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External losses in photoemission from strongly correlated quasi-two-dimensional solids
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~Received 8 January 2001; revised manuscript received 2 May 2001; published 28 August 2001!

Expressions are derived for photoemission, which allow experimental electron energy loss data to be used
for estimating losses in photoemission. The derivation builds on new results for dielectric response and mean
free paths of strongly correlated systems of two-dimensional layers. Numerical evaluations are made for
Bi2Sr2CaCu2O8 ~Bi2212! by using a parametrized loss function. The mean free path for Bi2212 is calculated
and found to be substantially larger than obtained by Normanet al. @Phys. Rev. B59, 11 191~1999!# in a
recent paper. The photocurrent is expressed as the convolution of the intrinsic approximation for the current
from a specific two-dimensional layer with an effective loss function. This effective loss function is the same
as the photocurrent from a core level stripped of the dipole matrix elements. The observed current is the sum
of such currents from the first few layers. The correlation within one layer is considered as a purely two-
dimensional~2D! problem separate from the embedding three-dimensional~3D! environment. When the con-
tribution to the dielectric response from electrons moving in 3D is taken as diagonal inq space, its effect is just
to replace bare Coulomb potentials in the~3D! coupling between the 2D layers with dynamically screened
ones. The photoelectron from a specific CuO layer is found to excite low-energy acoustic plasmon modes due
to the coupling between the CuO layers. These modes give rise to an asymmetric power-law broadening of the
photocurrent an isolated two-dimensional layer would have given. We define an asymmetry index where a
contribution from a Luttinger line shape is additive to the contribution from our broadening function. Already
the loss effect considered here gives broadening comparable to what is observed experimentally. Our theory is
not related to the loss mechanism recently discussed by Joynt@R. Joynt, Science284, 777~1999!; R. Haslinger
and R. Joynt, J. Electron Spectrosc. Relat. Phenom.117-118, 31 ~2001!# which adds additional broadening
beyond what we calculate. A superconductor with a gapped loss function is predicted to have a peak-dip-hump
line shape similar to what has been observed, and with the same qualitative behavior as predicted in the recent
work by Campuzanoet al. @Phys. Rev. Lett.83, 3709~1999!#.

DOI: 10.1103/PhysRevB.64.115109 PACS number~s!: 79.60.2i, 74.25.Gz, 78.20.Bh
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I. INTRODUCTION

Photoemission spectroscopy~PES! is an important tool to
understand the electronic structure of strongly correla
quasi-two-dimensional systems such as high-Tc supercon-
ductors. Most theoretical work concentrates on tw
dimensional~2D! model systems, and when the theoretic
results are compared with PES the three dimensionality
the actual experimental samples is only schematically, i
all, taken into account. Further, almost all discussions
based on the sudden approximation~SA!, and do not con-
sider extrinsic losses and interference effects. For rec
work on strongly correlated systems beyond SA we refer
reader to Refs. 1–4.

We define SA as the bulk one-electron spectral funct
augmented with dipole matrix elements. This approximat
is exact in the high-energy limit for isolated systems such
atoms and molecules. For solids, where the electrons c
from a surface region and the mean free path is an impor
feature, SA is never valid, not even at high energies. Here
correct high-energy limit is a convolution of the sudden a
proximation and the loss function~SA*LF!. SA is particu-
larly valuable when we only look for peak positions such
quasiparticle energies~e.g., for band-structure mapping!.
There are indications that also quasiparticle line shapes
well represented.5 When it comes to spectral properties ov
0163-1829/2001/64~11!/115109~16!/$20.00 64 1151
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a more extended energy region, which is important for, e
strongly correlated systems, SA can no longer be relied
For core level photoemission from weakly correlated s
tems such as metals and valence semiconductors SA*LF
rectly describes the satellite intensities only in the keV
gion, while the asymmetric quasiparticle line shape~in
metals! is given correctly by SA already at low energies.5 For
localized strongly correlated systems SA is reached rat
quickly, say, at 5–10 eV above threshold.1

We analyze the three-dimensional~3D! dielectric re-
sponse of a stack of strongly correlated 2D sheets in
(x,y) plane, embedded in a 3D background. We then
sume, as expressed in Eq.~B8!, that the response to the tota
electrostatic potential is given by the sum of a 3D part an
2D part. With the 3D part depending only on the coordina
difference in 3D, and the 2D part on the difference in 2D, t
dielectric function is obtained on a closed form. This clos
form allows us to find an approximate relation between
electron energy loss function and the dynamically scree
potentialW. The relation is only approximate since ener
loss is related to the diagonal part~in q-space! of the dielec-
tric function, while we need the nondiagon
Im W(z,z8,Q,v) @or equivalently ImW(qz ,qz8 ,Q,v)# for
the loss problem in photoemission. In PES we need to kn
Im W(z,z8,Q,v) in the presence of a surface, while the lo
data are obtained from a bulk sample. This calls for ad
©2001 The American Physical Society09-1
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L. HEDIN AND J. D. LEE PHYSICAL REVIEW B64 115109
tional approximations. Our numerical evaluations conc
Bi2212 and are based on a parametrization of the loss fu
tion given by Normanet al.4 We, however, include disper
sion in the dielectric function, which makes the mean fr
path much longer. We use atomic units withueu5\5m51,
and thus, e.g., energies are in Hartrees~27.2 eV! and lengths
in Bohr radii ~0.529 Å!.

II. MEAN FREE PATH

For the interpretation of photoemission from the cupra
the value of the mean free path at energies of about 20
where the experiments usually are done, is very importan
a recent paper by Normanet al.4 very short values of the
order 2–3 Å were obtained for Bi2212. Normanet al., how-
ever, neglected theq dependence in the loss function. In th
electron gas case neglect of dispersion makes the mean
path about half the value with dispersion. When we introdu
dispersion for Bi2212 we find an even larger effect on
mean free path.

Normanet al. used a parametrization of the energy lo
data on Bi2Sr2CaCu2O8 ~Bi2212! obtained by Nu¨ckeret al.,6

Im
21

«~v!
5(

i 51

3

ci

vG iv i
2

~v22v i
2!21v2G i

2
~1!

with parameters~energies in eV! given below
i ci v i G i

1 0.164 1.1 0.7
2 0.476 18.5 13.6
3 0.345 32.8 17.0

The first peak at about 1 eV is associated with 2D pl
mon excitations, while the large double peak comes fr
essentially 3D excitations since it is similar to what is o
served in Cu metal~cf. Ref. 4!. The linear rise for smallv
comes from acoustic plasmons~due to the coupling of the
2D plasmons in the different layers!, and also to some exten
from electron-hole excitations. Phonons and other lo
energy excitations cannot be seen in Nu¨cker et al.’s6 data
since the broadening is too large~150 meV!.

For an electron gas we have the well-known relation
tween the mean free pathl3D(«k) and the inverse dielectric
function Im«21(q,v),

1

l3D~«k!
5

2

pk2E0

`dq

q E
0

vmax
ImF 21

«~q,v!Gdv, ~2!

with

«k5k2/2, vmax5min~kq2q2/2,k2/22kF
2/2!.

In a solid at lower energies we should use Bloch functio
and not plane waves for the scattered electron. Howe
calculations by Campilloet al.7 show that for copper use o
plane waves but with a full-band-structure dielectric functi
is a reasonable approximation. In our calculations we use
~2! for the two last terms in the Normanet al. parametriza-
tion. Following Ritchie and Howie8 and many other author
11510
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~cf., e.g, Ref. 9! we introduce dispersion by replacingv i and
ci in Eq. ~1! by v i(q) andci(q),

v i~q!5v i1
q2

2
, ci~q!5

civ i
2

v i
2~q!

, i 52,3.

We have putkF50 for simplicity, which gives a slight un-
derestimate of the mean free path.

The expression for the mean free path in a layered m
rial is

1

l2D~k!
5

1

p2k
E

2`

`

dqzE
0

` QdQ

qz
21Q2E0

2p

dfu~«k2q2m!

3Im
21

«~Q;v!
,

wherekz andK are components perpendicular and paralle
the layers,k5(kz ,K ), k5uku, K5uK u, etc., and

v5«k2«k2q5kzqz2qz
2/22Q2/21KQ cosf.

