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Abstract

This thesis consists of five papers concerned with the modeling of stochastic sig-
nals, as well as deterministic signals in stochastic noise, exhibiting different kinds
of structure. This structure is manifested as the existence of finite-dimensional
parameterizations, and/or in the geometry of the signals’ spectral representations.
The two first papers of the thesis, Papers A and B, consider the modeling of differ-
ences, or distances, between stochastic processes based on their second-order stat-
istics, i.e., covariances. By relating the covariance structure of a stochastic process
to spectral representations, it is proposed to quantify the dissimilarity between two
processes in terms of the cost associated with morphing one spectral representa-
tion to the other, with the cost of morphing being defined in terms of the solu-
tions to optimal mass transport problems. The proposed framework allows for
modeling smooth changes in the frequency characteristics of stochastic processes,
which is shown to yield interpretable and physically sensible predictions when
used in applications of temporal and spatial spectral estimation. Also presented
are efficient computational tools, allowing for the framework to be used in high-
dimensional problems. Paper C considers the modeling of so-called inharmonic
signals, i.e., signals that are almost, but not quite, harmonic. Such signals appear
in many fields of signal processing, not least in audio. Inharmonicity may be in-
terpreted as a deviation from a parametric structure, as well as from a particular
spectral structure. Based on these views, as well as on a third, stochastic interpret-
ation, Paper C proposes three different definitions of the concept of fundamental
frequency for inharmonic signals, and studies the estimation theoretical implic-
ations of utilizing either of these definitions. Paper D then considers deliberate
deviations from a parametric signal structure arising in spectroscopy applications.
With the motivation of decreasing the computational complexity of parameter
estimation, the paper studies the implications of estimating the parameters of the
signal in a sequential fashion, starting out with a simplified model that is then
refined step by step. Lastly, Paper E studies how parametric descriptions of signals
can be leveraged as to design optimal, in an estimation theoretical sense, schemes
for sampling or collecting measurements from the signal. By means of a convex
program, samples are selected as to minimize bounds on estimator variance, allow-
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Abstract

ing for efficiently measuring parametric signals, even when the parametrization is
only partially known.
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Populärvetenskaplig sammanfattning
på svenska

Den här avhandlingen undersöker sätt att modellera, eller beskriva, signaler som
uppvisar vissa former av struktur. Många signaler som vi möter i vårt vardagliga
liv uppvisar mönster som gör det möjligt för oss att utvinna information ur dem.
Exempelvis tolkar vi sekvensen av ljud i mänskligt tal som ord, och klang och
tonhöjd låter oss identifiera vem det är som talar. Detta möjliggörs av att det
finns mönster i ljudets frekvenser, eller specifikt i hur röstens energi är fördelad
över olika frekvensband. En sådan energifördelning kallas för spektrum. Liknande
strukturer dyker upp i signaler från så skilda områden som radar, sonar och mo-
bilkommunikation. I avhandlingen presenteras verktyg som utnyttjar sådan struk-
tur för att mäta avstånd mellan signaler och därmed kunna identifiera och särskilja
dem. I de två första artiklarna, och delvis i den tredje, kvantifieras avståndet mel-
lan två signaler av hur kostsamt det är att fördela om deras energi för att deras
spektra ska bli identiska. Om signalerna är mänskliga röster innebär detta att de
efter omfördelningen av energi kommer att låta likadant. Att mäta avstånd på det
här sättet får till följd att signaler bedöms som mer olika ju längre ifrån varandra i
frekvens deras spektra ligger. Intuitivt är detta mycket rimligt: två barnaröster är
mer lika varandra än rösten hos en vuxen man, även om de inte är helt identiska.
Avståndsmåttet möjliggör även skapandet av syntetiska, mellanliggande spektra;
det går alltså att skapa ”medelröster” som ligger mitt emellan två personer. När
samma typ av verktyg används i radarapplikationer blir följden att man kan följa
och förutse rörelser hos exempelvis bilar och flygplan.

Avhandlingen behandlar också följderna av att ignorera en viss del av struk-
turen hos en signal. Anledningen till att göra detta är att det i vissa samman-
hang är beräkningsmässigt kostsamt att ta hänsyn till en detaljerad beskrivning av
en signal. I den fjärde artikeln undersöks hur väl man kan uppskatta en signals
egenskaper om man endast tar hänsyn till en del av dess struktur.

I avhandlingens femte och sista artikel undersöks hur en signals struktur kan
utnyttjas för att avgöra hur den på bästa sätt bör mätas. I vissa sammanhang är det
dyrt eller tidskrävande av samla in mätningar av en signal; en enda mätpunkt kan
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Populärvetenskaplig sammanfattning på svenska

kräva att ett helt experiment utförs. Detta får till följd att det i områden såsom
spektroskopi är praktiskt omöjligt att samla in mätningar uniformt, alltså för alla
kombinationer av experimentinställningar. För att angripa detta problem föreslår
avhandlingens femte artikel en metod för att välja ut ett litet antal mätningar
på ett sådant sätt att signalens egenskaper kan skattas med en precision som är
försumbart lägre än om alla mätningar kunnat samlas in. Metoden har visats leda
till en tiofaldig reduktion av experimenttiden för visa typer av spektroskopiexper-
iment.
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Introduction

This thesis consists of five papers concerned with the modeling and sampling of
signals displaying structure in their spectral properties, i.e., in the distribution of
power over frequency characterizing the signals. However, the specific meaning of
”structure”, as well as the motivation for studying it, differs among the papers. In
the first two papers, it does not refer to the signal spectra themselves, but to the
geometry of their domain of definition. Specifically, a notion of distance between
signals that takes this geometry into account is proposed, and the implications of
using this as a modeling tool is studied, yielding attractive robustness properties, as
well as interpretability. In contrast, the structure considered in the last two papers
refers to explicit parametric descriptions of the signals under study. Therein, it is
studied how to optimally sample, i.e., to collect measurements from, a given signal
as to allow for the best possible accuracy when estimating the signal parameters.
Also, the implications of, deliberately, making simplified signal assumptions are
studied. The third paper can be seen as a bridge between the first two and last
two. Therein, it is studied how to view signals consisting of sinusoidal mixtures
that are almost, but not quite, harmonically related. In this case, the structure
arises both from the highly regular harmonic model, as well as in the geometry
of the support. Using tools from the first two papers, a formal definition of the
intuitive concept ”almost” harmonic is proposed.

Below follows a brief introduction to the concepts and modeling tools used
in the papers. Starting with outlining the connection between spectra and covari-
ance sequences for stationary stochastic processes, the framework of optimal mass
transport, which is the central modeling tool utilized in the first three papers, is
introduced. After that, we revisit the Cramér-Rao lower bound as a tool for as-
sessing achievable estimation performance, as well as the possibly less well-known
misspecified version of the bound, setting the scene for the last three papers. A
brief outline of the harmonic sinusoidal model is also provided.

1



Introduction

1 Covariances and spectral representations

In applications of signal processing, the signal under study often displays some
type of randomness or unpredictability, be it either due to actual stochasticity such
as, e.g., thermal noise, or as a consequence of a simplified model of the physical
process. A common strategy for handling this is to view the non-deterministic
part of the signal as a stochastic process1. In this thesis, most signals under study
fall in the category of wide-sense stationary (WSS) stochastic processes, and in
particular, discrete-time, zero-mean processes in C. That is, a signal x(t) ∈ C, for
t ∈ Z, is said to be zero-mean WSS if E(x(t)) = 0 for all t, and the covariance
function

rτ ! E
(

x(t)x(t − τ)
)

depends only on τ ∈ Z, for all t, where E(·) and (·) denote the expectation op-
eration and complex conjugation, respectively. Such processes serve as models for
many commonly encountered signals in, e.g., speech processing [1]. Furthermore,
for any covariance sequence {rk}k∈Z of a WSS process, there exists a non-negative

function Φ, referred to as the spectrum of the signal, defined on T ! [−π, π),
such that [2]

rk =
1

2π

∫

T

Φ(ω)eikωdω, (1)

for k ∈ Z, where i is the imaginary unit. To identify Φ, i.e., the distribution of
power over frequency, is often of central importance in applications, such as, e.g.,
noise suppression in speech enhancement tasks [3, 4], or for monitoring human
diseases affecting the voice [5]. However, the spectral estimation problem, i.e.,
the task of finding a spectrum Φ from finite data lengths, is by no means a solved
problem. Herein, finding Φ may be formulated as either

• estimate Φ from x(t), for t = 0, 1, . . . ,N − 1, for N ∈ N, or

• estimate Φ from rk, or estimates thereof, for |k| ≤ (n− 1), for n ∈ N.

It may be noted that for the latter formulation, spectral estimation may be viewed
as an inverse problem, an interpretation that is not offered by the former. To
elaborate on this, let M(T) denote the set of generalized integrable functions

1Herein, we will use the terms ”signal” and ”process” interchangeably.
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1. Covariances and spectral representations

on T, and let M+(T) denote the subset of M(T) consisting of non-negative
functions. Thus, letting Φ ∈ M+(T) allows for spectra containing singular
parts, i.e., Dirac delta functions, although integrals such as (1) then constitute
some abuse of notation. Then, spectral estimation may be formulated as

• find Φ ∈M+(T) such that (1) holds for |k| ≤ (n− 1), for n ∈ N.

However, the set of spectra consistent with the specified covariances, i.e.,

Ω =

{

Φ ∈M+(T) | rk =
1

2π

∫

T

Φ(ω)eikωdω, |k| ≤ (n− 1)

}

,

often contains more than one element if n is finite, i.e., there is no unique spec-
trumΦ. In fact, the spectrum satisfying the covariance constraints is unique if and
only if the Toeplitz covariance matrix defined by rk, for, k = 0,±1, . . . ,±(n−1),
is singular [2], i.e., if the rank of R is less than n, where

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

r0 r−1 r−2 · · · r−n+1

r1 r0 r−1 · · · r−n+2

r2 r1 r0 · · · r−n+3
...

...
...

. . .
...

rn−1 rn−2 rn−3 · · · r0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

For the case when rank(R) = ñ < n, the corresponding unique spectrum is of the
form

Φ(ω) = 2π
ñ
∑

k=1

α2
kδ(ω− ωk),

where αk ∈ R+, ωk ∈ T, and δ(·) denotes the Dirac delta function, with the
corresponding signal x(t) being

x(t) =
ñ
∑

k=1

αkeiωkt+iφk ,

where φk are uniform random variables on T, independent of each other. Singular
covariance matrices and their unique spectral representations are exploited in sev-
eral classical line spectral estimation methods, such as Pisarenko [6], MUSIC [7],
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Figure 1: Top panel: three elements of Ω when covariances are specified up to lag
k = 4 by a generating spectrum. Bottom panel: the real part of the covariance
extensions, as implied by the three spectra.

ESPRIT [8], and, more recently, sparsity-aware techniques such as atomic norm
minimization and denoising [9, 10]. However, if the covariance matrix is of rank
n, which is the case for signals consisting of n or more sinusoidal components,
or any signal with an absolutely continuous component2, the spectrum is not
uniquely defined, and additional assumptions are required for arriving at an estim-
ate of Φ. It may be noted that the problem of uniqueness is not circumvented by
considering estimating Φ directly from observations of the signal waveform. The
non-uniqueness is illustrated in Figure 1, displaying a spectrum Φ used to gener-
ate rk, for k = 0,±1, . . . ,±(n−1), with n = 5, in the top panel. Also shown are
two other elements of Ω , i.e., spectra consistent with the observed covariances.
Specifically, these two spectra are the elements of Ω with minimum L2-norm and

2In this case, the covariance matrix is always full rank, irrespective of the dimension.
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1. Covariances and spectral representations

maximum entropy rate, respectively. Thus, depending on our assumptions, or
preferences, one arrives at different, equally valid spectral estimates. However,
different spectra will result in different evolutions of the covariance function, as
shown in the bottom panel of Figure 1, displaying the real part of the covariance
sequence extended up to lag k = 9 as implied by the three different spectra. As
can be seen, the covariances differ after lag 4.

It may be noted that also the classical periodogram estimate, i.e.,

Φper(ω) =
1

N

∣

∣

∣

∣

∣

N−1
∑

t=0

x(t)e−iωt

∣

∣

∣

∣

∣

2

,

may be interpreted as a particular solution to the inverse covariance matching
problem. Specifically, using the standard biased covariance estimates

r̂k =
1

N

N−1
∑

t=k

x(t)x(t − k), (2)

for k = 0,±1, . . . ,±(N − 1), the periodogram satisfies, through its connection
to the correlogram [11, 12],

1

2π

∫

T

Φper(ω)eikωdω =

{

r̂k, for |k| ≤ N − 1

0, for |k| > N − 1.

That is, the periodogram specifies all covariances after a certain lag to be exactly
zero, which is a quite strong assumption regarding the signal.

1.1 Spatial spectral estimation

Spectral estimation problems also appear in array processing applications such as
localization and direction of arrival (DoA) estimation, in which one aims to de-
termine the location of signal-emitting targets, or sources, based on measurements
collected from a sensor array. The basis for doing this is to relate array measure-
ments to a distribution of power over the space in which the sources are located.
That is, letting Θ denote this space, one seeks Φ ∈M+(Θ) describing the distri-
bution of signal power on Θ , and thereby identifying the locations of the sources,
as Φ(θ) > 0 implies that signal is emitted from θ ∈ Θ . Here, one may have
Θ ⊂ Rd for the case of localization in d dimensional space, or Θ ⊂ T for DoA
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Figure 2: Top panel: Two signal sources impinging on an array consisting of five
sensors. Bottom panel: corresponding spatial spectrum. The source power is
indicated by the color intensity.

estimation. Spatial estimation problems are not limited to localizing objects; they
also appear in, e.g., noise reduction applications [13, 14].

Let y(t) ∈ Cm, for t ∈ Z, denote a sequence of measurements corresponding
to an array of m ∈ N sensors. Then, if the signals impinging on the array are
WSS processes, so will y(t) be. Furthermore, the covariance structure of y(t), i.e.,
the sequence of so-called spatial covariance matrices

R(τ) = E
(

y(t)y(t − τ)H) ,

for τ ∈ Z, depends on the time-delays between targets and the sensors, and thus
contains information of the target locations in Θ . If the impinging signals are
sufficiently narrow-band, as well as independent of each other, this dependency
allows for a simple expression relating R = R(0) to Φ. Specifically, for narrow-
band signals, the time-delay of a signal may be well-modeled as a phase-shift of

6



1. Covariances and spectral representations

the corresponding carrier wave, i.e., there is a function a : Θ → Cm, referred to
as the array steering vector or manifold vector [15], such that a(θ) is the vector
of phase-shifts, and potentially signal attenuations, corresponding to each of the
array sensors for a signal impinging from θ ∈ Θ . It may here be noted that a is
determined by the array geometry, the wave propagation properties of the space
Θ , and the sensor response. Also, if the array geometry is unambiguous, i.e., a is
injective on Θ , localization is possible in the sense that each θ ∈ Θ is identifiable
from a(θ). With this, the array covariance matrix R may be expressed as

R =

∫

Θ
a(θ)Φ(θ)a(θ)H dθ. (3)

In the case of finitely-many, say K ∈ N, point-sources with signal powers α2
k , for

k = 1, . . . ,K , the array covariance takes on the commonly utilized form (see,
e.g., [11])

R =

K
∑

k=1

α2
ka(θk)a(θk)H = APAH ,

where

A =
[

a(θ1) . . . a(θK )
]

, P = diag
([

α2
1 . . . α2

K

])

,

with diag(x) denoting the diagonal matrix with x as its diagonal. As may be
noted, the covariance matrix of a temporal process may be written on the form
(3) by letting Θ = T, a be the Fourier vector of length m, and the measure of
integration dθ = dω/2π. The model in (3) will be used extensively in Paper B.
An illustration of a spatial spectral estimation setup in two dimensions is displayed
in Figure 2. Here, the top panel shows two signal sources emitting circular waves
that impinge on an array consisting of five sensors. The bottom panel displays
the corresponding spatial spectrum. As can be seen, the spectrum has two distinct
peaks of power at the source locations. Note also that one of the modes is fainter
than the other, corresponding to a lower power of the emitted signal.

The spatial spectral estimation problem, i.e., determining Φ from R, though
being mathematically equivalent to the corresponding temporal problem, raises
an interesting question that is not as apparent in the temporal case; how should
distances between spectra, as well as their corresponding covariance matrices, be
measured? In the spatial case, it is intuitively desirable that measures of spectral
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similarity should reflect proximity on Θ , i.e., if two sources are closely located
on Θ , in some native norm, then the corresponding spatial spectra ought also be
”close”. In particular, if a source at θ ∈ Θ is perturbed to θ+ ε, where ∥ε∥ ≪ 1,
it seems reasonable that this should correspond to a small spectral perturbation.
However, as we shall see next, such a property does not hold for some standard
measures of similarity.

1.2 Spectral distances

As can be seen from Figure 1, spectra consistent with a certain number of covari-
ances may differ significantly, which is also revealed by considering their respective
full covariance sequences. To quantify such differences is of interest in estimation
and classification applications. For example, the spectral representation of a sound
recording may serve as the basis for identifying musical instruments or human
speakers [16]. Also, in applications of spatial spectral estimation, the spectrum
allows for locating and identifying objects [15]. To this end, one requires a means
of comparing two spectra, i.e., determining a measure of distance between them.
For example, for two sufficiently integrable spectra Φ0, Φ1, one could consider
the L2-norm

∥Φ0 − Φ1∥
2
2 =

∫

T

(Φ0(ω)− Φ1(ω))2 dω,

i.e., the integral of squared point-wise differences, or the Kullback-Leibler (KL)
divergence [17],

DKL(Φ0 || Φ1) =

∫

T

Φ0(ω) log

(

Φ0(ω)

Φ1(ω)

)

dω,

i.e., the relative entropy between Φ0 and Φ1, commonly employed for measuring
dissimilarity between probability distributions, and a popular choice as a fitness
function in machine learning [18]. However, when used for quantifying the dis-
tance3 between spectra Φ0 and Φ1, the comparison is mainly determined by the
similarity of the spectra on the intersection of their supports. This is illustrated
in Figure 3. As may be seen, the top panel displays three narrow-band spectra,
all with the same shape, but with different center frequencies, each with a com-
mon flat noise-floor. For these spectra, the L2-distances between the three result-
ing pairs are all the same as their supports are completely disjoint, save for the

3It may be noted that the KL divergence is not symmetric.
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Figure 3: Top panel: three narrow-band spectra. Bottom panel: L2-distance, as
well as KL divergence, between spectrum with center frequency ωc and spectrum
with center frequency 0.5.

noise-floor. This is further illustrated in the bottom panel of Figure 3, displaying
the L2-distance between the spectrum with center frequency 0.5 and frequency-
shifted copies of itself. As may be seen, the distance rapidly saturates as the center
frequency is shifted. The corresponding effect is observed for the KL divergence.
Thus, neither the L2-distance4 nor the KL-divergence are suitable measures of dis-
similarity in applications in which the support of the spectra carry information.
For example, in audio applications, the support of narrow-band spectra are related
to the pitch perceived by human listeners, and thus, the proximity in frequency
of the supports of two spectra affect the perceived similarity of the corresponding
signals. In fact, the related effect of spectral masking is extensively used in audio
coding [19]. As may be noted, the consequence of using distances not taking

4Indeed, any Lp-distance.
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the structure of the support into account becomes more pronounced the more
narrow-band the signals under consideration are. Furthermore, in spatial spectral
estimation applications, such as DoA estimation and localization, the support of
the spectrum corresponds directly to the location of the signal sources, i.e., the
spectral support conveys information of physical proximity. Again, this is not re-
flected in neither the L2-distance, nor the KL-divergence. Thus, in order to be
meaningful for applications in which distances in frequency matter, and not only
point-wise dissimilarity, the spectral distance measure needs to take the structure
of the support into account explicitly. Such a distance may be obtained through
the use of optimal mass transport (OMT), described next.

2 Optimal mass transport

As noted, a spectrum Φ0 ∈M+(T) describes the distribution of power over T,
and may thus be interpreted as a mass distribution. Then, in order to compare
Φ0 to some other Φ1 ∈ M+(T), one may ask what the most efficient way of
perturbing Φ0 for it to become identical to Φ1 is. Assigning a cost to this optimal
perturbation then defines a notion of dissimilarity or distance between Φ0 and
Φ1. This is the problem of OMT, as first formulated by Gaspard Monge (see,
e.g., [20]). Specifically, the Monge problem of OMT seeks a mapping5 g : T→ T

solving

inf
g

∫

T

c(ω, g(ω))Φ0(ω)dω

subject to

∫

ω1∈U
Φ1(ω1)dω1 =

∫

g(ω0)∈U
Φ0(ω0)dω0 , for all U ⊂ T,

(4)

where c : T×T→ R+ is a cost function. It may here be noted that as c(ω0,ω1)
describes the cost of moving one unit mass from ω0 to ω1, the value of the ob-
jective functional in (4) is equal to the total cost of moving all the mass in Φ0

according to g . The constraint in (4), i.e., that the mass transported to any subset
U is equal to the mass on the pre-image of U , ensures that g indeed rearranges Φ0

to Φ1. It may be noted that, as a direct consequence, the total mass of Φ0 and Φ1

have to be equal,
∫

T

Φ0(ω)dω =

∫

T

Φ1(ω)dω,

5We here adapt the formulation to the special case of mass distributions on T.
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2. Optimal mass transport

Figure 4: Two spectra, Φ0, Φ1, as well as a transport plan constructed as
M(ω0,ω1) = Φ0(ω0)Φ(ω1).

i.e., they have to correspond to processes with the same variance. As for the cost
function c, one may for example choose c(ω0,ω1) = (ω0 − ω1)2, i.e., the cost of
transporting a unit mass between two points is directly related to their distance
on the frequency axis. In fact, for the case in which both Φ0 and Φ1 are absolutely
continuous and when c(ω0,ω1) = |ω0 − ω1|

p for some p ≥ 1, the minimal value
of (4) may be computed in closed form [21].

However, the minimum of (4) may not exist for general choices Φ0,Φ1 ∈
M+(T). In fact, there might not even exist a g satisfying the constraint in (4).
This is the case if Φ0 and Φ1 contain singular parts, as the formulation in (4), i.e.,
by modeling transport of mass using a mapping g , does not allow for splitting up
point-masses. This renders the Monge formulation of OMT unsuitable for signal
processing applications, as singular measures arising from sinusoidal components
are common. Furthermore, even if the minimum of (4) exists, it is not easy to
find the minimizing g , except for some special choices of the cost function c, due
to the non-convexity of the problem. Both these problems may be remedied by,
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Figure 5: Two spectra,Φ0,Φ1, as well as a transport plan M resulting from solving
(5) using c(ω0,ω1) = (ω0 − ω1)2.

instead of using a mapping, modeling transport by means of a mass distribution
on the product space T×T. Specifically, one may let M ∈M+(T×T) describe
transport between Φ0 and Φ1 by letting M(ω0,ω1) be the mass transported from
ω0 to ω1. This results in the Monge-Kantorovich problem of OMT, formulated
as

inf
M∈M+(T×T)

∫

T

M(ω0,ω1)c(ω0,ω1)dω0dω1

subject to

∫

T

M(·,ω)dω = Φ0 ,

∫

T

M(ω, ·)dω = Φ1.

(5)

Here, M is referred to a transport plan as it offers a complete description of the
association of the masses of Φ0 and Φ1. Correspondingly, the so-called marginals
of M must match Φ0 and Φ1, enforced by the constraints. It may here be noted
that a feasible M always exists, as setting M(ω0,ω1) = Φ0(ω0)Φ(ω1), for all
ω0,ω1 ∈ T, results in a transport plan with the correct marginals. Furthermore,

12



3. Estimation of parametric models

in contrast to (4), the problem in (5) is a convex, even linear, program. Figures 4
and 5 provide an illustration of two feasible transport plans M for a pair of spectra
Φ0 and Φ1, with Figure 4 displaying M(ω0,ω1) = Φ0(ω0)Φ(ω1) and Figure 5
showing the solution to (5), with c(ω0,ω1) = (ω0 − ω1)2.

The use of OMT for modeling and estimation has recently attracted increas-
ing attention in signal processing [21], machine learning [22], as well as in auto-
matic control [23]. Furthermore, the framework has been used for endowing the
space of spectra with a metric structure [24]. In Papers A, B, and C, we will see
how tools based in OMT theory can be used for modeling distances, as well as
transitions, between stochastic processes and signals.

3 Estimation of parametric models

Another type of structure considered in this thesis is that provided by parametric
signal models, i.e., the signal is characterized by a parameter vector θ specifying its
probability distribution. Herein, the considered θ are real and finite dimensional,
i.e., elements of RP for some P ∈ N. As an example, consider the signal

x(t) = αe−β t+iωt+iφ, (6)

where α > 0, β > 0, ω ∈ [−π, π), and φ ∈ [−π, π). This model is commonly
employed in spectroscopy applications, wherein measurements are described as

y(t) = x(t) + e(t),

where e(t) is a circularly symmetric white Gaussian noise with variance σ2. For
this signal, the parameter vector specifying the (Gaussian) probability density

function (pdf ) of a signal sample y !
[

y(0) y(1) . . . y(N − 1)
]T

, for some
N ∈ N is simply

θ =
[

α β ω φ σ2
]T

.

It may be noted that the noise-free waveform x(t) is completely deterministic. In
Papers C, D, and, in particular, E, we are interested in assessing how well one may
estimate the parameter θ from signal samples y, i.e., what estimation variance may
be achieved by an estimator θ̂. The main tool for doing this will be the Cramér-
Rao lower bound (CRLB) (see, e.g., [25]), which we briefly outline here. Let
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p(y;θ) denote the pdf of the signal sample6 y. If

E
(

∇θ log p(y;θ)
)

= 0

for all θ, then,

E

(

(θ̂− θ)(θ̂− θ)T
)

≽ F (θ)−1,

for any unbiased estimator θ̂, where F (θ) is the Fisher information matrix

F (θ) = E

(

∇θ log p(y;θ) ∇θ log p(y;θ)T
)

, (7)

and where A ≽ B signifies that A − B is positive semi-definite. Note here that
all expectations are taken with respect to p(y;θ). Thus, F (θ)−1, referred to as the
CRLB, is a lower bound, in the matrix sense, for the covariance matrix of estim-
ators θ̂ and thus serves as benchmark for estimator performance. Furthermore,
asymptotically, we expect the bound to be attained by the maximum likelihood
estimator (MLE), i.e., the bound is informative. Asymptotically here means either
as the sample length N or the signal to noise ratio (SNR), depending on applica-
tion, tends to infinity.

3.1 Optimal sampling

The CRLB may not only be used as a benchmark for estimator variance; it can
also serve as a tool for deciding how to optimally measure, or sample, a signal. In
general, the FIM in (7) depends on where on its domain of definition the signal
y has been sampled. For example, if y(t) is a time series, the FIM depends on
the sampling times. The interpretation of this is that different time instances,
or combinations of sampling times, may carry different amount of information.
The implication of this is that the CRLB will depend on the specific choice of
samples collected, i.e., depending on which samples are selected, the difficulty of
estimating the signal parameter θ will vary. In general, the more samples that are
collected, the better. However, in some applications, there may be costs associated
with collecting samples. For example, in Accordion nuclear magnetic resonance
spectroscopy [26, 27], in which the signal consists of mixtures of decaying os-
cillating components such as (6), the sampling times t corresponds to a specific

6This is, for a general measurement of a signal, not necessarily corresponding to noisy measure-
ments of (6).
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Figure 6: The problem of collecting one additional sample from (6) after having
sampled at t = 0, 1, . . . ,Ninitial − 1, with Ninitial = 20. Top panel: real part of
(noise-free) waveform. Bottom panel: CRLB for decay parameter β as a function
of the additional sample collected.

experiment setting, with measurement y(t) ∈ C being the outcome of the exper-
iment. Collecting signal samples is thus time consuming and one may pose the
question: if only a certain number of signal measurements can be collected, how
should these be selected as to allow for the best possible estimation performance?

