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Abstract

This paper presents techniques for improving the numer-

ical stability of Gröbner basis solvers for polynomial equa-

tions. Recently Gröbner basis methods have been used suc-

cesfully to solve polynomial equations arising in global op-

timization e.g. three view triangulation and in many impor-

tant minimal cases of structure from motion. Such methods

work extremely well for problems of reasonably low degree,

involving a few variables. Currently, the limiting factor in

using these methods for larger and more demanding prob-

lems is numerical difficulties. In the paper we (i) show how

to change basis in the quotient space R[x]/I and propose

a strategy for selecting a basis which improves the condi-

tioning of a crucial elimination step, (ii) use this technique

to devise a Gröbner basis with improved precision and (iii)

show how solving for the eigenvalues instead of eigenvec-

tors can be used to improve precision further while retain-

ing the same speed.

We study these methods on some of the latest reported

uses of Gröbner basis methods and demonstrate dramat-

ically improved numerical precision using these new tech-

niques making it possible to solve a larger class of problems

than previously.

1. Introduction

Numerous geometrical problems in vision involve the

solution of systems of polynomial equations. This is par-

ticularily true for so called minimal structure and motion

problems, e.g. [2, 12, 18]. Solutions to minimal structure

and motion problems can often be used in RANSAC algo-

rithms to find inliers in noisy data [5, 19, 20]. For such

applications one needs to solve a large number of minimal

structure and motion problems as fast as possible in order to

find the best set of inliers. There is thus a need for fast and

numerically stable algorithms for solving particular systems

of polynomial equations.

Another area of recent interest is global optimization

used for e.g. optimal triangulation, resectioning and funda-

mental matrix estimation. Global optimization is a promis-

ing, but difficult pursuit and different lines of attack have

been tried, e.g. branch and bound [1], L∞ norm meth-

ods [7, 10] and methods using linear matrix inequalities

(LMIs) [11].

An alternative way to find the global optimum is to cal-

culate stationary points directly (usually by solving some

polynomial equation system) [8, 16]. So far, this has been

an approach of limited applicability since calculation of sta-

tionary points is numerically difficult for larger problems.

By using the methods presented in this paper it should be

possible to handle a somewhat larger class of problems, thus

offering an alternative to the above mentioned optimization

methods. An example of this is optimal three view triangu-

lation which has previously not been solved in a practical

way [16]. We show that this problem can now be solved in

a reasonably efficient way using IEEE double precision.

Traditionally, researchers have hand-coded elimination

schemes in order to solve systems of polynomial equations.

Recently, however, new techniques based on algebraic ge-

ometry and numerical linear algebra have been used to find

all solutions, c.f . [16]. The outline of such algorithms is

that one studies a class of geometric problems and finds out

what structure the Gröbner basis for the ideal I has for that

problem and what the degree is. This degree is the same as

the number of solutions to the problem. For each instance of

the problem with numerical data, the process of forming the

Gröbner basis and the solution to the problem is performed

using numerical linear algebra.

Currently, the limiting factor in using these methods for

larger and more difficult cases is numerical problems in the

solver. For example in [16] it was necessary to use emulated

128 bit numerics to make the system work, which makes the

implementation very slow. This paper improves on the state

of the art of these techniques making it possible to handle

larger and more difficult problems in a practical way.

In the paper we show how a change of basis in the quo-

tient space R[x]/I can be used to improve the numerical

precision of a Gröbner basis computation. We develop the

tools needed to compute the action matrix in a general ba-

sis and propose a strategy to select a basis which enhances
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the conditioning of a crucial elimination step in the solu-

tion procedure. Finally, we use this technique to devise a

Gröbner basis with lower errors in the final result. In addi-

tion to these techniques, we show how solving for the eigen-

values instead of eigenvectors can be used to improve the

precision further while retaining the same speed.

2. Using Gröbner Bases to Solve Systems of

Polynomial Equations

In this section we briefly discuss how Gröbner basis

techniques can be used for solving systems of multivariate

polynomial equations. We introduce some concepts and no-

tation used to develop the results in the subsequent sections.

The goal is to find the solutions to a system of polyno-

mial equations on the following form

c11ϕ1 + c12ϕ2 + · · · + c1nϕn = 0,
...

cm1ϕ1 + cm2ϕ2 + · · · + cmnϕn = 0,

(1)

where ϕ1, . . . , ϕn are a given set of monomials. This can

be written using matrix notation as

C







ϕ1

...