For simplicity we have taken free electron energies. Furt
considering propagation perpendicular to the layers we h
K50, and no dependence on the anglef betweenK andQ,

1

l2D~kz!

5
2

pkE0

k

dQE
qmin

qmax Qdqz

qz
21Q2

Im
21

«~Q;kzqz2qz
2/22Q2/2!

,

~3!

qmin5k2Ak22Q2, qmax5k1Ak22Q2.

In Ref. 10 there is a detailed discussion of the 1 eV feat
~the first peak!. It has aQ2 dispersion that is a signature o
coupled particle holes~plasmons!. They also estimate the
coefficient theoretically with reasonable results. Fro
Nückeret al.6 it is clear that the first peak, besides dispersi
asQ2, quickly broadens whenQ increases. For the first term
in Eq. ~1! we use

v1~Q!5v11aQ2, G1~Q!5G1S 11
Q2

Q0
2D ,

c1~Q!5
c1v1

2

v1
2~Q!

, Q050.13 a.u., a50.6.

We have putm50. With a finitem, and thus a finitekF we
should replaceAk22Q2 with AkF

22Q2 for Q,kF in the
limits above. Such a replacement makes 1/l2D smaller and
our approximation thus again slightly underestimates
mean free path.

In Fig. 1 we show results for the inverse mean free pa
for the 2D and 3D contributions. It is remarkable that the 2
effects, while peaked at 1.5 eV, extend quite far, out to so
30 eV. The 3D contribution starts dominating at about 10
9-2
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EXTERNAL LOSSES IN PHOTOEMISSION FROM . . . PHYSICAL REVIEW B64 115109
The mean free pathl, given by 1/l51/l2D11/l3D , is
shown in Fig. 2. The maximum in 1/l3D is reached at abou
100 eV, where the mean free path has its minimum of so
5 Å. It seems to be a universal feature that the minim
mean free path is about 5 Å at an energy about 3–4 times
energy where the loss processes are strongest, as can be
from tabulations of loss functions11 and mean free paths.12

The qualitative behavior of the 2D and 3D contributions
Fig. 1 are similar to what has been obtained in random-ph
approximation~RPA! calculations for the layered electro
gas.13 We remark that Normanet al. besides the inverse
mean free path also calculated the background in PES in
traditional way from the extrinsic losses only, following th
common convention to take the background as zero at
bottom of the main band. If we do a similar backgrou
calculation the results are very close to Normanet al.’s since
in such a calculation only the shape and not the strengt
the loss function enters. We emphasize that in our treatm
of PES later in this paper we include besides the extrin
losses also the intrinsic ones and the interference te
which gives a radically different result for small energ
losses.

FIG. 1. The contributions to the inverse mean free path 1/l from
2D ~full drawn! and 3D~dashed! terms in the case of Bi2212.

FIG. 2. The full drawn curve gives the mean free pathl from
our calculations that include dispersion in the dielectric const
and the dashed curve the results without dispersion given by N
manet al.4
11510
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III. PHOTOEMISSION

We are interested in photoemission from the CuO laye
The layers are regarded as localized systems embedded
3D environment. The crystal surface is taken to be para
with the layers and in the (x,y) plane. We take the electron
in the 2D layers as separate from the other electrons,
write the state vectors for the initial and final states as

uNB&uN2D&,uNB* ,s1&uN2D21,s2&uk&. ~4!

Here uN2D& is the state vector for the electrons in one p
ticular layer at a distancez0 (z0.0) from the surface~the
one from which the photoelectron comes!, anduNB& the state
vector for the remaining~bulk! electrons that move in 3D
uN2D21,s2& is an excited states2 of the particular layer, and
uNB* ,s1& an excited states1 of the bulk electrons. The sta
indicates that these electrons move in the presence of a
calized hole atr5(0,z0), and thus is an eigenfunction of
different Hamiltonian than that foruNB&. Finally, uk& is the
photoelectron state. One may argue that the hole shoul
extended over the 2D layer rather than sit in one point. Ho
ever, even in weakly correlated solids correlation effects g
rise to satellites corresponding rather to the removal of
electron from a point than from an extended region.14 For the
strongly correlated systems considered here the band is q
narrow and thus the atomic functions building the Blo
functions have small overlaps, which makes our approxim
tion of a localized hole even better. We consider proces
when the photo electron energy is high enough that we h
reached the sudden limit as far as the excited layer is c
cerned~about 10 eV according to Ref. 1!.

The expression for the PES transition amplitude th
becomes15

t~k,s1 ,s2!5(
i

^ku^NB* ,s1u^N2D21,s2u

3F11V
1

E2HGci uN2D&uNB&Du i &, ~5!

where u i & and uk& are one-electron states. The stateu i &
5uK i&uf0& is the product of a 2D Bloch stateuK i& with
momentumK i , and the bound statef0(z) for the motion in
thez direction, which only will enter asuf0(z)u25w(z). The
operatorci destroys an electron in state ‘‘i ,’’ and ci uN2D& is
regarded as a localized state concerning its influence on
3D states. The optical transition operator isD, andV is the
potential for the interaction between the photoelectron a
the solid, the potential that causes external losses. SincV
contains both operators acting on the photoelectron and
the solid the expectation valuêNB* ,s1u•••V•••uNB& is a
one-electron operator acting on photoelectron states.
state Du i & generated by optical excitation is considered
photoelectron state.H is the full Hamiltonian includingV,
andE is the total energy

E5E~N2D!1E~NB!1vphot

5E~NB* ,s1!1E~N2D21,s2!1«k , ~6!

t,
r-
9-3
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L. HEDIN AND J. D. LEE PHYSICAL REVIEW B64 115109
wherevphot is the photon energy and«k5k2/2 the photo-
electron energy. The photocurrent is proportional to

Jk~vphot![(
s1s2

ut~k,s1 ,s2!u2d~vphot1Es2
2vs1

2«k!,

with

vs1
5E~NB* ,s1!2E~NB!,

Es2
5E~N2D!2E~N2D21,s2!.

For the HamiltonianH we take,

H5H2D1HQB1h1V,

where H2D describes the pertinent 2D layer,HQB the 3D
electrons in a quasi-boson representation,h ~a one-electron
operator! the photoelectron, andV the interaction between
the photoelectron and the 3D system~the interaction with the
2D system is neglected since we assume the sudden lim
apply here!. Explicitly we have,

HQB5(
s

vsas
†as2VhPh , Vh5(

s
Vh

s~as1as
†!,

V5 (
skk8

Vkk8
s ck

†ck8~as1as
†!, Vkk8

s
5^kuVsuk8&,

Vh
s5Vs~0,z0!.

Ph is a projection operator that gives 1 for states with a h
in the 2D system, and 0 otherwise, andVh is the potential
from the hole in the 2D system. The functionsVs(r ) are
fluctuation potentials, discussed at length in Refs. 5 and

Say that we somehow can calculate the photocur
Jk

2D(z0 ,vphot) from one isolated two-dimensional layer at
distancez0 from the surface, and want to estimate the curr
from this layer when a set of such layers together with ad
tional electrons of 3D character form a three-dimensio
crystal. We have to account for the shake up in the 3D s
rounding of the layer as well as the losses the photoelec
can have on its way out to the surface. In Appendix A
show that the photocurrent then can be written as a con
lution between the 2D currentJk

2D(z0 ,v) and an effective
broadening functionPk(z0 ,v) @Eqs.~A4! and ~A5!#,

Jk~z0 ,vphot!5E Jk
2D~z0 ,v8!Pk~z0 ,vphot2v8!dv8.

~7!

A delta function peakd(v2«02«k) in Jk
2D(z0 ,v) will

hence give a contributionPk(z0 ,vphot2«02«k) to the pho-
tocurrent. In core-electron photoemission we have a sim
expression withJk

2D(z0 ,v) replaced by the expression fo
the current from a core level in an isolated ion~essentially a
delta function!.

The common energy distribution curve experiment giv
the current for fixed photon energyvphot as a function of the
electron energy«k for a given direction ofk ~or K , where
11510
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kÄkzẑ1K ). We are thus interested inPk(z0 ,vphot2«0
2«k) as a function of«k in the rangevphot2«0.«k.0.
Since Pk(z0 ,v) varies fairly slowly with k for fixed v,
Pk(z0 ,v) as a function ofv for fixed k describes the pho
toemission~in a limited energy range!. We will mainly dis-
cuss the properties ofPk(z0 ,v) as a function ofv for fixed
k.