As an illustration, consider having collected noisy samples from the model in
(6) for t = 0, 1, . . . ,Ninitial − 1, and then being offered to measure the signal
at one additional time instance as to minimize the CRLB of β . Figure 6 displays
such a situation, wherein Ninitial = 20 samples have been collected. Here, the
bottom panel displays the CRLB resulting from selecting one additional sample.
As may be noted, the accuracy bound varies significantly depending on which
sample is collected; the variance differs by almost a factor of 4 between the best
and the worst sample. As may be noted, it is in this case most beneficial to sample
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at t = 115, though it should be noted that this depends on the particular values
of the signal parameters.

In Paper E, we address the general problem of sample selection for parametric
models by formulating this, or rather a relaxed version of it, as a convex optim-
ization problem. In particular, we utilize that, when samples collected at distinct
points in the signal domain are statistically independent, the FIM decouples as a
sum. For the temporal signal case, this means

F (θ) =
N−1
∑

t=0

Ft (θ),

where

Ft (θ) = E

(

∇θ log p(y(t);θ) ∇θ log p(y(t);θ)T
)

for t = 0, 1, . . . ,N−1, are information matrices corresponding to the individual
samples. As may be noted, this property holds for deterministic signals observed
in white noise.

3.2 Misspecified models

In some cases, the assumed signal model may not match that of the actual, meas-
ured signal. Specifically, letting q(·;θ) denote the pdf of the assumed model,
parametrized by the vector θ, and p denote the pdf of the measurements, the as-
sumed model is said to be misspecified if there exists no θ such that q(·;θ) ≡ p.
As an example, consider observing noisy measurements of (6) and, erroneously,
assuming that the noise-free waveform is a pure sinusoid, i.e.,

z(t) = αeiωt+iφ,

where, in this case, the parameter vector is θ =
[

α ω φ σ2
]T

. Clearly,
for any decay parameter β > 0, this constitutes a misspecified model, as it is not
possible to select the parameters α, ω, and φ as to match the waveform in (6), and
thereby the pdfs cannot be made equal. However, one may still attempt to find
a value of θ such that q is a good approximation of p. When the approximation
is done in the Kullback-Leibler sense, this results in the concept of a pseudo-true
parameter (see, e.g., [28]). Specifically, the pseudo-true parameter θ0 is defined as

θ0 = arg min
θ

DKL
(

p || q(·;θ)
)

= arg min
θ

− Ep
(

log q(y;θ)
)

,
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3. Estimation of parametric models

where the expectation is taken with respect to p, i.e., the value θ0 is such that
the relative entropy between p and q is minimized. Furthermore, it can be shown
that under some regularity conditions, the misspecified MLE, i.e., the MLE of
θ derived under q, converges to θ0 as the number of samples, or SNR, tends to
infinity (see, [28, 29]). In addition, for estimators of θ0 that are unbiased under
p, i.e., satisfying

Ep

(

θ̂0

)

= θ0,

a lower bound on estimator variance may be found as the misspecified CRLB
(MCRLB) [29], extending the standard CRLB. Thus, the concept of a pseudo-
true parameter, together with the MCRLB, allows for analyzing the loss of per-
formance, in terms of bias and estimator variance, when using misspecified mod-
els, for example due to deliberate model simplification, which is studied in Pa-
per D. Furthermore, the misspecified modeling framework may serve as a basis
for defining highly structured approximations of some signal classes. This is ex-
plored in Paper C, in which harmonic and inharmonic signals, briefly described
next, are studied.

3.3 The harmonic model and inharmonicity

Consider the signal

x(t) =
K
∑

k=1

αkeiωkt+iφk , (8)

where αk > 0, φk ∈ [−π, π), and ωk = kω0, for k = 1, 2, . . . ,K , with
ω0 ∈ [−π, π). This model is referred to as harmonic, due to the integer relation-
ship between the frequencies of the sinusoidal components and the fundamental
frequency ω0. The model in (8) is also referred to as a pitch and corresponds, in
the context of audio signals, to the everyday concept of the same name. Harmonic
signals appear in many fields of signal processing, ranging from the modeling of
DNA sequences [30] to fault detection in industrial machinery [31]. However,
it is most prominently featured in audio signal processing. For example, it has
successfully been used for modeling the voiced part of human speech [32], as
well as the sound produced by musical instruments [33]. Due to the ubiquity
of the signal (8), a great number of methods for estimating its parameters from
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noisy samples have been proposed, encompassing autocorrelation based methods
exploiting the periodicity of x(t) [34], as well as high-resolution sparse meth-
ods [35] (see also [36] for an overview). However, in some settings, the harmonic
relationship ωk = kω0 is only approximate. That is, the sinusoidal frequencies
may be better described as

ωk = kω0 +Δk, (9)

for k = 1, . . . ,K , where Δk are small perturbations. Such signals are often
referred to as inharmonic [36]. In fact, there are complete parametric descriptions
for some inharmonic signals, based on the physical properties of the generating
mechanism. For example, the frequencies constituting the sound produced by
vibrating strings are commonly modeled as [33]

ωk = ω0k
√

1 + βk2,

where β > 0 is a parameter related to the string stiffness. There is also evidence
for some degree of inharmonicity in the human voice, although no particular
structure is known as of yet [37]. In the context of this thesis, the inharmonic
model, i.e., the signal in (8) with frequencies (9) constitutes an example of a signal
with both parametric and spectral structure. Specifically, letting φk be uniform
random variables on [−π, π), for k = 1, 2, . . . ,K , independent of each other, the
signal in (9) is a WSS process with covariance function

rτ =
K
∑

k=1

α2
keiωkτ , for τ ∈ Z.

Furthermore, the (unique) spectrum consistent with this covariance is

Φ(ω) = 2π
K
∑

k=1

α2
kδ(ω− ωk).

As may be noted, for the case of a perfectly harmonic signal, the spectrum consists
of point-masses spaced evenly along the frequency axis by the fundamental fre-
quency ω0. In contrast, the spacing between the point-masses in the spectrum of
an inharmonic signal deviates slightly from ω0. An example is shown in Figure 7,
displaying the periodogram spectral estimates of the musical note G4 played by a
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Figure 7: Periodogram spectral estimate of the musical note G4 when played by
a saxophone, as well as by a piano. The dashed lines indicate integer multiples of
the nominal fundamental frequency.

saxophone, as well as a piano. The fundamental frequency of G4 is 392 Hz, cor-
responding to an angular frequency of 0.0559 radians per sample when sampled
at 44.1 kHz. As can be seen from the figure, the frequencies of the sinusoidal
components of the saxophone signal correspond well to integer multiples of the
fundamental frequency, whereas they deviate for the piano signal, i.e., the piano
is inharmonic.

As may be noted, an inharmonic signal is not periodic, and thus lacks the
concept of a fundamental frequency. Despite this, one may have the intuitive
idea that an inharmonic signal is almost harmonic, although it is not clear in what
sense. Paper C proposes a definition of fundamental frequency for non-periodic
signals using tools from OMT as to formalize this intuitive idea.
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4 Outline of the papers

Paper A: Interpolation and Extrapolation of Toeplitz Matrices
via Optimal Mass Transport

In the first paper, the problem of quantifying dissimilarity between WSS stochastic
processes based on their second-order statistics, i.e., covariance sequences or cov-
ariance matrices, is considered. Specifically, a notion of distance between Toeplitz
covariance matrices is proposed, based on an optimal mass transport problem in
the spectral domain. It is shown that the proposed distance has some attractive
geometric properties, making it suitable for modeling perturbations of the fre-
quency content of WSS processes. Furthermore, based on the proposed distance,
a matrix interpolant is proposed, defining a path of valid covariance matrices con-
necting any two Toeplitz covariance matrices. Also, it is shown that, for certain
choices of transport cost functions, the dual formulation of the OMT problem
defining the distance allows for a finite-dimensional representation. The poten-
tial uses of the proposed distance and interpolant is illustrated in tracking and
clustering examples. The work in Paper A has been published as

Filip Elvander, Andreas Jakobsson, and Johan Karlsson, ”Interpolation and
Extrapolation of Toeplitz Matrices via Optimal Mass Transport”. IEEE
Transactions on Signal Processing, vol. 66, no. 20, pp. 5285-5298, October
2018.

Paper B: Multi-Marginal Optimal Transport using Partial Information

In the second paper, the idea of using OMT as a means of measuring distances
between objects parametrized by mass distributions, such as covariance matrices
parametrized by spectra, is generalized to modeling connections and proximity
between collections of multiple objects. This is referred to as multi-marginal
problems with partial information. It is shown that problems in spatial spectral
estimation and array processing, such as sensor fusion and tracking, may be cast
in this form. Furthermore, a main contribution of this work is proposing a com-
putationally efficient algorithm capable of addressing high-dimensional transport
problems. The properties of the proposed modeling framework, as well as the
computational tools, are demonstrated in numerical examples from array pro-
cessing, such as tracking and sensor fusion, wherein the sensor arrays are not
jointly calibrated. It is shown that the OMT formulation induces inherent ro-
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bustness to modeling errors, as well as allows for incorporating knowledge of un-
derlying dynamics governing changes in the spectral properties of the observed
signals. The work in Paper B has been published as

Filip Elvander, Isabel Haasler, Andreas Jakobsson, and Johan Karlsson,
”Multi-marginal optimal transport using partial information with applica-
tions in robust localization and sensor fusion”. Signal Processing, vol. 171,
pp. 1-19, 2020.

Paper C: Defining Fundamental Frequency for Almost Harmonic Sig-
nals

The third paper studies close-to-harmonic signals, and proposes three defini-
tions of a concept of fundamental frequency, or pitch, for inharmonic, i.e., non-
periodic, signals, emanating from three different approximation frameworks and
interpretations of the signal. In all three definitions, the inharmonic signal is as-
sociated with a harmonic counterpart whose fundamental frequency then serves
as the definition of pitch for the inharmonic signal. The first definition views
the harmonic companion signal as a misparametrization of the inharmonic coun-
terpart and uses tools from the framework of misspecified estimation in defining
the fundamental frequency. The second definition instead considers the spectral
properties of the inharmonic signal, viewing it as a spectral perturbation of a har-
monic counterpart, and uses OMT theory for formally defining the fundamental
frequency. In contrast to the first and second definitions, the third interprets in-
harmonicity as a stochastic frequency perturbation, and defines the fundamental
frequency via an expectation. The properties of the three definitions, as well as the
consequences of using either of them in estimation, is theoretically explored, as
well as illustrated in simulation studies. The work in Paper C has been submitted
for possible publication as

Filip Elvander and Andreas Jakobsson, ”Defining Fundamental Frequency
for Almost Harmonic Signals”.

Paper D: Mismatched Estimation of Polynomially Damped Signals

In the fourth paper, the implications of using simplified models in estimation of
the parameters of spectroscopic signals is studied. Specifically, posing the problem
within the framework of misspecified estimation, the so-called pseudo-true para-
meters defining the reduced signal models are used for predicting the behavior of
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estimation methods operating under simplified assumptions. It is shown that the
higher-order terms in spectroscopic signals may estimated sequentially, allowing
for reduced computational load. The work in Paper D has been published in part
as

Filip Elvander, Johan Swärd, and Andreas Jakobsson, ”Mismatched Estim-
ation of Polynomially Damped Signals”. Proceedings of the 8th IEEE In-
ternational Workshop on Computational Advances in Multi-Sensor Adaptive
Processing, pp. 246-250, 2019.

Paper E: Designing Sampling Schemes for Multi-Dimensional Data

The fifth and final paper considers the problem of optimally sampling, or col-
lecting measurements from, structured signals as to allow for the best possible
estimation accuracy, as measured by the Cramér-Rao lower bound. Posing this as
a selection problem, a convex relaxation in the form of a semi-definite program
is proposed for approximating the original combinatorial problem. The resulting
formulation allows for selecting arbitrary subsets, or positive linear combinations,
of the signal parameters, thus enabling concentrating on the parameters of interest
and ignoring those considered as nuisance. The proposed method also allows for
modeling imprecise knowledge of the signal parameters. As shown in numerical
examples, the method allows for a dramatic reduction in the number of signal
samples required for achieving a given bound on estimation accuracy. The tools
of Paper E have recently been applied to nuclear magnetic resonance spectroscopy
experiments, allowing for more than a ten-fold reduction in the required experi-
ment time [27]. The work in Paper E has been published as

Johan Swärd, Filip Elvander, and Andreas Jakobsson, ”Designing sampling
schemes for multi-dimensional data”. Signal Processing, vol. 150, pp. 1-10,
2018.
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Abstract

In this work, we propose a novel method for quantifying distances between Toep-
litz structured covariance matrices. By exploiting the spectral representation of
Toeplitz matrices, the proposed distance measure is defined based on an optimal
mass transport problem in the spectral domain. This may then be interpreted in
the covariance domain, suggesting a natural way of interpolating and extrapol-
ating Toeplitz matrices, such that the positive semi-definiteness and the Toeplitz
structure of these matrices are preserved. The proposed distance measure is also
shown to be contractive with respect to both additive and multiplicative noise,
and thereby allows for a quantification of the decreased distance between signals
when these are corrupted by noise. Finally, we illustrate how this approach can
be used for several applications in signal processing. In particular, we consider in-
terpolation and extrapolation of Toeplitz matrices, as well as clustering problems
and tracking of slowly varying stochastic processes.

Key words: Covariance interpolation, optimal mass transport, Toeplitz matrices,
spectral estimation
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1 Introduction

Statistical modeling is a key methodology for estimation and identification and is
used throughout the signal processing field. An intrinsic component of such mod-
els is covariance estimates, which are extensively used in application areas such as
spectral estimation, radar, and sonar [1, 2], wireless channel estimation, medical
imaging, and identification of systems and network structures [3, 4]. Although
being a classical subject (see, e.g., [5]), covariance estimation has recently received
considerable attention. Such contributions include works on finding robust cov-
ariance estimates with respect to outliers, as well as methods suitable for handling
different distribution assumptions, including families of non-Gaussian distribu-
tions [6–10]. Another important class of problems is covariance estimation with
an inherent geometry that gives rise to a structured covariance matrix. Such struc-
tures could arise from stationarity assumptions of the underlying object [11–15]
or be due to assumptions in, e.g., the underlying network structures in graphical
models [16, 17]. In this work, we focus on Toeplitz structures which naturally
arise when modeling stationary signals and processes.

Although many methods rely on stationarity for modeling signals, such as-
sumptions are typically not valid over longer time horizons. Therefore, tools
for interpolation and morphing of covariance matrices are important for mod-
eling and fusing information. A straightforward and often used approach is the
Euclidean metric; however, this metric does not take into account the underly-
ing geometry and typically results in fade-in-fade-out effects (as is also illustrated
herein). Several other such tools for interpolating covariances have recently been
proposed in the literature, for example methods based on g-convexity [9], optimal
mass transport [18], and information geometry [19]. An alternative approach for
such interpolation is to relax, or ”lift”, the covariances and instead consider in-
terpolation between the lifted objects. For example, in [20] (see also [21]), inter-
polation between covariance matrices is induced from the optimal mass transport
geodesics between the Gaussian density functions with the corresponding covari-
ances. However, neither of these interpolation approaches take into account that
the covariance matrix represents an (almost) stationary times series and do not
preserve the Toeplitz structure of the interpolating covariance sequence.

The topic of optimal mass transport (see, e.g., [22, 23]) was originally in-
troduced in order to address the problem of, in a cost efficient way, supplying
construction sites with building material and has been used in many contexts,
such as, e.g., economics and resource allocation. Lately, it has also gained interest
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in application fields such as image processing [24, 25] signal processing [26–28],
computer vision and machine learning [29–33]. In this work, we will utilize op-
timal mass transport to model changes in the covariance structure of stochastic
processes, or signals. To this end, we propose a new lifting approach, where the
lifting is made from the covariance domain to the frequency domain, using the
fact that any positive semi-definite Toeplitz matrix has a spectral representation.
We combine this approach with the frequency domain metric based on optimal
mass transport, proposed in [27], in order to define pairwise distances between
Toeplitz matrices. This is done by considering the minimum distance, in the op-
timal mass transport sense, between the sets of power spectra consistent with each
of the Toeplitz matrices. The proposed distance measure is shown to be contract-
ive with respect to additive and multiplicative noise, i.e., it reflects the increased
difficulty of discriminating between two stochastic processes if these are corrupted
by two realizations of a noise process. Also, we show that the proposed distance
measure gives rise to a natural way of interpolating and extrapolating Toeplitz
matrices. The interpolation method preserves the Toeplitz structure, the posit-
ive semi-definiteness, as well as the diagonal of the interpolating/extrapolating
matrices.

The proposed optimal mass transport problem is in its original form an infinite-
dimensional problem. As an alternative to finding solutions using approximations
based on discretizations of the underlying space, we show that certain formula-
tions of the problem allows for approximations by a semi-definite program using
a sum-of-squares representation. Also, we illustrate how the method can be used
for interpolation, extrapolation, tracking, and clustering.

This paper is organized as follows. In Section 2, we provide a brief back-
ground on the moment problem, i.e., determining the power spectrum from a
partial covariance sequence or finite covariance matrix, as well as introduce the
problem of optimal mass transport. Section 3 introduces the proposed distance
notion for positive semi-definite Toeplitz covariance matrices. Here, the dual
problem is derived, and properties of the proposed distance notion are described.
In Section 4, we describe applications of the proposed distance notion, such as in-
duced interpolation, extrapolation, tracking, and clustering. Section 5 formulates
a sum-of-squares relaxation of the dual problem. Section 6 provides numerical
illustrations of the proposed distance notion, as well as the described applications.
Finally, Section 7 concludes upon the work.
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Notation

Let Mn denote the set of Hermitian n × n matrices and let (·)T denote the
transpose, (·)H the Hermitian transpose, and (·) the complex conjugate. Let
T = [−π, π) and let Cperio(T) denote the set of continuous and 2π-periodic func-
tions on T. The set of linear bounded functionals on Cperio(T), or equivalently,
the dual space of Cperio(T), is the set of generalized integrable functions on the
set T, here denoted by M(T). Thus, M(T) includes, e.g., functions containing
singular parts such as Dirac delta functions [34].1 Further, we let M+(T) denote
the subset of such functions that are non-negative. We use ⟨Φ, f ⟩ to denote the
application of the functional Φ on f , e.g.,

⟨Φ, f ⟩ =
∫

T

f (θ)Φ(θ)dθ

if f ∈ Cperio(T) and Φ ∈M(T). For Hilbert spaces, ⟨·, ·⟩ is the standard inner
product, e.g., when X and Y are vectors or matrices, then ⟨X,Y⟩ = tr(XYH ),
where tr(·) denotes the trace. We denote matrices by boldface upper-case letters,
such as X, whereas vectors are denoted by boldface lower-case letters, such as x.
Furthermore, ∥X∥F =

√

⟨X,X⟩ denotes the Frobenius norm induced by the
matrix inner product. Lastly, for f ∈ Cperio(T), we let

∥f ∥1 = sup
|Φ(θ)|≤1

⟨Φ, f ⟩ =
∫

T

|f (θ)| dθ

denote the L1-norm.

2 Background

2.1 Stochastic processes and spectral representations

We will in this work consider complex-valued discrete time stochastic processes,
or signals, y(t) for t ∈ Z. These will be assumed to be zero mean and wide sense
stationary (WSS), i.e., E(y(t)) = 0 for all t ∈ Z, and the covariance

rk ! E(y(t)y(t − k)) (1)

1Strictly speaking M(T) is the set of signed bounded measures on T [35].
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being independent of t. Here, E(·) denotes the expectation operator. The fre-
quency content of the process y(t) may then be represented by the power spec-
trum, Φ, i.e., the non-negative function on T whose Fourier coefficients coincide
with the covariances:

rk =
1

2π

∫ π

−π
Φ(θ)e−ikθdθ (2)

for k ∈ Z (see, e.g., [36, Chapter 2]). Typically in spectral estimation, one con-
siders the inverse problem of recovering the power spectrum Φ from a given set
of covariances rk, for k ∈ Z, with |k| ≤ n− 1. The condition for any such recon-
struction to be valid is that Φ should be consistent with the covariance sequence
{rk}|k|≤n−1, i.e., (2) should hold for |k| ≤ n − 1. The corresponding n × n
covariance matrix is

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

r0 r−1 r−2 · · · r−n+1

r1 r0 r−1 · · · r−n+2

r2 r1 r0 · · · r−n+3
...

...
...

. . .
...

rn−1 rn−2 rn−3 · · · r0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3)

which is a Hermitian Toeplitz matrix, since y(t) is WSS. Thus, expressed in
the form of matrices, a spectrum is consistent with an observed partial covari-
ance sequence, or, equivalently, a finite covariance matrix, if Γ(Φ) = R, where
Γ : M(T)→Mn is the linear operator

Γ(Φ) !
1

2π

∫

T

a(θ)Φ(θ)a(θ)H dθ (4)

and

a(θ) !
[

1 e−iθ · · · e−i(n−1)θ
]T

(5)

is the Fourier vector. Note that Γ(Φ) is a Toeplitz matrix, since a(θ)a(θ)H is
Toeplitz for any θ. It may be noted that for any positive semi-definite Toeplitz
matrix, R, there always exists at least one consistent power spectrum; in fact, if
R is positive definite, there is an infinite family of consistent power spectra [37].
It may be noted that for singular Toeplitz covariance matrices, the spectral rep-
resentation is unique. This fact has recently been successfully utilized in atomic
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norm minimization problems for grid-less compressed sensing of sinusoidal sig-
nals (see, e.g., [38,39]). In this work, we are mainly interested in the non-singular
case, where several power spectra are consistent with given covariance matrices. In
Section 3, we will utilize such spectral representations in order to define a notion
of distance between pairs of Toeplitz matrices. This distance will be defined in
terms of the minimum optimal mass transport cost between the sets of power
spectra consistent with the matrices.

2.2 Optimal mass transport

The Monge-Kantorovich problem of optimal mass transport is the problem of
finding an optimal transport plan between two given mass distributions [22, 23].
The cost of moving a unit mass is defined on the underlying space, and the op-
timal transport plan is defined as the plan minimizing the total cost. The resulting
minimal cost, associated with the optimal transport plan, can then be used as a
measure of similarity, or distance, between the two mass distributions. The idea of
utilizing the optimal mass transport cost as a distance measure has been used, e.g.,
for defining metrics on the space of power spectra [27], whereas the optimal trans-
port plan has been used for tracking stochastic processes with smoothly varying
spectral content and for spectral morphing for speech signals [28]. Recently, the
interpretation of the optimal transport plan as providing an optimal association
between elements in two mass distributions has been used as a means of clustering
in fundamental frequency estimation algorithms [40]. One of the advantages of
using the optimal mass transport as a distance compared to traditional metrics is
that it naturally incorporates the geometry of the underlying space. In particu-
lar, the optimal mass transport cost between two objects depends on the distance
between the two objects in the underlying space, whereas standard metrics only
depend on the overlapping regions. Furthermore, interpolation using optimal
mass transport results in smooth transitions in the underlying space (see Sections
6.2 and 6.3). This makes optimal mass transport suitable for applications where
there is a smooth transition in the underlying space, e.g., tracking problems in
radar and sonar.
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As in [27], we consider the following distance between two spectra Φ0 and Φ1:

S(Φ0,Φ1) ! min
M∈M+(T2)

∫

T2
c(θ,φ)M(θ,φ)dθdφ (6a)

subject to Φ0(θ) =

∫

T

M(θ,φ)dφ (6b)

Φ1(φ) =

∫

T

M(θ,φ)dθ, (6c)

where T2 = T × T denotes the 2-D frequency space. Here, the cost function,
c(θ,φ), details the cost of moving one unit of mass between the frequencies θ
and φ. The transport plan, M(θ,φ), specifies the amount of mass moved from
frequency θ to frequency φ. The objective in (6a) is the total cost associated with
the transport plan M and the constraints (6b) and (6c) ensure that M is a valid
transport plan from Φ0 to Φ1, i.e., the integration marginals of M coincide with
the spectra Φ0 and Φ1. It may be noted that, due to these marginal constraints,
the distance measure S is only defined for spectra of the same mass, or total power.
However, S may be generalized in order to allow for mass differences by including
a cost for adding and subtracting mass by postulating that the spectra Φ0 and Φ1

are perturbations of functions Ψ0 and Ψ1 that have equal mass. As in [27], this
may be formulated as

Sκ(Φ0,Φ1) = min
Ψj∈M+(T)

S(Ψ0,Ψ1) + κ
1
∑

j=0

∥

∥Φj −Ψj
∥

∥

1
(7)

where κ > 0 is a used-defined parameter detailing the cost of adding or subtract-
ing mass. One interpretation of this is that points that are close represent the
same object and can thus be transported via the first term in (7), whereas points
that are far apart represent different objects and must be phased in/out using the
second term in (7). Then, κmay be interpreted as a parameter determining when
two points are close. If the cost function in the optimal mass transport prob-
lem in (6) is chosen as c(θ,φ) = d (θ,φ)p, p ≥ 1 for any metric d (θ,φ) on T,
then W (Φ0,Φ1) = S(Φ0,Φ1)1/p is the so-called Wasserstein metric on M+(T).
Similarly, for Sκ, the following theorem holds.

Theorem 1 ([27]). Let p≥1, κ>0, and let the cost function be c(θ,φ) = |θ− φ|p.
Then,

Wκ(Φ0,Φ1) = Sκ(Φ0,Φ1)1/p (8)
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is a metric on M+(T).

Consider a situation where we need to discriminate between two signals on
the basis of their statistics or of their power spectra. In such cases, additive or mul-
tiplicative noise typically impedes our ability to differentiate between the two. In
particular, we have that Φ 0→ Φ + Φa represents the operation of adding in-
dependent noise with spectrum Φa and Φ 0→ Φ ∗ Φm represents the operation
of multiplying the signal with independent noise with spectrum Φm. This was
considered in [27] and it was shown that the transportation distance respects this
property in the sense that corrupting two signals with additive and (normalized)
multiplicative noise decreases their transportation distance. Specifically, the fol-
lowing theorem holds.

Theorem 2 ([27]). Let p ≥ 1, κ > 0, and let the cost function be c(θ,φ) = |θ−φ|p,
and let Wκ(Φ0,Φ1) be defined by (8). Then, Wκ(Φ0,Φ1) is contractive with respect
to the additive and normalized multiplicative noise, i.e.,

• Wκ(Φ0 +Φa,Φ1 + Φa) ≤ Wκ(Φ0,Φ1)

• Wκ(Φ0 ∗ Φm,Φ1 ∗ Φm) ≤ Wκ(Φ0,Φ1),

for any Φa,Φm ∈M+(T), with
∫

T
Φm(θ)dθ = 1.

As we shall see, it is possible to construct notions of distance on the space of
positive semi-definite Toeplitz matrices that have properties similar to those stated
in Theorem 2.

3 A notion of distance for Toeplitz matrices

As noted above, any positive semi-definite Toeplitz matrix R has at least one spec-
tral representation, i.e., there exists at least one spectrum Φ that is consistent with
it. Thus, we define the distance, T , between two positive semi-definite Toep-
litz matrices, R0 and R1, as the minimum transportation cost, as measured by S,
between spectra consistent with the respective matrices, i.e.,

T (R0,R1) ! min
Φ0,Φ1∈M+(T)

S(Φ0,Φ1)

subject to Γ(Φj) = Rj, j = 0, 1.
(9)
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Considering the definition of S in (6), this can equivalently be formulated as the
convex optimization problem

T (R0,R1) = min
M∈M+(T2)

∫

T2
c(θ,φ)M(θ,φ)dθdφ

subject to Γ

(
∫

T

M(θ,φ)dφ

)

= R0

Γ

(
∫

T

M(θ,φ)dθ

)

= R1.

(10)

Note that the formulation in (10) is only defined for covariance matrices with
the same diagonal, i.e., the same r0, as defined in (1), or, equivalently, covariance
matrices whose consistent spectra have the same mass. However, in order to allow
for mass differences, T (R0,R1) can be generalized in analog with (7) as

Tκ(R0,R1) ! min
Φj∈M+(T)

Sκ(Φ0,Φ1)

subject to Γ(Φj) = Rj for j = 0, 1,
(11)

or, equivalently,

Tκ(R0,R1) = min
M∈M+(T2)
Ψ0,Ψ1∈M+(T)

∫

T2

c(θ,φ)M (θ,φ)dθdφ

+ κ

∥

∥

∥

∥

∫

T

M (θ,φ)dφ−Ψ0

∥

∥

∥

∥

1

+ κ

∥

∥

∥

∥

∫

T

M (θ,φ)dθ−Ψ1

∥

∥

∥

∥

1

subject to Γ (Ψj) = Rj for j = 0, 1.