ϕn






= 0. (2)

The m polynomials in the left hand side of the equa-

tions (1) in p variables generate an ideal I in the polynomial

ring R[x], where R[x] denotes the set of multivariate poly-

nomials in x = (x1, . . . , xp) with real coefficients. To find

the roots of this system we study the quotient ring R[x]/I .

If the system of equations has r roots, then R[x]/I is a lin-

ear vector space of dimension r. In this ring, multiplication

with xk is a linear mapping. The matrix mxk
representing

this mapping (in some basis) is referred to as the action ma-

trix and is a generalization of the companion matrix for one-

variable polynomials. From algebraic geometry it is known

that the zeros of the equation system can be obtained from

the eigenvectors of the action matrix just as the eigenvalues

of the companion matrix yields the zeros of a one-variable

polynomial [3].

There are basically three steps involved in computing the

action matrix. First, we need to choose a set of polynomials

{ei(x1, . . . , xp)}
r
i=1, forming a basis in the quotient ring

R[x]/I . The most straightforward choice here is a set of

monomials. In previous work on computing zeros of poly-

nomial equations this is typically what has been used. How-

ever, we show in this paper that a general basis of polynomi-

als often yields much better numerical accuracy. Secondly,

we need to calculate the effect of multiplication with xk on

each of these basis elements. In general, the element xkei

will not immediately be a linear combination of the basis

elements. Therefore, thirdly, we need to be able to reduce

elements of R[x] modulo I . By reduction modulo I we

mean to replace an element in R[x] by a representative of

the corresponding equivalence class in R[x]/I uniquely de-

fined by the monomial ordering used. These steps can be

summarized as:

1. Choose a basis of polynomials for R[x]/I .

2. Interpret these basis elements as elements of R[x] and

multiply by one of the variables xk.

3. Reduce the result modulo I .

We will start with steps 2 and 3 and then come back to

the question of how to choose a basis.

To facilitate the discussion of how to change basis in the

quotient space we make use of some additional notation not

normally used when working with action matrices. For in-

stance we write Mxk
for the action matrix on the subspace

of R[x] spanned by the occurring monomials whereas mxk

is the action matrix in the quotient space R[x]/I . The set of

monomials which occur in the equations is denoted M and

the set of basis monomials is Mb. The linear hulls gener-

ated by M and Mb are denoted lh(M) and lh(Mb). By

construction, these linear hulls are subspaces of R[x].
For now, we choose a basis consisting of monomials only

which will make life easier for us. In the next section we

will see how to deal with a general basis of polynomials.

With a monomial basis, multiplication with xk becomes

very easy. Any monomial will simply be mapped to one of

the n other monomials. The n × r action matrix

Mxk
: lh(Mb) → lh(M) (3)

will consist of columns of n − 1 zeros and a single 1.

Our next step is to reduce Mxk
to a mapping on our quo-

tient space. Reduction modulo I is a linear mapping from

an infinite dimensional space to a finite dimensional space.

Now, if we restrict the reduction mapping to the subspace

lh(M) of R[x], we get a linear mapping between two finite

dimensional spaces. We represent this mapping as an r × n
matrix P : lh(M) → R[x]/I where r is the dimension of

our quotient ring and n is the number of occurring mono-

mials. The construction of P is an important part of the

solution procedure.

For elements in the basis, the modulo mapping P will

simply be an identity mapping. However, for elements out-

side the basis we need to work a bit. What we need is a

Gröbner basis for I . Actually, we do not exactly need a

Gröbner basis, but we need a method for calculating the re-

mainder after division with I in a unique way.

Here, we make use of our equations Cϕ = 0. What we

do is we put C on diagonal form

Cred =
[

I T
]

, (4)
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with respect to the monomials which are not in the basis

by performing normal row operations on C. Here, I is the

identity matrix and T is an m × r matrix produced by the

row operations. After elimination, one line of Cred might

look like this

0 . . . 1 . . . 0 a′
i,n−r+1 . . . a′

i,n, (5)

where the 1 is at position i. This corresponds to the equation

ϕi + a′
i,n−r+1ϕn−r+1 + . . . + a′

i,nϕn = 0,
(6)

which lets us express ϕi in terms of the r monomials

{ϕk}
n
k=n−r+1. This is precisely what we need since we can

now replace monomials not in the basis by a linear combi-

nation of monomials in the basis.

