Dossier,” Symantec
Security Response online report, Feb. 2011. [Online]. Available:
http://www.symantec.com/content/en/us/enterprise/media/
security response/whitepapers/w32 stuxnet dossier.pdf

[2] A. Leyden, “Hack on saudi aramco hit 30,000 work-
stations, oil firm admits,” 2012. [Online]. Available:
http://www.theregister.co.uk/2012/08/29/saudi aramco malware attack

analysis/
[3] P. F. Roberts, “Cyberattack inflicts massive damage on

german steel factory,” The security ledger, 2014. [On-
line]. Available: https://securityledger.com/2014/12/cyberattack-inflicts-
massive-damage-on-german-steel-factory/

[4] F. M. P. Didier P, J. Harstad et al., “Converged plantwide ethernet
solution - converged plantwide ethernet (cpwe) design implementation
guide,” Cisco Systems and Rockwell Automation, 2011. [Online]. Avail-
able: https://literature.rockwellautomation.com/idc/groups/literature/
documents /td/enet-td001 -en-p.pdf

[5] K. Stouffer, V. Pillitteri, S. L. Marshall, and A. A. Hahn,
“Guide to industrial control systems (ics) security,” NIST
Special Publication 800-82, 2, Version 2, 2015. [Online]. Avail-
able: https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-
82r2.pdf

[6] S. Schrecker et al., “The industrial internet of things - volume g4:
Security framework,” Industrial Internet Consortium, 2016. [Online].
Available: https://www.iiconsortium.org/pdf/IIC PUB G4 V1.00 PB-
3.pdf

[7] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architec-
ture for industry 4.0-based manufacturing systems,” SME Manufacturing
Letters, vol. 3, 12 2014.

[8] J. Delsing, “Local cloud internet of things automation: Technology and
business model features of distributed internet of things automation
solutions,” IEEE Industrial Electronics Magazine, vol. 11, no. 4, pp.
8–21, Dec 2017.

[9] R. Bitton, T. Gluck, O. Stan, M. Inokuchi, Y. Ohta, Y. Yamada, T. Yagyu,
Y. Elovici, and A. Shabtai, “Deriving a cost-effective digital twin of
an ics to facilitate security evaluation,” in Computer Security, J. Lopez,
J. Zhou, and M. Soriano, Eds. Cham: Springer International Publishing,
2018, pp. 533–554.

[10] M. Eckhart and A. Ekelhart, “A specification-based state
replication approach for digital twins,” in Proceedings of the
2018 Workshop on Cyber-Physical Systems Security and PrivaCy,
ser. CPS-SPC ’18. ACM, 2018, pp. 36–47. [Online]. Available:
http://doi.acm.org/10.1145/3264888.3264892

[11] ——, “Towards security-aware virtual environments for digital twins,”
in Proceedings of the 4th ACM Workshop on Cyber-Physical System
Security, ser. CPSS ’18. New York, NY, USA: ACM, 2018, pp. 61–72.
[Online]. Available: http://doi.acm.org/10.1145/3198458.3198464

[12] M. Grieves, “Digital twin manufacturing excellence
through virtual factory replication,” Dassault
Syst’emes, Paris, France, 2014. [Online]. Available:
http://innovate.fit.edu/plm/documents/doc mgr/912/1411.0 Digital Twin
White Paper Dr Grieves.pdf

[13] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp,
J. LeMoigne, and L. Wang, “Modeling, simulation, infor-
mation technology & processing roadmap,” National Aero-
nautics and Space Administration (NASA), 2010. [On-
line]. Available: https://www.nasa.gov/pdf/501321main TA11-MSITP-
DRAFT-Nov2010-A1.pdf

[14] T. H.-J. Uhlemann, C. Schock, C. Lehmann, S. Freiberger,
and R. Steinhilper, “The digital twin: Demonstrating the
potential of real time data acquisition in production systems,”
Procedia Manufacturing, vol. 9, pp. 113 – 120, 2017, 7th
Conference on Learning Factories, CLF 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2351978917301610

[15] R. Rosen, G. von Wichert, G. Lo, and K. D. Bettenhausen,
“About the importance of autonomy and digital twins for
the future of manufacturing,” IFAC-PapersOnLine, vol. 48,
no. 3, pp. 567 – 572, 2015, 15th IFAC Symposium
onInformation Control Problems inManufacturing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896315003808

[16] M. R. Shahriar, S. M. N. A. Sunny, X. Liu, M. C. Leu, L. Hu, and
N. Nguyen, “Mtcomm based virtualization and integration of physical
machine operations with digital-twins in cyber-physical manufacturing
cloud,” in 2018 5th IEEE International Conference on Cyber Security
and Cloud Computing (CSCloud)/2018 4th IEEE International Confer-
ence on Edge Computing and Scalable Cloud (EdgeCom), June 2018,
pp. 46–51.

[17] M. Krotofil and D. Gollmann, “Industrial control systems security:
What is happening?” in 2013 11th IEEE International Conference on
Industrial Informatics (INDIN), July 2013, pp. 670–675.

[18] P. Uchenna, D. Ani, H. M. He, and A. Tiwar, “Review of cybersecurity
issues in industrial critical infrastructure: manufacturing in perspective,”
Journal of Cyber Security Technology, vol. 1, no. 1, pp. 32–74, 2017.