(12)

Typically, the cost function c would be selected to be symmetric in its arguments,
in which case Tκ would be symmetric as well, i.e., Tκ(R0,R1) = Tκ(R1,R0)
for any Toeplitz matrices R0,R1 ∈ Mn

+. Although many possible choices of
such cost functions exist, we will in most examples presented herein consider

c(θ,φ) =
∣

∣eiθ − eiφ
∣

∣

2
, i.e., the cost function quantifies distances as the square

of the distance between the corresponding points on the unit circle. As we show
in Section 5, this particular choice of cost function allows for a sum-of-squares
relaxation of the dual formulation of (12). This dual formulation is presented
next.
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3.1 The dual formulation

In order to study properties of the distance notion Tκ, we consider the dual for-
mulation of (12), where we assume that the cost function, c, is a continuous
non-negative function on T2. In order to address this problem, we first note that
the adjoint operator2 Γ∗ : Mn → Cperio(T) of the operator Γ is

Γ∗(R)(θ) =
1

2π
a(θ)H Ra(θ)

since

⟨Γ(Φ),R⟩ = ⟨
1

2π

∫

T

a(θ)Φ(θ)a(θ)H dθ,R⟩

=

∫

T

1

2π
Φ(θ)a(θ)H Ra(θ)dθ = ⟨Φ,Γ∗(R)⟩,

where, in the first line, the inner product is the one associated with Mn, and the
second line is the bilinear form with arguments Γ∗(R) ∈ Cperio(T) and Φ ∈
M+(T). With this result, we can derive an expression of the dual problem by
considering the Lagrangian relaxation of (12). The Lagrangian is given by

Lκ(M ,Ψ0,Ψ1,Λ0,Λ1) =

∫

T2
c(θ,φ)M(θ,φ)dθdφ

+ ⟨R0−Γ(Ψ0),Λ0⟩+ ⟨R1−Γ(Ψ1),Λ1⟩

+ κ

∥

∥

∥

∥

∫

T

M(θ,φ)dφ −Ψ0

∥

∥

∥

∥

1

+ κ

∥

∥

∥

∥

∫

T

M(θ,φ)dθ −Ψ1

∥

∥

∥

∥

1

= ⟨Λ0,R0⟩+ ⟨Λ1,R1⟩+

∫

T2
c(θ,φ)M(θ,φ)dθdφ

− ⟨Ψ0,Γ
∗(Λ0)⟩ − ⟨Ψ1,Γ

∗(Λ1)⟩

+ κ

∥

∥

∥

∥

∫

T

M(θ,φ)dφ −Ψ0

∥

∥

∥

∥

1

+ κ

∥

∥

∥

∥

∫

T

M(θ,φ)dθ −Ψ1

∥

∥

∥

∥

1

.

Note that the Lagrange multiplier matricesΛ0 andΛ1 may be taken as Hermitian
matrices, as R0 − Γ (Ψ0) and R1 − Γ (Ψ1) are Hermitian, and thus all inner
products are real. Considering the infimum of Lκ with respect to Ψ0 and Ψ1, it
may be noted that this is only finite if Γ∗(Λ0)(θ) ≤ κ and Γ∗(Λ1)(φ) ≤ κ, for

2Strictly speaking, this is the pre-adjoint operator of Γ .
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all θ,φ ∈ T. If this is satisfied, the Lagrangian is, for any fixed non-negative M ,
minimized by Ψ0 and Ψ1 given by

Ψ0(θ) = {Γ∗(Λ0)(θ)∈[−κ,κ]}

∫

T

M(θ,φ)dφ

Ψ1(φ) = {Γ∗(Λ1)(φ)∈[−κ,κ]}

∫

T

M(θ,φ)dθ,

where {·} is the indicator function. Using this, and considering the infimum
with respect to M , we arrive at

inf
M∈M+(T2)
Ψ0,Ψ1∈M+(T)

Lκ =

{

⟨Λ0,R0⟩+⟨Λ1,R1⟩ if (Λ0,Λ1) ∈ Ωκc
−∞ otherwise

where

Ωκc = {Λ0,Λ1 ∈M
n |

Γ∗(Λ0)(θ) + Γ∗(Λ1)(φ) ≤ c(θ,φ),

Γ∗(Λ0)(θ) ≤ κ, Γ∗(Λ1)(φ) ≤ κ for all θ,φ ∈ T},

where we have used that the cost function c is non-negative. This yields the dual
problem.

Proposition 1. Let the cost function c be continuous and non-negative, and let κ >
0. Then, the dual problem of (12) is

maximize
(Λ0,Λ1)∈Ωκc

⟨Λ0,R0⟩+ ⟨Λ1,R1⟩, (13)

where

Ωκc = {Λ0,Λ1 ∈M
n |

Γ∗(Λ0)(θ) + Γ∗(Λ1)(φ) ≤ c(θ,φ),

Γ∗(Λ0)(θ) ≤ κ, Γ∗(Λ1)(φ) ≤ κ ∀θ,φ ∈ T}.

Since the primal and dual problems are convex and the set of feasible points
Ωκc has non-empty interior for any κ > 0, Slater’s condition (see, e.g., [41]) gives
that strong duality holds and hence the duality gap between (12) and (13) is
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zero. This can be generalized to hold for lower semi-continuous cost functions
analogous to [42, proof of Theorem 4.1]. Also, note the strong resemblance in
form compared to the dual of (7), which is given by [27]

maximize
λ0,λ1∈Cperio(T)

∫

T

λ0(θ)Φ0(θ)dθ+
∫

T

λ1(φ)Φ1(φ)dφ

subject to λ0(θ)+λ1(φ) ≤ c(θ,φ) for all θ,φ ∈ T

λ0(θ) ≤ κ for all θ ∈ T

λ1(φ) ≤ κ for all φ ∈ T.

Similarly, for the case when the diagonals of R0 and R1 are required to be equal,
the dual problem is

maximize
(Λ0,Λ1)∈Ωc

⟨Λ0,R0⟩+ ⟨Λ1,R1⟩, (14)

where

Ωc = {Λ0,Λ1 ∈M
n | Γ∗(Λ0)(θ) + Γ∗(Λ1)(φ) ≤ c(θ,φ) ∀θ,φ ∈ T}.

This is the dual problem of (9), where adding and subtracting mass is not allowed
in the transport problem.

3.2 Properties of distance notion Tκ

For the distance notion Tκ in (11), the following proposition holds.

Proposition 2. Let κ > 0 and let the cost function c be a continuous function and a
semi-metric on T. Then, the distance notion Tκ in (11) is a semi-metric on the set of
positive semi-definite Toeplitz matrices.

Proof. See appendix.

The implication of the semi-metric property is that Tκ may indeed be used to
quantify distances between covariance matrices, or, stochastic processes. We may
also state the following proposition.

Proposition 3. Let the cost function c be continuous and non-negative and such
that c(θ,θ) = 0, for all θ ∈ T. Then, the distance measure Tκ defined in
(11) is contractive with respect to additive noise. If c is also shift-invariant, i.e.,
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4. Interpolation, extrapolation, and tracking

c(θ− φ,φ − φ) = c(θ,φ), for all θ,φ,φ ∈ T, then Tκ is also contractive with
respect to multiplicative noise whose covariance matrix has diagonal elements smaller
than or equal to unity.

Proof. See appendix.

The statement of this proposition is that when two stochastic processes be-
come contaminated by noise, the distance notion Tκ decreases and hence the
processes become harder to distinguish. Intuitively, this is a desirable property
of Tκ, as additive or multiplicative noise should indeed impede ones ability to
discriminate between two processes. Proposition 3 may be proven by utilizing
results in [27]. However, in the interest of making the exposition self-contained,
we provide a direct proof in the appendix based on the dual formulation in (13).
It may be noted that the assumptions made in Proposition 3 regarding the cost
function c are quite mild, allowing for a large class of potential cost functions. In

particular, c(θ,φ) =
∣

∣eiθ − eiφ
∣

∣

2
satisfies the conditions of Proposition 3 for both

additive and multiplicative noise.

4 Interpolation, extrapolation, and tracking

The formulation in (9) does not only define a notion of distance between two
Toeplitz covariance matrices, R0 and R1; it also provides a means of forming
interpolating matrices, i.e., defining intermediate covariance matrices Rτ, for
τ ∈ (0, 1). In order to define the interpolating matrices, we again utilize the
spectral representation of positive semi-definite Toeplitz matrices. To this end, we
note that, given an optimal transport plan, M , found as the functional minimiz-
ing (9), one may define spectra intermediate to the marginals

∫

T
M(θ,φ)dφ and

∫

T
M(θ,φ)dθ by linearly shifting the frequency locations of the spectral mass, as

dictated by M . That is, any mass transferred from φ to φ + φ is defined to, at
τ ∈ [0, 1], be located at frequency φ+ τφ. Using this, the intermediate spectrum
is given by

ΦM
τ (θ) !

∫

T2
δθ({φ+ τφ}modT)M(φ,φ + φ)dφdφ

=

∫

T

M(θ− τφ,θ+ (1− τ)φ)dφ. (15)
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Here, δθ is the Dirac delta function localized at θ, i.e., δθ(φ) ! δ(φ− θ) and
the integrands are extended periodically with period 2π outside the domain of
integration. Also, we denote by {x}mod T the value in T that is congruent with x
modulo 2π. Based on this definition of the interpolating spectrum ΦM

τ , the cor-
responding interpolating covariance matrix, Rτ is defined as the unique Toeplitz
matrix consistent with this spectrum, i.e.,

Rτ ! Γ(ΦM
τ ) (16)

=
1

2π

∫

T

a(θ)

(
∫

T

M(θ − τφ,θ+ (1− τ)φ)dφ

)

a(θ)H dθ

=
1

2π

∫

T2
a({φ+τφ}mod T)M(φ,φ+φ)a({φ+τφ}mod T)H dφdφ

for τ ∈ [0, 1]. To simplify the following exposition, let Iτ(M) ! Γ(ΦM
τ ) de-

note the linear operator in (16) that maps a transport plan to an interpolating
covariance matrix, i.e., Rτ = Iτ(M). It may be noted from (16) that Iτ(M) is
well-defined also for τ ̸= [0, 1], i.e., the formulation allows also for extrapolation.
The following proposition follows directly from the definition in (16).

Proposition 4. For any τ ∈ R, the following basic properties hold for Rτ = Iτ(M):

a) If R0 and R1 have the same diagonal, then it is also the diagonal of Rτ.

b) The matrix Rτ is a Toeplitz matrix.

c) The matrix Rτ is positive semi-definite.

Due to these properties, the proposed method offers a way of interpolating
the covariances of, e.g., slowly varying time series as the interpolant Rτ allows for
modeling linear changes in the spectrum of the process.

Remark 1. The interpolation approach generalizes trivially to the formulation in
(12) between the covariances Γ(ΦM

0 ) and Γ(ΦM
1 ) under the assumption that Ψ0

and Ψ1 are perturbations of ΦM
0 and ΦM

1 , respectively. In order to define an
interpolation and extrapolation procedure from R0 to R1 where there is a cost
κ for adding and subtracting mass, one may, along with the interpolation path
Iτ(M), linearly add the part corresponding to the added and subtracted mass,
i.e.,

Rτ= Iτ(M) + (1− τ)Γ(Ψ0 − Φ
M
0 ) + τΓ(Ψ1 − Φ

M
1 ). (17)

Note that in this scenario, positive semi-definiteness cannot be guaranteed for the
extrapolation case.
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4. Interpolation, extrapolation, and tracking

4.1 Comparison with other methods

The properties in Proposition 4 distinguish the proposed interpolant Rτ from
other proposed matrix geodesics. As an example, consider the interpolant induced
by the Euclidean metric, i.e., the distance between two covariance matrices R0 and
R1 is defined as ∥R0 − R1∥F . This yields interpolants that are formed as convex
combinations of R0 and R1, i.e., Rconv

τ = (1− τ)R0 + τR1, for τ ∈ [0, 1]. This
preserves the Toeplitz structure, as well as the diagonal of the end-point matrices
and the positive semi-definiteness. However, from a spectral representation point
of view, the convex combination gives rise to fade-in fade-out effects, i.e., only
spectral modes directly related to R0 and R1 can be represented, and there can
be no shift in the location of these modes (see also Example 6.2 and Figure 3).
Other more sophisticated options include, e.g., the geodesic with respect to g-
convexity [9]

R̃τ = R
1/2
0

(

R
−1/2
0 R1R

−1/2
0

)τ
R

1/2
0 (18)

and the geodesic in [20,21], which builds on optimal mass transport of Gaussian
distributions and can be expressed as

R̆τ =
(

(1− τ)R1/2
0 + τR1/2

1 U
)(

(1− τ)R1/2
0 + τR1/2

1 U
)H

, (19)

where

U = R
−1/2
1 R

−1/2
0

(

R
1/2
0 R1R

1/2
0

)1/2
.

One may also perform interpolation using geodesics induced by the log-Euclidean
metric (see, e.g., [43]), i.e., where distances are defined as ∥log (R0)− log (R1)∥F ,
with log (·) here denoting the matrix logarithm. For this case, the geodesic is given
by

R
log-Euclid
τ = exp

(

(1− τ) log (R0) + τ log (R1)
)

, (20)

where exp (·) denotes the matrix exponential. It may here be noted, that although
the three geodesics in (18), (19), and (20) preserve positive definiteness, they are
not defined for singular matrices due to the use of matrix inverses and matrix log-
arithms. Also, for general Toeplitz covariance matrices, these geodesics preserve
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neither the Toeplitz structure nor the diagonal of the end-point matrices. Fur-
ther, as noted above, the three properties in Proposition 4 hold for any τ ∈ R for
the proposed approach, and thus directly allows for extrapolating using (16). In
contrast, it may be noted that for the linear combination Rconv

τ there are no guar-
antees that the resulting matrix is positive semi-definite if τ /∈ [0, 1]. Also, note
that the alternative geodesics in (18), (19), and (20) do not naturally generalize to
extrapolation.

4.2 Tracking of slowly varying processes

The proposed interpolant Rτ = Iτ(M) may also be readily used for tracking
slowly varying stochastic process. As noted above, Iτ(M) allows for the modeling
of slow, i.e., locally linear, shifts in the location of spectral power. Building on
this property, we can extend the optimal transport problem in (9), in order to
fit a covariance path Rτ to a sequence of J covariance matrix estimates, R̂τj , for
j = 1, . . . , J . As Rτ is unambiguously determined from a transport plan M
via Iτ(M), this tracking problem may be formulated as the convex optimization
problem

minimize
M∈M+(T2)

∫

T2
c(θ,φ)M(θ,φ)dθdφ+λ

J
∑

j=1

∥

∥

∥
Iτj (M)−R̂τj

∥

∥

∥

2

F
, (21)

where λ > 0 is a user-specified regularization parameter. As may be noted from
(21), the optimal transport plan M is here determined as the one that minimizes
not only the transport cost, but also takes into account the deviations of the in-
terpolant Rτj = Iτj (M) from the available covariance matrix estimates R̂τj . The
behavior of this construction is illustrated in the numerical section.

4.3 Clustering: Barycenter computation

As a further example, we will see that the barycenter with respect to the distance
notion Tκ may be formulated as a convex optimization problem. This might
be desirable in clustering or classification applications, where one is interested in
either identifying classes of signals or processes based on their covariance matrices
or associate a given covariance matrix with such a signal class. Considering the
case of clustering, assume that L covariance matrices, Rℓ, ℓ = 1, . . . ,L, are avail-
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able. Then, we may define their barycenter via Tκ according to

Rbary = arg min
R∈Mn

+

L
∑

ℓ=1

Tκ(R,Rℓ), (22)

i.e., as the covariance matrix that minimizes the sum of Tκ for the set of covariance
matrices Rℓ. Explicitly, Rbary solves the convex optimization problem

minimize
R∈Mn

+

Mℓ∈M+(T2)
Ψℓ∈M+(T)
Φℓ∈M+(T)

L
∑

ℓ=1

∫

T2
c(θ,φ)Mℓ(θ,φ)dθdφ

+ κ
L
∑

ℓ=1

∥

∥

∥

∥

∫

T

Mℓ(θ,φ)dθ − Φℓ

∥

∥

∥

∥

1

+ κ
L
∑

ℓ=1

∥

∥

∥

∥

∫

T

Mℓ(θ,φ)dφ −Ψℓ

∥

∥

∥

∥

1

subject to Γ(Φℓ) = R

Γ(Ψℓ) = Rℓ, ℓ = 1, . . . ,L.

(23)

This formulation allows for using, e.g., K-means clustering (see, e.g., [44]) in or-
der to identify classes of covariance matrices, as well as classify a given covariance
matrix according to these classes. Classification of a covariance matrix R accord-

ing to classes defined by a set of barycenters R
( j )
bary, j = 1, . . . , J , may then be

formulated as

arg min
j∈{1,...,J}

Tκ
(

R,R
( j )
bary

)

. (24)

In Section 6.4, we present a simple illustration of this potential application, con-
sidering unsupervised clustering of phonemes.

5 Sum-of-squares relaxation

In order to solve the dual problem in (13) in practice, it has to be implemented as
a finite dimensional problem, e.g., by gridding the space T2 and thereby approx-
imating the set Ωκc using a finite number of constraints. However, for the special
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case of c(θ,φ) =
∣

∣eiθ − eiφ
∣

∣

2p
, for p ∈ N, this can also be done using a sum-of-

squares (SOS) relaxation (see, e.g., [45]) of (13). For simplicity of notation, we

present here the case with c(θ,φ) =
∣

∣eiθ − eiφ
∣

∣

2
and without κ (κ =∞), i.e., the

dual of (9) as formulated in (14). To this end, identify

z = eiθ, w = eiφ,

which allows us to write

c(θ,φ) = 2− zw−1 − z−1w

Γ∗(Λ0)(θ) =
1

2π

n
∑

k=1

n
∑

ℓ=1

[Λ0]k,ℓ zℓ−k

Γ∗(Λ1)(φ) =
1

2π

n
∑

k=1

n
∑

ℓ=1

[Λ1]k,ℓ wℓ−k.

Thus, the set of constraints defining the feasible set Ωc is given by Γ∗(Λ0)(θ) +
Γ∗(Λ1)(φ) ≤ c(θ,φ), for all θ,φ ∈ T, or, equivalently,

2−zw−1−z−1w−
1

2π

n
∑

k,ℓ=1

[Λ0]k,ℓz
ℓ−k−

1

2π

n
∑

k,ℓ=1

[Λ1]k,ℓw
ℓ−k ≥ 0. (25)

Note that in the two-dimensional trigonometric polynomial (25), the coefficient
for z−k1w−k2 is equal to

2− 1
2πdiag (Λ0 +Λ1)T 1 for k1 = k2 = 0

− 1
2πdiag (Λ0, k1)T 1 for k1 ∈ Zn\0 and k2 = 0

− 1
2πdiag (Λ1, k2)T 1 for k1 = 0 and k2 ∈ Zn\0

−1 for k1 = 1 and k2 = −1
−1 for k1 = −1 and k2 = 1
0 otherwise,

where Zn\0 = {k ∈ Z | |k| < n, k ̸= 0}. Here, diag (X, k) denotes the column
vector containing the elements on the kth super-diagonal of the matrix X, if k >
0, and the elements on the kth sub-diagonal, if k < 0, with 1 denoting a column
vector of ones of appropriate dimension.

In order to formulate a computationally feasible optimization problem, we
remove the non-negativity constraint for the two-dimensional polynomial in (25)
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and instead impose that it should have a sum-of-squares representation [45], [46].
In particular, we impose that the polynomial in (25) should be of the form

P(z,w) =
(

z−1
)T

Qz, (26)

where Q ∈Mm2
is positive semi-definite,

z =
[

1 w · · · wm−1
]T
⊗
[

1 z · · · zm−1
]T

z−1=
[

1 w−1 · · · w−m+1
]T
⊗
[

1 z−1 · · · z−m+1
]T

and ⊗ is the Kronecker product. Note that any polynomial on this form is non-
negative by definition, and, furthermore, for any non-negative polynomal P∗,
there is a sequence of polynomials, Pm, on the form (26) such that
∥Pm − P∗∥∞ → 0 as m→∞.

Next, note that the coefficients of P are associated to the elements of Q in
(26) according to

pk1,k2 = tr
(

Tk1,k2Q
)

, for − m + 1 ≤ k1, k2 ≤ m− 1,

where Tk1,k2 = Tk2⊗Tk1 , and Tk is the matrix with ones on the kth diagonal and
zeros elsewhere. Putting these facts together by requiring that the polynomial (25)
can be written as a sum-of-square (26), we approximate (14) by the semi-definite
program (SDP)

maximize
Λ0,Λ1∈Mn

Q∈Mm2

⟨Λ0,R0⟩+ ⟨Λ1,R1⟩ (27)

subject to Q ≽ 0

tr (Q) = 2−
1

2π
diag (Λ0 +Λ1)T 1

tr
(

T−1,1Q
)

= −1

tr
(

T1,−1Q
)

= −1

tr
(

Tk1,0Q
)

= −
1

2π
diag (Λ0, k1)T 1 , k1 ∈ Zn\0

tr
(

T0,k2Q
)

= −
1

2π
diag (Λ1, k2)T 1 , k2 ∈ Zn\0

tr
(

Tk1,k2Q
)

= 0 , if k1k2 = 1 or 1 < |k1k2| ≤ (m− 1)2.
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Figure 1: Path of the off-diagonal element of the covariance matrix Rτ for the case
n = 2, when choosing R0 and R1 according to (28).

It is worth noting that the P defined by the optimal Q in (26) is non-negative
on the unit torus. Thus, for the solution of the SDP problem in (27), there
will be a corresponding feasible solution of (14). Therefore, any solution to (27)
will give a lower bound for the optimal objective value of (14). However, any
non-negative polynomial may be arbitrarily well approximated by P of the form
(26) by a suitable choice of the degree m − 1, and thus the maximal objective
value of (27) will converge to the maximal objective value of (14) as m grows.
By comparison, directly discretizing T, thereby approximating Ωc using a finite
number of constraints, yields an upper bound for the maximal objective value of
(14). In this case, the maximal objective value will also converge to that of (14),
this time from above, as the spacing of the discretization of the grid becomes finer.

6 Numerical examples

In this section, we present some numerical examples illustrating different aspects
and application areas of the proposed distance notion Tκ, as well as the inter-
polant Rτ = Iτ(M). Throughout these examples, we will use the cost function
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c(θ,φ) =
∣

∣eiθ − eiφ
∣

∣

2
. It should be stressed that many other choices of cost func-

tions are possible, allowing for flexibility in modeling the specific scenario one is
interested in. Apart from specific modeling aspects, one may preferably pick cost
functions satisfying the assumptions in Propositions 2 and 3.

6.1 Trajectory example

In order to illustrate the behavior of the proposed interpolation method, we con-
sider a simple scenario with covariance matrices of size n = 2. Consider covari-
ance matrices of the form

R0 =

[

1 r
r 1

]

, R1 =

[

1 rei 5π
6

re−i 5π
6 1

]

, (28)

where r ∈ [−1, 1]. Thus, considering interpolating paths Rτ, these will be on the
form

Rτ =

[

1 r1,τ

r̄1,τ 1

]

. (29)

Figure 1 displays the real and imaginary part of r1,τ for τ ∈ [0, 1] when varying
the magnitude r of the off-diagonal element of R0 and R1 between 0 and 1. As can
be seen, the trajectories of r1,τ approximately correspond to convex combinations

(1 − τ)r + τrei 5π
6 when r is close to zero, whereas they are considerably curved

for r closer to 1. It may be noted that for the singular case, i.e., r = 1, the
trajectory of r1,τ coincides with the unit circle. Thus, we see that for covariance
matrices that have consistent spectra that are essentially flat, the interpolant Rτ
will be approximately equal to the convex combination (1− τ)R0 + τR1. At the
other extreme, the interpolant corresponding to covariance matrices R0 and R1

that have consistent spectra that are close to being singular will also have almost
singular consistent spectra.

6.2 Interpolation and extrapolation for DOA

Next, we illustrate the proposed methods ability to produce interpolants Rτ that
are consistent with locally linear changes in the frequency location of spectral
power. This is illustrated using a direction-of-arrival (DOA) estimation prob-
lem. Consider a uniform linear array (ULA) with 15 sensors with half-wavelength
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Figure 2: Interpolated spatial spectrum estimated as a(θ)H Rτa(θ), where Rτ is
obtained by solving (10).

sensor spacing and a scenario where two covariance matrices

R0 =
1

2

2
∑

ℓ=1

a(θ(0)
ℓ )a(θ(0)

ℓ )H + σ2I

R1 =
1

2
a(θ(1)

1 )a(θ(1)
1 )H +

1

4

3
∑

ℓ=2

a(θ(1)
ℓ )a(θ(1)

ℓ )H + σ2I

are available3. Here θ(0)
1 = θ(1)

1 = −50◦, θ(0)
2 = 30◦, θ(1)

2 = 20◦, and

θ(1)
3 = 40◦, and σ2 = 0.05. Such a scenario may be interpreted as a target at

θ(0)
2 splitting up into two targets at θ(1)

2 and θ(1)
3 as time progresses, whereas the

target at θ(0)
1 stays put. We use the proposed method in (10), as R0 and R1 have

the same diagonal, in order to find the optimal transport map M . Then, using

3Note that θ in this example denotes spatial frequency. For simplicity, we retain the notation
a(θ) also for this case.
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Figure 3: Interpolated spatial spectrum estimated as a(θ)H Rconv
τ a(θ), where Rconv

τ

is the linear combination of R0 and R1.

(16), we compute covariance matrices Rτ, for τ ∈ [0, 2], i.e., we both interpolate
on τ ∈ [0, 1] and extrapolate on τ ∈ (1, 2]. This is then compared to the basic in-
terpolant Rconv

τ based on convex and linear combinations of R0 and R1, as well as
the more sophisticated covariance matrix geodesics R̃τ and R̆τ, as defined in (18)
and (19), respectively. For these four cases, we then estimate the corresponding
inter- and extrapolated spectra using the correlogram, i.e., as

Φcorr(X,θ) = a(θ)H Xa(θ), (30)

where X is substituted for the four different covariance interpolants. The results
for the proposed interpolant Rτ are shown in Figure 2. As can be seen, Rτ indeed
models a scenario where one of the targets has a constant location, whereas the
second target splits upp into two smaller targets. Note also that Rτ implies that
the smaller target continue linearly with respect to the look-angle, θ, also for the
extrapolation case, i.e., for τ > 1. In contrast, the convex (linear for τ > 1)
combination Rconv, as shown in Figure 3, displays undesirable behavior; clear
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Figure 4: Interpolated spatial spectrum estimated as a(θ)H R̃τa(θ), where R̃τ is
obtained from (18).

fade-in fade-out effects are visible, and non-negativity is violated as τ approaches
2 due to the fact that Rconv becomes indefinite. Similar objections may be raised
against the geodesics R̃τ and R̆τ, shown in Figures 4 and 5, both displaying fade-
in fade-out effects and thereby failing to model any displacement of the targets.
Also, note that the total power of the signal varies greatly as τ goes from 0 to 2,
especially for R̆τ.

6.3 Tracking of an AR-process

Next, we illustrate the approach in (21) for the tracking of signals with slowly
varying spectral content. To this end, consider a complex autoregressive (AR)
process with one complex, time-varying pole. The pole is placed at a constant
radius of 0.9, and moves from the frequency 0.3π to 0.6π. Spectral estimates
based directly on covariance matrix estimates R̂ are shown in the top plot of
Figure 6. These covariance matrix estimates are obtained as the outer product
estimate, based on 150 samples each, where the overlap between each estimate is

52



6. Numerical examples

2

1.5

1

0
0.5

-100

 (degrees)

-50
0 050

100

0.5co
rr

1

Figure 5: Interpolated spatial spectrum estimated as a(θ)H R̆τa(θ), where R̆τ is
obtained from (19).