The effective broadening function to second order inVs is
found to be~Appendix A!,

Pk~z0 ,v!5e2z0 /l2aFd~v!1
a~k,z0 ;v!

v G , ~8!

where

a~k,z0 ;v!

v

5(
s

U E
0

z0
f ~k,Q,v,z0 ;z!V~qz ,Q,z!dzU2

d~v2vs!,

~9!

f ~k,Q,v,z0 ;z!52
d~z2z0!

v
1

ei (k2 k̃z)z0

ik
eik̃zze2 ikz.

~10!

This expression is the same as in Eqs.~26! and ~27! for the
core electron current in Ref. 5. The functionV(qz ,Q,z) in
Eq. ~9! is the fluctuation potential giving the coupling be
tween the photoelectron and a density fluctuations
5(qz ,Q) with energyvs . In f (z) the first term gives the
intrinsic or shake-up contribution to the amplitude, while t
second term gives the contribution from losses when
electron propagates from the layer atz0.0 to the surface at
z50. The quantitiesk andk̃z are the~complex! momenta in
the z direction of the photoelectron when inside the so
before and after it excited the density fluctuations having
parallel momentumQ. The photoelectron momentum outsid
the solid iskzẑ1K and its energy«k5(kz

21K2)/2. Further,
V0 is the ~negative! inner potential, andG1 and G2 are the
dampings before and after emitting the excitations. It is easy
to derive expressions where the plane waveseikz ande2 ikz

are replaced by~damped! Bloch functions, and can find ex
pressions where the band structure also is present in the
eral motion.

SincePk(v) is quadratic in the fluctuation potentialsVs,
we can relate it to the dynamically screened potentialW. For
the imaginary part ofW we have@cf. Eq. ~49! in Ref. 5#,

Im W~z,z8;R,R8;v!52p(
s

Vs~r !Vs~r 8!d~v2vs!.

With Vs(r )5eiQRV(qz ,Q,z)

Im W~z,z8;Q;v!

52pA(
qz

V~qz ,Q,z!V~qz ,Q,z8!d~v2vs!,
9-4
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whereA is the normalization area of the planes. In an ex
treatment theV(qz ,Q,z) can be chosen real, and we see th
Im W(z,z8;Q;v) is symmetric inz andz8. Comparison with
Eqs.~8! and ~9! shows that

a~k,z0 ;v!

v
52

1

pA (
Q

E
0

z0
f ~k,Q,v,z0 ;z!

3Im W~z,z8;Q;v! f ~k,Q,v,z0 ;z8!* dzdz8.

To simplify the calculations we relate ImW to the mea-
sured loss function. The loss function, however, is connec
with losses in the bulk, and we also have to find an appro
mate relation between ImWbulk and ImWsur f. This was done
in Ref. 5 by using the Inglesfield simplified expression f
the fluctuation potential,

Im W3D
sur f~z,z8,Q,v!5

1

2pE0

`

F~qz ,Q,z!F~qz ,Q,z8!

3Im W3D
bulk~qz ,Q,v!dqz ,

where

F~qz ,Q,z!52@cos~qzz1fq!2cosfqe
2Qz#u~z!,

fq5arctan
qz

Q
.

This means that for the strength of the coupling we keep
bulk expression, while for the spacial part we have a b
function ~here plane wave! that is modified to be zero at th
surface. The relation to the loss function is

Im W3D
bulk~qz ,Q,v!5v~qz ,Q!Im

21

«3D~qz ;Q;v!
.

For 2D excitations we can do a similar modification of t
bulk fluctuation potential to make it zero at the surfac
When we takew(qz)51 we have~see Appendix B!

Im W2D
sur f~z,z8;Q;v!

5
1

2pE0

p/c

Vr~qz ,Q,z2z0!Vr~qz ,Q,z82z0!

3Im
x0~qz ;Q;v!

c
dqz

for the contribution from the layer atz0, where Imx(q;Q;v)
is related to the loss function by

Im
x0~qz ;Q;v!

c
5

1

2v~qz ,Q!
Im

21

«2D~qz ;Q;v!
,

andVr(qz ,Q,z) is the fluctuation potential,

Vr~qz ,Q,z!52Re@Vp~qz ,Q;z!exp$2 iqzz1 if~z0!%#.
~11!
11510
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Here Vp(qz ,Q;z) is a well-known periodic potential@Vp

5exp(iqzz)V, with V defined in Eq.~B7!#

Vp~qz ,Q;z!5(
G

v~qz1G,Q!w~qz1G!e2 iGz

5
2pceiqzz

Q

sinhQ~c2z!1e2 iqzcsinhQz

coshQc2cosqzc
.

~12!

The explicit expression follows when the form factorw(qz)
~cf. Appendix B! is taken as 1, and is valid only for 0,z
,c. The phasef(z0) in Eq. ~11! is chosen to makeVr zero
at the surface,Vr(qz ,Q,z0)50.

In Fig. 3 we plot ReVp(z) and ImVp(z) for some typical
values ofqz andQ, and in Fig. 4 we showVr(z) for the same

FIG. 3. The periodic functions ReVp (z) and ImVp(z) for z/c
in the interval (0,1), wherec is the lattice constant andVp is defined
in Eq. ~12!. We have taken some typical values,q50.03 andQ
50.1 ~for Bi2212c529.1 anda510.2, which givesp/c50.11 and
p/a50.31).

FIG. 4. The fluctuation potentialVr(q,Q;z2zi) in Eq. ~11! for
z/c in the interval (0,2.5) and forzi50.39c and 0.61c, the dis-
tances from the surface of the first two CuO layers. The potent
are zero at the surface and the cusps come at CuO layers.
maximum possible value ofuVr u is 2Vp(0).
9-5
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FIG. 5. Results fora2D(v) and a3D(v) @cf.
Eqs.~17! and~18!#. The parameter values are ob
tained from energy loss data for Bi2212. Th
curves in Figs. 5~a!,~b! give contributions to
a2D(v). The symbolmn refers to a contribution
when the fluctuation potential is centered at lay
m (and m12, m14, etc.! and the photocur-
rent comes from layern. Thus the dashed curve
in Fig. 5~a! ~m 5 1, n52) refers to a contribu-
tion from the fluctuation potential centered on th
layer closest to the surface when the photocurr
comes from the second layer. Figure 5~c! shows
the total contributions toa2D(v) when the cur-
rent comes from layers 1 to 4, and Fig. 5~d!
shows the corresponding contributions
a3D(v). The curves in the inset aread hocad-
justed to take out the unphysical low-energy pa
coming from a schematic parametrization. Th
photon energy is 1 a.u.
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parameter values. The sharp peak with a singular deriva
in ReVp(z) at z50 is smoothened if we takew(q)Þ1. For
a typical binding energy of 3 eV and an exponential wa
function, we havew(qz)5a2/(a21qz

2), with a50.9. Typical
values ofqz andQ arep/c andp/a. The lattice parameter
for Bi2212 arec529.1 anda510.22, which makesp/c
50.11 andp/a50.31.16 We can also compare with the cu
off parameter for the collective excitations in Bi2212 d
cussed in the section on mean free path,Q050.13. Thusa is
substantially larger thanq andQ, and it is hence reasonab
to takew(qz)51. We note that the values of ReVr(z) at the
first two Cu layers are substantially smaller than the ma
mum value of Re 2Vp(z). An approximation with bulk po-
tentials cut at the surface clearly can give very large a
spurious effects unless we go to so extremely high ener
that the mean free path becomes much larger than the la
parameterc.

When there are no low-energy excitations, like for an
sulator or for a metal when the electron-hole excitations
neglected and only the plasmons are kept, the overlap
tween the initial ground state and the completely relax
ground state in the presence of a localized hole potentia
finite. In a quasi-boson treatment we have

u^NB* ,0uNB,0&u25e2a, a5(
s

UVs~z0!

vs
U2

.

A partial summation of the perturbation expansion inVs ~or
a cumulant expansion! gives5

Pk~z0 ,v!5E dt

2p
e2 ivtexpS E a~k,z0 ;v8!

eiv8t21

v8
dv8D .

~13!