In general, we cannot always perform these operations

directly on the original matrix C since it might not have

enough rows or enough rank to allow us to reduce all the

monomials we would like to reduce. We can then add new

equations by multiplying the old equations by a selection of

monomials. These new equations will be equivalent to the

old equations in terms of solutions (they are new elements

of the ideal), but they will hopefully be linearly independent

making the desired elimination possible. There is a general

method for doing this which is guaranteed to produce a full

Gröbner basis known as Buchberger’s algorithm [3].

Using (4) and (6) we can now form the modulo mapping

P =
[

−T
t

I
]

. (7)

This allows us to construct the final action matrix represent-

ing multiplication with xk in R[x]/I .

mxk
= PMxk

. (8)

By performing an eigenvalue decomposition of this matrix,

we can read off the zeros of the equation system in the

eigenvectors [3].

The problem one encounters in this method is that the

process of expanding C from (2) by adding more equations

in many cases yield very large and ill conditioned matri-

ces. This is especially true for systems with many variables,

high degrees and many solutions. In (4) where C is put on

diagonal form, we generate T by solving r linear equation

systems. If the part of C which we use to eliminate is ill

conditioned, (potentially large) numerical errors will be in-

troduced in T. The main contribution of this paper is an

approach for dealing with this problem.

The key observation is that although the basis of single

monomials we used above is conceptually simple to work

with, it might not be the best choice numerically. Indeed,

in some cases this type of basis turns out to yield very

poor performance in terms of numerical stability. We would

therefore like to change basis in our quotient space. This is

the purpose of the next section.

3. Changing Basis in R[x]/I

Before discussing the details of how to change basis in

R[x]/I , we make an important point. We are not completely

free in our choice of basis. Since we are working with a fi-

nite set of monomials and want to study the effect of multi-

plication by xk on a certain basis involving these monomi-

als, we have to make sure that we stay within our original

set of monomials M.

As before, M denotes our set of n monomials. What we

do is we partition M into two sets M′ and M′′ with n′ and

n′′ elements respectively, where M′ = {ϕ ∈ M : xkϕ ∈
M} is the set of monomials which stay in M under multi-

plication with xk. M′′ is the remaining set of monomials.

We call M′ the set of permissible monomials. For simplic-

ity, we assume that the monomials are ordered so that M′′

contains the first n′′ monomials of M and M′ contains the

rest. In other words, we can only construct our basis using

permissible monomials, since otherwise we will not be able

to calculate the effect of multiplication with xk.

Assume now that we have a basis of polynomials for

our equations which can be obtained from an orthogonal

change of basis on the subset of permissible monomials.

That is, our new basis is

ϕ̃ = V
t







ϕn′′+1

...

ϕn






, (9)

where V is an orthogonal matrix and {ϕk}
n
k=n′′+1 is the set

of n′ permissible monomials. From the set of n′ new basis

polynomials we select a subset of r polynomials which will

be the basis for R[x]/I .

We would now like to apply this change of basis to our

calculation of the action matrix mxk
. Here we have to note

that we are working with two different spaces lh(M) of all

monomials and lh(M′) of the monomials that can safely be

multiplied by xk. V applies to lh(M′) so we define

Ve =

[

I 0
0 V

]

, (10)

by extending V with an n′′ × n′′ identity matrix.

In the new basis, we now get

M̃xk
= V

t
eMxk

V, (11)

where Mxk
: lh(M′) → lh(M) is the non-reduced action

matrix.

Changing basis according to ϕ̃ = V
t
ϕ also affects the

coefficient matrix C. Using the new basis, we have 0 =
Cϕ = C̃ϕ̃ = C̃V

t
ϕ yielding C = C̃V

t and C̃ = CV.

By putting C̃ on diagonal form as in the previous sec-

tion, we get C̃red =
[

I T̃
]

. From this we obtain T̃ and

a transformed modulo mapping P̃ =
[

−T̃
t

I
]

as be-

fore. Finally, to handle the technicality that Mxk
applies to
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lh(M′) whereas mxk
is defined on R[x]/I , we define a lift

mapping L : R[x]/I → lh(M′), which simply interprets

the elements in the quotient ring as elements in lh(M′). In

matrix notation we get (an n′ × r matrix) L =

[

0

I

]

. We

can now write an expression for the action matrix in our new

basis

m̃xk
= P̃M̃xk

L. (12)

An eigendecomposition of m̃
t
xk

yields a set of eigenvec-

tors ṽ in our new basis. It remains to inverse transform these

eigenvectors to obtain eigenvectors of m
t
xk

. To do this, we

need to construct the change of basis matrix Vq in the quo-

tient space. Using P̃ and L, we get V
−1
q = P̃V

t
L. And

from this we get v = V
−t
q ṽ in our original basis.