[19] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems
security–a survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp.
1802–1831, Dec 2017.

[20] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[Online]. Available: http://doi.acm.org/10.1145/359545.359563

[21] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: A tutorial,” ACM Comput. Surv.,
vol. 22, no. 4, pp. 299–319, Dec. 1990. [Online]. Available:
http://doi.acm.org/10.1145/98163.98167

[22] E. Negri, L. Fumagalli, and M. Macchi, “A review of the
roles of digital twin in cps-based production systems,” Procedia
Manufacturing, vol. 11, pp. 939 – 948, 2017, 27th International
Conference on Flexible Automation and Intelligent Manufacturing,
FAIM2017, 27-30 June 2017, Modena, Italy. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2351978917304067

[23] C. Gehrmann and M. A. Abdelraheem, “Iot protection through device
to cloud synchronization,” in 2016 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), Dec. 2016, pp.
527–532.



IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 12

[24] G. N. Schroeder, C. Steinmetz, C. E. Pereira, and D. B.
Espindola, “Digital twin data modeling with automationml
and a communication methodology for data exchange,” IFAC-
PapersOnLine, vol. 49, no. 30, pp. 12 – 17, 2016, 4th IFAC
Symposium on Telematics Applications TA 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896316325538

[25] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems
and Processes (The Morgan Kaufmann Series in Computer Architecture
and Design). San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2005.

[26] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm:
A programming framework for secure computation,” in 2015 IEEE
Symposium on Security and Privacy, May 2015, pp. 359–376.

[27] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud
using sgx,” in 2015 IEEE Symposium on Security and Privacy, May
2015, pp. 38–54.

[28] N. Paladi, C. Gehrmann, and A. Michalas, “Providing user security
guarantees in public infrastructure clouds,” IEEE Transactions on Cloud
Computing, vol. 5, no. 3, pp. 405–419, July 2017.

[29] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user space,” in
27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, 2018, pp. 973–990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[30] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative
execution,” in 2019 2019 IEEE Symposium on Security and
Privacy (SP), vol. 00, 2019, pp. 19–37. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SP.2019.00002

[31] D. Dolev and A. C. Yao, “On the security of public key protocols,”
in Proceedings of the 22Nd Annual Symposium on Foundations
of Computer Science, ser. SFCS ’81. Washington, DC, USA:
IEEE Computer Society, 1981, pp. 350–357. [Online]. Available:
https://doi.org/10.1109/SFCS.1981.32

[32] W. Stallings and L. Brown, Computer Security: Principles and Practice,
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2014.

[33] S. Kent and K. Seo, “Security architecture for the internet protocol,”
RFC 4301 (Proposed Standard), Internet Engineering Task Force, Dec.
2005. [Online]. Available: https://www.rfc-editor.org/info/rfc4301

[34] T. Dierks and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” RFC 5246 (Proposed Standard),
Internet Engineering Task Force, Aug. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5246.txt

[35] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347, Jan. 2012. [Online]. Available: https://rfc-
editor.org/rfc/rfc6347.txt

[36] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer, “Stateful intrusion
detection for high-speed network’s,” in Proceedings 2002 IEEE Sympo-
sium on Security and Privacy, May 2002, pp. 285–293.

[37] “extensible access control markup language (xacml) version
3.0,” OASIS Standard, 2013. [Online]. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

[38] B. Campbell, C. Mortimore, and M. Jones, “Security Assertion Markup
Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication
and Authorization Grants,” RFC 7522, May 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7522.txt

[39] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct.
2012. [Online]. Available: https://rfc-editor.org/rfc/rfc6749.txt

[40] L. E. Li and T. Woo, “Vsite: A scalable and secure architecture for
seamless l2 enterprise extension in the cloud,” in 2010 6th IEEE
Workshop on Secure Network Protocols, Oct 2010, pp. 31–36.

[41] T. R. Alves, M. Buratto, F. M. de Souza, and T. V. Rodrigues,
“Openplc: An open source alternative to automation,” in IEEE Global
Humanitarian Technology Conference (GHTC 2014), Oct 2014, pp. 585–
589.

Christian Gehrmann received the M.Sc. degree
in electronic engineering and the Ph.D. degree in
information theory from Lund University, Lund,
Sweden, in 1991 and 1997, respectively.

He is an adjunct professor in computer security
at Lund University and leads two major research
project devoted to security in next generation pro-
duction systems. His main research interest is in
secure systems design, secure execution environ-
ments and security protocols. Prof. Gehrmann has
been active in many industry standardization bodies

and made major contributions to the Bluetooth, Trusted Computing Group
and ONVIF (network video) standards. He has been active in research and
development of secure computer and communication systems for more than 25
years. He has numerous scientific publications and patents in the information
security area that received more than 3400 citations and with and H-index
equal to 32.

Martin Gunnarsson is a PhD student at Lund Uni-
versity, Lund, Sweden. His current research focus is
security in industrial control systems. He received
his Master of Science degree in Computer Science
from Lund University in 2017. He has been working
in the Security Lab of RISE since 2017 with a focus
on communications security for constrained devices.
He has been involved in IoT security standardization
work at IETF.