80 samples. Each estimated covariance matrix is of size n = 15. As can be seen,
the spectral estimates are very noisy and vary greatly in power. Using five of these
covariance matrix estimates R̂, evenly spaced throughout the signal, we solve (21)
with λ = 1

2n2 in order to obtain an estimated covariance path, Rτ. The resulting
spectra, estimated using (30), are shown in the bottom plot of Figure 6. As can be
seen, the path resulting from the proposed method allows for a smooth tracking
of the shift in spectral content. For comparison, Figure 7 displays the correspond-
ing spectral estimates obtained from fitting geodesics induced by the Euclidean
metric (in the top plot) as well as the log-Euclidean metric (in the bottom plot)
to the same covariance estimates. Specifically, for the Euclidean case, the geodesic
is constructed as Rτ = (1− τ)R0 + τR1, where (R0,R1) solves

arg min
R0≽0,R1≽0

J
∑

j=1

∥

∥

∥
(1− τj)R0 + τjR1 − R̂τj

∥

∥

∥

2

F
, (31)
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Figure 6: Spectrum estimated as a(θ)H R̂a(θ), where R̂ is estimated as the sample
covariance matrix based on 150 samples in each window (top plot), as well as
a(θ)H Rτa(θ), where Rτ is obtained by solving (21), fitted to a sequence of five
covariance estimates (bottom plot).

whereas for the log-Euclidean metric (see, e.g., [43]), the geodesic is given by (20),
where (R0,R1) solves

arg min
R0≻0,R1≻0

J
∑

j=1

∥

∥

∥(1−τj) log (R0)+τj log (R1)−log
(

R̂τj

)∥

∥

∥

2

F
. (32)

As remarked earlier, we here require R0 and R1 to be positive definite in order for
the geodesic to be defined. It may also be noted that this approach requires all
estimated covariance matrices R̂τj to have full rank. As may be seen in Figure 7,
both these fitted geodesics imply spectral estimates displaying significant fade-in
fade-out effects, which should be contrasted with the proposed method’s ability
to here produce a reasonable and intuitive interpolation.
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Figure 7: Spectrum estimated as a(θ)H Rτa(θ), where Rτ is the geodesic induced
by the Euclidean metric (top plot) and the log-Euclidean metric (bottom plot),
when fitted to a sequence of five covariance estimates.

6.4 K-means clustering

As a simple illustration of how to utilize the barycenter formulation in Section 4.3,
we consider the application of unsupervised clustering of phonemes. Specifically,
we consider 7 utterances; 3 utterances of the phoneme /ae/, 2 utterances of /oy/,
and 2 utterances of /n/ taken from an annotated recording sampled at 16 kHz,
with the durations of the different phonemes varying between 30 ms and 174
ms. For each utterance, we estimate an n × n covariance matrix of size n = 10,
which is a quite common covariance matrix size in speech coding applications
(see, e.g., [47]), and then run a K-means algorithm that alternates between clas-
sifying each estimated covariance matrix according to (24) and computing new
barycenters according to (22). To ensure that the classification is unaffected by
differences in signal power, which potentially could be a dominating factor, each
covariance matrix estimate is normalized as to have its diagonal elements, i.e., r0,
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equal to one4. We initiate the algorithm by choosing initial barycenters as convex
combinations of the available covariance matrix estimates, and demand separa-
tion into three clusters. The algorithm is then run until convergence, i.e., until
the classification has stabilized. As a comparison, we perform the same K-means
clustering using the Euclidean and the log-Euclidean metrics as described earlier,
as well as the Kullback-Leibler divergence and the ellipticity distance measure in-
troduced in [48] in order to compute distances as well as barycenters. Specifically,
for two positive definite matrices R0 and R1 of size n, the Kullback-Leibler diver-
gence is given by

dKL(R0,R1) = tr
(

R−1
0 R1

)

− log
∣

∣R−1
0 R1

∣

∣− n,

and the ellipticity distance is given by

dE(R0,R1) = n log

(

1

n
tr
(

R−1
0 R1

)

)

− log
∣

∣R−1
0 R1

∣

∣ .

As may be noted, these distance notions are only defined for non-singular matrices
R0 and R1. For a set of J observed covariances Rj, j = 1, . . . , J , the barycenter
induced by the Kullback-Leibler distance is given by

R
bary
KL =

⎛

⎝

1

J

J
∑

j=1

R−1
j

⎞

⎠

−1

,

whereas for the ellipticity distance, the barycenter is the solution to the fixed point
equation (see [48])

R
bary
E =

⎛

⎝

n
J

J
∑

j=1

R−1
j

tr
(

R−1
j R

bary
E

)

⎞

⎠

−1

.

The solution R
bary
E is unique only up to a positive scaling factor, and thus, we

here normalize R
bary
E as to have unit diagonal. It may be noted, that even for

Toeplitz Rj , j = 1, . . . , J , the barycenters R
bary
KL and R

bary
E are not Toeplitz in

general. As the K-means algorithm may converge to different solutions, i.e., dif-

4To preserve the diagonal elements of each matrix in this setting, any κ > maxθ,φ c(θ,φ) con-
stitues a valid choice.
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Utterance 1 2 3 4 5 6 7
Phoneme /ae/ /ae/ /ae/ /oy/ /oy/ /n/ /n/

Proposed 1 1 2 2 2 3 3
Euclidean 1 1 1 1 2 2 3

Log-Euclidean 1 1 1 1 2 2 3
KL divergence 1 1 2 1 3 3 3

Ellipticity 1 1 2 1 3 3 3

Table 1: Clustering of 7 utterances into three clusters using a K-means algorithm
utilizing the barycenter formulation in Section 4.3, as well as four comparison
distance measures. The third to seventh rows indicate the identified classes as
given by the algorithm using the different distance measures.

Utterance 1 2 3 4 5 6 7
Class 1 1 1 4.20 7.10 5.02 10.54 18.67
Class 2 8.79 7.83 1 1 1 4.70 9.99
Class 3 20.51 24.93 8.30 12.05 1.40 1 1

Table 2: Distance, as measured by Tκ, between each utterance and each barycenter
for the three identified clusters. Each distance has been normalized by the least
distance for each utterance.

ferent sets of clusters, depending on the choice of initial points, we have for each
choice of distance measure run the algorithm several times using different starting
points and selected the solution corresponding to the least total distance between
each barycenters and its assigned covariance matrices. The results are shown in
Table 1. As can be seen, the proposed distance notion Tκ produces a clustering
in which the third instance of the /ae/ phoneme is erroneously grouped together
with the two utterances of /oy/ ; apart from this, the clustering corresponds well
to the true phonemes. The comparison distance measures do in this example
produce clusterings that differ more from the ground truth than the clustering
using the proposed distance notion. It may also be noted that the Euclidean and
log-Euclidean produce the same clustering. Table 2 presents the corresponding
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Figure 8: Interpolated spatial spectrum estimated as a(θ)H Rτa(θ), where Rτ is ob-
tained by solving (10), for the case of one moving source and one static interferer,

using with the cost function c(θ,φ) =
∣

∣eiθ − eiφ
∣

∣

2
.

distance matrix, i.e., the matrix detailing the distance Tκ between each covariance
matrix estimate and each barycenter. Note that for each utterance, the distances
have been normalized by the least distance for that utterance. It is worth noting
that the clusters are quite well-separated. Although being limited in scope, the
example illustrates that the proposed distance notion may indeed be used in or-
der to perform clustering and classification of stochastic processes based on their
estimated covariances.

6.5 Fixed cost for moving mass

In some scenarios, there might be a relatively large noise component present in
both R0 and R1, where the noise power is localized in frequency and this local-
ization is the same in both R0 and R1. This might be the case in, e.g., DOA
estimation scenarios where a source of interest is moving in the presence of a sta-
tionary interferer. Then, if the source for example moves past the location of the
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Figure 9: Interpolated spatial spectrum estimated as a(θ)H Rτa(θ), where Rτ is ob-
tained by solving (10), for the case of one moving source and one static interferer,
using with the modified cost function in (33).

interferer, the optimal transport problem in (10) may result in a power association
such that the source and the interferer are mixed together. Such a scenario is illus-
trated in Figure 8, showing estimated spectra obtained from the interpolant Rτ,

as given by (10) with the cost function c(θ,φ) =
∣

∣eiθ − eiφ
∣

∣

2
. Here, the source is

moving from look-angle θ = 30◦ to θ = −20◦, whereas there is a fixed interferer
located at θ = 0◦ having a third of the power of the source. In order to avoid this
type of problem and promoting transport plans that avoid transporting stationary
masses, the cost function may be modified according to

c(θ,φ) =

{

1 + |eiθ − eiφ|2 if θ ̸= φ

0 if θ = φ.
(33)

Thus, the cost function is here formulated such that there is a fixed, baseline
cost of moving any mass. The resulting estimated spectra obtained from the
interpolant Rτ resulting from solving (10) using this modified cost function is
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shown in Figure 9. As can be seen, the source and the interferer are now well
separated throughout the interpolated path.

7 Conclusions and further directions

In this work, we have proposed a notion of distance for positive semi-definite
Toeplitz matrices. By considering spectral representations of such matrices, the
proposed measure is based on distances, in an optimal mass transport sense,
between families of spectra consistent with the Toeplitz matrices. We have shown
that the proposed distance measure, under some mild assumptions, is contractive
with respect to additive and multiplicative noise. The proposed measure may be
used to, for example, define inter- and extrapolation of Toeplitz matrices, being
of interest in applications such as tracking of slowly varying signals.

A future direction of this methodology is to generalize the distance meas-
ure for structured matrices such as Toeplitz-block-Toeplitz matrices and input-
to-state covariances in the THREE framework for spectral analysis [12]. The
latter generalizes ideas from beamspace processing, enabling the user to improve
resolution and robustness in power spectral estimation over selected frequency
bands [49, 50]. This will be the subject of further research.

8 Appendix

8.1 Proof of Proposition 2

Positivity and symmetry of Tκ follows directly from positivity and symmetry of
c. Further, is clear that Tκ(R0,R1) = 0 if R0 = R1. Thus, it remains to show
that Tκ(R0,R1) = 0 implies that R0 = R1. Next, if the objective function (12) is
equal to zero, then the first term is zero and since c is a semi-metric, the transport
plan M only has support on θ = φ. Since the second and third terms of (12) are
zero, it follows that Ψ0 = Ψ1, and hence R0 = R1. "

8.2 Proof of Proposition 3

First, we show that Tκ is contractive with respect to additive noise. Consider
two processes with covariance matrices R0 and R1 and assume that they are both
additively corrupted by an independent noise process with covariance Rw. This
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results in processes with covariances R′
0 = R0 + Rw and R′

1 = R1 + Rw, respect-
ively. From the dual formulation in (13), the distance between these covariance
matrices is given by

Tκ(R
′
0,R

′
1) = max

(Λ0,Λ1)∈Ωκc
⟨Λ0,R0⟩+ ⟨Λ1,R1⟩+ ⟨Λ0+Λ1,Rw⟩.

LetΦw be any spectrum consistent with the noise covariance Rw, i.e., with Γ(Φw) =
Rw. We then have that

⟨Λ0 +Λ1,Rw⟩ = ⟨Λ0 +Λ1,Γ(Φw)⟩

= ⟨Γ∗(Λ0) + Γ∗(Λ1),Φw⟩

=

∫

T

(

Γ∗(Λ0)(θ) + Γ∗(Λ1)(θ)
)

Φw(θ)dθ.

As (Λ0,Λ1) ∈ Ωκc , it holds that

Γ∗(Λ0)(θ) + Γ∗(Λ1)(θ) ≤ c(θ,θ) = 0 for all θ ∈ T

and since Φw ≥ 0, we get

⟨Λ0 +Λ1,Rw⟩ ≤ 0.

Hence, it follows that

Tκ(R
′
0,R

′
1)≤ max

(Λ0,Λ1)∈Ωc

⟨Λ0,R0⟩+⟨Λ1,R1⟩=Tκ(R0,R1).

Next, we show that Tκ is contractive with respect to multiplicative noise. Let
the noise covariance matrix be Rw, implying that the covariances of the contamin-
ated processes are R′

0 = R0 ⊙ Rw and R′
1 = R1⊙Rw, respectively. Let Φw be any

spectrum consistent with Rw, i.e., Γ(Φw) = Rw. Also, let the diagonal elements
of Rw be smaller than or equal to 1, so that

∫

T

Φw(θ)dθ ≤ 2π.
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We have

Tκ(R
′
0,R

′
1) = max

(Λ0,Λ1)∈Ωκc
⟨Λ0,R0⊙Rw⟩+⟨Λ1,R1⊙Rw⟩

= max
(Λ0,Λ1)∈Ωκc

⟨Λ0⊙Rw,R0⟩+⟨Λ1⊙Rw,R1⟩

= max
(Λ0,Λ1)∈Ωκc
Λ̃0,Λ̃1∈Mn

⟨Λ̃0,R0⟩+ ⟨Λ̃1,R1⟩

subject to Λ̃0 = Λ0 ⊙ Rw

Λ̃1 = Λ1 ⊙ Rw.

In order to show that (Λ0,Λ1) ∈ Ωκc implies
(

Λ̃0, Λ̃1

)

∈ Ωκc , we note the

following. Assume that (Λ0,Λ1) ∈ Ωκc . Then,

Γ∗(Λ0)(θ− φ)+Γ∗(Λ1)(φ− φ)≤ c(θ− φ,φ− φ)= c(θ,φ) (34)

for all φ,θ,φ ∈ T, where the last equality follows from the assumption that c is
shift-invariant. Define

Φ̆w(φ) = Φw(−φ),

which satisfies
∫

Φ̆w(φ)dφ ≤ 2π and Φ̆w(φ) ≥ 0, ∀φ ∈ T. Multiplying both

sides of (34) with Φ̆w(φ) and integrating with respect to φ then yields

1

2π

(

Γ∗(Λ0) ∗ Φ̆w

)

(θ) +
1

2π

(

Γ∗(Λ1) ∗ Φ̆w

)

(φ) ≤ c(θ,φ)

for all θ,φ ∈ T, where both sides have been divided by 2π. Similarly,

1

2π

(

Γ∗(Λ0) ∗ Φ̆w

)

(θ) ≤ κ,
1

2π

(

Γ∗(Λ1) ∗ Φ̆w

)

(φ) ≤ κ (35)

for all θ,φ ∈ T. Further, for any θ ∈ T, we have

1

2π

(

Γ∗(Λ0)∗Φ̆w

)

(θ)=
1

4π2

∫

T

a(φ)H
Λ0a(φ)Φ̆w(θ− φ)dφ

=
1

4π2
tr

(

Λ0

∫

T

a(φ)a(φ)H Φ̆w(θ− φ)dφ

)

=
1

4π2
⟨Λ0,

∫

T

a(φ)a(φ)HΦw(φ− θ)dφ⟩
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=
1

4π2
⟨Λ0,

∫

T

a(φ)a(φ)H (Φw ∗ δθ) (φ)dφ⟩

=
1

2π
⟨Λ0,Γ (Φw ∗ δθ)⟩,

where the last equality uses the definition of the operator Γ(·). As δθ(φ) is a
spectrum consistent with the rank-one covariance matrix Rθ =

1
2πa(θ)a(θ)H , we

have, by the properties of the Fourier transform, that (Φw ∗ δθ) (φ) is a spectrum
consistent with the covariance matrix 2πRw ⊙ Rθ, i.e.,

1

2π
⟨Λ0,Γ (Φw ∗ δθ)⟩ = ⟨Λ0,Rw ⊙ Rθ⟩,

and therefore

1

2π

(

Γ∗(Λ0) ∗ Φ̆w

)

(θ) = ⟨Λ0,Rw ⊙ Rθ⟩

= ⟨Λ0 ⊙ Rw,Rθ⟩

= ⟨Λ̃0,Rθ⟩

= ⟨Λ̃0,
1

2π
a(θ)a(θ)H ⟩

=
1

2π
a(θ)H

Λ̃0a(θ)

= Γ∗(Λ̃0)(θ),

where the third equality follows from the definition of Λ̃0 and the last from
the definition of Γ∗(·). Using the same reasoning for Λ1, we thus have that

(Λ0,Λ1) ∈ Ωκc implies
(

Λ̃0, Λ̃1

)

∈ Ωκc . Combined, this yields

Tκ(R
′
0,R

′
1) ≤ max

(Λ̃0,Λ̃1)∈Ωκc
⟨Λ̃0,R0⟩+ ⟨Λ̃1,R1⟩ = Tκ(R0,R1).

"
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Abstract

During recent decades, there has been a substantial development in optimal mass
transport theory and methods. In this work, we consider multi-marginal prob-
lems wherein only partial information of each marginal is available, a common
setup in many inverse problems in, e.g., remote sensing and imaging. By con-
sidering an entropy regularized approximation of the original transport problem,
we propose an algorithm corresponding to a block-coordinate ascent of the dual
problem, where Newton’s algorithm is used to solve the sub-problems. In order to
make this computationally tractable for large-scale settings, we utilize the tensor
structure that arises in practical problems, allowing for computing projections of
the multi-marginal transport plan using only matrix-vector operations of relat-
ively small matrices. As illustrating examples, we apply the resulting method to
tracking and barycenter problems in spatial spectral estimation. In particular, we
show that the optimal mass transport framework allows for fusing information
from different time steps, as well as from different sensor arrays, also when the
sensor arrays are not jointly calibrated. Furthermore, we show that by incorpor-
ating knowledge of underlying dynamics in tracking scenarios, one may arrive at
accurate spectral estimates, as well as faithful reconstructions of spectra corres-
ponding to unobserved time points.

Key words: Optimal mass transport, multi-marginal problems, entropy
regularization, spectral estimation, array signal processing, sensor fusion
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1 Introduction

The use of mass, or power, distributions for modeling and describing properties
of signals and stochastic processes is ubiquitous in the field of signal processing,
being fundamental to areas such as spectral estimation, classification, and loc-
alization [1]. Spectral representations, detailing the distribution of power over
frequency, serve as compact signal descriptions and constitute the foundation for
many applications, such as speech enhancement [2], non-invasive estimation [3],
spectroscopy [4], as well as radar and sonar [5]. In such applications, one re-
quires a means of comparing and quantifying distances between spectra. Pop-
ular choices include the Kullback-Leibler [6] and Itakura-Saito divergences [7],
the Rényi entropy [8], and Lp-norms, where the latter is often implicitly utilized
through the use of matrix norms applied to the signal covariance matrix [9, 10].
As an alternative to these measures, it has also been proposed to define distances
between spectra based on the concept of optimal mass transport [11]. Optimal
mass transport (OMT) is concerned with the task of moving one distribution of
mass into another, with the description of the movement of mass being referred
to as a transport plan. The minimal total cost of rearrangement, i.e., the one asso-
ciated with the optimal plan, may then be used as a measure of distance between
the two distributions [12]. Historically, OMT has been widely used in econom-
ics, e.g., for planning and logistics (see [12] for an introduction and an overview
of the topic). Recently, there has been a rapid development in the theory and
methods for optimal mass transport, and the ideas have attracted considerable at-
tention in various economic and engineering fields, being used, for example, for
option pricing [13], color and texture transfer in image processing [14], as well as
machine learning [15, 16] and other signal processing tasks [17]. These develop-
ments have lead to a mature framework for OMT, with computationally efficient
algorithms [18, 19], and constitute a flexible modeling tool that may be used to
address many problems in the areas of signal processing and systems theory.

One of the appeals of using OMT for defining distances between distribu-
tions lies in its geometric properties. Specifically, as it models transport between
two mass distributions, taking place on their domain of definition, the distance is
not only related to the point-wise differences between the distributions, but also
depends on where the mass is located. As a consequence of this, OMT distances
directly reflect proximity of mass on the underlying space [11]. This property be-
comes very attractive when used in array processing and spatial spectral estimation
problems, in which the support of the spectrum directly details the location of sig-
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nal emitting sources [1]. For example, OMT has been shown to produce robust
and predictable results when applied to direction of arrival (DoA) and localization
problems [20, 21]. Also, when computing the distance between two mass distri-
butions, the OMT problem naturally induces a way of interpolating distributions
by considering the flow of mass on the underlying space [22, 23]. This proced-
ure has been shown to yield physically meaningful results, e.g., when used for
modeling heat diffusion on graphs [24], as well as for interpolating and tracking
speech/sound signals [25, 26] and (structured) covariance matrices [27–29].

In this work, we consider multi-marginal OMT problems where the distribu-
tions themselves are not directly observed, but manifested through linear meas-
urement equations. We refer to this problem as multi-marginal OMT with partial
information. Several problems of interest may be expressed within such a frame-
work, e.g., CT imaging (cf. [30, 31]), ensemble estimation [32], image deblur-
ring [33], spectral analysis [25], and radar imaging problems [21]. As motivating
examples, we consider problems from radar imaging, being spatial spectral estim-
ation problems, wherein the mass distributions, i.e., power spectra, are observ-
able from covariance matrices corresponding to a set of sensor arrays. For such
problems, typically only the co-located sensors, i.e., sensors in an array, can be
processed coherently due to calibration errors between the sensor arrays. Herein,
we propose an OMT framework for fusing the information provided by the array
covariances in a non-coherent manner. For such scenarios, we demonstrate that
multi-marginal OMT constitutes a flexible and robust tool for performing in-
formation fusion, illustrating the inherent robustness to spectral perturbations, as
caused by, e.g., calibration errors, provided by the use of transport models. In ad-
dition to this, we show that the proposed OMT framework may be used to fuse
information corresponding to different time points, allowing for modeling the
time evolution of spatial spectra. In this case, we demonstrate how the framework
allows for incorporating prior knowledge of underlying dynamics and the signal
generating mechanism, providing a means of forming accurate reconstructions of
target trajectories in spatial estimation problems.

In addition to the modeling framework, one of the main contributions of this
work is deriving a computationally efficient method for solving multi-marginal
OMT problems with partial information. As the original OMT formulation is
posed in an infinite-dimensional function space, we formulate discrete approxim-
ations of this problem, allowing for practical implementations. Specifically, one of
the main contributions of this work is proposing a generalization of the Sinkhorn
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iterations, which may be applied to OMT problems with partial information. In
particular, we consider the corresponding dual problem and propose to solve this
with a block-coordinate ascent method, wherein each block update is computed
using Newton’s method. Furthermore, for certain multi-marginal OMT prob-
lems, such as the tracking and barycenter problems, we show that the structure of
the cost function may be exploited, allowing for solving high-dimensional prob-
lems with a large number of marginals. It should be stressed that even though
spatial spectral estimation is here used as a motivating and illustrating example,
the proposed framework applies to a large class of multi-marginal OMT problems
where only partial information of the marginal distributions is available.

This work is based on several of our previous works on tracking and informa-
tion fusion. In particular, the original tracking formulation is from [32]. This was
further developed for radar problems in [20], with efficient computations using
pairwise entropy regularization being presented in [21]. In this paper, by extend-
ing this work to the multi-marginal setting, we obtain a more flexible framework,
with improved computational efficiency and numerical stability.

This paper is structured as follows. In Section 2, we provide background on
the problem of optimal mass transport, multi-marginal optimal transport, and
partial information. In Section 3, we present the multi-marginal OMT problem
with partial information, and describe the use of this formulation in tracking
and information fusion. Section 4 presents computational tools for the multi-
dimensional OMT problem, which is then extended to problems with partial
information. In Section 5, we derive efficient computations for the algorithms in
Section 4, by exploiting structures which arise in certain multi-marginal optimal
transport problems. In Section 6, we provide numerical examples, illustrating
the properties of the proposed framework, whereas Section 7 concludes upon the
work.

2 Background: Optimal mass transport

In this section, we provide a brief background on the problem of OMT, together
with extensions to settings with underlying dynamics and incomplete informa-
tion.
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2.1 Monge’s problem and the Kantorovich relaxation

The problem of OMT, as formulated by Monge, is concerned with finding a map-
ping between two distributions of mass such that a measure of cost, interpreted
as the cost of transportation, is minimized. That is, given two non-negative func-
tions Φ0 ∈ L1(X0) and Φ1 ∈ L1(X1), defined on the spaces X0 and X1, respect-
ively, one seeks a function g : X0 → X1 minimizing the functional [12]

∫

X0

c
(

x0, g(x0)
)

Φ0(x0)dx0, (1)

subject to the constraint

∫

x1∈U
Φ1(x1)dx1 =

∫

g(x0)∈U
Φ0(x0)dx0, (2)

for all U ⊂ X1. Here, c : X0 × X1 → R+ denotes the cost of transporting
one unit of mass from points in X0 to points in X1, yielding that (1) equals
the total cost of transporting the distribution Φ0 to Φ1 for a given mapping g .
The constraint in (2) enforces the condition that g transports Φ0 to Φ1, i.e., the
mapping g moves the mass in Φ0 onto Φ1 without any loss or addition of mass in
the transition. This may be expressed using the shorthand notation g#Φ0 = Φ1,
where g#Φ0 denotes the so-called push-forward measure, i.e.,

∫

x1∈U

(

g#Φ0

)

(x1)dx1 =

∫

g(x0)∈U
Φ0(x0)dx0, (3)

for all U ⊂ X1. The notation thus implies that for any subset U of X1, the
mass of g#Φ0 on U is equal to the mass of Φ0 on the pre-image of U . It directly
follows that the total mass of g#Φ0 equals that of Φ0. Finding such a g that min-
imizes (1), in general, constitutes a non-convex, non-trivial problem. In contrast,
the Kantorovich relaxation of (1) results in a convex problem by replacing the
mapping g with an optimal coupling between Φ0 and Φ1. This also allows for
generalizing the problem to non-negative mass distributions1, which we denote
Φ0 ∈ M+(X0) and Φ1 ∈ M+(X1). The set of valid couplings is the set of
measures on the product space X0 × X1 with marginals coinciding with Φ0 and

1Such mass distributions are sometimes referred to as measures and may contain, e.g., Dirac
delta functions.
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Φ1, i.e.,

Ω(Φ0,Φ1) =

{

M ∈M+(X0 × X1) |

∫

X1

M(·, x1)dx1 = Φ0,

∫

X0

M(x0, ·)dx0 = Φ1

}

.

(4)

Here, if M ∈ Ω(Φ0,Φ1), then M is referred to as a transport plan, as the func-
tion value M(x0, x1) may be interpreted as the amount of mass that is transpor-
ted between x0 and x1. Thus, the marginal constraint (4) replaces the condi-
tion g#Φ0 = Φ1 used in the Monge formulation. It should also be noted that
it is assumed that the mass of Φ0 and Φ1 are the same, i.e.,

∫

X0
Φ0(x0)dx0 =

∫

X1
Φ1(x1)dx1, in which case Ω(Φ0,Φ1) is always non-empty. The Monge-

Kantorovich problem of optimal mass transport may then be stated as

minimize
M∈Ω(Φ0,Φ1)

∫

X0×X1

M(x0, x1)c(x0, x1)dx0dx1, (5)

i.e., it seeks the transport plan M minimizing the cost of transportation between
Φ0 andΦ1, where the point-wise cost of moving a unit mass from x0 ∈ X0 to x1 ∈
X1 is given by c(x0, x1). In contrast with (1), the objective function in (5) is linear
in M and the optimization problem always has an optimal solution. Further, for
Φ0 ∈ L1(X0) and Φ1 ∈ L1(X1), the problems (1) and (5) are equivalent [12].

The resulting minimal objective value of (5) may be used in order to define a
notion of distance S : M+(X0)×M+(X1)→ R according to

S(Φ0,Φ1)= min
M∈Ω(Φ0,Φ1)

∫

X0×X1

M(x0, x1)c(x0, x1)dx0dx1. (6)

Recently, the idea of using an OMT-induced concept of proximity has attrac-
ted considerable interest in a plethora of modeling applications, such as serving
as the learning criterion in machine learning scenarios [16, 34], for performing
texture and color transfer [14], dictionary learning [15], as well as being used
as an evaluation metric [35]. Also, it has been used for inducing metric struc-
ture on the space of power spectra [11], where it was shown that choosing c as a
metric on X = X0 = X1 in general results in S being metric on M+(X ). Sim-
ilar efforts have been directed towards defining distances for Toeplitz covariance
matrices [28], allowing for formulating a spectral estimation framework with in-
herent robustness [20, 21]. One of the main motivations for using OMT-based
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distances such as (6) is its ability to reflect the geometric properties of the underly-
ing space, X . As a consequence of this, using OMT distances in order to perform
interpolation-like tasks, such as, e.g., morphing of images [17], or, recently, for
describing the time evolution of a signal on a graph [24], typically yields mean-
ingful and interpretable signal reconstructions. This should be contrasted with
the standard Euclidean metric that, when used in the same applications, has been
shown to give rise to fade-in fade-out effects, thereby failing to respect underlying
assumptions for the signal generating mechanisms, such as, e.g., finite movement
speed [11, 24, 28].