4. How to Choose a Basis

Now that we know how to change basis for the compu-

tation of mxk
the question is what is the optimal choice of

basis? As we have mentioned previously, a numerical bot-

tle neck in the calculations is the elimination step where

the coefficient matrix C is put on diagonal form. What is

done in this step is that the columns of C is split into two

parts C =
[

Cnb Cb

]

, where Cb denotes the columns

corresponding to the basis elements of R[x]/I and Cnb de-

notes the non-basis columns. Then Cnb is put on diagonal

form, expressing the nonbasis monomials in terms of the ba-

sis monomials. A basic result from linear algebra (see e.g.

[9]) states that the relative error in the solution of a linear

equation system Ax = b with errors in the right hand side

can be estimated in terms of the condition number κ(A) of

the matrix as

|
δx

x
| ≤ κ(A)|

δb

b
| (13)

and a similar result holds for the coefficients of A. Thus, in

this step, the numerical accuracy depends on the condition

number of Cnb. Typically, for a system with r solutions, C

will be an m × n matrix of rank n − r = m. The condition

number of C is usually not too large, but if one is not careful

in the choice of basis for R[x]/I , Cnb often becomes very

ill conditioned.

Making an orthogonal change of basis in the space of

monomials means multiplying C with an orthogonal matrix

V from the right. This does not affect the condition number

of C but can enhance the conditioning of Cnb considerably.

A tempting strategy is to use a singular value decomposition

C = UΣV
t and then take V as the change of basis matrix

so as to concentrate the rank of C to the columns which

are to be used for elimination. However, recall from the

previous section that we are not allowed to make a change

of basis which mixes the permissible monomials with the

non-permissible monomials, thus we will have to content

our selves with matrices Ve on the form (10) which leave

the columns of C corresponding to the monomials M′′ un-

touched.

This can be formulated as an optimization problem on

the condition number of Cnb.

V
∗
e = argmin

V∈O(n′)

κ(C · Ve{1, . . . , n − r}), (14)

where O(n′) is the set of orthogonal n′ × n′ matrices and

Ve{1..n − r} denotes the first n − r columns of Ve.

A scheme which finds the optimum for this problem

would probably be iterative and hence too slow for our pur-

poses. We therefore propose the following heuristic strategy

using a partition of the columns of C into C
′′ correspond-

ing to the columns representing non-permissible monomials

and C
′ representing permisible monomials.

1. Write C
′ as C

′ = C
′// + C

′⊥, where C
′⊥ is the pro-

jection of the column vectors of C′ onto the orthogonal

complement of the subspace spanned by the columns

of C
′′.

2. Decompose C
′⊥ as C

′⊥ = UΣV
t.

3. Discard C
′⊥ but use V from this decomposition to

form Ve and C̃ = CVe.

The heuristic argument for this scheme is as follows. We

would like to change basis so that the columns 1, . . . , n− r
of C̃ become ”as linearly independent as possible”. We are

not allowed to touch the columns 1, . . . , n′′ of C so to pro-

duce the extra n−r−n′′ columns needed for Cnb, we work

with the columns n′′ +1, . . . , n of C, i.e. C′. A straightfor-

ward singular value decomposition of C
′ yields a set of or-

thogonal columns, but there is no guarantee that these will

be linearly independent of the columns of C
′′. What we

would like to do is to orthogonalize, but only on the part

which is orthogonal to the column space of C
′′. Therefore

we make the singular value decomposition only on C
′⊥.

5. Adding Equations

The model for how we add equations (thereby enlarging

C) and then eliminate is Buchberger’s algorithm for com-

puting a Gröbner basis. The reason we cannot use Buch-

berger’s algorithm directly is numerical problems. Buch-

berger’s algorithm works perfectly under exact arithmetic.

However, in floating point arithmetic it becomes extremely

difficult to use due to accumulating round off errors. In

Buchberger’s algorithm, adding equations and eliminating

is completely interleaved. We aim for a process where we

first add all equations we will need and then do the full

elimination in one go. This is possible by first studying a

particular problem using exact arithmetic1 to determine the

1Usually with the aid of some algebraic geometry software as

Macaulay 2 [6]
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number of solutions and what total degree we need to go to.