This expression correctly reproduces the edge singula
1/v12a(k,z0 ;0), and also gives the second-order satellite te
in Eq. ~8!. In the high-energy limit and the plasmon po
11510
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approximation~the electron-hole part is then not included! it
can be shown analytically that5

E a~k,z0 ;v!

v
dv5a1z0 /l, ~14!

and Eq.~13! thus also gives the correct prefactor in this lim
With an electron-hole continuum, Eq.~14! no longer can

hold since the integral diverges. We then splita(k,vphot ;v)
in a 2D part from the excitations in the layers, and a 3D p
from the remaining excitations,a5a2D1a3D . The 3D con-
tributions in Eq.~1! have been smoothly deformed to be ze
for v,v th50.1 since the metallic excitations come from th
layers. To give a good representation of the experimental
function this deformation should be compensated by a sm
increase in the 2D term, but this is a minor effect that
have omitted. Now the integral*v th

` dva3D(k,vphot ;v)/v

converges, and we have checked numerically that in
high-energy limit

E
v th

` a3D~k,z0 ;v!

v
dv5a3D

intr1z0 /l, ~15!

wherea3D
intr contains only the intrinsic part,

a3D
intr5E

v th

`

(
s

uV3D
s ~z0!u2d~v2vs!

dv

v2
.

The approach to the high-energy limit is quite slow~of the
order of keV!, and in our estimates for Bi2212 we adopt th
expression
9-6
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Pk~v!5exp~2z0 /l2a3D
intr !E dt

2p
e2 ivt

3expF E
0

`

a2D~k,z0 ;v8!
eiv8t21

v8
dv8

1E
v th

`

a3D~k,z0 ;v8!
eiv8t

v8
dv8G . ~16!

Equation~16! guarantees the correct dependence on
distancez0 to the layer. While exp(2a3D

intr) may not give an
accurate scale factor, this is of minor importance since
does not affect the ratio between the threshold peak and
satellite structure. Thea3D

intr values depend only weakly o
z0, and for the first four layers the values a
0.243, 0.252, 0.260, and 0.261. Collecting our results
have

a2D~k,z0 ;v!5
2v

p~2p!3E0

p/c

dqzE dQ

3U E
0

z0
f ~z!Vr~qz ,Q,z!dzU2

Im x~qz ,Q,v!,

~17!

a3D~k,z0 ;v!5
2v

p~2p!3E0

`

dqzE dQ

3U E
0

z0
f ~z!F~qz ,Q,z!dzU2

Im Wb~qz ,Q,v!.

~18!
In Fig. 5 we plot results for different contributions to th

a functions in Eq.~16!. The general shape of thea2D(v)

FIG. 6. The left part shows a comparison ofa2D(v) for the pure
intrinsic case with the full expression including the extrinsic amp
tude. The right part shows how the pure intrinsic contributions
a2D(v) anda3D(v) converge towards their bulk values. The ph
ton energy is 1 a.u.
11510
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functions is similar to the electron gas case with a flat port
for small v followed by a plasmon peak~cf. Ref. 17, pp.
663–667!. However, the magnitudes are different,a2D(0) is
fairly large (0.25–0.30) compared to metals while the pl
mon peak is much smaller and broader. When we change
parametrization to make the 3D terms start at 0.1 a.u.
a2D(0) values will increase by some 10%. Thea2D func-
tions have only a weak dependence on photon energy, w
thea3D curves have a much larger dependence. All curve
Fig. 5 are for the same photon energy of 1 a.u.

The left part of Fig. 6 shows the dominance of the intri
sic contributions toa2D . As expected the contributions from
the extrinsic terms are larger for the layers further away fr
the surface. The right part shows the approach towards
bulk value of the intrinsic contributions fora2D and a3D .
This approach is considerably slower in the 2D case as m
be expected from the behavior of the fluctuation potent
~cf. Fig. 4!. Comparing the intrinsica3D in Fig. 6 with the
full a3D in Fig. 5, we see that in the 3D case the extrin
effects dominate. The differencea3D

f ull2a3D
intr is roughly pro-

portional toz0 that follows the trend in the high-energy su
rule, Eq.~15!. In Fig. 7 the contributions fromPk(z0 ,v) in
Eq. ~16! from the first four CuO layers are shown. It is cle
that most of the asymmetry comes from the layers in the fi

-
o

FIG. 7. The effective loss functionPk(v) including both 2D
and 3D contributions@cf. Eq. ~16!#. The contributions from the
different layers are displayed separately. The curves are convol
with Lorentzians, in Fig. 7~a! with G510 meV, and in Fig. 7~b!
with G5300 meV.
9-7
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L. HEDIN AND J. D. LEE PHYSICAL REVIEW B64 115109
unit cell. The alpha function for the first copper layer is qu
small ~Fig. 6!, but when the mean free path effects are tak
into account, Fig. 7 shows that the broadening contributi
from the first and second layers are comparable. Figure~b!
shows an extended energy region to illustrate the rela
importance of the 2D and 3D contributions. The integral
fect of the 3D contributions is much larger, but the peaks
the loss function are smoothened out and the 3D contribu
is featureless. At higher energies we of course also h
contributions to the photocurrent from other states than
quasi-2D ones in the Copper layers discussed in this pa

We now give a qualitative discussion of the effecti
broadening functionPk(v) in Eq. ~16!. Since the 2D and 3D
contributions add in an exponent we can writePk(v) as a
convolution,

Pk~z0 ,v!

5exp~2z0 /l2a3D
intr !E Pk

2D~v2v8!Pk
3D~v8!dv8.

For Pk
3D we make a Taylor expansion, and keep only the fi

term,Pk
3D(v)5d(v)1a3D(v)/v. We have then omitted the

multiple quasi-boson excitations starting atv52v th . Since
Pk

2D is normalized to unity, and consists of a peak that
sharp compared toa3D , we can write

Pk~z0 ,v!

.exp~2z0 /l2a3D
intr !FPk

2D~z0 ,v!1
a3D~k,z0 ;v!

v G .
To numerically evaluatePk

2D(v) we used the integral equa
tion vPk

2D(v)5*0
vdv8a2D(v8)Pk

2D(v2v8) which is
easier then to evaluate the exponential expression in
~16!. If we approximatea2D(v) by a rectangular function
a2D(v)5a0u(v02v), and broaden with a Lorentzian o
width G ~full width at half maximum52G), we have for
v,v0 the Doniach-Sunjic expression,18

Pk
2D~v!5C~a0!

cos@pa0/22~12a0!arctan~v/G!#

@11~v/G!2# (12a0)/2
,

C~a0!5
e2ga0

~a021!!v0
a0G12a0sin@pa0#

, ~19!

whereg50.577 is the Euler constant. The coefficientC(a0)
in Eq. ~19! was derived in Ref. 17@see Eq.~162!#. For v
.v0 Pk

2D(v) only has a weak tail with less than 10% of th
norm ~for a0,0.4). Let vmax be the v value for which
Pk

2D(v) has its maximum, andv1 andv2 the values where it
takes half its maximum value. We define an asymmetry
dex gas(a0)5(v22vmax)/(vmax2v1). An approximate ex-
pression forgas is

gas~a0!5
v22vmax

vmax2v1
5110.79a0114.54a0

2 . ~20!
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Pk
2D(v) is the function that broadens ad-function peak in

Jk
2D(v). If Jk

2D(v) has a Doniach-Sunjic singular shape t
broadening withPk

2D(v) still gives Eq.~19! but with ana0

that is the sum of the alphas inJk
2D and inPk

2D(v). This is so
because the time transform of a power-law singular
v2(12a0) is t2a0, and a convolution in frequency space is
product in time space.