2.2 Selection of cost function

It may be noted that the specific choice of cost function c used in the OMT ob-
jective in (5) may greatly influence the transport plan M representing the optimal
solution. Preferably, c should be chosen as to reflect properties or limitations of
the considered application, e.g., in order to ensure expected smooth trajectories
of transported mass that may be dictated by physical considerations. In order to
allow for incorporating knowledge of the dynamics of the process generating the
signal observations, we here utilize the idea to model the underlying dynamics
using a linear system which was proposed in [36]. Specifically, let the underlying
space be X ⊂ Rd , and consider a mass particle with time-varying location, or
state, x(t) ∈ X . Furthermore, assume that the dynamics of the particle may be
well modeled by the (continuous time) linear differential equation2

ẋ(t) = Ax(t) + Bu(t), (7)

where x(t) ∈ X , A ∈ Rd×d , B ∈ Rd×f , and where u(t) ∈ Rf denotes an
input signal, steering the evolution of the state x(t). Following the theory from
[36], we will herein consider this type of model in order to define a cost function
c : X × X → R+, describing the cost of transport for a unit mass between
two points of X , corresponding to the time instances t = t0 and t = t1. For
notational simplicity we here present the case t0 = 0 and t1 = 1. Specifically,
we define the cost for transporting mass between x0 = x(0) to x1 = x(1) via a

2For notational simplicity, we here limit the exposition to the time-invariant case, although this
may be generalized to a dynamical system in a straightforward manner.
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quadratic optimal control problem, according to

c(x0, x1) = min
u

∫ 1

0
∥u(t)∥2

2 dt

subject to ẋ(t) = Ax(t) + Bu(t)

x(0) = x0, x(1) = x1,

(8)

i.e., the cost is equal to the minimal input signal energy required to steer the state
from x0 at t = 0 to x1 at t = 1. For this case, the cost may be expressed in closed
form as

c(x0, x1) = (x1 −A(1, 0)x0)T W (1, 0)−1(x1 −A(1, 0)x0), (9)

where A(t, τ) = expm (A(t − τ)) is the state transition matrix of (7), with expm(·)
denoting the matrix exponential, and where

W (t, s) =
∫ t

s
A(t, τ)BBTA(t, τ)T dτ

is the controllability Gramian. It may be noted that the problem in (8) admits
closed form solutions also for the time-varying case (see, e.g., [36]).

Thus, as the cost of transport is dictated by the system dynamics, the op-
timal transport plan is the coupling M ∈M+(X × X ) that provides the mass
association most in accordance with the trajectories implied by (7). Furthermore,
having access to a transport plan, M , that minimizes the OMT criterion with
the dynamic cost in (8) directly allows for computing intermediate mass distribu-
tions interpolating the given marginals using the system dynamics in (7); this is
termed a displacement interpolation [22]. Specifically, for a particle x(t) such that
x(0) = x0 and x(1) = x1, by solving (7) the optimal trajectory is [36, equation
(25)]

x̂(t; x0, x1) = A(t, 1)W (1, t)W (1, 0)−1A(1, 0)x0

+ W (t, 0)A(1, t)T W (1, 0)−1x1.

Then, one may construct an interpolating mass distribution, or spectrum, ΦM
τ ,

corresponding to time τ ∈ [0, 1] and parametrized by the transport plan M ,
according to

ΦM
τ (x) =

∫

X×X
M(x0, x1)δ (x − x̂(τ; x0, x1)) dx0dx1,
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2. Background: Optimal mass transport

where δ denotes the Dirac delta function. That is, ΦM
τ (x) describes the mass

located at x at time τ by considering the mass of all pairs (x0, x1) such that their
trajectories contain the point (x, τ). Also, this framework directly allows for defin-
ing extrapolating spectra, i.e., distributions of mass for τ > 1, e.g., by letting the
input signal be identically zero for τ > 1, implying that the unforced system dy-
namics are used to describe the time evolution of the state, and thus the spectrum.
It may be noted that the interpolation for Toeplitz covariance matrices presented
in [28] may be obtained as a special case of this formulation, using A = 0 and
B = I .

2.3 Partial information

In the OMT formulations in Section 2.1, the input data, i.e., the marginals, used
for computing distances and obtaining transport plans, are given. However, in
many problems these distributions are only partially known, and are in fact of-
ten the quantities of interest to be estimated. In this work, we propose modeling
tools that may be applied to several such classes of reconstruction and estimation
problems, e.g., inverse problems encountered in imaging, radar, tomography, and
signal processing. However, in order to give a concise description, we will herein
focus on a few motivating applications in spatial spectral estimation and radar
imaging. In such reconstruction problems, one typically seeks to recover a spec-
trum based on a number of measurements, e.g., estimates of the covariance func-
tion of a time series, or estimates of the covariance matrices corresponding to a
set of sensor arrays. In this subsection, we describe the basic mathematical model
relating the covariance estimates to the power spectra in a localization problem.
In the subsequent sections, we will develop theory and formulate OMT problems
which may be used to fuse such measurements obtained from different sensors or
from different time points in an informed and dependable manner.

2.3.1 Localization and direction of arrival estimation

Consider a scenario in which point-like sources located in a space X ⊂ Rd emit
waves impinging on a set of sensors located at xk ∈ Rd for k = 1, . . . , q, with
d ≤ 3. Letting the corresponding sensor signal vector be denoted z ∈ Cq, one
may consider the sensor array covariance matrix, often called the spatial covariance
matrix,

R = E
(

zzH) .
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Then, the covariance R may be related to a positive measure on X , denoted Φ ∈
M+(X ), according to R = Γ(Φ), where the linear operator Γ : M(X ) → Mq

is given by [37]

Γ(Φ) =

∫

X
a(x)Φ(x)a(x)H dx, (10)

where dx denotes the Lebesgue measure on X , where Mq denotes the space of
Hermitian matrices of size q×q, and where M(X ) denotes the set of signed meas-
ures on X . Here, a : X → Cq denotes the array steering vector, i.e., the mani-
fold vector, whose specific functional form depends on the sensor locations, the
wavelength, as well as on the propagation properties of this space. For example,
the array manifold vector corresponding to spherical wave fronts in X ⊂ Rd may
be defined as [38]

a(x) =

(

∥xk − x∥−(d−1)/2
2 exp

(

−2πi
∥xk − x∥2

ξ

))q

k=1

, (11)

where ∥·∥2 denotes the Euclidean norm, i is the imaginary unit, and ξ is the source
signal wavelength. Here, Φ is referred to as a spatial spectrum, as it describes the
distribution of mass, or power, on X , with the locations of the signal sources on
X corresponding to the support of Φ.

In this work, we will use the problem of localization, seen as a spectral es-
timation problem, to illustrate how to utilize the proposed multi-marginal OMT
framework for fusing information. Specifically, we will consider the problems
of sensor fusion and spectral tracking. Sensor fusion corresponds to combining
measurements obtained from separate sensor arrays in forming a single estimate
of the spatial spectrum, whereas tracking refers to combining measurements col-
lected at consecutive time points in order to reconstruct the time evolution of a
spatial spectrum.

2.3.2 Dynamical models with partially observed states

In the context of using dynamical models such as (7), the partial information con-
tained in the measurements may be related to an output space of lower dimension
than the state space X . Specifically, the system description in (7) may be extended
with an observation equation according to

ẋ(t) = Ax(t) + Bu(t)

y(t) = Fx(t),
(12)
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3. Multi-marginal optimal mass transport

where F ∈ Rg×d is a matrix describing the output of the system, implying that
covariances are related to spectra detailing mass distributions on a space Y ⊂ Rg ,
potentially different from X , where y(t) ∈ Y is the observed state. Using the sys-
tem in (12), one may thus incorporate prior knowledge of underlying dynamics,
expressed through the state equation, even though one only has access to partial
measurements of an observed state. For the corresponding spectra, it holds that if
Φ ∈M+(X ), then F#Φ ∈M+(Y), where F# denotes the push-forward opera-
tion, as defined in (3). Note that, using the system in (12), covariance measure-
ments corresponding to observable quantities are related to spectra on the space
Y , i.e., to elements of M+(Y), and only have an indirect link to spectra on the
space X . However, the push-forward operation F# allows for expressing the con-
nection between covariance matrices and elements of M+(X ) by modifying the
operators Γ to incorporate F# according to

Γ (Φ) =

∫

Y
a( y ) (F#Φ) ( y )a( y )H dy. (13)

It is worth noting that the domain of definition of the linear operator Γ is still
M(X ), whereas the domain of definition for the array steering vectors is Y , re-
flecting that the covariance measurements are related to elements of M+(Y).
Also, the transport plan M is still an element of M+(X × X ), allowing for
modeling dynamical structures on the space generating data, i.e., X , that are not
present in the measurement space Y . Thus, in this context, the notion of par-
tial information is twofold. Firstly, mass distributions are not observed directly,
but only through linear measurements on a considerably smaller dimension, i.e.,
covariances in a finite-dimensional space as opposed to the infinite-dimensional
space of measures for spectra. Secondly, these spectra are mappings of spectra that
are elements of an even larger space. We will in the next section examine how
these ideas, together with the concept of multi-marginal transport plans, can be
used in order to arrive at compact formulations for spectral estimation.

3 Multi-marginal optimal mass transport

It is worth noting that the formulation in (5) seeks a transport plan connecting
two mass distributions, or marginals, Φ0 and Φ1, which may be interpreted as a
description of how to morphΦ0 intoΦ1. A natural extension of this is to consider
transport between a larger set of marginals, i.e., a set {ΦT }

T
t=0 for T ≥ 1 [39].
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To this end, let M ∈M+(X ), where X = X0 ×X1 × · · ·×XT , and define the
set of projection operators Pt : M(X )→M(Xt), for t = 0, . . . ,T , as

Pt(M) =

∫

X−t

M(x0, . . . , xt , . . . , xT )dx−t , (14)

where dx−t = dx0 . . . dxt−1dxt+1 . . . dxT and

X−t = X0 × · · ·× Xt−1 × Xt+1 × · · · × XT .

It may be noted that one may express marginalization also for the standard two-
marginal case using the operator Pt . Then, M ∈M+(X ) is referred to as a multi-
marginal transport plan for the set {Φt}

T
t=0 if Pt (M) = Φt , for t = 0, . . . ,T .

Note here that M provides a complete description of the association of mass for
the set {Φt}

T
t=0, i.e., M(x0, x1, . . . , xT ) denotes the amount of mass at x0, cor-

responding to the marginal Φ0, that is transported to location xt , corresponding
to marginal Φt , for t = 1, 2, . . . ,T . Correspondingly, one may define a cost
function C : X → R+, yielding a generalization of the OMT problem as (see
also [39])

minimize
M∈M+(X )

∫

X

M(x)C(x)dx

subject to Pt (M) = Φt , for t = 0, . . . ,T ,

(15)

where x = (x0, . . . , xT ) and dx = dx0dx1 . . . dxT . Thus, the minimizer of (15)
is the transport plan associated with the minimal cost of transportation for the
set {Φt}

T
t=0. This type of formulation has previously found application in, e.g.,

tomography [40] and fluid dynamics [41], with actual numerical approximations
and implementations being considered in [30]. In this work, we consider extend-
ing this problem to scenarios in which the marginals {Φt}

T
t=0 are not directly

observable. Instead, we assume that one has access to partial information in the
form of linear mappings of the marginals. In the context of spatial spectral es-
timation, this corresponds to the spatial covariance matrix, or estimates thereof,
i.e., a sequence {Rt}

T
t=0, where Rt ∈ Mqt is related to a marginal Φt ∈M+(Xt )

through the measurement equation Rt = Γt (Φt ). It should be noted that the
operators Γt : M(Xt)→Mqt may, in general, be different for different indices t.
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3. Multi-marginal optimal mass transport

With this, the problem considered herein may be stated as

minimize
M∈M+(X )
Δt∈Cqt×qt

∫

X

M(x)C(x)dx +
T
∑

t=0

γt∥Δt∥
2
F

subject to Γt (Pt (M)) = Rt +Δt for t = 0, . . . ,T ,

(16)

where ∥ · ∥F denotes the Frobenius norm and where γt > 0, for t = 0, 1, . . . ,T ,
are user-specified weights. Note that the measurement equations have been aug-
mented by error terms Δt ∈ Cqt×qt in order to allow for noisy covariance matrix
estimates Rt . The parameters γt then allow for determining a trade-off between
how much consideration should be taken to the transport cost and the meas-
urement error, respectively. For simplicity, we here penalize Δt by the squared
Frobenius norm. In order to compute couplings between marginals correspond-
ing to index pairs (t, s), one requires the corresponding bi-marginal transport
plan. Due to the structure of the multi-marginal transport plan M, this is directly
computable by means of the bi-marginal projection operator Pt,s : M(X ) →
M(Xt ×Xs) defined by

Pt,s(M) =

∫

X−t,−s

M(x0, . . . , xT )dx−t,−s, (17)

where dx−t,−s = dx0 . . . dxt−1dxt+1 . . . dxs−1dxs+1 . . . dxT and

X−t,−s = X0 × · · ·× Xs−1 × Xs+1 × · · ·×

Xt−1 × Xt+1 × · · · × XT .

This may then be used, e.g., for interpolation between adjacent marginals for
which the cost describes a dynamic model as in Section 2.2. In Section 5, we
present computationally efficient methods for computing discrete approximations
of the projections in (14) and (17). In fact, computing the marginal projections
in (14) will constitute an integral component in the algorithm for solving (16),
which will be presented in Section 4.

Next, we will see that a number of spectral estimation problems may be cast in
the form (16). As will be clear in the following, the only thing distinguishing these
spectral estimation problems is the choice of cost function C. For ease of notation,
we will in this description often assume that the domains of the marginals are the
same, however, this generalizes straightforwardly to general domains.

85



Paper B

3.1 Sensor fusion

Consider a scenario in which waves impinge on a set of J ∈ N sensor arrays, with
corresponding array manifold vectors aj : X → Cqj and operators Γj : M(X )→
Mqj , for j = 1, . . . , J , where it may be noted that the number of sensors, qj,
may differ among the different arrays. Then, a spatial spectrum Φ ∈ M+(X )
gives rise to a set of covariance matrices Rj , for j = 1, . . . , J , where Rj = Γj(Φ).
Thus, as all sensor array measurements have been generated by the same signal,
the problem of estimating the spatial spectrum Φ, and thereby the location of
the signal sources, corresponds to the inverse problem of finding Φ such that
Rj = Γj(Φ), for j = 1, . . . , J . However, in practice, calibration errors in the
sensor arrays, i.e., errors in the operators Γj, may result in there existing no single
Φ ∈ M+(X ) that is consistent with all array measurements. For scenarios in
which only the covariance matrices for the separate sensor arrays are available, for
example if these are estimated locally [42, 43], we propose to address this issue
using a spectral barycenter formulation. Specifically, we propose to solve

minimize
Φj∈M+(X )

Δj∈C
qj×qj

J
∑

j=1

S(Φ0,Φj) + γj
∥

∥Δj
∥

∥

2

F

subject to Γj(Φj) = Rj +Δj, j = 1, . . . , J ,

(18)

and estimate the spatial spectrum as the minimizer Φ0. Here, S is the OMT
distance defined in (6). Note here that Φj, for j = 1, . . . , J , are spectra consistent
with the set of observations Rj, whereas Φ0 is the spectrum closest, in the OMT
sense, to this set of spectra, i.e., Φ0 is the spectral barycenter. It may be noted
that the formulation in (18) induces robustness to the estimate Φ0 as small spatial
perturbations caused by, e.g., calibration errors, do not result in large values of the
distance measure S. One may formulate the problem in (18) as a multi-marginal
problem on the form (16) by specifying the multi-marginal cost function C as

C(x) =

J
∑

j=1

c(x0, xj), (19)
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where c : X × X → R+ is the pair-wise cost function in the definition of S.
With this, the barycenter problem may be stated as

minimize
M∈M+(X )

Δj∈C
qj×qj

∫

X

M(x)

⎛

⎝

J
∑

j=1

c(x0, xj)

⎞

⎠ dx +

J
∑

j=1

γj∥Δj∥
2
F

subject to Γj(Pj(M)) = Rj +Δj for j = 1, . . . , J .

(20)

To see that (19) indeed induces a barycenter solution when used in (20), note that
the cost function C is structured as to penalize transport between a central mar-
ginal, corresponding to the index j = 0, and all other marginals, corresponding
to indices j = 1, . . . , J . As only marginals with indices j = 1, . . . , J correspond
to actual measurements, this implies that the marginal t = 0, which is not con-
strained to be related to any measurements, should be close, in the OMT sense, to
the entire ensemble of marginals. Note here that the barycenter does not appear
as an explicit variable, but is instead given by the projection of M on the zeroth
marginal, i.e., Φ0 = P0(M). It may be noted that, in general, one may utilize
different OMT distances Sj for different arrays, e.g., one may replace the sums in
(18) and (19) with a weighted sum to get a weighted barycenter.

3.2 Tracking

One may also consider a scenario in which a single sensor array3 is used to ob-
serve the evolution of a signal over time. Specifically, assume that estimates of the
array covariance matrix are obtained at T +1 time instances corresponding to the
nominal times t = 0, 1, . . . ,T , giving rise to the sequence {Rt}

T
t=0. Under the

assumption that the corresponding spatial spectrum should evolve smoothly, im-
plying signal sources moving at finite speed, one may estimate the corresponding
sequence of spectra, {Φt}

T
t=0, using the tracking formulation

minimize
Φt∈M+(X )
Δt∈Cq×q

T
∑

t=1

St(Φt−1,Φt ) + γt ∥Δt∥
2
F

subject to Γ (Φt ) = Rt +Δt , t = 0, . . . ,T ,

(21)

i.e., the sequence {Φt}
T
t=0 minimizes a sequential OMT distance, while interpol-

ating the (de-noised) measurement sequence {Rt}
T
t=0. It may here be noted that

3We present a formulation for handling multi-array cases in the next section.
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the OMT distance, St , is indexed by t, as to express that the underlying cost of
transport may change depending on the time. Correspondingly, a multi-marginal
formulation may be obtained by considering a cost function C such that

C(x) =
T
∑

t=1

ct(xt−1, xt ), (22)

with the index t expressing time-dependence, yielding

minimize
M∈M+(X )
Δt∈Cq×q

∫

X

M(x)

(

T
∑

t=1

ct(xt−1, xt )

)

dx +
T
∑

t=0

γt∥Δt∥
2
F

subject to Γ(Pt (M)) = Rt +Δt for t = 0, . . . ,T .

(23)

Here, the estimated spectral sequence is given by the marginals of M, i.e., Φt =

Pt (M), for t = 0, 1, . . . ,T . It is worth noting that the cost function C penal-
izes transport between consecutive marginals, i.e., between pairs corresponding
to indices (t − 1, t), for t = 1, . . . ,T . This allows for exploiting assumptions
of an underlying dynamic model, expressed in ct in (22), as described in Sec-
tion 2.2. Specifically, let the space on which the spatial spectra are defined be
denoted Y , and let X correspond to a larger space, allowing for expressing the
system’s dynamics. Using the system description in (12), the cost function ct may
be defined according to (8), and the operators Γ may be extended to include the
push-forward operation, as detailed in (13). The sequence of spatial spectra may
then be obtained as Φt = F#Pt(M). We will in Section 6 examine the implic-
ations of using a dynamical model as opposed to a static one when performing
OMT-based spectral tracking.

Example 1. Consider a DoA estimation scenario in R2, in which a sequence
of array covariance matrices is available, where one in addition to the direction
of arrival, θ ∈ [−π, π) aims to model also the velocity of the targets, in order
to enforce smooth trajectories. Letting v(t) ∈ R denote the angular speed, i.e.,
θ̇(t) = v(t), one may thus select Y = [−π, π) and X = [−π, π) × R. In order
to impose the assumption of smooth trajectories, one may then enforce finite
acceleration by, in the state space representation in (12), using the matrices

A =

[

0 1
0 0

]

, B =
[

0 1
]T

, F =
[

1 0
]

.

88
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It may be noted that the pair (A,B) enforces that the angular position can only
be influenced through its angular velocity, i.e., through acceleration, whereas the
matrix F expresses the fact that only the angular position is manifested in the
array covariance matrix. The corresponding relation between spectra on X and
Y , denoted ΦX

t and ΦY
t , respectively, may then be expressed as

ΦY
t (θ) =

(

F#Φ
X
t

)

(θ) =

∫

R

ΦX
t (θ, v)dv,

for θ ∈ [−π, π). The cost function c implied by the LQ control signal u is then
given by (see, e.g., [32])

c(x0, x1) =
(

x1 − expm(A)x0

)T
W (1, 0)−1

(

x1 − expm(A)x0

)

with

expm(A(t − τ)) =

[

1 t − τ
0 1

]

, W (1, 0) =

[

1/3 1/2
1/2 1

]

.

3.3 Combining tracking and barycenters

In addition to the problems described in Sections 3.1 and 3.2, one may con-
sider a combination of the two, i.e., the tracking of a spectral barycenter over
time. This then allows for addressing issues of resolving spatial ambiguities, as
well as promoting smooth spectral trajectories over time as to, e.g., induce ro-
bustness to noisy measurements. Therefore, consider J sensor arrays observing
a signal during T + 1 time instances, giving rise to a set of covariance matrices

R( j )
t , for j = 1, . . . , J and t = 0, . . . ,T , where the subscript indicates time, and

the superscript corresponds to the array index. Thus, we seek to estimate a se-

quence of spectral barycenters, {Φt}
T
t=0, given covariance matrix estimates R( j )

t ,
for t = 0, 1, . . . ,T and j = 1, 2, . . . , J . In order to formulate the barycen-
ter tracking problem, one may consider two separate types of transport costs; St

detailing the OMT distance between consecutive barycenters, and S̃ describing
the distances between barycenters and spectra consistent with the array measure-
ments. For example, the distance St may reflect underlying dynamics whereas
S̃ may correspond to a static OMT problem. Correspondingly, one may let the
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barycenter spectra be elements of M+(X ), where the space X may detail the sys-
tem dynamics, whereas the consistent spectra are elements of M+(Y), where Y
is the measurement space.

With this, the barycenter tracking problem may be formulated as

minimize
Φt∈M+(X ) , Φ

( j )
t ∈M+(Y)

Δ
( j )
t ∈C

qj×qj

S(Φ) + α S̃(Φ)

subject to Γ ( j )
(

Φ( j )
t

)

= R( j )
t +Δ( j )

t ,

(24)

for t = 0, . . . ,T , and j = 1, . . . , J , where

S(Φ) =
T
∑

t=1

St (Φt−1,Φt )

S̃(Φ) =
T
∑

t=0

J
∑

j=1

(

S̃
(

Φ( j )
t , F#Φt

)

+ γ( j )
t

∥

∥

∥Δ
( j )
t

∥

∥

∥

2

F

)

,

with α > 0 being a user-specified parameter allowing for deciding a trade-off
between the smoothness of the tracking and the distance between a barycen-

ter Φt and its corresponding consistent spectra Φ( j )
t , for t = 0, 1, . . . ,T and

j = 1, 2, . . . , J . It may here be noted the latter distance is stated in terms of
the push-forward of the barycenter spectrum, thereby allowing for some states to
be measured (e.g., position) whereas others are not (e.g., velocity). In order to
arrive at a multi-marginal formulation on the form (16), one may define the cost
function C as

C(x) =
T
∑

t=1

ct(xt−1,0, xt,0) + α
T
∑

t=0

J
∑

j=1

c̃(xt,0, xt,j), (25)

where x ∈ X
J = X × X × . . . × X , which is the direct product of T + 1

instances of X , each corresponding to a barycenter problem at one time point.
That is, this space is a product of the form X = X × Y × · · · × Y , with one
instance of X and J instances of Y . Here, x = (x0, x1, . . . , xT ), where

xt = (xt,0, xt,1, . . . , xt,J ),
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where the first index indicate the time t, for t = 0, 1, . . . ,T , and the second index
indicates the array j, for j = 0, 1, . . . , J , with 0 corresponding to the barycenter.
Here, ct denotes the cost of transport for the tracking, whereas c̃ defines the cost
of transportation between the barycenters and the marginal spectra. With this
setup, one may formulate the multi-marginal problem as

minimize
M∈M+(X J )

Δ
( j )
t ∈C

qj×qj

∫

X
J
M(x)C(x)dx + α

T
∑

t=0

J
∑

j=1

γ( j )
t ∥Δ

( j )
t ∥

2
F

subject to Γ ( j )(P(t,j)(M)) = R( j )
t +Δ( j )

t ,

(26)

for t = 0, . . . ,T , and j = 1, . . . , J . Here, the operator P(t,j) projects onto the
marginal (t, j) of M in direct analogy with (14), which for each time t corresponds
to a spectrum consistent with the measurements of array j, for j = 1, 2, . . . , J .
The corresponding sequence of barycenters may then be constructed as Φt =

P(t,0)(M), for t = 0, 1, . . . ,T .
Having shown that the multi-marginal OMT problem with partial inform-

ation in (16) may be used to formulate these spectral estimators, we proceed to
present the main results of this work, i.e., how to construct discrete approxima-
tions of (16) that allow for computationally efficient solvers. Numerical examples
that illustrate the behavior of (16) in spatial spectral estimation scenarios are then
provided in Section 6.

4 Solving multi-marginal OMT problems with partial
information of marginals

The multi-marginal OMT problem with partial information in (16) is an infinite-
dimensional problem, as the multi-marginal transport plan M is an element of
the function space M+(X ). Fortunately, one may in practical implementations
approximate (16) by a discrete counterpart. In this section, we present a compu-
tationally efficient solution algorithm for such a problem. Starting by describing a
discretization of OMT problems with full information, i.e., problems of the form
(15), we derive an algorithm for solving discrete OMT problems with partial in-
formation. We show that the critical component of the resulting algorithms is to
compute the projections in (14). Section 5 presents several cases for which the
projections in (14) can be computed efficiently.
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4.1 Entropy regularized OMT and Sinkhorn iterations

In order to discretize the OMT problem in (5), one may construct a grid consist-
ing of n grid points X = {x1, x2, . . . , xn} on the support of the marginals. The
discretized marginals are then represented by vectors Φt ∈ Rn for t = 0, . . . ,T ,
with T ≥ 1. For ease of notation, we will herein assume that all marginals are dis-
cretized using the same number of points. However, this, as well as all presented
results, generalizes straightforwardly to the case when the number of discretiza-
tion points differ among the marginals. In the discretized formulation, the cost

function c is represented by a (T + 1)-dimensional tensor C ∈ RnT +1
, where

the element Ci0,i1,...,iT = C(xi0 , xi1 , . . . , xiT ) denotes the transport cost associ-
ated with the tuple (xi0 , xi1 , . . . , xiT ). Correspondingly, the transport plan may

be represented by a tensor M ∈ RnT +1

+ , whose elements Mi0,i1,...,iT denote the
amount of mass associated with the tuple (xi0 , xi1 , . . . , xiT ). As a discrete analog

to the projection in (14), let Pt : RnT +1
→ Rn be the projection on the t-th mar-

ginal of a tensor M, which is computed by summing over all modes of M except
t, i.e., the j-th element of the vector Pt (M) ∈ Rn is given by

Pt(M)j =
∑

i0,...,it−1,
it+1,...,iT

Mi0,...,it−1,j,it+1,...,iT .

Similarly, in analog to the bi-marginal projection in (17), let Pt1,t2(M) ∈ Rn×n

denote the projection of M on the two joint marginals t1 and t2, i.e.,

Pt1,t2(M)j,ℓ =
∑

it :
t∈{0,...,T }\{t1,t2}

Mi0,...,it1−1,j,it1+1,...,it2−1,ℓ,it2+1,...,iT .