Using this information, we hand craft a set of monomials

which we multiply our original equations with to generate

new equations and hence new rows in C.

6. Using Eigenvalues Instead of Eigenvectors

In the literature, the preferred method of extracting solu-

tions using eigenvalue decomposition is usually to look at

the eigenvectors. It is also possible to use the eigenvalues,

but this seemingly requires us to solve p eigenvalue prob-

lems since each eigenvalue only gives the value of one vari-

able. However, there can be an advantage with using the

eigenvalues instead of eigenvectors. If there are multiple

eigenvalues (or almost multiple eigenvalues) the computa-

tion of the corresponding eigenvectors will be numerically

unstable. However, the eigenvalues can usually be deter-

mined with reasonable accuracy. In practice, this situation

is not uncommon with the action matrix.

Fortunately, we can make use of our knowledge of the

eigenvectors to devise a scheme for quickly finding the

eigenvalues of any action matrix on R[x]/I . From Section 2

we know that the right eigenvectors of an action matrix is

the vector of basis elements of R[x]/I evaluated at the zeros

of I . This holds for any action matrix and hence all action

matrices have the same set of eigenvectors. Consider now a

problem involving the two variables xi and xj . If we have

constructed mxi
, the construction of mxj

requires almost

no extra time. Now perform an eigenvalue decomposition

mxi
= VDxi

V
−1. Since V is the set of eigenvectors for

mxj
as well, we get the eigenvalues of mxj

by straightfor-

ward matrix multiplication and then elementwise division

from

mxj
V = VDxj

. (15)

This means that with very little extra computational effort

over a single eigenvalue decomposition we can obtain the

eigenvalues of all action matrices we need.

7. Experimental Validation

We are now ready to try the techniques developed in the

previous sections on some data. In the following, we con-

sider two recently solved minimal cases of structure from

motion, which can be used in a RANSAC engine. We also

consider the problem of optimal three view triangulation,

which can be solved by calculating all stationary points of

the likelihood function. Since the techniques described in

this paper improve the numerical stability of the solver it-

self, but do not affect the conditioning of the actual problem,

there is no point in considering the behavior under noise.

Hence we will use synthetically generated examples with-

out noise to compare the intrinsic numerical stability of the

different methods.

In our experiments we have compared four different ver-

sions for solving the system of equations; (i) The standard

method with a monomial basis used in e.g. [15, 16, 17], (ii)

The new method with an svd-based change of basis intro-

duced in this paper, (iii) The standard method using eigen-

values instead of eigenvectors and (iv) a combination of us-

ing eigenvalues and changing basis.

As we will see, the best results are obtained when the

new change of basis method is combined with the use of

eigenvalues. By the trick introduced in Section 6, we ex-

tract solutions from eigenvalues in more or less the same

speed as using eigenvectors. Taking the trouble of actu-

ally computing the eigenvalues of the action matrix for each

variable gives still better performance, but only marginally

and since this is notably slower we will only consider the

faster method.

7.1. Relative Pose for Generalized Cameras

Generalized cameras provide a generalization of the

standard pin-hole camera in the sense that there is no com-

mon focal point through which all image rays pass, c.f . [14].

Instead the camera captures arbitrary image rays or lines.

Solving for the relative motion of a generalized camera can

be done using six point correspondences in two views. This

is a minimal case which was solved in [15] with Gröbner

basis techniques. The problem equations can be set up us-

ing quaternions to parameterize the rotation, Plücker repre-

sentation of the lines and a generalized epipolar constraint

which captures the relation between the lines. After some

manipulations one obtains a set of sixth degree equations in

the three quaternion parameters v1, v2 and v3. For details,

see [15]. The problem has 64 solutions in general.

To build our solver including the change of basis we mul-

tiply an original set of 15 equations with all combinations of

1, v1, v2, v3 up to degree two. After some intermediate re-

moval of linearly dependent equations we end up with 101

equations of total degree 8 in 165 different monomials.

We generate synthetic test cases by drawing six points

from a normal distribution centered at the origin. Since

the purpose of this investigation is not to study general-

ized cameras under realistic conditions we have not used

any particular camera rig. Instead we use a completely gen-

eral setting where the cameras observe six randomly chosen

lines each through the six points. There is also a random rel-

ative rotation and translation relating the two cameras. It is

the task of the solver to calculate the rotation and transla-

tion.