The a2D functions in Fig. 5 show clear peaks due to t
plasmon excitations. The peaks are, however, not str
enough to give more than a small bump in thePk

2D functions.
This is illustrated in Fig. 8~a! that shows the fullPk

2D curve
and the rectangular approximation in Eq.~19! using a0
50.255 andv050.08 a.u.52177 meV. In Fig. 8~b! the rect-
angular approximation is illustrated by taking out the sing
larity and plottingPk

2D(v)v [12a2D(0)]. The simple rectangu-
lar approximation without plasmon peak should be usefu
a guide when other broadening effects are at work. In Fig
we show the sum for the first four layers of the 2D cont
butions exp(2z0 /l2a3D

intr)Pk
2D(v) broadened with different

Lorentzians. The 3D terms are not included except for
~all important! mean free path factor. In the first three pane
with a limited energy region~up to 500 meV! we have used

FIG. 8. The effective loss functionPk
2D(v) obtained with only

the 2D contribution from the second layer. The full drawn curve
Fig. 8~a! shows the full solution obtained with the ’’2’’ curve in Fig
5~c!, while the dashed curve shows the result using the rectang
approximation fora2D(v) with v050.08 anda050.255@see text
at Eq. ~19!#. In Fig. 8~b! we showv [12a(0)]Pk(v). The photon
energy is 1 a.u.
9-8
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the rectangular approximation for the differenta2D contribu-
tions. In the last panel with a larger energy range the
evaluation from Eq.~16! was done since it is superior to th
rectangular model for energies above 0.5 eV~see Fig. 8!. The
numerical accuracy at the peak is, however, lower in the
calculation. Also the Lorentzians are shown to ease the e
mate of the size of the asymmetries. It is clear that we h
a sizeable line asymmetry, and also a long tail extending o
several eV. The artificial step in the rectangular approxim
tion at about 3 eV~Fig. 8! is of little consequence since th
intensity is small at this energy. The asymmetry index
slightly dependent on the Lorentzian broadeningG since we
have summed contributions from different layers with diffe
ent a values. The index is about 2.6 that according to E
~20! corresponds to an effectivea of about 0.3.

In the superconducting state the loss function should h
a gap. We mimic this gap by using a rectangular alpha fu
tion

a2D~v!5a0u~v2vsc!u~v02v!, ~21!

FIG. 9. The effective loss functionPk(v) convoluted with
Lorentzians of different widthsG ~5, 10, and 20 meV!. All the 2D
contributionsPk

2D(v) in Eq. ~19! from the first four layers are
summed weighted with exp(2z0 /l2a3D

intr). The 3D terms are no
included. In the first three panels we have used the rectang
approximation, while in the last panel the full evaluation from E
~16! was done. Also the Lorentzians are shown. The photon en
is 1 a.u.
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using the same values fora0 andv0 as in Fig. 8. For the gap
vsc we takevsc570 meV. In Fig. 10 we show the corre
spondingPk

2D(v) broadened with a Lorentzian of widthG
515 meV. Our choice of parameters is only made to illu
trate the qualitative behavior to be expected. The cu
clearly shows the peak-dip-hump line shape found exp
mentally ~for a recent reference see, e.g., Ref. 19!.

Recently it has been possible to obtain very accurate
neling data from Bi2212, and it is of interest to compa
these data with the PES satellites,20 since the tunneling data
also show peak-dip-hump structures.21 PES and tunneling are
basically different spectroscopies. There can, however,
qualitative similarities since in both cases the electro
couple to 3D quasi-boson excitations such as phono
electron-hole pairs, plasmons, magnons, etc. In our treatm
of PES we take the states of a particular 2D layer as gi
and study the effect to low order of the sudden appearanc
a hole in the 2D system on the quasi-bosons~intrinsic exci-
tations! as well as of the coupling of the photoelectron lea
ing this layer to the quasi-bosons~extrinsic excitations!, and
their interference@cf. Eqs.~8!–~10!, or equivalently Eq.~26!
in Appendix A#. We found that the intrinsic contribution
dominate for small excitation energies.

Tunneling is traditionally described by the spectral fun
tion that involves matrix elements of the electron annihi
tion operator between the initial state and the exci
states.22,23The excited states consist of a 2D layer state w
a hole, and some state of the quasi-bosons in the presen
a localized hole. In lowest-order perturbation theory t
probability for a final state with excited quasi-bosons
given by the first term in Eq.~10!. This means thatthe in-
trinsic contribution to PES and the tunneling currents are t
same except forthe mean free path effect in PES shown
Eq. ~8!, and the summation over momenta in tunneling~giv-
ing the density of states, DOS! contra momentum conserva
tion from the dipole matrix element in PES. As mention
above, we modify this analysis valid for the normal state,
simply assuming that the loss function should have a ga
the superconducting state.

In Bi2212 we have a van Hove singularity~VHS! at the

lar
.
gy

FIG. 10. The loss functionPk
2D for a gapped spectrum using th

simple parametrization in Eq.~21!. The Lorentzian broadening is
G515 meV.
9-9
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Fermi level, which makes the difference between DOS a
momentum conservation of less importance~there might
actually even be two VHS’s if the two CuO planes 3 Å apart
produce a significant splitting!. More important is that in
PES the electrons come from a thin surface region~of the
order of the mean free path! while in tunneling they may
come from an extended region that can be hundreds of
stroms, and that the coupling functionsV(z) are stronglyz
dependent. Additionally, there are two energy gaps~super-
conducting gap and pseudogap!, which further complicates
the picture. There is thus no way that PES and tunne
structures can be quantitatively the same, but since the s
quasi-bosons are involved, there may well be qualitat
similarities even though the coupling strengths can be q
different. It should also be noted that we take the spec
function for the 2D system as a sharp peak~the function
often calculated by theoreticians using say at-J model!, and
have no means to estimate the relative strengths of the
2D spectral function relative to the loss structure analy
here.

In our analysis we have only treated the plasmons for
simple reason that the experimental loss data at hand did
have resolution enough to show phonons and other l
energy excitations. If such (q50) data appear showing ad
ditional quasi-bosons one is faced with introducing reas
able dispersions, and finding reasonable extrapolations o
bulk coupling function to account for the presence of t
surface.

IV. CONCLUDING REMARKS

This paper is concerned with effects of external losse
photoemission, and the extent to which the commonly u
sudden approximation works for strongly correlated laye
materials. We have earlier found that for a strongly cor
lated localizedsystem the sudden approximation is reach
rather quickly, at about 10 eV.1 For a weakly correlated sys
tem, on the other hand, like ansp-metal or semiconductor
the sudden limit is approached very slowly, on the k
scale.5 The slow approach is connected with strong destr
tive interference between the intrinsic and extrinsic mec
nisms for plasmon production. The cancellation is parti
larly strong for small-momentum plasmons where the lo
wave plasmons are excited by the average potential from
core hole and photoelectron, which is zero.24 The asymmet-
ric line shape in core electron photoemission from metals
on the other hand, hardly affected by the external l
processes.5

We are interested in energies where the sudden lim
reached for the strongly correlated layer from which the p
toelectron comes, and derive an expression for photocur
as a convolution of the sudden approximation for the curr
from the layer with an effective loss function,Pk(v) @Eq.
~7!#. We assume, as far as the loss properties are conce
that the photoelectron comes from a localized position.
our specific example, Bi2212, thec value is 15.4 Å~neglect-
ing crystallographic shear!, and almost all contributions
come from the first unit cell. The two first CuO layers are
0.39c and 0.61c from the surface~which is between two BiO
11510
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layers!.25 With a photon energy of 1 a.u. the maximum ele
tron energy~inside the solid! is 1.15 a.u.531 eV if we take
the bandwidth as 0.15 a.u. Our energy loss calculations g
l517.8a0 ~Fig. 2!. The exp(2z0 /l) factor then is 0.53, 0.37
0.10, and 0.07 for the first four CuO layers. We thus exp
large photoemission contributions only from the first u
cell.

To obtainPk(v) we use a previously developed metho
based on a quasi-boson model, where the electron-bo
coupling is given by fluctuation potentials related to the
electric response function.15 We find that the energy los
function, which we take from experimental data, can be
lated to the screened potential that we need to calculate
~intrinsic and extrinsic! losses in photoemission. The fluctu
tion potentials related to the electrons in the layers are u
versal functions, which are easily calculated@Eqs. ~11! and
~12!#. They have some resemblance to a surface plasm
potential, but penetrate the whole solid and have the Bl
wave symmetry. We use the real part~or equivalently the
imaginary part! of a phase-shifted bulk potential to get
potential that is zero at the surface, and mimics the poten
we have in a finite solid. The fluctuation potential is int
grated overz together with a propagation functionf (z) @Eq.
~10!# that takes the photoelectron out of the solid. This in
gral is in turn integrated with the loss function~taken from
experiment!, Im «21(q,Q,v), to give functionsa2D(v) and
a3D(v) that are simply related to the effective loss functi
Pk(v) @Eq. ~16!#. When we use plane waves instead
Bloch functions in the propagation functionf (z), all specific
materials properties are embodied in the loss function. T
propagation function has both an intrinsic and an extrin
contribution that interfere.

