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Overview

This work is about solving systmes of polynomial equations

arising in many geometric vision problems.

Problem:State-of-the-art methods use Gröbner basis

techniques, but are still numerically unstable in many

cases.

Solution:We propose to make a change of basis in R[x]/I

to improve the conditioning of a crucial elimination step of

the Gröbner basis computation and thereby gain roughly

a factor 105 in precision.

Contribution:

•Theory for how to change basis.

•A strategy for how to choose the new basis

Problem Statement

Find the complete set of solutions to a system of equations on the following form

c11x
α1 + c12x

α2 + . . . + c1nx
αn = 0,

...
cm1x

α1 + cm2x
α2 + . . . + cmnx

αn = 0,
(1)

where xα1, . . . ,xαn are a given set of monomials with xαk = xαk1

1 · · · · · xαkn
p . Ensure high

numerical accuracy in the process.

Motivation

•Polynomial equations arise in e.g. minimal cases of structure from motion
and in global optimisation.

•Numerical stability of existing solvers in many cases poor.

•The Gröbner basis technique for equation solving not yet fully understood.

Gröbner Basis Equation Solving

1. All is based on polynomial divison in several variables.

2. The remainders under division by the set of equations form a linear space with dimension
equal to the number of solutions.

3. Multiplication by a variable xk in this space is a linear operation which by choosing a basis
can be represented as the matrix mxk.

4. The eigenvalues of mxk yield the solutions to our system of equations.

5. We need a Gröbner basis to compute mxk. This is the numerically difficult part!

Buchberger’s Algorithm

Buchberger’s algorithm computes a Gröbner basis, but for our purposes we need to
reformulate it using matrices. Note that Equation 1 can be written using matrix notation as

C





xα1

...
xαn



 = 0. (2)

With this notation, we can use a variation of the Buchberger algorithm like so:

Initial
set of

equations

More
equations,
same set of
solutions

C (now
expanded)

C̃ =
[ I T ]

1 2 3

1. Multiply with a set of monomials, 2. Stack coefficients in a matrix, 3. Put C on
reduced row echelon form (elimination step).

If (1) was ok, then we now have a Gröbner basis given by C̃, but!

PROBLEM: Step (3) might be very ill
conditioned.

REMEDY: Change basis in the column space
of C. This induces a change of basis in R[x]/I .

Changing Basis

• Question: What monomials can we use in our basis for R[x]/I and still be able to perform
remainder arithmetic?

• Answer: If M is the set of monomials present in our equations (1), then we can use any
monomials that stay in M under multiplication by xk.

• We call these special monomials permissible and define the set as

M′ = {xα ∈ M : xk · xα ∈ M}.

• The basis for R[x]/I can consist of arbitrary (linearly independent) linear combinations of
monomials in M′.

C =














M′′: non-permissible
︷ ︸︸ ︷

• • • • • • • • •
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︷ ︸︸ ︷

• • • • • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • •
...
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• • • • • •

• • • • • •
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



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
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



• The goal is to decrease the condition number of Cnb.

• We do this by a change of basis C̃nb = CnbQ with an orthogonal matrix Q, subject to the
constraint that Q does not mix permissible and non-permissible columns.

• This influences the computation of the action matrix, which requires some theory (see the
paper for details).

How to Choose a Basis

For any linear system Ax = b, the error is controlled by the condition number of the matrix.
Hence, we would like to minimize the condition number κ(Cnb). We therefore employ the

following goal:

Make the columns of Cnb “as linearly
independent as possible”.

We propose a heuristic strategy based on singular value decomposition (SVD) which tries to
reach this goal. Consider the coefficient matrix C and denote the permissible columns by C′

and the non-permissible columns by C′′. Then do the follwing.

1. Write C′ as C′ = C′// +C′⊥, where C′⊥ is the projection of the column vectors of C′ onto
the orthogonal complement of the subspace spanned by the columns of C′′.

2. Decompose C′⊥ as C′⊥ = UΣVt.

3. Discard C′⊥ but use V from this decomposition to form Ve =

(
I 0

0 V

)

and C̃ = CVe.

Eigenvalues

Extracting the solutions from the eigenvalues is numerically more stable than extracting them
from the eigenvectors. Using the fact that the eigenvectors of mxk are equal for all mxk all

eigenvalues can be calculated fast by the following method.

1. Compute mxk for all xk.

2. Make the eigenvalue decomposition for one k: mxkV = DV.

3. For all mxk calculate mxkV followed by element-wise division to get eigenvalues for all
matrices mxk.

The experiments show that this improves the numerical accuracy.

Generalized Cameras

•Minimal case: 6 points in two views [SNOÅ05].

• 3 unknowns, 64 solutions.

• 15 equations with total degree 6.

•After expansion: 101 equations in 165 monomials with total degree 8.
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Figure 1: Left : Histogram over the angular error in degrees of the estimated rotation
matrix in the solver for relative pose for generalized cameras. Right : The angular error
plotted versus the condition number of Cnb.

Improvement: 105

Unknown Focal Length

•Minimal case: 6 points in 2 views [SKNS05].

• 3 unknowns, 15 solutions.

• 10 equations with total degree 5.

•After expansion: 34 equations in 50 monomials with total degree 7.
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standard basis
svd basis
svd + eigvalues Figure 2: Histogram over the error in

relative focal length estimated in the solver
for relative pose for standard cameras with
unknown focal length. Note how all signif-
icant errors are eliminated when the im-
proved method is used.

Improvement: 105

Three View Triangulation

•Optimal L2-triangulation by calculation of all stationary points [SSN05].

• 3 unknowns, 50 solutions.

• 3 equations with total degree 6.

•After expansion: 225 equations in 209 monomials with total degree 9.
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standard basis
svd basis
svd + eigenvalues Figure 3: Histogram over the error in

3D placement of the unknown point ob-
tained using optimal three view triangula-
tion. With the improvement of the new
method this problem is now solvable in
standard double arithmetic.

Improvement: 106

References

[CLO07] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer,
2007.

[SKNS05] H. Stewénius, F. Kahl, D. Nistér, and F. Schaffalitzky. A minimal solution for
relative pose with unknown focal length. In Proc. Conf. Computer Vision and
Pattern Recognition, San Diego, USA, 2005.
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