With this, the discretized multi-marginal OMT problem is given by

minimize
M∈RnT +1

⟨C,M⟩

subject to Pt (M) = Φt , t = 0, . . . ,T ,
(27)

where ⟨C,M⟩ !
∑

i0,...,iT
Mi0,...,iT Ci0,...,iT . Although (27) is a linear program,

finding an optimal transport plan can be computationally cumbersome due to the
large number of variables. In particular, the classical bi-marginal OMT problem
with a grid of size n yields a discrete problem with n2 variables. It may be noted
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that standard linear programming methods require O(n3 log(n)) operations to
find the optimum for such a problem [44], proving infeasible even for moderate
grid sizes.

One way to bypass the expensive computations inherent in finding the exact
transport plan is to regularize the OMT problem, yielding an approximation of
(27). To this end, it was first suggested in [18] to introduce an entropy term to
the objective function. In this setting, the problem in (27) is modified to

minimize
M∈RnT +1

⟨C,M⟩+ εD(M)

subject to Pt (M) = Φt , t = 0, . . . ,T ,
(28)

where

D(M) !
∑

i0,...,iT

(

Mi0,...,iT log
(

Mi0,...,iT

)

−Mi0,...,iT + 1
)

,

and ε > 0 is a small regularization parameter. The entropy regularized OMT
problem is related to the Schrödinger bridge problem, which studies the most
likely evolution of a particle cloud observed at two different time instances [45,
46]. Note that due to the entropy term, the optimal transport plan M correspond-
ing to problem (28) always has full support, whereas the solution to (27) may be
sparse. However, in contrast to (27), the regularized problem (28) is strictly con-
vex and thus always guarantees a unique solution. Furthermore, in [18], it was
shown for the bi-marginal setting that, as ε → 0, the solution of (28) converges
to the solution of (27) with maximal entropy. More importantly, though, the
formulation in (28) allows for deriving an efficient method to find the (approx-
imate) optimal transport plan M, as it implies a low-dimensional representation
requiring only (T + 1)n variables instead of the original nT +1 variables.

Specifically, in the original bi-marginal case, where the mass transport plan
and cost tensor are given by matrices M ,C ∈ Rn×n, the regularized problem
allows for expressing the solution M through diagonal scaling of an n×n constant
matrix. To see this, consider the Lagrange function of (28) with T = 1 and dual
variables λ0, λ1 ∈ Rn, i.e.,

L(M , λ0, λ1) = tr
(

CT M
)

+ εD(M)

+ λT
0 (Φ0 −M1) + λT

1 (Φ1 −MT 1).
(29)
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For fixed dual variables, the minimum of (29) with respect to M is attained when
the gradient with respect to the matrix entries mij vanishes, yielding a solution of
the form

M = diag(u0)K diag(u1), (30)

where K = exp(−C/ε), u0 = exp(λ0/ε), u1 = exp(λ1/ε), and where exp(·)
denotes element-wise application of the exponential function. Then, as the matrix
K has strictly positive elements, it follows from Sinkhorn’s theorem [47] that there
is a unique matrix M on the form (30) with prescribed strictly positive row and
column sumsΦ0 andΦ1. Moreover, the two positive vectors u0 and u1 are unique
up to multiplication with a scalar and may be found via Sinkhorn iterations, i.e.,
by iteratively updating u0 and u1 as to satisfy the marginal constraints. Specifically,
the Sinkhorn iterations are given by [18]

u0 = Φ0./(Ku1)

u1 = Φ1./(K T u0),
(31)

where ./ denotes elementwise division. These iterations converge linearly [48],
with the computational bottleneck of the scheme being the two matrix-vector
multiplications. The Sinkhorn iterations thus provide an efficient technique for
finding approximate solutions to OMT problems.

In direct analog to the bi-marginal case, by considering the Lagrangian relaxa-
tion of (28), one finds that the transport tensor may be represented by ”diagonal”
scaling of a constant tensor. Specifically, one may write M = K ⊙ U, where ⊙
denotes elementwise multiplication, for the two tensors K,U ∈ RnT +1

, given by
K = exp(−C/ε) and

U = (u0 ⊗ u1 ⊗ · · · ⊗ uT ), ⇐⇒ Ui0,...,iT =

T
∏

t=0

(ut )it ,

for a set of vectors u0, . . . , uT ∈ Rn. It may be noted that this representation for
the mass transfer tensor M is a direct generalization of the representation in the
standard bi-marginal OMT theory, where M, K, and U = u0 · uT

1 are matrices,
and

M = K⊙U = K⊙ (u0 · uT
1 ) = diag(u0)K diag(u1),
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Algorithm 1 Sinkhorn method for the multi-marginal optimal mass transport
problem [30].

Given: Initial guess ut > 0, for t = 0, . . . ,T ; starting point t
while Sinkhorn not converged do

ut ← ut ⊙ Φt ./Pt (K⊙ U) ,
t ← t + 1 (mod T + 1)

end while
return M = K⊙ U

as in (30). Thus, the problem in (28) may be reduced to finding T + 1 scaling
vectors in Rn instead of directly optimizing over the complete mass tensor M ∈
RnT +1

. Interestingly, the scaling vectors u0, . . . , uT are unique up to a scalar for
any T ≥ 1 [48]. Furthermore, they may be determined via a Sinkhorn iteration
scheme similar to (31), as presented in [30] for multi-marginal OMT problems.
For completeness, we state the result here: given an initial set of positive vectors
ut ∈ Rn, for t = 0, 1, . . . ,T + 1, the Sinkhorn method (Algorithm 1) is to
iteratively update according to

ut ← ut ⊙ Φt ./Pt (K⊙ U), t = 0, 1, . . . ,T . (32)

It may be noted that also this scheme reduces to the standard Sinkhorn itera-
tions (31) for the case T = 1, i.e., a bi-marginal problem. Parallels between the
Sinkhorn iteration scheme and established algorithms for convex optimization
problems have been explored in several works. For instance, it has been shown
that Sinkhorn iterations correspond to iterative Bregman projections [30]. In the
bi-marginal case they have been derived as a block-coordinate ascent in the dual
formulation of (28) [31]. In this work, we utilize the latter result in order to de-
velop new Sinkhorn-type schemes for OMT problems with partial information
of the marginals, which the problem with full information in (28) is a special case
of.

4.2 Method for partial information of marginals

In this section, we derive an efficient algorithm for solving discrete OMT prob-
lems where only partial information of the marginals are available, i.e., formu-
lating discrete approximations of the problem in (16). In this setting, one does
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not have access to the marginal vectors Φt ∈ Rn directly, but instead has meas-
urements of the form r = GΦ, where r ∈ Rm, with m < n, is a vector of
available information, and where G ∈ Rm×n represents a mapping from the full
state information to the partial information. For example, G may represent a dis-
cretization of the push-forward operator F# in the case of an OMT problem with
dynamics detailed by (12), or of the operator Γ , mapping spectra to covariance
matrices. Correspondingly, r may be a discretization of the push-forward meas-
ure, or the (vectorized) covariance matrix, respectively. Note that all quantities in
this section are assumed to be real-valued. As the considered covariance matrices
R are, in general, complex, we arrive at the equivalent real-valued problems by
constructing the corresponding information vectors r as

r =
[

Re (vec(R))T
Im (vec(R))T

]T
, (33)

where Re(·) and Im(·) denote the real and imaginary parts, respectively. The
discretizations of the operators Γ , i.e., G, are then structured as to be consistent
with this construction. It should be noted that the solution algorithm presented
in this section coincides with the multi-marginal Sinkhorn iterations in (32) for
the special case of full information (corresponding to letting G be the identity
operator) and noiseless observations of the distribution marginals (γt =∞).

Consider the multi-marginal OMT problem in (16), where only noisy and
partial measurements of the marginals are available. A direct discretization of this
problem, with added entropy regularization, may be expressed as

minimize
M,Δt

⟨C,M⟩+ εD(M) +
∑

t

γt∥Δt∥
2
2 (34a)

subject to GtPt (M) = rt +Δt for t = 0, . . . ,T , (34b)

where Gt ∈ Rmt×n is a mapping from the full state information to the partial
information rt ∈ Rmt , as described above. Also, to allow for noisy measurements
rt , the problem is augmented by perturbation vectors Δt ∈ Rmt by direct analog
to the matrix perturbations of (16), which are penalized by the squared ℓ2-norm
scaled by the penalty parameters γt > 0. It may be noted that due to the presence
of the entropy term, D, the problem in (34) is strictly convex. Also, for finite
γt , a solution always exists due to the introduction of the perturbation vectors
Δt . Altogether, this implies that for any ε > 0 and γt < ∞, the optimization
problem (34) has a unique solution. The following proposition characterizes the
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solution M in terms of the variables of the Lagrange dual problem, yielding the
dual formulation.

Proposition 1. The optimal solution to (34) may be expressed as M = K ⊙ U, for
two tensors K,U ∈ RnT +1

, given by K = exp(−C/ε), and

U = u0 ⊗ u1 ⊗ · · ·⊗ uT , ⇐⇒ Ui0,...,iT =

T
∏

t=0

(ut )it , (35)

where the vectors ut are given by ut = exp(GT
t λt/ε) for t = 0, . . . ,T , with

λt ∈ Rmt denoting the Lagrange dual variable corresponding to the constraint t in
(34b). The optimal perturbation vectors may be expressed as Δt = − 1

2γt
λt , for

t = 0, 1, . . . ,T . Furthermore, a Lagrange dual of the multi-marginal OMT prob-
lem (34) is given by

maximize
λ0,...,λT

− ε ⟨K,U⟩ −
T
∑

t=0

1

4γt
∥λt∥

2
2 +

T
∑

t=0

λT
t rt . (36)

where U is given by (35) with ut = exp(GT
t λt/ε) for t = 0, . . . ,T .

Proof. See the appendix.

With the result from Proposition 1, we are now ready to state the method for
solving (34). Based on [31], and similarly to [21], we propose to solve the dual
(36) by a block coordinate ascent.

Theorem 1. Given an initial set of vectors λ0, . . . , λT , iterate the following steps
repeatedly for t ∈ {0, . . . ,T }:

• Let

vt = Pt(K⊙ U)./ut (37)

where U = u0 ⊗ u1 ⊗ · · · ⊗ uT for the vectors ut = exp(GT
t λt/ε).

• Update the vector λt as the solution to

Gt

(

vt ⊙ exp

(

GT
t λt

ε

))

+
λt

2γt
− rt = 0. (38)
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Then, the vectors λ0, . . . , λT converge linearly to the unique optimal solution of the
dual problem (36). Furthermore, in the limit point of the iteration, the marginals of
M are given directly as Φt = ut ⊙ vt , for t = 0, 1, . . . ,T .

Proof of Theorem 1. We first show that the iterates in the theorem correspond to
a block coordinate ascent in the dual problem (36). A block-coordinate ascent
method is to iteratively update one of the dual variables as to maximize the ob-
jective function, while keeping the other variables fixed. Here, this is to iteratively
update one λt , for t = 0, 1, . . . ,T , such that it maximizes (36). The maximizing
λt may be found as the root of the corresponding gradient. Therefore, note that
substituting the explicit expression for the elements in U, as detailed in Proposi-
tion 1, into the first term of the dual objective (36) yields

∑

i0,...,iT

Ki0,...,iT Ui0,...,iT =
∑

i0,...,iT

Ki0,...,iT

T
∏

t=0

(

exp(GT
t λt/ε)

)

it
.

The gradient of this term with respect to λt can be written as

Gt(vt ⊙ ut ),

with ut = exp(GT
t λt/ε) and the vector vt defined as

(vt)it =
∑

i0,...,it−1,
it+1,...,iT

Ki0,...,it−1,it ,it+1,...,iT

T
∏

s=1
s ̸=t

(us)is

=

⎛

⎜

⎜

⎝

∑

i0,...,it−1,
it+1,...,iT

Ki0,...,it−1,it ,it+1,...,iT

T
∏

s=0

(us)is

⎞

⎟

⎟

⎠

it

/(ut )it

=
(

Pt (K⊙ U)
)

it
/(ut )it .

Hence, the gradient of the dual objective function (36) with respect to λt is

−Gt(vt ⊙ ut )− λt/(2γt ) + rt .

Furthermore, note that the dual objective function (36) is strongly concave. This
can be seen by noting that the first term is concave, the second term is strongly
concave, and the last term is linear. Since the dual is twice continuously differ-
entiable, the block coordinate ascent method converges (locally) q-linearly to the
unique global maximum [49, Theorem 2].
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Remark 1. It is worth noting that, given the dual optimal variables λt , for t =

0, 1, . . . ,T , obtained as the limit point of the iterations in Theorem 1, the primal
optimal variables may be recovered using Proposition 1.

Remark 2. The number of constraints in (34) may be smaller than the number
of modes in the mass transfer tensor M. In cases where there are no constraints
on the t-th projection of M, the corresponding dual variable λt is set to zero. The
method described in Theorem 1 may then be modified by setting ut = 1 and
only iterating over the smaller set of remaining vectors.

Recall that in the standard Sinkhorn iterations (31) and (32), the scaling
factors ut are iteratively updated as to satisfy the marginal constraints. The same
property holds for the iterations in Theorem 1. Specifically, if λt is a solution to
(38), then the implied transport plan in that iteration, i.e., M = K ⊙ U, where
U = u0 ⊗ u1 ⊗ · · · ⊗ uT , with ut = exp(GT

t λt/ε), satisfies

GtPt (M) = rt +Δt = rt −
1

2γt
λt .

In the case of full information and exact matching in a marginal (i.e., Gt = I
and γt = ∞), the update (38) in Theorem 1 reduces to the Sinkhorn iterations
(Algorithm 1), i.e.,

ut ← rt ./vt = ut ⊙ rt ./Pt (K⊙ U),

whereas in the case with only full information (i.e., Gt = I and 0 < γt < ∞),
the update reduces to solving

vt ⊙ exp(λt/ε) + λt/(2γt )− rt = 0. (39)

This equation may be solved element-wise using the Wright omega function (see
appendix B in [31]). This allows for computing the proximal operator of the reg-
ularized optimal mass transport [31], which is often used in first-order methods
for non-smooth optimization. Similar expressions may also be obtained for other
penalization terms than the squared ℓ2-error, which relates to the entropic prox-
imal operator [50]. Herein, we propose to solve (38) using Newton’s method.
Therefore, note that the corresponding Jacobian is given by

1

ε
Gt diag(vt ⊙ ut )G

T
t +

1

2γt
I .
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Algorithm 2 Sinkhorn-Newton method for the multi-marginal optimal mass
transport with partial information of the marginals.

Given: Initial guess λt , for t = 0, . . . ,T ; starting point t
ut ← exp(Gtλt/ε) for t = 0, . . . ,T
while Sinkhorn not converged do

Construct vt according to (37), i.e.,
vt ← Pt(K⊙ U)./ut

while Newton not converged do
f ← Gt diag(vt)ut − rt + 1/(2γt )λt

df ← (1/ε)Gt diag(vt ⊙ ut )GT
t + 1/(2γt )I

Δλ← −df \ f
λt ← λt + ηΔλ, with η determined by a linesearch
ut ← exp(Gtλt/ε)

end while
t ← t + 1 (mod T + 1)

end while
return M = K⊙ U

The full method for solving (34) is summarized in Algorithm 2. It may be noted
that the multi-marginal transport plan M may for some problems be too large to
be stored in the memory. However, when used in modeling applications, one is
primarily interested in being able to study projections of M, which, due to the
structure of the transport plan, do not require M to be constructed explicitly.

Remark 3. Sufficiently close to the optimal solution, the quadratic approxima-
tion of the dual objective underlying the Newton method becomes increasingly
accurate. The inner Newton method for solving (38) then converges in the first
iteration. In the authors’ experience, this is typically achieved within the first few
outer Sinkhorn iterations.

The computational bottleneck of Algorithm 2 is the construction of the vec-
tors vt in (37), requiring the computation of Pt (K ⊙ U). Structures in the cost
tensor T may allow for efficiently computing these projections, as we will see
in Section 5. With the results from Section 5, Theorem 1 provides an efficient
scheme for implementing the spatial spectral estimators in Sections 3.1 - 3.3.
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5 Efficient computations for structured multi-marginal
OMT problems

In many applications, the size of the mass transport tensor M, and thus of the aux-
iliary tensors K and U, may be too large to manipulate directly. It is thus crucial to
utilize additional structures in the problem whenever this is possible. In this sec-
tion, some common examples for structures in the cost tensor C are described, al-
lowing for efficient computation of subproblems in the multi-marginal Sinkhorn
algorithm (Algorithm 1). The computational bottleneck of the Sinkhorn scheme,
as well as the method for partial information of the marginals (Algorithm 2), is
the computation of Pt (K⊙U), where both the elementwise multiplication K⊙U
and the application of the projection operator Pt may be expensive. However, in
several cases of interest, the choice of cost function, c, induces structure in the
tensor K that may be exploited in order to dramatically increase the efficiency of
computing Pt(K⊙U). Such structures appears in e.g., barycenter problems [19],
tracking problems [20, 32], and certain hidden Markov chain formulations [51].
Here, we will consider cases relevant for the applications presented in Section 3.
In fact, for these cases, the computation of Pt (K ⊙ U) may be performed by
sequences of matrix-vector multiplications as detailed in the propositions in the
following subsections.

5.1 Sequentially decoupling cost function

Consider the multi-marginal OMT problem on the form (15) where the cost
function C : X × X → R+ decouples sequentially according to (22), which
may be utilized in order to model sequential tracking over time. The following
proposition shows how this special case allows for efficient computations of the
projections Pt (K⊙ U) and Pt1,t2(K⊙ U) in the discrete OMT problem.

Proposition 2. Let the elements of the cost tensor C in (28) be of the form

Ci0,...,iT =

T
∑

t=1

Cit−1,it ,

for a cost matrix C ∈ Rn×n, and let K= exp(−C/ε), U= (u0 ⊗ u1 ⊗ · · ·⊗ uT ).
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Then, for 0 ≤ t ≤ T ,

Pt(K⊙ U) =
(

uT
0 K diag(u1)K . . .K diag(ut−1)K

)T
⊙ ut

⊙
(

K diag(ut+1)K . . .K diag(uT −1)KuT
)

,

where K = exp(−C/ε), and, for 0 ≤ t1 < t2 ≤ T ,

Pt1,t2(K⊙ U) = diag
(

uT
0 K diag(u1)K · · ·K diag(ut1−1)K

)

⊙ diag(ut1)K diag(ut1+1)K . . .K diag(ut2)

⊙ diag
(

K diag(ut2+1)K . . .K diag(uT −1)KuT
)

.

(40)

Proof. See the appendix.

It is worth noting that the computation of Pt(K⊙U) requires only T matrix-
vector multiplications of the form Kuτ, i.e., O(T n2) operations, whereas the com-
plexity for a brute-force approach is O(nT +1) operations. The same holds for the
multiplication of Pt1,t2(K⊙ U) with a vector. If several projections are computed
iteratively, as, e.g., in Algorithm 1 or Algorithm 2, intermediate results of the
factors to the left and right of ut , for t = 0, . . . ,T , may be stored. Then each
iteration requires only one matrix vector multiplication, that is O(n2) operations.
Furthermore, if the domains of the marginals have cost functions that decouple
then the efficiency of the matrix vector computations can be improved even fur-
ther, as described in the following remark.

Remark 4. In many multidimensional problems, the domain X can be represented
as a direct product X = X1×X2×· · ·×XN , with |Xi| = ni. If, in addition, the cost

decouples in the same way, i.e., for two points x0 =

(

x(1)
0 , x(2)

0 , . . . , x(N )
0

)

∈ X

and x1 =

(

x(1)
1 , x(2)

1 , . . . , x(N )
1

)

∈ X ,

c(x0, x1) =
N
∑

i=1

ci

(

x(i)
0 , x(i)

1

)

,

where ci : Xi×Xi → R is a cost function in the i-th dimension, for i = 1, . . . ,N ,
then the matrix K = exp(−C/ε) ∈ Rn×n, where n =

∏N
i=1 ni, can be decoupled

as a tensor product K = K1 ⊗ K2 ⊗ · · · ⊗ KN . Multiplications with K can then
be done one dimension at a time. Practically, this can be efficiently implemented
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using specialized tensor toolboxes, e.g., with the command tmprod of the Matlab
toolbox Tensorlab [52]. Thus, the multiplication Ku requires only O(n

∑

i ni)
operations instead of O(n2) which is required when using standard multiplication.
From a memory perspective, this is also important since K does not need to be
computed and stored. In particular, this holds for a regular rectangular grid in
RN with cost function c(x, y) = ∥x − y∥p

p, for some p ≥ 1, which is the typical
setup for the Wasserstein metric.

5.2 Centrally decoupling cost function

In order to solve OMT barycenter formulations, we may use centrally decoupled
cost functions C according to (19) to model transport between a common bary-
center and several marginal distributions. The following proposition describes the
projection computations for this case.

Proposition 3. Let the elements of the cost tensor C in (28) be of the form

Ci0,...,iJ =

J
∑

j=1

Ci0,ij ,

for a cost matrix C ∈ Rn×n, and let K = exp(−C/ε), U = (u0 ⊗ u1 ⊗ · · ·⊗ uT ).
Then,

P0(K⊙ U) = u0 ⊙
J
⊙

ℓ=1

(Kuℓ), (41)

Pj(K⊙ U) = uj ⊙ K T

⎛

⎝u0 ⊙
J
⊙

ℓ=1,ℓ ̸=j

(Kuℓ)

⎞

⎠ , (42)

for j = 1, . . . , J , where K = exp(−C/ε). For j, j1, j2 = 1, . . . , J , and j1 ̸= j2, the
pair-wise projections are given by

P0,j(K⊙ U) = diag

⎛

⎜

⎜

⎝

u0 ⊙
J
⊙

ℓ=1
ℓ ̸=j

(Kuℓ)

⎞

⎟

⎟

⎠

K diag(uj), (43)

Pj1,j2(K⊙ U) = diag(uj1 )K T diag
(

pj1,j2

)

K diag(uj2), (44)

103



Paper B

where

pj1,j2 = u0 ⊙
J
⊙

ℓ=1
ℓ ̸=j1,j2

(Kuℓ).

Proof. See the appendix.

Similarly to the setting of a sequentially decoupling cost, the computation of
a projection Pj(K⊙U), for any j = 0, . . . , J , in the case of a centrally decoupling

cost, involves J matrix vector multiplications. It thus requires O(Jn2) operations,
as opposed to O(nJ+1) in the brute force approach. For the iterative schemes
in Algorithm 1 and Algorithm 2, storing intermediate results decreases the com-
plexity in each iteration to at most two matrix vector multiplications, i.e., O(n2)
operations.

5.3 Sequential and central decoupling

Consider a cost function C being a combination of sequentially and centrally
decoupled costs, according to (25), which in Section 3.3 was applied to modeling
tracking of barycenters over time. For this case, the following proposition holds.

Proposition 4. Let the elements of the cost tensor C in (28) be of the form

C(i(t,j)|(t,j)∈Λ) =
T
∑

t=1

Ci(t−1,0),i(t,0) +

T
∑

t=1

J
∑

j=1

C̃i(t,0),i(t,j) ,

for cost matrices C ∈ Rn×n and C̃ ∈ Rn×ñ, and define
Λ = {(t, j) | t ∈ {0, 1, . . . ,T }, j ∈ {0, 1 . . . , J}}. Furthermore, let
K = exp(−C/ε), and let U =

⊗

(t,j)∈Λ u(t,j). Then, for the central marginals,
corresponding to (t, j) such that j = 0,

P(t,0)(K⊙ U) =
(

pT
0 K diag( p1)K . . .K diag( pt−1)K

)T
⊙ pt

⊙
(

K diag( pt+1)K . . .K diag( pT −1)KpT
)

,
(45)

where pt = u(t,0) ⊙
⊙J

j=1 K̃ u(t,j) and K = exp(−C/ε), K̃ = exp(−C̃/ε). Fur-
thermore, for the non-central marginals, i.e., (t, j) with j = 1, 2, . . . , J , it holds
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that

P(t,j)(K⊙ U) = u(t,j) ⊙ K̃ T
(

( pT
0 K diag( p1)K . . .K diag( pt−1)K )T

⊙ ( pt ./(K̃ u(t,j)))

⊙ (K diag( pt+1)K . . .K diag( pT −1)KpT )

)

.

(46)

Proof. See the appendix.

Computing one vector pt , for any t = 0, . . . ,T , requires J matrix vector
multiplications, i.e., O(Jnñ) operations. In order to compute the projection
P(t,0)(K ⊙ U), a total of T + 1 vectors of this form have to be computed, as

well as T aditional matrix vector products of complexity O(n2) each. This res-
ults in a total of O(T Jnñ + T n2) operations. The complexity is the same for
the other projections, P(t,j)(K ⊙ U), for j = 1, . . . , J , and significantly lower

than the direct computation of the projections, which requires O(n(J+1)(T +1))
operations. It is worth noting that in an iterative scheme such as Algorithm 1
or Algorithm 2, when cycling through j = 0, 1, . . . , J , for a given t, one does
not have to re-compute pτ for τ ̸= t, i.e., the multiplicative factors to the left
and right of pt ./(Ku(t,j)) in (46) have to be updated only once for each t. Fur-
thermore, as noted in Section 5.1, these factors may be stored so that updating
them for a given t requires only one multiplication with K . Moreover, as noted in
Section 5.2, the updates of pt while cycling through j = 0, . . . , J involve at most
two multiplications with K̃ in each iteration. Thus, computing the projections
P(t,j)(K⊙U), for all j = 0, . . . , J and a fixed t, requires O(n2 + Jnñ) operations.

Remark 5. The pairwise projections for index pairs (t1, 0) and (t2, 0), i.e., indices
corresponding to the central marginals, may be computed analogously to Propos-
ition 2. That is,

P(t1,0),(t2,0)(K⊙ U) = diag
(

pT
0 K diag( p1)K . . .K diag( pt1−1)K

)

⊙ diag( pt1)K diag( pt1+1)K · · ·K diag( pt2)

⊙ diag
(

K diag( pt2+1)K . . .K diag( pT −1)KpT
)

.

In case the index pairs are (t, j1) and (t, j2), i.e., when the indices correspond to
the same central marginal, the pairwise projections can be computed similarly to
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Proposition 3. Specifically, the bi-marginal projection for a central marginal and
a non-central marginal corresponding to the same time t is given by

P(t,0),(t,j)(K⊙ U) = diag(u(t,0)) diag
(

K̃ T ρ(t,0),(t,j)

)

K̃ diag(u(t,j)),

where

ρ(t,0),(t,j) = ( pT
0 K diag( p1)K . . .K diag( pt−1)K )T

⊙ ( pt ./(u(t,0) ⊙ K̃ u(t,j)))⊙ (K diag( pt+1)K . . .K diag( pT −1)KpT ),

whereas the bi-marginal projection for two non-central marginals corresponding
to the same time t may be expressed as

P(t,j1),(t,j2)(K⊙ U) = diag(u(t,j1))K̃
T diag(ρ(t,j1),(t,j2))K̃ diag(u(t,j2)),

where

ρ(t,j1),(t,j2) = (pT
0 K diag( p1)K . . .diag( pt−1)K )T

⊙ ( pt ./(K̃ u(t,j1)⊙K̃ u(t,j2)))⊙ (K diag( pt+1). . .K diag( pT −1)KpT ).

For arbitrary index pairs (t, j), expressions for the pairwise projections may be
derived in a similar way.

6 Numerical results

In this section, we demonstrate the behavior of the proposed multi-marginal
OMT problem in (16) when applied to the discussed spatial spectral estima-
tion problems. Throughout, the problem in (16) is approximated by the discrete
counterpart in (34), and solved using Algorithm 2. For the implementation of
the projection operators, Pt , we use the results from the propositions in Section 5.
For the example in Section 6.4, we provide a dimensionality analysis of the corres-
ponding OMT problem, illustrating the benefit of the presented computational
tools.

6.1 Tracking with static and dynamical models

In order to illustrate the different properties of the static and dynamic OMT for-
mulations, we consider a DoA tracking example with two moving signal sources.
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Figure 1: Ground truth of the DoA tracking example with two moving targets.
Top panel: the target DoAs, in radians, as a function of time. Bottom panel: the
target velocities, in radians per second, as a function of time.