From Eq.~16! we see thatPk(v) is scaled down withz0,
the distance of the layer from the surface, while the fluct
tion potentials increase withz. The reason for that increase
that the boundary condition forces the fluctuation potentia
the first unit cell to be much weaker than the bulk poten
~cf. Figs. 3 and 4!. The contributions to thea functions from
excitations in different layers are shown in Fig. 5 for phot
emission from different layers.

The mean free path is found to be considerably lon
than obtained by Normanet al.,4 about 12 Å rather than 3 Å
at say 20 eV ~Fig. 2!. Measurements by the ITR-2P
technique26 give a lifetime oft510 fs at an energy«53 eV
above the Fermi surface. The mean free path isl5vt. Con-
verting energy to velocity bymv2/25« gives a mean free
path l5103 Å as compared to our result of about 17 Å
that energy. This is an indication that our values rather are
the low side. It is, however, hard to know what is the corre
conversion between energy and velocity at such low en
gies, which makes a comparison very uncertain.

From Fig. 1 we see that the 2D losses occur only for sm
energies, at 5 eV the bulk losses take over. The 2D losse
to zero quite slowly, just like the bulk losses, but on anoth
energy scale. If we only had 2D losses, the minimum me
free path would be long, about 20 Å. The general behavio
the 3D mean free path follows a well-known pattern. T
mean free path has a minimum of about 5 Å at anenergy of
3–4 times the energy where the loss function has its ce
9-10
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EXTERNAL LOSSES IN PHOTOEMISSION FROM . . . PHYSICAL REVIEW B64 115109
of gravity. We have used the Born approximation to evalu
the mean free paths. This may seem a very crude appr
mation at low energies. However, the Born scattering exp
sion with a basis of Bloch waves and Bloch energies rat
than plane waves and free electron energies agrees with
GW approximation, which is commonly used also at lo
energies. Further it was shown by Campilloet al.7 that plane
waves and free electron energies was not that bad, as lon
the energies in the dielectric function are well approximat

Our main concern is the behavior of the effective broa
ening function at small energies where it is dominated by
2D losses. The 3D contributions set in at somewhat hig
energies, and give a rather structureless contribution. W
we here for convenience call 2D losses is of course actu
also a 3D effect since it comes from excitations of a coup
set of 2D layers. To allow a qualitative discussion we rep
sent thea2D functions by a rectangular distribution. Lookin
at Fig. 5 this may seem rather crude, but Fig. 8 shows
the correspondingPk(v) functions are not too different. Th
rectangular distribution allows an analytic solution@Eq. ~19!#
valid out to the cutoffv0(v0.0.1 a.u..3 eV!. Pk(v) has
only a fairly small tail beyondv0. In Fig. 9 we plot the total
Pk(v) function ~sum over the four first layers, properl
mean free path weighted!, calculated with the rectangula
approximation and broadened with Lorentzians of differ
widths. We note the marked asymmetry. The asymmetr
described by an indexgas , defined in Eq.~20!. WhenPk(v)
derives from only one~rectangular! a functiongas is a func-
tion of the singularity indexa0 , gas(a0). The indexgas is
then independent of the amount of Lorentzian broadeningG.
If the J2D function has a power law singularity with singu
larity index aL , the asymmetry index contains the sum
the two indices,gas(a01aL).

In Fig. 7 we plot contributions to the loss functionPk(v)
from different layers. It is interesting that the first two laye
give about the same contribution, while the contributio
from the next two are tiny. In the left part of Fig. 6 we sho
the importance of the intrinsic contributions toa2D . The
behavior here is thus similar to what was found previou
for metals.5 In the right part of Fig. 6 we show the approac
to the bulk limit curves. This approach is very slow fora2D
while, like in metals, it is fast fora3D . The slow approach
for a2D of course comes from the slow approach to the b
limit of the 2D fluctuation potentials~Fig. 4!.

In a paper by Liu, Anderson, and Allen from 1991,27 they
discussed the line shapes of Bi2Sr2BaCu2O8 along theG-X
direction obtained by Olsonet al.28 for 22 eV photons. They
concluded that neither the Fermi liquid nor the margin
Fermi liquid theories could fit the slow falloff of the spe
trum at higher energies. Our results offer a possibility t
the slow falloff may be due to intrinsic creation of acous
plasmons in a coupled set of CuO layers, an effect
present if only one CuO layer is considered. This broaden
is mostly intrinsic, i.e., if we treat a 3D system we have
almost intrinsic effect. However, most theoretical discussi
concern an isolated 2D system, compared to which we
an appreciable extra broadening from the coupling betw
the layers.

The PES spectra change strongly when we go to the
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perconducting state. The main peak sharpens and a peak
hump structure develops. This effect has been interprete
a coupling of the 2D state to the (p,p) collective mode.19

Here we find that this effect also can arise from the gapp
of the loss function caused by the lack of low energy ex
tations in a superconductor as shown in Fig. 10. Withou
more accurate model we find it difficult to decide which
the correct explanation, possibly it could be a combination
both mechanisms. Since the gapping of the loss functio
related to the superconducting gap, also with our mechan
the hump will scale with the gap. It is clear that the expe
mental peak-dip-hump structure rides on a background
is not predicted by our expressions, nor by anyone els
Our theory is however rather schematic with its strict se
ration of a 2D and a 3D part, while in reality the bands a
hybridized. If we extend our approach to a more detai
treatment of the underlying bandstructure, the backgro
could well be strongly changed. Such an extension repres
a very large numerical task but with the present pilot tre
ment we can at least start thinking seriously about the d
cult background problems in photoemission.

In recent papers Joyntet al.3 discussed a broadenin
mechanism due to the interaction between the photoelec
when outside the solid and the electrons in the solid. Thi
a different mechanism than in this paper, which adds ad
tional broadening. Their discussion only involved the ene
loss part and not the elastic contribution and can thus no
directly compared to experiment. We hence find their clai
regarding pseudogaps uncertain.

It should be stressed that we cannot claim any high qu
titative accuracy. We have put in dispersion in the loss fu
tion using a crude approximation. Since, however, dispers
is very important we think our predictions are substantia
better than if dispersion had been neglected. We have o
considered normal emission where the electrons come f
the G point, while the interesting experiments concern ele
trons from the Fermi surface. However, there is no rea
that the effective loss function should change qualitativ
when we go away from normal emission. The behavior
the loss function whenv→0 has been disputed. Most au
thors seem to believe the approach is linear, but there
also claims that it should be quadratic.29 If it were quadratic,
the correspondinga function would start linearly rather tha
with a constant. However,a(v) would have to rise very fas
to reproduce the behavior of the loss function for the~quite
small! energies where it is known to be approximately line
Thus the pure power-law behavior ofPk(v) would be lost,
but Lorentzian broadened curves would probably not dif
much. Our fluctuation potentials are obtained by pha
shifting bulk potentials to make them zero at the surface,
define them as zero outside the solid. This procedure tur
out to be fairly good in the metallic case, where we cou
check with more accurately calculated fluctuation potentia
Again this approximation is crude, but we believe it to
fundamentally better than if we had used a step function
the bulk potential. Since the phase of the bulk potentia
arbitrary, such a procedure would anyhow have been a
trary. To calculate more accurate potentials is a very la
numerical undertaking.
9-11
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One may also question the use of a bulk expression
estimate of the mean free path at the fairly low energies
we are concerned with, after all we found strong effe
when modifying the fluctuation potentials for surface effec
It does not seem easy to make a strong statement here
we can only refer to ‘‘the state of the art,’’ that bulk mea
free paths are successfully used in low-energy electron
fraction and also in low-energy lifetime calculations that a
compared with time-resolved two-photon PES~TR-2PPE!
experiments.30
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APPENDIX A: DERIVATION OF THE PHOTOCURRENT
EXPRESSION

We will here derive Eq.~7!. The 2D and 3D parts in Eq
~5! factor,

t~k,s1,s2!5(
i

^N2D21,s2uci uN2D&t3D~k,s1 ,i !,

where

t3D~k,s1 ,i !