The four different methods have been compared on a

data set of 30.000 randomly generated test cases. The re-

sults from this experiment are shown in Figure 1. Table 1

gives the 95th percentile of the error distribution. This met-

ric is relevant e.g. if the solver is to be used in a RANSAC

algorithm. As can be seen, the combination of condition-

ing by a good choice of basis and using eigenvalues instead

of eigenvectors yields drastically improved numerical pre-

cision over the state-of-the-art method.
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Method 95th percentile error

standard basis 1.52×10−2

standard + eigenvalues 6.51×10−4

svd basis 9.42×10−5

svd + eigenvalues 6.20×10−10

Table 1. Evaluation of numerical stability for relative pose for gen-

eralized cameras. We compare the angular error of the estimated

rotation matrix. The technique for numerical conditioning with

a change of basis combined with using eigenvalues yields an im-

provement in numerical precision by approximately a factor 10
8

over the state-of-the-art method.

The reason that a good choice of basis improves the nu-

merical stability is that the condition number in the elim-

ination step can be lowered considerably. Using the new

method, the condition number is decreased by about a fac-

tor 105.

Figure 1 also shows a scatter plot of error versus con-

dition number for the generalized camera solver. The new

method displays a significant decrease and concentration in

both error and condition number. It is interesting to note

that to a reasonable approximation we have a linear trend

between error and condition number. This can be seen since

we have a linear trend with slope one in the logarithmic

scale. Moreover, we have a y-axis intersection at about

10−16 which means that we have err ≈ 10−16κ = ǫmachκ.

This observation agrees well with (13) and justifies our

strategy of minimizing the condition number.

7.2. Relative Pose with Unknown Focal Length

Relative pose for calibrated cameras is a well known

problem and the standard minimal case for this is five points

in two views. There are in general ten solutions to this prob-

lem which was in principle shown by Kruppa [12] in 1913,

and corrected by Demazure [4] in 1988. For the same prob-

lem but with unknown focal length, the corresponding min-

imal case is six points in two views [17], which was solved

in 2005 by Stewénius et al. also using Gröbner basis tech-

niques.

Following the same recipe as Stewénius et al. it is possi-

ble to express the fundamental matrix as a linear combina-

tion,

F = F0 + F1l1 + F2l2. (16)

Then putting f−2 = p one obtains nine equations from the

constraint on the essential matrix [13]

2EEtE − tr(EEt)E = 0. (17)

A 10th equation is then obtained by making use of the fact

that the fundamental matrix i singular, i.e. det(F ) = 0.

These equations involve the unknowns p, l1 and l2 and are

of total degree 5. The problem has 15 solutions in general.

We set up C by multiplying these ten equations by p so

that the degree of p reaches a maximum of four. This gives

Method 95th percentile error

standard basis 3.38×10−7

svd basis 3.13×10−10

svd + eigenvalues 3.81×10−12

Table 2. Evaluation of numerical stability for relative pose for reg-

ular cameras with unknown focal length. We compare the estima-

tion error in relative focal length. The combined svd and eigen-

value method yields an improvement in numerical precision by

approximately a factor 10
5 over the state-of-the-art method.
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Figure 2. Histogram over the error in relative focal length esti-

mated in the solver for relative pose for standard cameras with

unknown focal length.

34 equations in a total of 50 monomials. It turns out that

it is possible to eliminate only one of the four monomials

l32p
4, l22p

4, l2p
4 and p4 from all of the equations. However,

we can discard the equations where these monomials can-

not be eliminated and then proceed as usual. We choose to

eliminate l22p
4, but this choice is arbitrary.

The validation data was generated with two cameras of

equal focal length of around 1000 placed at a distance of

around 1000 from the origin. The six points were randomly

placed in a cube with side length 1000 centered at the origin.

The methods have been compared on 30.000 test cases and

the relative errors on the focal length are shown in Table 2

and Figure 2.

The improvement here is not as large as for the general-

ized camera. This is probably due to the smaller reduction

that is needed to obtain the Gröbner basis. Still the improve-

ment in precision is as large as a factor 105.