Specifically, we consider a ULA consisting of 5 sensors with half-wavelength spa-
cing, measuring the superposition of the source signals, modeled as independent
Gaussian processes, together with a spatially white complex Gaussian sensor noise.
The signal to noise ratio (SNR), defined as

SNR = 10 log10(σ2
signal/σ

2
noise),

where σ2
signal and σ2

noise are the signal and noise powers, respectively, is 10 dB. The
trajectories of the two sources are displayed in the top panel of Figure 1, with the
bottom panel showing the velocities. At six different time instances, evenly spaced
in time throughout the trajectories, we collect 25 array signal snapshots, from
which the array covariance is estimated using the sample covariance matrix. Using
the resulting sequence of covariance matrices, we then attempt to reconstruct the
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Figure 2: Top panel: reconstructed DoA spectrum using a static cost function in
the OMT formulation, based on six observations of the array covariance matrix.
The observation times are marked in dashed lines. The ground truth trajectories
at the observation times are marked by rings. Bottom panel: estimates obtained
using the Capon estimator applied to the individual covariance matrices.

target trajectories using the static and dynamic OMT problems. For the static
OMT problem, we use the cost function c(θ,φ) = |θ− φ|2, for θ,φ ∈ (−π, π].
For the dynamical model, we introduce a latent velocity state, v, such that θ̇(t) =
v(t), and use the state space representation in (12), where

A =

[

0 1
0 0

]

, B =
[

0 1
]T

, F =
[

1 0
]

,

with the state vector being formed as x(t) =
[

θ(t) v(t)
]T

, i.e., the same model
as in Example 1. Note here that the F matrix reflects the fact that only the angle,
θ, is directly observable in the array covariance matrix. The choice of B implies
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Figure 3: Reconstructed DoA and velocity spectra using a dynamic cost function
in the OMT formulation, based on six observations of the array covariance matrix.
The observation times are marked in dashed lines. The ground truth trajectories
at the observation times are marked by rings. Top panel: reconstructed DoA
spectrum. Bottom panel: reconstructed velocity spectrum.

that the angle may only be influenced via the velocity, i.e., through acceleration.
Thus, the resulting dynamic cost function, as defined in (8), penalizes transport
requiring acceleration, whereas the cost function for the static problem in con-
trast penalizes transport requiring velocity. In the discrete implementations of
the methods, we use 100 grid points to represent the angle, θ, and the dynam-
ical model uses 30 grid points for the velocity, v. Also, we use the regularization
parameters ε = 10−1, and common parameters γ = 30 and γ = 5 for all mar-
ginals for the static and dynamic OMT models, respectively. The results for the
static and dynamical models are displayed in the top panels of Figures 2 and 3,
respectively. Here, the trajectories in between the observation times, which are
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Figure 4: Scenario for localization in 3D using two sensor arrays and two signal
sources. The true and assumed orientations of the first array are indicated by
arrows. The three dimensional spectral estimate obtained using the formulation
in (20) is superimposed.

indicated by vertical dashed lines, are reconstructed using the interpolation pro-
cedure presented in Section 2.2, as defined by the obtained multi-marginal trans-
port plan. The required bi-marginal transport plans describing the mass transfer
between the respective margins, i.e., consecutive observation points, are computed
as the bi-marginal projections detailed in Proposition 2. To simplify comparison,
the ground truth trajectories from Figure 1, at the observation times, are super-
imposed in the plots. Also, the bottom panel of Figure 2 displays the spectral
estimates obtained by applying the Capon estimator [53] to the individual cov-
ariance matrix estimates. As may be noted, the Capon estimate contains several
spurious peaks, caused by the noisy measurements. In contrast, as seen in Fig-
ure 2, the static model is able to produce reasonable spectral estimates for the
observation times. However, the reconstructed trajectories fail to model the cross-
ing of the paths of the targets. This is not unexpected: as the static OMT model
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Figure 5: Two-dimensional projections of the three-dimensional spectral estimate
obtained using the formulation in (20) for the estimation scenario in Figure 4.

penalizes movement, i.e., velocity, the cost of transport is smaller if the targets
instead change course (note the trajectory between t = 2 and t = 3). In contrast,
the dynamical formulation, in which movement is expected, is able to produce
considerably more accurate estimates, as may be seen in Figure 3, including the
crossing of the paths of the targets. Note also that the dynamical formulation is
able to reconstruct the spectrum also for the hidden velocity state.

6.2 Sensor fusion in 3-D - audio example

In order to illustrate the applicability of the multi-marginal OMT formulation
in (16), in the form of (20), for performing sensor fusion, we consider a three-
dimensional (3-D) localization problem, in which two sensor arrays observe two
signal sources. The sources are modeled as localized speech sources, with the
source signals being taken from babble noise excerpts from [54]. The arrays con-
sist of ten sensors each, arranged as a ULA for the first array, and as points on a
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circle, with two additional sensors perpendicular to the plane of the circle, for the
second array. The sensor spacing for the ULA is 0.1 meters, and the radius for
the circular array is 0.25 meters. The scenario is shown in Figure 4. The meas-
ured sensor signals are generated using acoustic impulse responses obtained from
the randomized image method [55], using the room dimensions 4.3× 6.9× 2.6
meters. As the sources are broadband, we consider processing in the short-time
Fourier transform (STFT) domain, i.e., equivalent to narrow-band filtering of the
signal. Specifically, the signal is sampled at 16 kHz, and the STFT representation
consists of 256 frequency bins, where each frame is constructed using 16 ms of
the signal, using a Hann window with 50% overlap. We then compute estimates
of the covariance matrices for the respective arrays corresponding to the frequency
2437.5 Hz, i.e., for the wavelength 0.1395 meters, using the sample covariance es-
timate constructed from 100 signal snapshots. The proposed barycenter method
in (20) is then used to form a joint spatial spectral estimate using the two es-
timated covariance matrices, with the cost function c(x0, x1) = ∥x0 − x1∥

2
2, for

x0, x1 ∈ R3. For the discrete implementation in (34), we use a uniform gridding
of the cube [1.5, 3.5]3, using n = 75 points in each dimension. The regulariz-
ation parameters are γ = 1, common for all marginals, and ε = 10−2. Also,
in order to illustrate the geometrical properties of the proposed formulation, we
assume that the geometry of the ULA is only approximately known. Specifically,
the assumed array geometry corresponds to a rotation in the x − y plane of the
true array. The obtained spectral estimate is superimposed in Figure 4. As can
be seen, the obtained estimate implies a spatial translation of the actual sources.
However, it may be noted that the obtained estimate clearly identifies two targets,
i.e., the error in the array orientation only results in a spatial perturbation, but no
artifacts in the form of, e.g., spurious sources. This is also illustrated in Figure 5,
showing the projection of the three-dimensional spectrum onto the two dimen-
sional subspaces. As can be seen from the second and third panel, the position in
the z-coordinate is unbiased, as the rotation only takes place in the x − y plane.

6.3 Sensor fusion 2-D - simulation study

As illustrated above, the proposed multi-marginal formulation is able to produce
easily interpretable spectral estimates when used in 3-D sensor fusion scenarios,
despite having erroneous information of the array geometry. Elaborating on this,
we here conduct a Monte Carlo simulation study as to investigate the behavior
of the spectral barycenter as a function of the array alignment error, and com-
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Figure 6: Spectral estimate as given by the multi-marginal barycenter formulation
in (20). The alignment error is 6.7 degrees.

pare to other spectral estimation methods applicable to scenarios in which only
the covariance matrices of individual sensor arrays, but not the inter-array cov-
ariances, are available. Specifically, consider a 2-D localization scenario, in which
two uncorrelated sources impinge on two sensor arrays; one ellipsoidal shaped
array consisting of 8 sensors, and one linear array consisting of 7 sensors. The
wavefronts are here modeled as being circular. The scenario is shown in Figure 6.
As may be seen, similar to the three-dimensional example, an unknown rotation
is introduced to the ellipsoidal array, here varying this rotation between 0 and 10
degrees. In the Monte Carlo simulation, 100 realizations are generated for each
considered rotation angle. In each realization, the locations of the signal sources
are randomized uniformly on the square [−0.5, 0.5] × [−0.5, 0.5]. The sources
are modeled as uncorrelated circularly symmetric Gaussian white noises with vari-
ance 100, and a spatially white noise with variance 1 is added to the sensor meas-
urements. The wavelength of the impinging waves is twice that of the smallest
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Figure 7: Spectral estimate as given by the pair-wise barycenter formulation in
(18). The alignment error is 6.7 degrees.

sensor spacing in the linear array. We here consider spectral estimates obtained by
the multi-marginal barycenter formulation in (20), as approximated by the dis-
cretization in (34). We also consider the formulation in (18) which is discretized
and where the entropy regularization is employed separately for each pair-wise
transport plan (see [21] for details on the implementation of this problem). For
both methods, we utilize the cost function c(xk, xℓ) = ∥xk − xℓ∥

2
2, for grid points

xk, xℓ ∈ R2. We grid the square [−1, 1]2 uniformly using n = 100 points in
each dimension, and the algorithm parameters are γ = 0.01, common for all
marginals, and ε = 10−3 and ε = 5 · 10−3 for the multi-marginal and pair-wise
formulations, respectively. The array covariance matrices are estimated using the
sample covariance matrix from 500 signal snapshots. As comparison, we also ap-
ply the non-coherent MUSIC and MVDR estimators, as described in [56], as well
as the least-squares (LS) estimator from [57], and the non-coherent SPICE estim-
ator from [58] to the estimated covariance matrices in order to obtain estimates of
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Figure 8: Pseudo-spectrum as given by non-coherent MUSIC. The alignment
error is 6.7 degrees.

the spatial spectrum. Also included are estimates produced by the robust estim-
ators RARE [59], extended to near-field localization [60], as well as the method
introduced in [61], here referred to as AW19. It should here be noted that these
robust estimators rely on knowledge of the joint covariance matrix of the sensor
arrays, and have therefore, in contrast to the proposed method as well as the other
comparison methods, been provided with the inter-array cross-covariances.

Figures 6, 7, and 8 provide illustrations of the behavior of the considered
methods for the case of 6.7 degrees misalignment, for the multi-marginal formula-
tion, the pair-wise regularized barycenter, and the MUSIC estimator, respectively.
Comparing the two barycenter formulations, it may be noted that the estimate
provided by the multi-marginal representation is considerably more concentrated,
as compared to the formulation with pair-wise regularization. This is due to the
optimization problem in (34) being more well-conditioned, allowing for smaller
entropy regularization while still retaining numerical stability. It should how-
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Figure 9: Error in location of spectral peaks, as function of the misalignment
angle.

ever be noted that the values of the parameter ε does not have exactly the same
meaning for the two formulations, i.e., the problems are not equivalent even for
identical parameter values. It may also be noted that the spectral estimates ob-
tained using both barycenter formulations only imply a spatial perturbation of
the signal sources. In contrast, the pseudo-spectral estimates obtained using the
MUSIC estimator contain spurious peaks, in addition to larger deviations from
the true source locations.

The results from the full simulation study are shown in Figure 9, displaying
the root mean squared error (RMSE) for the deviation of the spectral peaks to the
true source locations. It may here be noted that for the case of no misalignment,
the barycenter formulations produce estimates deviating slightly more from the
ground truth than the comparison methods. However, as the misalignment in-
creases, the RMSE for the barycenter estimators increase more slowly, indicating
a greater robustness. This is not unexpected, as the formulations in (20) and (18)
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Figure 10: Scenario for the barycenter tracking problem with three moving
sources. The start of the trajectory for each source is indicated by an asterisk
(∗). Note here that one of the sensor arrays is slightly rotated, as indicated by the
orientation arrows.

allows for perturbations on the underlying domain, whereas the optimization cri-
teria for the LS and SPICE estimators are related to L2-distances for the spectra.
It may be noted that the robust RARE and AW19 estimators perform similarly to
the other comparison methods, arguably due to the quite substantial calibration
errors introduced by the array rotations. The sensitivity of RARE to the presence
of array rotations and not only pure translations, although for the far-field case,
has earlier been noted in [62].

6.4 Tracking of barycenters

As an illustration of the barycenter tracking formulation in Section 3.3, we con-
sider a 2-D localization scenario in which two ULAs, each consisting of 15 sensors,
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Figure 11: Estimated spatial spectra corresponding to the time points
t = 0, 1, . . . ,T , with T = 7, for the barycenter tracking problem. Note that
the ground truth locations have been superimposed, using the same legend as in
Figure 10.

measure signals generated by three moving sources. The scenario is illustrated in
Figure 10. Here, the start location of each source is indicated by an asterisk.
As can be seen, the trajectories of the targets all intersect at some point. Note
that one of the ULAs has been rotated slightly, as indicated by the orientational
arrows, motivating the use of a barycenter formulation in order to form an es-
timate of the spatial spectrum. At T + 1 time points t, t = 0, 1, . . . ,T , with
T = 7, we collect 100 signal snapshots which are used to estimate the covariance
matrices of the two arrays using the sample covariance matrix. The target signals
are modeled as independent Gaussian sources, and spatially white Gaussian noise
is added to the sensors, with an SNR of 20 dB. In order to model the tracking
part, we use a two-dimensional extension of the state space description utilized in

118



6. Numerical results

t = 0

-2 -1 0 1 2 3

-2

0

2

t = 1

-2 -1 0 1 2 3

-2

0

2

t = 2

-2 -1 0 1 2 3

-2

0

2

t = 3

-2 -1 0 1 2 3

-2

0

2

t = 4

-2 -1 0 1 2 3

-2

0

2

t = 5

-2 -1 0 1 2 3

-2

0

2

t = 6

-2 -1 0 1 2 3

-2

0

2

t = 7

-2 -1 0 1 2 3

-2

0

2

Figure 12: Estimated velocity spectra corresponding to the time points
t = 0, 1, . . . ,T , with T = 7, for the barycenter tracking problem. Note that
the ground truth locations have been superimposed, using the same legend as in
Figure 10.

Section 6.1, where each of the two spatial components is endowed with a velocity
state. With this description, the barycenter tracking problem considers trans-
port on a four-dimensional space, i.e., over location and velocity for each spatial
dimension. As the cost of transport between the barycenter at the observation
times and the corresponding observation marginals, we use the Euclidean cost,
i.e., c(x0, x1) = ∥x0 − x1∥

2
2 for x0, x1 ∈ R2. In forming the spectral estimates, we

use the discretized version of the problem in (26) using the parameters ε = 0.2,
γ = 0.5, common for all marginals, and α = 1. The spatial domain is gridded
uniformly with nx = 75 points in each dimension, and the velocity domain is
gridded uniformly with nv = 30 points in each dimension.

The resulting estimated spatial spectra are shown in Figure 11. As can be
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Figure 13: Estimated spatial spectra corresponding to the time points
t = 0, 1, . . . ,T , with T = 7, obtained using the non-coherent MVDR estim-
ator. Note that the ground truth locations have been superimposed, using the
same legend as in Figure 10.

seen, the modes of the estimate correspond well to the ground truth, taking into
account that the array rotation prevents perfect estimates. Note here that the
rotation only causes a slight shift in location of the sources, but no spurious es-
timates. The corresponding estimated velocity spectra are shown in Figure 12.
As can be seen, the distribution over velocity details three distinct modes that re-
main fairly constant over time, corresponding well to the ground truth constant
velocity. As comparison, Figure 13 displays the results obtained using the non-
coherent MVDR estimator from [56]. Note that this estimator does not take any
time dependence into account, and instead forms estimates at each separate time
point t using the available pair of array covariance matrices. It may be noted that
these estimates display less concentrated estimates, as well as big differences in
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Figure 14: Tracking of the mass of the peak location corresponding to the third
target at time t = 0.

spectral power.
Finally, in order to illustrate how mass is transported on the 2-D spatial do-

main, Figure 14 tracks the location of the spectral peak corresponding to the
third target along the trajectory, identified by computing the bi-marginal projec-
tions corresponding to consecutive barycenters, as detailed in Proposition 2 and
Remark 5. Note here that the distribution of mass remains fairly concentrated
throughout the trajectory.

6.4.1 Dimensionality and complexity analysis

In this section, we provide a brief dimensionality analysis of the OMT problem
used to model the barycenter tracking above, as well an analysis of the compu-
tational complexity of solving the dual problem in (36) using Algorithm 2. Re-
call that the state space consists of a location and velocity component for each
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of the two spatial dimensions. Thus, the size of the discrete state space X is
N = (nxnv)d , where nx = 75 and nv = 30 are the number of grid points on
the spatial and velocity domain, respectively, and d = 2 is the number of spa-
tial dimensions. Accordingly, the size of the discrete measurement space Y is
Ñ = nd

x . As covariance matrices are estimated for J = 2 sensor arrays at T + 1
time instances, with T = 7, this implies that the number of elements in the mass
transport tensor M in (34) is

N (T +1)Ñ (T+1)J ≈ 4.3 · 10113.

This number is larger than the number of particles in the observable universe;
solving the primal OMT problem directly, or even constructing a tensor of this
size, is thus infeasible. However, the dual problem in (36) is formulated in terms
of the dual vectors λ(t,j) ∈ Rm, for t = 0, . . . ,T , and j = 1, . . . , J . Here,
m = 225 denotes the size of covariance vectors in (33), constructed by stacking
the real and imaginary components of the corresponding covariance matrices,
excluding the redundant parts resulting from the Hermitian structure. Thus,
the number of real variables in the dual problem is given by (T + 1)Jm = 3600,
constituting a dramatic complexity reduction as compared to the primal problem.

To analyze the computational complexity for solving the dual problem, we
consider the complexity of performing one iteration sweep of Algorithm 2, i.e.,
one sweep through all index pairs (t, j), for t = 0, . . . ,T , and j = 1, . . . , J , as
to update the corresponding dual vectors λ(t,j), where we run through j in the
inner cycle and t in the outer cycle. It may be noted that for each index pair
(t, j), this requires computing the vector v(t,j) in (37), followed by solving (38), as
detailed in Theorem 1. The computation of v(t,j) is detailed in the projection in
(46) in Proposition 4, disregarding the vector u(t,j). As noted in Section 5.3, com-
puting the set of vectors v(t,j), for a fixed t and j = 1, 2, . . . , J , requires only one

multiplication with K ∈ RN×N , and 2J multiplications with K̃ ∈ RN×n2
x . By ex-

ploiting the structures of K and K̃ , as described in Remark 4, i.e., the decoupling
in the spatial dimensions, the total complexity for performing the update of the

left and right factors and computing the set
{

v(t,j)
}J

j=1
, is O(d (nxnv)3 + Jdn3

xnv).

Finding the roots of (38) by Newton’s method requires solving a system of linear
equations of size m × m in each inner Newton iteration. However, as indic-
ated in Remark 3, after a few outer Sinkhorn iterations, Newton’s method in
general converges directly, i.e., it suffices to solve a single system of equations in
each outer iteration. Thus, after these initial outer iterations, the complexity for
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updating all dual variables λ(t,j), for t = 0, 1, . . . ,T , and j = 1, 2, . . . , J , is
O
(

T (d (nxnv)3 + Jdn3
xnv + Jm3)

)

.

7 Conclusions

In this work, we have proposed a framework for formulating multi-marginal
OMT problems for scenarios in which the underlying mass distributions are only
indirectly observable, referred to as partial information of the marginals. Mo-
tivated by examples from spatial spectral estimation in array processing, we have
shown that the proposed formulations may be used for modeling information
fusion, as well as for tracking the evolution of mass distributions over time. By
leveraging the geometrical properties of OMT, the proposed formulations have
been shown to yield robust spectral estimates, as well as allowing for exploiting
prior knowledge of underlying dynamics. Also, we have presented computational
tools, leading to computationally efficient solution algorithms for the transport
problem. Even though the original primal OMT formulation may be prohib-
itively large, we have shown that by considering dual formulations, as well as
exploiting inherent structures in the problem, one may arrive at tractable solvers
even in high-dimensional settings.

8 Appendix

In this section, we provide proofs of Propositions 1-4.

Proof of Proposition 1. As to simplify the exposition, let λ and Δ denote the sets
λ0, . . . , λT and Δ0, . . . ,ΔT , respectively. The Lagrangian of (34), with dual
variable λ, is detailed as

L(M,Δ, λ) =
∑

i0,...,iT

Ci0,...,iT Mi0,...,iT + εD(M)

+

T
∑

t=0

γt∥Δt∥
2
2 +

T
∑

t=0

λT
t (rt +Δt − GtPt (M)).

(47)

For fixed λ, the Lagrangian is minimized when the gradients with respect to M
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and Δ vanish. For M, this requires

Ci0,...,iT + ε log Mi0,...,iT −
T
∑

t=0

(

λT
t Gt

)

it
= 0

⇔Mi0,...,iT = exp(−Ci0,...,iT /ε)
T
∏

t=0

exp(GT
t λt/ε).

Thus, one may express the mass transport tensor as M = K⊙ U for two sensors

K,U ∈ RnT +1
, defined as K = exp(−C/ε) and

U = u0 ⊗ u1 ⊗ · · ·⊗ uT , with ut = exp(GT
t λt/ε).

This proves the first statement of the proposition. Further, the Lagrangian (47) is
minimized with respect to Δ when

2γtΔt + λt = 0 ⇒ Δt = −
1

2γt
λt for t = 0, 1, . . . ,T .

Thus, the Langrangian (47), when minimized with respect to M andΔ, becomes

min
M,Δ

L(M,Δ, λ) = −ε
∑

i0,...,iT

Mi0,...,iT −
T
∑

t=0

(

1

4γt
∥λt∥

2
2 − λ

T
t rt

)

,

yielding the dual problem

maximize
λ0,...,λT

− ε
∑

i0,...,iT

Ki0,...,iT Ui0,...,iT −
T
∑

t=0

1

4γt
∥λt∥

2
2 +

T
∑

t=0

λT
t rt .

The proofs of Proposition 2 - 4, for exploiting tensor structures in order to
compute the projections on the marginals, are based on the following two lemmas.

Lemma 1. Let U = u0 ⊗ u1 ⊗ · · ·⊗ uT and suppose that

⟨K,U⟩ = wT
1 diag(ut )w2,

where w1 and w2 are vectors that may depend on uℓ, for ℓ ̸= t. Then,

Pt(K⊙U) = w1 ⊙ ut ⊙ w2.
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Proof. Let eit denote the unit vector whose element it is equal to one, and with all
other elements equal to zero. Then, by replacing ut with ut ⊙ eit in the expression
for ⟨K,U⟩, we get the element it of the projection on the t:th marginal, i.e.,

⟨K, u0 ⊗ · · · ⊗ ut−1 ⊗ (ut ⊙ eit )⊗ ut+1 ⊗ · · ·⊗ uT ⟩

=
∑

ℓ0,ℓ1...,ℓT

Kℓ0,ℓ1...,ℓT

( t−1
∏

s=0

(us)ℓs

)

(ut ⊙ eit )ℓt

( T
∏

s=t+1

(us)ℓs

)

=
∑

ℓ0,...,ℓt−1
ℓt+1,...,ℓT

Kℓ0,ℓ1...,ℓT

( t−1
∏

s=0

(us)ℓs

)

(ut)it

( T
∏

s=t+1

(us)ℓs

)

= (Pt (K⊙ U))it .

It may be noted that in the second line, a term in the sum is only non-zero if
it = ℓt , yielding the second equality. By the assumption in the lemma, we get

(Pt (K⊙ U))it = wT
1 diag(ut ⊙ eit )w2 = (w1)it (ut)it (w2)it ,

from which the result follows.

Lemma 2. Let U = u0 ⊗ u1 ⊗ · · ·⊗ uT and suppose that

⟨K,U⟩ = wT
1 diag(ut1)W2 diag(ut2 )w3,

where w1,w3 ∈ Rn and W2 ∈ Rn×n may depend on uℓ, for ℓ /∈ {t1, t2}. Then,

Pt1,t2(K⊙ U) = diag(w1 ⊙ ut1)W2 diag(ut2 ⊙ w3).

Proof. Analogously to the proof in Lemma 1, we may express the bi-marginal
projections as

(Pt1,t2(K⊙ U))it1 ,it2
=⟨K, u0 ⊗ · · ·⊗ ut1−1 ⊗ (ut1 ⊙ eit1

)⊗ ut1+1 ⊗· · ·

· · ·⊗ ut2−1 ⊗ (ut2 ⊙ eit2
)⊗ ut2+1 ⊗ · · · ⊗ uT ⟩.

Hence, by the assumption,

(Pt1,t2(K⊙ U))it1 ,it2
= wT

1 diag(ut1 ⊙ eit1
)W2 diag(ut2 ⊙ eit2

)w3

= (w1)it1
(ut1 )it1

(W2)it1 ,it2
(ut2 )it2

(w3)it2
,

and thus the result follows.
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Proof of Proposition 2. First, note that due to the assumption of a sequential cost,
we have

Ki0,...,iT =

T
∏

t=1

Kit−1,it ,

for the tensor K = exp(−C/ε) and matrix K = exp(−C/ε). Therefore,

⟨K,U⟩ =
∑

i0,i1,...,iT

( T
∏

t=1

Kit−1,it

) T
∏

t=0

(ut)it

=
∑

i0,i1,...,iT

(u0)i0

T
∏

s=1

(K diag(ut))it−1 ,it

= uT
0 K diag(u1)K . . .K diag(uT −1)KuT

= 1T diag(u0)K diag(u1)K . . .K diag(uT −1)K diag(uT )1.

Thus, ⟨K,U⟩ may be written as in Lemma 1 with

w1 =

(

1T diag(u0)K diag(u1)K . . .K diag(ut−1)K
)T

,

w2 = K diag(ut+1)K . . .K diag(uT −1)K diag(uT )1,

and hence,

Pt(K⊙U) =
(

uT
0 K diag(u1)K . . .K diag(ut−1)K

)T
⊙ ut

⊙
(

K diag(ut+1)K . . .K diag(uT −1)KuT
)

.

Moreover, in order to derive an expression for Pt1,t2(K⊙U), note that ⟨K,U⟩ can
be written as in Lemma 2 with

w1 =

(

1T diag(u0)K diag(u1)K . . .K diag(ut1−1)K
)T

W2 = K diag(ut1+1)K . . .K diag(ut2−1)K

w3 = K diag(ut2+1)K . . .K diag(uT −1)K diag(uT )1,

and hence the expression (40) follows.
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Proof of Proposition 3. Due to the structure of the cost tensor C, we have

Ki0,...,iJ =

J
∏

j=1

Ki0,ij ,

for the tensor K = exp(−C/ε) and the matrix K = exp(−C/ε). Thus, one may
write

⟨K,U⟩ =
∑

i0,i1,...,iJ

( J
∏

ℓ=1

Ki0,iℓ

) J
∏

ℓ=0

(uℓ)iℓ

=
∑

i0

(u0)i0

∑

i1,...,iJ

J
∏

ℓ=1

Ki0,iℓ (uℓ)iℓ

=
∑

i0

(u0)i0

J
∏

ℓ=1

(Kuℓ)i0

=uT
0

( J
⊙

ℓ=1

Kuℓ

)

.

It may be noted that this may be expressed as

⟨K,U⟩ = 1T diag(u0)

( J
⊙

ℓ=1

Kuℓ

)

,

as well as

⟨K,U⟩ =(Kuj)
T
(

u0 ⊙
J
⊙

ℓ=1
ℓ ̸=j

Kuℓ

)

=1T diag(uj)K
T
(

u0 ⊙
J
⊙

ℓ=1
ℓ ̸=j

Kuℓ

)

.

Applying Lemma 1 yields the expressions (41) and (42) for Pj(K ⊙ U) for j =

0, . . . , J . Alternatively, one may rewrite ⟨K,U⟩ as

⟨K,U⟩ = 1T diag(u0) diag

( J
⊙

ℓ=1
ℓ ̸=j

Kuℓ

)

K diag(uj)1,
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and

⟨K,U⟩ = 1T diag(uj1 )K T diag

(

u0 ⊙
J
⊙

ℓ=1
ℓ ̸=j1,j2

Kuℓ

)

K diag(uj2)1.

With Lemma 2, this leads to the expressions (43) and (44) for the couplings
Pj1,j2(K⊙ U) for j1, j2 = 0, . . . , J .

Proof of Proposition 4. Recall the definition of the set
Λ = {(t, j) | t ∈ {0, 1, . . . ,T }, j ∈ {0, 1 . . . , J}}. The structure of the cost
tensor C then implies that each element of the tensor K = exp(−C/ε) may be
expressed as

K(i(t,j)|(t,j)∈Λ) =

( T
∏

t=1

Ki(t−1,0)i(t,0)

) T
∏

t=0

J
∏

j=1

K̃i(t,0)i(t,j) ,

with the matrices defined as K = exp(−C/ε) and K̃ = exp(−C̃/ε). Further-
more, the elements of the tensor U are given by

U(i(t,j)|(t,j)∈Λ) =
T
∏

t=0

J
∏

j=0

(u(t,j))i(t,j) .