[^ku^NB* ,s1u

3F11V
1

E~NB* ,s1!1«k2HQB2h2V
G uNB&Du i &.

We note that^N2D21,s2uci uN2D& is the basic part in the
spectral function for the 2D system, and that the 2D and
parts are entangled through the indexi. We have
used Eq.~6! to eliminate the indexs2 , E2E(N2D21,s2)
5E(NB* ,s1)1«k .

Expanding to first order inV we have,31

t3D~k,s,i !52
Vh

s

vs
^kuDu i &1^kuVs

1

vs1«k2h2S
Du i &,

~A1!

where S is the self energy coming from a summation
infinite order inV, and we have used the relations

^NB* ,suNB&52
Vh

s

vs
, E~NB* ,s!5vs ,

^NB* ,suVuNB&5Vs~r !.

The energy argument ofS is vs1«k .
These results are only meaningful whenvsÞ0. For the

moment we take the excitation spectrum to have a gapvs
.v0, for all s excepts50. Fors50 we have
11510
to
at
s
.
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if-

-

D

u^NB* ,0uNB&u25e2a, a5(
s

UVh
s

vs
U2

.

Also thesÞ0 terms in Eq.~A1! have the exp(2a/2) factor,
when we go beyond first order inV.

We use plane waves for the parallel components of
fluctuation potential,Vs(r )5eiQRV(qz ,Q,z). Neglecting the
reflected component, we similarly write the photoelectr
wave function asck(r )5eiKRckz

1D(K ,z). We further replace

Im S by 2 iG, and absorb ReS in h. The photoelectron en
ergy is«k5(K21kz

2)/2. We can now simplify the last term
in Eq. ~A1! ~cf. Ref. 5! to become,

PW^K2Qu^ckz

1DuV~qz ,Q,z!

3
1

k2/22tz2@Vcryst~z!2V0#
Du i &,

where

k2

2
5vs1«k2

~K2Q!2

2
2V01 iG1 , ~A2!

G152Im S0~k1 ,k1
2/2!, k1

2/25vs1«k2V0 ,

tz52
1

2

]2

]z2
.

PW^K2Qu is a plane wave 2D function, we have neglect
the variation of the crystal potential in the lateral direction
the inner potentialV0 is some average ofVcryst , and
S0(k,v) is the electron gas self-energy. For the 1D Gree
function we have approximately~see Appendix C!,

^zu
1

k2/22tz2@Vcryst~z!2V0#
uz8&5Ack

,~z,!ck
.~z.!.

Hereck
, andck

. are damped Bloch functions,ck
, decreas-

ing towards the surface, andck
. decreasing towards the inne

of the crystal~the crystal is on the positive half of thez axis!,
z.5max(z,z8), z,5min(z,z8), and the coefficientA is
roughly A5( ik)21. In our calculations we will use the sim
plest possible approximationck

.(z)5exp(ikz), and ck
,(z)

5exp(2ikz).
The z part of the photoelectron wave function

@c k̃z

.(z)#* , with

k̃z
2

2
5

kz
2

2
2V01 iG2 , G252Im S0~k2 ,k2

2/2!,

k2
2/25«k2V0 . ~A3!

We note thatG1 andG2 are different.
We give a few comments on the relation between

electron energy inside the solid and outside.Vcryst(z) is de-
fined asVcryst5VH1ReS(v)1fDP, wherefDP is the di-
pole contribution to the work functionf, with f defined as
negative. For the argument« in Im S(«) we should choose
9-12
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the eigenvalue in the quasiparticle equation@ t1Vcryst(r )
2«k#ck(r )50. For an electron gas this givesVcryst
5ReS0(k,«k)1fDP sinceVH50. The work function is by
definitionf5«F1ReS0(kF ,«kF

)1fDP. Since ReS0(k,«k)

varies fairly slowly withk out to about 2kF , we can take
V05f2«F52ufu2«F . When we leave the electron gas
reasonable definition forV0 is V052ufu2W, whereW.0
is the bandwidth. The maximum kinetic energy the pho
electron can have outside the solid is, by energy conse
tion, vphot2ufu, corresponding to the energyvphot1W in-
side the solid. In our calculations we have takenufu5W
50.15 a.u. Errors in this choice have a minor effect, and
relative error decreases with increasing photon energy.
calculations are made for a photon energy of 1 a.u.

We consider only forward propagation for the Gree
function from the excited layer to the surface~cf. Ref. 32!,
and have,

t3D~k,s,i !52
Vh

s

vs
^kuDu i &

1
1

ikE0

`

c k̃z

.
~z8!V~qz ,Q,z8!ck

,~z8!dz8

3E
z8

`

dz9ck
.~z9!E dRe2 i (K2Q)RD~R,z9!

3c i~R,z9!,

or

t3D~k,s,i !52
Vh

s

vs
^kz ,K uDu i &

1
1

ikE0

z0
dzc k̃z

.
~z!V~qz ,Q,z!ck

,~z!

3^k,K2QuDu i &.

If we approximate thec functions with plane waves th
dipole matrix elementŝk̃z ,K uDu i & and ^k,K2QuDu i & de-
pend on the position of the excited layer through the fact
exp(ik̃zz0) and exp(ikz0). We note that the electron lifetime i
t51/(2G) and from Eq.~A3! we have 2 Imk̃z.2G2 /uk̃zu
51/l where l5vt is the mean free path. Neglecting th
recoil momentumQ picked up by the quasi-boson ‘‘s’’ the
entanglement between the 2D and 3D parts disappears
we have the intuitively expected result,

Jk~z0 ,vphot!5E Jk
2D~z0 ,v!Pk~z0 ,vphot2v!dv,

~A4!

with

Jk
2D~z0 ,v!5(

s2
U(

i
^N2D21,s2uci uN2D&^k,K uDu i &U2

3d~v1Es2
2«k!,
11510
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Pk~z0 ,v!5e2z0 /l2aS d~v!1(
s
U2

Vh
s

vs
1

ei (k2 k̃z)z0

ik

3E
0

z0
dzei ( k̃z2k)zV~qz ,Q,z!U2

d~v2vs!D ,

~A5!

wheres5(qz ,Q). We have included thes50 term and the
common factor exp(2a). The photocurrent Jk(z0 ,vphot)
thus is a convolution between the sudden approximation
current Jk

2D(z0 ,v), and an effective loss function Pk(z0 ,v).

APPENDIX B: DIELECTRIC RESPONSE

Dielectric response is usually treated in the random-ph
approximation~RPA!, and RPA has indeed proved extreme
useful in many cases.33 For, e.g., high-Tc materials RPA may,
however, not be good enough, and we will derive form
expressions without resorting to RPA. These expressions
low us to connect the energy loss results to the scree
potentials needed to discuss photoemission. The energy
data are then taken from experiment. Some of our results
be found in Griffin’s classic paper,34 but not those that are
crucial to our treatment.

The response functionsx0, x, and«21 are defined from
~in a schematic notation!

r ind5x0Vtot5xVext, Vtot5vr ind1Vext5«21Vext.

This leads to the relations

«21511vx, x5x01x0vx.

Sincer ind and Vext are exactly defined, no approximation
are involved in the definitions ofx0, x, and«21.

We now specialize to two layers per unit cell. We choo
the origin of thez coordinate at the center of the cell suc
that we have two layers atz56d. We write the response
functions as

x0~r ,r 8!5(
m

(
n

61

w~z2cm2dn!w~z82cm2dn!

3x̃0~R2R8!,

x~r ,r 8!5 (
mm8

(
nn8

61

w~z2cm2dn!w~z82cm82dn8!

3x̃nn8~m2m8;R2R8!.

We have assumed translational invariance in the layers,
that there are no transverse excitations, i.e., that the elect
always stay in the lowest transverse statef0(z),w(z)
5uf0(z)u2. We have taken the overlap betweenw(z) and
w(z1c) as zero, and neglected interlayer coupling inx0.
This latter neglect probably has no effect. Interlayer coupl
in x0 is absent in any one electron theory with a local pote
tial, and thus, e.g., in RPA. It is also absent in the staticv
9-13
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50) case since this case can be described by density f
tional theory transform where the potential is local.