7.3. Optimal Three View Triangulation

The last experiment is on optimal triangulation from

three views. The problem is formulated as finding the world

point that minimizes the sum of squares of the reprojection

error. This means that we are minimizing the likelihood

function, thus obtaining a statistically optimal estimate. A
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Figure 1. Left: Histogram over the angular error in degrees of the estimated rotation matrix in the solver for relative pose for generalized

cameras. As can be seen, the new method shows drastically improved numerical precision. Right: The angular error plotted versus the

condition number of Cnb. As can be seen we have a linear trend in the logarithmic scale with slope approximately one and a y-axis

intersection at about 10
−16. This means that we have err ≈ 10

−16κ = ǫmachκ.

solution to this problem was presented by Stewénius et al.

in [16]. They solved the problem by computing the sta-

tionary points of the likelihood function which amounts to

solving a system of polynomial equations. The calculations

in [16] were conducted using emulated 128 bit arithmetics

yielding very long computation times and in the conclusions

the authors write that one goal of further work is to im-

prove the numerical stability to be able to use standard IEEE

double-precision (52 bit mantissa) and thereby increase the

speed significantly. With the techniques presented in this

paper it is now possible to take the step to double-precision

arithmetics.

To construct the solver for this example some changes in

the algorithm of [16] were done to make better use of the

changes of basis according to Section 5. The initial three

equations are still the same as well as the first step of par-

tial saturation (w.r.t. x). However, instead of proceeding to

perform another step of partial saturation on the new ideal,

we saturate (w.r.t. y and z respectively) from the initial three

equations and join the three different partially saturated ide-

als. Finally, we discard the initial three equations and obtain

totally nine equations.

This method does not give the same ideal as the one

in [16] were sat(I, xyz) was used. The method in this pa-

per produces an ideal of degree 61 instead of 47 as obtained

by Stewénius et al. The difference is 11 solutions located

at the origin and 3 solutions where one of the variables is

zeros, this can be checked with Macaulay 2 [6]. The 11 so-

lutions at the origin can be ignored and the other three can

easily be filtered out in a later stage.

To build the solver we use the nine equation from the sat-

urated ideal (3 of degree 5 and 6 of degree 6) and multiply

with x, y and z up to degree 9. This gives 225 equations in

209 different monomials. The easiest way to get rid of the

Method 95th percentile error

standard basis 1.51×101

svd basis 2.63×10−5

svd + eigenvalues 1.27×10−5

Table 3. Evaluation of numerical stability for optimal three view

triangulation. We compare the estimation error in 3D placement

of the point. The combined svd and eigenvalue method yields an

improvement in numerical precision by approximately a factor 10
6

over the state-of-the-art method.

11 false solutions at the origin is to remove the correspond-

ing columns and rows from the action matrix.

The synthetic data used in the validation was generated

with three randomly placed cameras at a distance around

1000 from the origin and a focal length of around 1000.

The unknown world point was randomly placed in a cube

with side length 1000 centered at the origin. The methods

have been compared on 30.000 test cases and the errors are

shown in Table 3 and Figure 3.

In this example the precision is improved by approxi-

mately a factor 106. With this improvement it is know pos-

sible to use IEEE double-precision and get good results.

8. Conclusions

In this paper we have shown how the precision of numer-

ical Gröbner basis algorithms for solving systems of poly-

nomial equations can be dramatically improved by clever

choice of basis in the quotient space R[x]/I . The methods

have been verified on three examples of problems which

involve such systems of equations and we demonstrate im-

provements in numerical precision roughly by a factor 105

to 108. The price we have to pay for this is the extra com-

putational cost of the svd used to select the new basis. This
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Figure 3. Histogram over the error in 3D placement of the un-

known point obtained using optimal three view triangulation.

will be large or even dominating if C is large. However, us-

ing a change of basis might absolutely necessary to get a us-

able solver. In [16] where 128 bit arithmetics had to be used

for three view triangulation, the computation time was 30s

for one problem instance (due to the expensive emulation

of high precision multiplication). Our experiments indicate

that using the new techniques allowing standard double pre-

cision, it should be possible to solve the same problem in

roughly 50 milliseconds. Consequently, it should now also

be possible to approach larger and more difficult problems

in general.

As was seen in Section 7, the deciding factor for the

numerical precision is the condition number and we thus

aim at minimizing this. However, the heuristic approach we

use does most likely not yield the optimum and it is still an

open question how close we get. It would be interesting to

use e.g. gradient descent to see how much further it would

be possible to decrease the condition number and what this

would do for the precision.
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