We Fourier transform with respect toR, and separate into
contributions from different layers

x0~z,z8;Q!5(
n

xn
0~z,z8;Q!,

x~z,z8;Q!5(
nn8

xnn8~z,z8;Q!, ~B1!

where

xn
0~z,z8;Q!5(

m
w~z2cm2dn!w~z82cm2dn!x̃0~Q!,

xnn8~z,z8;Q!5 (
mm8

w~z2cm2dn!w~z82cm82dn8!

3x̃nn8~m2m8;Q!.

The integral equationx5x01x0vx can be written as~sup-
pressing theQ variable!,

xnn8~z,z8!5xn
0~z,z8!dnn8

1(
n9

E xn
0~z,z1!v~z1 ,z2!xn9n8~z2 ,z8!dz1dz2 .

~B2!

This is the same result as in Eq.~1! in Griffin’s paper.34

We Fourier transformxn
0(z,z8) with respect toz and z8,

using discrete qz values and the orthonormal s
$L21/2exp(iqzz)%

xn
0~qz ,qz8!5

1

c
w~qz!w~qz8!x̃0ei (qz2qz8)dn,

where it is understood thatqz andqz8 differ by a reciprocal
lattice vectorG, L is the length of the sample, andc the
lattice constant. Similarly we have forxnn8(qz ,qz8)

xnn8~qz ,qz8!5
1

c
w~qz!w~qz8!x̃nn8~qz!e

iqzdne2 iqz8dn8,

~B3!

where

x̃nn8~qz!5(
m

x̃nn8~m2m8!eiqzc(m2m8).

We note that x̃nn8(qz) is a periodic function in qz ,
x̃nn8(qz)5x̃nn8(qz1G). Equations~B1! and ~B3! give

x~qz ,qz8!5
1

c
w~qz!w~qz8!(

nn8
x̃nn8~qz!e

iqzdne2 iqz8dn8.

~B4!

We can separate out thew factors in Eq.~B2! to obtain an
equation forx̃nn8(qz)
11510
c-
x̃nn8~qz!5x̃nn8

0
1

1

c (
n1n2

x̃nn1

0 Ṽn1n2
~qz!x̃n2n8~qz!,

~B5!

wherex̃nn8
0

5x̃0dnn8 and Ṽ is a 232 matrix periodic inqz ,

Ṽnn8~qz!5(
G

v~qz1G!w2~qz1G!

3exp@2 i ~qz1G!d~n2n8!#.

Equation~B5! gives the matrix solution

x̃nn8~qz!5F x̃0
1

12Ṽ~qz!x̃
0/c

G
nn8

.

We write

Ṽnn8~qz!5S V0~qz! V1~qz!e
if(qz)

V1~qz!e
2 if(qz) V0~qz!

D ,

where

V0~qz!5Ṽ1,1~qz!5(
G

v~qz1G!w2~qz1G!,

V1~qz!5uṼ1,21~qz!u,

and have

x̃nn8~qz!5
1

2 S x11x2 ~x12x2!exp~ if!

~x12x2!exp~2 if! x11x2
D ,

x15
x̃0

12~ x̃0/c!~V01V1!
, x25

x̃0

12~ x̃0/c!~V02V1!
.

Here x1 and x2 are functions ofqz , Q, and v. From Eq.
~B4! the energy loss function becomes

v~qz ,Q!Im x~qz ,qz ;Q,v!

5
v~qz ,Q!w2~qz!

c
Im@x11x21~x12x2!

3cos$2qzd1f~qz ,Q!%#,

to be compared with the screened potential ImW
5v(Im x)v. From Eqs.~B1! and ~B3! we have

Im W~Q,v;z,z8!5Im(
nn8

61
1

2pE2p/c

p/c

V~Q,qz ,z2dn!

3
x̃nn8~Q,v,qz!

c
V* ~Q,qz ,z82dn8!dqz ,

~B6!

where
9-14
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V~Q,qz ,z!5(
G

v~qz1G,Q!w~qz1G!e2 i (qz1G)z.

~B7!

There is thus no simple relation between ImW(z,z8) and the
loss function unless the non-diagonal elements inx̃nn8(qz)
can be neglected. For typical values ofqz andQ it, however,
turns out thatV1 /V0 is 0.2–0.3. Takingx15x2 and using the
symmetriesV(qz ,2z)5V(2qz ,z)5V* (qz ,z) and xn(qz)
5xn(2qz) we can write Eq.~B6! as

Im W~z,z8!5(
i 51

2

(
n

61
1

pE0

p/c

Vi~qz ,z2dn!

3
Im x0~qz!

c
Vi~qz ,z82dn!dqz ,

whereV1 is the real andV2 the imaginary part ofV(qz ,z)
and x05(x11x2)/2. The real and imaginary parts turn o
to give equal contributions to ImW.

So far we have results for a set of coupled layers sitting
vacuum. We can take account of the embedding electr
~the 3D bulk excitations in our parametrization! by using

x0~z,z8;Q!5xb
0~z2z8;Q!1(

m
w~z2cm!

3w~z82cm!x̃2
0~Q!. ~B8!

This leads to a 3D bulk contribution in ImW(z,z8), and to
screening of the 2D susceptibilityx. The same screening
however, appears also in the loss function, so we can fo
about it in our problem. We note that the bulk screened
tential can be anisotropic sincexb

0(qz ,Q) can depend on
both qz andQ, and not only onq25qz

21Q2.
We derived the relation betweenx andx0 by solving the

integral equationx5x01x0vx. This equation can be writ
ten as x5x2D1x2Dv3Dx, where x2D5x01x0v2Dx2D .
Here v3D contains no intralayer parts, whilev2D only has
intralayer contributions. Sincex2D is available from many
sophisticated theoretical calculations, it is interesting to h
the relation betweenx05x2D

0 andx2D . We write

x2D~z,z8!5w~z!w~z8!x̃2D ,

x2D
0 ~z,z8!5w~z!w~z8!x̃2D

0 .

The equation x2D5x01x0v2Dx2D gives, x̃2D5x̃2D
0

1x̃2D
0 W00x̃2D , where W005*w(z1)v(z1

2z2 ;Q)w(z2)dz1dz2 . The desired relation is,

x̃2D
0 5

x̃2D

11W00x̃2D

.

APPENDIX C: ON GREEN’S FUNCTIONS
WHEN THE POTENTIAL IS COMPLEX

Green’s function theory is usually developed using a r
potential. Here we will shortly summarize the changes fr
11510
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having a complex potential. With a constant complex pot
tial the equation (Imk.0),

1

2 S k21
d2

dz2D G~z,z8;k!5d~z2z8!,

has the solution~as is easily verified by direct substitution!,

G~z,z8;k!5
1

ik
eikuz2z8u.

With k a function ofz the solution has the form,

G~z,z8;k!5wg2~z,!g1~z.!,

wherew is a constant~cf., e.g., Arfken35!,

w5
2

g2~z!g18 ~z!2g28 ~z!g1~z!
.

The boundary conditions areg2(z)→0 for z→2` and
g1(z)→0 for z→`.

In a slightly more general situation

k~z!5H k1 ,z,0

k2 ,z.0
, Im k i.0,

we have

g2~z!5e2 ik1zu~2z!1~a2eik2z1b2e2 ik2z!u~z!,

g1~z!5eik2zu~z!1~a1eik1z1b1e2 ik1z!u~2z!,

a25
1

2 S 12
k1

k2
D , b25

1

2 S 11
k1

k2
D ,

a15
1

2 S 11
k2

k1
D , b15

1

2 S 12
k2

k1
D ,

w5
2

i ~k11k2!
.

For high energiesk1.k2 and the results reduce to those
the first model withk5constant.

Finally we consider a model with,

k~z!5H k1 ,z,0

k2~z!,z.0
, Im k i.0,

g2~z!5e2 ik1zu~2z!1@a2ck
.~z!1b2ck

,~z!#u~z!,

g1~z!5ck
.~z!u~z!1~a1eik1z1b1e2 ik1z!u~2z!.

To see the difference betweenck
,(z) andck

.(z) we use the
WKB approximation for the casez.0,

ck
.~z!;expF i E

0

z

k2~z8!dz8G ,
ck

,~z!;expF2 i E
0

z

k2~z8!dz8G .
Sincek2(z) is complex, the two solutions are basically di
ferent, not just complex conjugates. For higher energies
z.0 we haveg2(z).ck

,(z),g1(z)5ck
.(z).
9-15
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