Therefore,

⟨K,U⟩ =
∑

i(s,ℓ)

(s,ℓ)∈Λ

( T
∏

t=1

Ki(t−1,0)i(t,0)

)( T
∏

t=0

J
∏

j=1

K̃i(t,0)i(t,j)

) T
∏

t=0

J
∏

j=0

(u(t,j))i(t,j)

=
∑

i(s,0)
s=0,1,...,T

( T
∏

t=1

Ki(t−1,0)i(t,0)

) T
∏

t=0

(

∑

i(t,ℓ)
ℓ=1,2,...,J

( J
∏

j=1

K̃i(t,0)i(t,j)

) J
∏

j=0

(u(t,j))i(t,j)

)

.

Note that the last sum is a projection of the type (41) in Proposition 3, and we
denote it as
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∑

i(t,ℓ)

ℓ=1,2,...,J

( J
∏

j=1

K̃i(t,0)i(t,j)

) J
∏

j=0

(u(t,j))i(t,j) =

(

u(t,0) ⊙
J
⊙

j=1

(

K̃ u(t,j)

))

i(t,0)

=( pt)i(t,0) .

Hence, using the proof of Proposition 2, one may write

⟨K,U⟩ =pT
0 K diag( p1)K . . .K diag( pT −1)KpT

=pT
0 K . . .K diag( pt−1)K diag(u(t,0)) diag

( J
⊙

j=1

(

K̃ u(t,j)
)

)

· K diag( pt+1)K . . .KpT .

Thus, the projections on the central marginals, corresponding to index (t, 0) for
t = 0, 1, . . . ,T , may be computed as in Proposition 2, yielding

P(t,0)(K⊙ U) =
(

pT
0 K diag( p1)K . . . diag( pt−1)K

)T
⊙ pt

⊙
(

K diag( pt+1) . . .K diag( pT −1)KpT
)

.

For the other marginals, i.e., for (t, j) such that j > 0, one may express ⟨K,U⟩
similarly as in the proof of (42) of Proposition 3, i.e.,

⟨K,U⟩ =1T diag(u(t,j))K̃
T
(

( pT
0 K diag(p1)K . . . diag( pt−1)K )T

⊙ ( pt ./(Ku(t,j)))⊙ (K diag( pt+1). . .K diag( pT −1)KpT )

)

,

which, with Lemma 1, yields the expression (46).
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[13] M. Beiglböck, P. Henry-Labordère, and F. Penker, “Model-independent
bounds for option prices - a mass transport approach,” Finance and
Stochastics, vol. 17, no. 3, pp. 477–501, 2013.

[14] A. Dominitz and A. Tannenbaum, “Texture Mapping via Optimal Mass
Transport,” IEEE Trans. Vis. Comput. Graphics, vol. 16, no. 3, pp. 419–
433, 2010.

[15] M. A. Schmitz, M. Heitz, N. Bonneel, F. Ngolè, D. Coeurjolly, M. Cu-
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Defining Fundamental Frequency for
Almost Harmonic Signals

Filip Elvander and Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this work, we consider the modeling of signals that are almost, but not quite,
harmonic, i.e., composed of sinusoids whose frequencies are close to being in-
teger multiples of a common frequency. Typically, in applications, such signals
are treated as perfectly harmonic and one attempts to estimate their fundamental
frequency, despite the signals not actually being periodic. Herein, we provide
three different definitions of a concept of fundamental frequency for such inhar-
monic signals and study the implications of the different choices for modeling and
estimation. We show that one of the definitions corresponds to a misspecified
modeling scenario, and provides a theoretically solid benchmark for analyzing
the behavior of estimators derived under a perfectly harmonic assumption. The
second definition stems from optimal mass transport theory and yields a robust
and easily interpretable concept of fundamental frequency based on the signals’
spectral properties. The third definition interprets the inharmonic signal as an
observation of a randomly perturbed harmonic signal. This allows for computing
a hybrid information theoretical bound on estimation performance, as well as for
finding an estimator attaining the bound. The theoretical findings are illustrated
using numerical examples.

Key words: Inharmonicity, fundamental frequency estimation, misspecified
models, optimal mass transport
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1 Introduction

Signals that may be well modeled as superpositions of harmonically related sinus-
oids appear in a wide variety of fields. Such signals, often referred to as pitches,
are, for instance, used in speech processing for modeling the voiced part of human
speech [1], in music information retrieval for extracting musical melodies [2], for
monitoring and fault detection of industrial machinery [3], or assessing the state
of human diseases [4]. In such applications, the most commonly employed signal
feature is the fundamental frequency, or pitch, corresponding to the reciprocal of
the signal period. Due to this, considerable effort has been directed towards de-
veloping estimators that are statistically, as well as computationally, efficient [5],
with more recent contributions extending the estimation problem to signals con-
taining multiple harmonic structures (see, e.g., [6]). However, in some cases, the
assumed harmonic structure is only approximate, i.e., there exists no fundamental
frequency such that the frequencies of the sinusoidal are all integer multiples of
it, or, equivalently, the signal is not periodic. Such signals are referred to as in-
harmonic and may be found, e.g., in the sound produced by stringed musical
instruments [7] and to some extent the human voice [8]. In the former case,
there exists parametric models for some instruments based on their physical prop-
erties, describing the precise deviation from a perfect harmonic structure [7]. This
allows for the formulation of efficient estimators of the signal parameters [9, 10],
as well for deriving information theoretical bounds on estimation performance,
such as the Cramér-Rao lower bound (CRLB) [11]. However, when no apparent
structure of the inharmonicity is known, it is less clear how to efficiently estimate
the frequency content of such signals. Intuitively, one should be able to achieve
better estimation performance than what is possible under the assumption of an
unstructured model, i.e., when there is no relation between the frequencies of the
sinusoidal components. Although one may use robust methods [9] or simply re-
sort to applying estimators derived for the perfectly harmonic case, it is not clear
what the relevant bounds on estimation performance are. In fact, when applying
a harmonic estimator to an inharmonic signal, it is seldom stated what quantity
one actually aims to estimate. This is the question this work aims to answer: what
does the concept of a pitch mean for inharmonic signals? We provide three pos-
sible definitions, emanating from three different views of the inharmonic signal,
and study the implications of the different choices.

Firstly, we follow a traditional approach and propose to define the pitch of
inharmonic signals via the best ℓ2 approximation. We show that for the case
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of Gaussian additive noise, this corresponds to the best approximation in the
Kullback-Leibler sense, allowing for utilizing the framework of misspecified es-
timation and for interpreting the pitch definition as a pseudo-true fundamental
frequency (see, e.g., [12]). Furthermore, this allows us to use the misspecified
CRLB (MCRLB) [13] as a bound on estimation performance, which we derive
for the inharmonic model. This bound is asymptotically tight and attained by the
misspecified maximum likelihood estimator (MLE). Thus, this definition form-
alizes the inherent assumptions behind applying harmonic estimators to inhar-
monic signals. However, although practically useful, we show that this definition
is problematic for signals with a long time duration, as well as depends on para-
meters that may be considered nuisance.

As an alternative, we consider approximating the spectral representation of
infinite-length versions of the inharmonic signal. Building on the concept of op-
timal mass transport (OMT) (see, e.g., [14]), we consider the harmonic spectrum
closest in the OMT sense, yielding a definition of the fundamental frequency.
We show that this definition has some attractive properties, such as stability to
small perturbations, as well as an intuitive appeal. Furthermore, when using the
definition as a basis for estimating the pitch, the resulting estimator allows for
a closed-form expression for the asymptotic variance, and, in the case of perfect
harmonicity and white Gaussian noise, has the same asymptotical performance as
the MLE. In this case, the resulting estimator corresponds asymptotically to an es-
timator formed using the extended invariance principle (EXIP) [15], fitting a set
of unstructured frequency estimates to a perfectly harmonic structure. The EXIP
concept extends the invariance principle for ML estimation to the case when the
variable transformation is not bijective and has earlier been successfully applied
in, e.g., array processing problems in the presence of calibration errors [16], as
well as for pitch estimation [17] under the assumption of perfect harmonicity.

Lastly, we consider modeling inharmonic signals within a stochastic frame-
work, wherein the noiseless signal is regarded as an observation of a random vari-
able. Specifically, we model deviations from the perfectly harmonic model as zero-
mean random variables, allowing for interpreting the pitch as an expectation. As
the resulting model contains both deterministic and random parameters, we de-
rive the hybrid CRLB (HCRLB) as a lower bound on estimation mean squared
error (MSE). We also derive an easily implementable hybrid ML/maximum a
posteriori (MAP) estimator that asymptotically attains the resulting HCRLB.

We compare and contrast the three definitions with each other, highlighting
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their relative merits and applicability, as well as provide numerical illustrations of
the derived estimators and proposed bounds.

2 Almost harmonic signals

Consider the noiseless signal model1

xt =

K
∑

k=1

r̃keiφ̃k+iω̃kt , (1)

for t = 0, 1, . . . ,N − 1, and N ∈ N, where r̃k > 0, φ̃k ∈ [−π, π), and
ω̃k ∈ [−π, π) denote the amplitude, initial phase, and frequency, respectively,
for the k:th signal component. Then, if there exists ω0 ∈ [−π, π) such that
ω̃k = kω0, for k = 1, . . . ,K , the signal in (1) is referred to as being harmonic,
with fundamental frequency, or pitch, ω0. Note that this is the case also if some
of the components are missing, i.e., r̃k = 0 for some k, as the signal period is still
2π/ω0. The model in (1) appear in many signal processing applications, not least
in audio processing, and considerable effort has been directed towards deriving
estimators for the parameters ω0 and (̃rk, φ̃k), for k = 1, . . . ,K (see, e.g., [6] for
an overview). However, for inharmonic signals, the integer relationship between
the component frequencies is only approximate [8, 19]. That is,

ω̃k = ω0k +Δk, k = 1, . . . ,K , (2)

where Δk are called inharmonicity parameters. As to distinguish from the case
with completely unrelated sinusoidal components, it is here assumed that the in-
harmonicity parameters are small in the sense that |Δk|≪ ω0. Thus, assuming
that the component frequencies satisfy (2) constitutes a type of middle ground
between the highly structured harmonic model, where Δk = 0, for all k, and the
unstructured sinusoidal model, where there is no relation between the frequency
components. In some special cases, parametric models for the inharmonicity ex-
ists. For example, a common model for vibrating strings is

ω̃k = ω0k
√

1 + k2β (3)

1In the interest of generality, we here consider complex-valued signals. For real-valued signals,
a corresponding complex version may easily be formed as the discrete-time analytical signal [18].
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where β > 0 is a parameter related to the stiffness of the string [7]. Thus, for this

model, the inharmonicity parameters are given byΔk = ω0k
(

√

1 + k2β − 1
)

>

0, for all k. However, such a structured model may not be assumed in the gen-
eral case, and, in this work, we therefore do not assume any particular structure
of {Δk}

K
k=1, or indeed that any useful such structure exists. Rather, we aim to

put the intuitive concept of inharmonic, i.e., almost harmonic, signals on more
solid foundation by offering three conceptually different definitions of the mean-
ing of a fundamental frequency for a non-periodic signal. Common for the three
definitions will be the existence of a perfectly harmonic waveform,

μt =

L
∑

ℓ=1

rℓe
iφℓ+iω0ℓt , (4)

with L not necessarily being equal to K , that is a best approximation of xt , with
the definition of optimality differing between the definitions. In this framework,
ω0 will be the definition of the pitch for an inharmonic signal xt . Furthermore,
in order to find bounds on estimation performance, as well as to formulate estim-
ators, we assume that the measured signal is well modeled as

yt = xt + et , (5)

where et is a circularly symmetric white Gaussian noise with variance σ̃2. How-
ever, most results presented herein may be readily extended to non-white noise
processes. Throughout, let

θ =
[

ω0 φ1 . . . φL r1 . . . rL
]T

denote the parameter vector defining the approximating signal, i.e., μt ≡ μt (θ),

and let y =
[

y0 . . . yN−1

]T
be the vector of available signal samples.

3 ℓ2 optimality and misspecified models

We initially consider approximating the inharmonic signal in (1) in the ℓ2 sense,
i.e.,

θ0 = arg min
θ

1

N

N−1
∑

t=0

|xt − μt (θ)|
2 . (6)
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That is, the approximating pitch is the harmonic waveform yielding the least
squared deviation from the inharmonic signal. For notational brevity, L = K
for the ℓ2 approximation.2 Approximations such as (6) has earlier been applied in
speech coding applications for decreasing the data rate in speech analysis/synthesis
systems [21]. In addition to the intuitive appeal of this choice, as well as the
tractability of computing θ, this approximation may be interpreted as a so-called
pseudo-true parameter within the framework of misspecified models. Specifically,
consider a scenario in which it is (erroneously) believed that the signal samples,
yt are perfectly harmonic, i.e., generated as yt = μt + wt , where wt is a circularly
symmetric white Gaussian noise with (unknown) variance σ2. Then, one may
consider the following definition.

Definition 1 (Pseudo-true parameter [12]). Consider a signal sample y. For a
probability density function (pdf ) p, parametrized by the parameter vector θ, the
pseudo-true parameter, θ0, is defined as

θ0 = arg min
θ

− Ey

(

log p(y;θ)
)

, (7)

where Ey denotes expectation with respect to the pdf of y.

As may be noted, the pseudo-true parameter minimizes the Kullback-Leibler
distance between the pdf of the assumed model and the actual pdf of the signal
sample. In our case, the following proposition holds.

Proposition 1 (Pseudo-true parameter). Under the Gaussian assumption, the pseudo-
true parameter θ0 for the harmonic model is given by (6), and the pseudo-true vari-
ance is

σ2 = σ̃2 +
1

N

N−1
∑

t=0

|ξt(θ0)|2 ,

where ξt(θ) ! μt (θ)− xt .

Proof. As both the assumed and true distributions are Gaussian, the result follows
directly.

2This may be extended to L ̸= K in a straightforward manner, although L = K allows for
making additional comparisons to the perfectly harmonic case. It may be noted that L < 2K is
required for avoiding the so-called sub-octave problem [20].
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From this, we may conclude that approximating the inharmonic signal in ℓ2

may be interpreted as finding the Gaussian pdf with mean identical to a periodic
waveform that best approximates the true signal pdf in the Kullback-Leibler sense.
Furthermore, it can be shown that the misspecified MLE (MMLE), i.e., the MLE
derived under an assumed model different from that of the actual measurements,
asymptotically tends to the pseudo-true parameter, i.e., θ̂MMLE → θ0 almost
surely as the signal to noise ratio (SNR), or number of signal samples, N , tends to
infinity [12]. This leads to a very practical consequence: the harmonic waveform
μt resulting from the ℓ2 approximation in (6) corresponds to the expected result
when applying an harmonic MLE, or approximations thereof [6], to inharmonic
measurements. We summarize this in the following definition.

Definition 2. Let xt , for t = 0, . . . ,N − 1, be an inharmonic waveform. Then,
the best harmonic approximation in ℓ2 is given by μt (θ0), where θ0 solves (6).

The harmonic signal in Def. 2 may be seen as the quantity being (tacitly) es-
timated when applying estimators derived under an harmonic assumption to in-
harmonic signals. Furthermore, by considering the interpretation as the pseudo-
true parameter, one may find a bound on performance on any unbiased estimator
of θ0. Such a family of bounds is the misspecified CRLB (MCRLB) [13]. Spe-
cifically, considering estimators that satisfy the MLE unbiasedness conditions, the
following theorem, adapted from [13], yields a bound on estimator variance.

Theorem 1. Let θ̂ be an estimator of θ0 that is unbiased under the signal pdf. Then,

Ey

(

(θ̂− θ0)(θ̂− θ0)T
)

≽ A(θ0)−1F (θ0)A(θ0)−1 (8)

where A(θ) = −σ
2

σ̃2 F (θ)− F̃ (θ) and

F (θ)=
2σ̃2

(σ2)2

N−1
∑

t=0

∇θμ
R
t (θ)∇θμ

R
t (θ)T +∇θμ

I
t (θ)∇θμ

I
t (θ)T ,

F̃ (θ)=
2

σ2

N−1
∑

t=0

(

ξRt (θ)∇2
θμ

R
t (θ) + ξIt (θ)∇2

θμ
I
t (θ)

)

.

Here, (·)R = Re(·) and (·)I = Im(·) denote the real and imaginary parts,
respectively.
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Proof. See the appendix.

The MCRLB is given by the diagonal of the right-hand side of (8) and thus
provides a lower bound on the variance of any estimator of θ0 that is unbiased
under the pdf of the measured signal. It may be noted that whenΔk = 0, for all k,
i.e., when the signal xt is perfectly harmonic, F̃ (θ0) = 0, and F (θ0) is the standard
Fisher information matrix (FIM). In this case, the MCRLB coincides with the
CRLB of a harmonic signal. Thus, the MCRLB provides a means of assessing
the performance of any estimator derived under the harmonic assumption, even
when the observed signal is inharmonic. Further, as N → ∞, one may express
the MCRLB corresponding to the pseudo-true fundamental frequency in closed
form, as detailed below.

Proposition 2 (Asymptotic MCRLB). Let the pseudo-true parameter be

θ0 =
[

ω0 φ1 . . . φK r1 . . . rK
]T

.

Then, as N → ∞, the asymptotic MCRLB for the pseudo-true fundamental fre-
quency ω0 is given by

MCRLB(ω0) = σ̃2 C + E

(C − E + Z + D)2 (9)

where C =
N (N 2−1)

∑K
k=1 k2r2

k
6 , and

Z = −2
K
∑

k=1

k2r2
k

N (N − 1)(2N − 1)

6

+ 2
K
∑

k=1

N−1
∑

t=0

k2rkr̃kt2 cos(φ̆k + ω̆kt)

D = 2(N − 1)

[

N (N − 1)

2

K
∑

k=1

k2r2
k−

K
∑

k=1

N−1
∑

t=0

k2rkr̃kt cos(φ̆k + ω̆kt)

]

E =
2

N

K
∑

k=1

k2r̃2
k

(

N−1
∑

t=0

t sin(φ̆k + ω̆kt)

)2

+
2

N

K
∑

k=1

k2

(

r̃k

N−1
∑

t=0

t cos(φ̆k + ω̆kt)− rk
N (N − 1)

2

)2

,

148



3. ℓ2 optimality and misspecified models

where φ̆k = φk − φ̃k and ω̆k = kω0 − ω̃k, for k = 1, . . . ,K .

Proof. See the appendix.

It may be noted that in the perfectly harmonic case, the terms E,Z , and D are
all equal to zero as the pseudo-true parameter θ0 then coincides with the actual
signal parameter. It is worth noting that σ̃2/C is equal to the asymptotic CRLB
for the perfectly harmonic model [22].

Remark 1. As one may compute the MCRLB for an estimate of the pseudo-true
fundamental frequency ω0, it is also possible to construct a bound for the expected
MSE for misspecified estimators. That is, if one considers an estimate of ω0 to be
a misspecified estimate of ω̃1, the theoretical MSE is given by

Ey

(

(ω̂0 − ω̃1)2
)

= MCRLB(ω0) + (ω0 − ω̃1)2. (10)

In fact, as will be illustrated in the numerical section, the MSE for this misspe-
cified estimate may for moderate values of SNR and sample lengths N be lower
than the CRLB for an unstructured sinusoidal model, due to the MCRLB often
being considerable smaller than the CRLB.

Despite its appeal as formalizing tacit assumptions behind using harmonic
estimators, as well as resulting in easily computed performance bounds, Def. 2
becomes unsatisfactory if one allows for very long signals. Although the normal-
ization by N allows for considering limits of the criterion (6), as it is guaranteed
to be finite, the definition of pitch becomes ambiguous. To see this, it may be
noted that the correlation of any two sinusoids with distinct frequencies tends to
zero as N →∞. Thus, (6) is minimized by setting a multiple of the pseudo-true
ω0 equal to the frequency ω̃k corresponding to the largest amplitude r̃k. However,
any integer multiple is an equally valid choice. Def. 2 allows for selecting ω0 as
ω0 = ω̃k/ℓ, where k = arg maxmr̃m, for any ℓ ∈ {1, . . . ,K }. Thus, K indistin-
guishable candidates for ω0 exist if N is large enough. It may also be noted that
ω0 depends on the initial phases φ̃k of the inharmonic signal, parameters that may
be considered nuisance.

The issue of ambiguity for large N is illustrated in Figures 1 and 2. Spe-
cifically, Figure 1 displays the ℓ2 cost function for a perfectly harmonic signal
with ω0 = π/10 consisting of five harmonics, where r̃2 = r̃3 are the largest amp-
litudes, with the top and bottom panels of Figure 1 showing the cost for N = 500
and N = 3000, respectively. As can be seen, for both cases, ω0 corresponds to
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Figure 1: The ℓ2 cost function used in Def. 2 when applied to a perfectly har-
monic signal with fundamental frequency ω0 = π/10 for two different sample
lengths. Top panel: N = 500. Bottom panel: N = 3000.

the unique global minimum, with a cost of exactly zero. In contrast, Figure 2
displays the same scenario, with the difference being that the perfectly harmonic
structure having been replaced with the string model in (3) with β = 10−3. For
N = 500, the global minimum is still unique, and the definition thus unambigu-
ous. However, for N = 3000, the cost function value at the local minimum at
ω̃2/4 approaches that of the global minimum. If one lets N → ∞, these cost
functions values will become identical, in addition to several other isolated global
minima appearing. The issue of ambiguity may be addressed by instead consid-
ering the spectral properties of the signal xt , allowing for defining a harmonic
approximation of the more abstract signal, i.e., when no particular sample length
N has been specified. This can be achieved through the use of OMT, as described
next.
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Figure 2: The ℓ2 cost function used in Def. 2 when applied to an inharmonic
signal generated using (3), with ω0 = π/10 and β = 10−3 for two different
sample lengths. Top panel: N = 500. Bottom panel: N = 3000.

4 An OMT-based definition of pitch

As an alternative to defining the harmonic counterpart of an inharmonic signals
by means of waveform approximation, such as in Def. 2, one may instead consider
the signals’ spectral representation. Specifically, the spectrum of the signal in (1)
is given by

Φx(ω) = 2π
K
∑

k=1

r̃2
kδ(ω− ω̃k), (11)

where ω ∈ [−π, π), and δ(·) denotes the Dirac delta function. This constitutes
a more abstract representation of xt as it is not related to any particular sample
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length N . Furthermore, any harmonic spectrum may be represented as

Φμ(ω) = 2π
L
∑

ℓ=1

r2
ℓ δ(ω− ℓω0), (12)

where we let L be potentially different from K . Thus, one may define the funda-
mental frequency of an inharmonic signal as the ω0 corresponding to an approx-
imating harmonic spectrum Φμ. Note however that considering the approxima-
tion in Lp, for some p ≥ 1, leads to same problem as was encountered in the limit-
ing case for ℓ2 approximation of the waveform: selecting ω0 as ω0 = ω̃k/ℓ, where
k = arg maxmr̃m, for any ℓ ∈ {1, . . . ,L} yield equally good approximations.
However, a measure of distance not related to point-wise comparison of Φx and
Φμ may be obtained by considering the framework of OMT. Within this frame-
work, the best approximation corresponds to the one requiring the least costly
perturbation in order to shift the observed signal to that of a perfectly harmonic
model, with perturbations being realized by moving the whole distribution, as
opposed to the point-wise changes implied by Lp norms.

To formulate this, let T = [−π, π) and let M+(T) denote the set of non-
negative, generalized integrable functions on T. Elements of M+(T) may be
interpreted as distributions of mass on T, and, in particular, Φx ∈ M+(T) and
Φμ ∈M+(T). Then, for any Φ0,Φ1 ∈M+(T) with the same total mass, i.e.,
∫

T
Φ0(ω)dω =

∫

T
Φ1(ω)dω, one may define a notion of distance, S : M+(T)×

M+(T)→ R, between them by the Monge-Kantorovich problem of OMT [14],

S(Φ0,Φ1) = min
M+(T×T)

∫

T×T

M(ω1,ω2)c(ω1,ω2)dω1dω2

s.t.

∫

T

M(·,ω)dω = Φ0 ,

∫

T

M(ω, ·)dω = Φ1,

where c : T×T→ R+ is a cost function defining the cost of moving a unit mass.
Here, M is referred to as a transport plan as it may be interpreted as describing
how mass is moved from Φ0 to Φ1. As the constraints ensure that M transports
all available mass, and no other, between Φ0 and Φ1, the objective corresponds
to the total cost of transport. The idea of using OMT as a measure of distance
between spectra has earlier been considered in [23], wherein it was shown that S,
for certain choices of c, may be used for defining a metric on M+(T). Herein,
we will use c(ω1,ω2) = (ω1 − ω2)2, i.e., the cost of transport between two
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frequencies is equal to their squared Euclidean distance. With this, one may find
the best harmonic approximation ofΦx in the OMT sense by minimizing S(·,Φx)
over the set of harmonic spectra. Note that, in contrast to Lp minimization, this
corresponds to finding the most efficient way of perturbing the spectral peaks
of Φx in frequency so that the resulting spectrum is harmonic, with the cost of
moving a peak being proportional to its power. Formally,

Φμ = arg min
Φ∈ΩL

S(Φ,Φx), (13)

where ΩL is the set of harmonic spectra, i.e.,

ΩL =

{

Φ ∈M+(T) |

Φ(x) = 2π
L
∑

ℓ=1

r2
ℓ δ(ω− ℓω0) , rℓ ≥ 0,ω0 ∈ T

}

.

To see that (13) may be solved efficiently, note that for any candidate ω0, corres-
ponding to a subset of ΩL, all power at the frequency ω̃k in Φx will be transported
to the nearest integer multiple of ω0 when evaluating S. That is, letting ΩL,ω0

denote such a subset, i.e., all harmonic spectra with fundamental frequency ω0,
we get

min
Φ∈ΩL,ω0

S(Φ,Φx) = 2π
K
∑

k=1

r̃2
k min
ℓ∈{1,2,...,L}

(ℓω0 − ω̃k)2.

Thus, solving (13) is equivalent to solving

minimize
ω0

2π
K
∑

k=1

r̃2
k min
ℓ∈{1,2,...,L}

(ℓω0 − ω̃k)2. (14)

Furthermore, at least one harmonic spectrum attaining the minimal cost exists,
and is given by

Φμ(ω) = 2π
L
∑

ℓ=1

⎛

⎝

∑

k∈Iℓ

r̃2
k

⎞

⎠ δ(ω− ℓω0),
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where ω0 solves (14), and with

Iℓ =

{

k | ℓ = arg min
m

(mω0 − ω̃k)2

}

(15)

denoting the set of indices that are transported to harmonic ℓ, for ℓ = 1, . . . ,L.
As may be noted, the maximal harmonic order, L, may not be equal to K (indeed,
K may be unknown, or may not be a suitable choice for L). Although L could be
left as a user defined parameter, we here offer a data dependent choice with both
intuitive appeal and beneficial practical consequences.

Definition 3 (Maximal harmonic order). For a set {ω̃k}
K
k=1 such that ω̃k+1 > ω̃k

for k = 1, . . . ,K − 1, let d = min {ω̃1, ω̃2 − ω̃1, ω̃3 − ω̃2, . . . , ω̃K − ω̃K−1}
i.e., the minimum distance between two consecutive frequencies. Then, the har-
monic order for the set {ω̃k}

K
k=1 is defined as L = min {ℓ ∈ N | ℓd ≥ ω̃K }.

With this, the definition of the OMT harmonic spectrum is:

Definition 4 (Closest harmonic spectrum). Let Φ̃(x) = 2π
∑K

k=1 r̃2
kδ(x − ω̃k) be

a (possibly) inharmonic spectrum, and let L be the maximal harmonic order as
defined in Def. 3. Then, the closest harmonic spectrum (CHS) is defined as

Φμ(ω) = 2π
L
∑

ℓ=1

⎛

⎝

∑

k∈Iℓ

r̃2
k

⎞

⎠ δ(ω− ℓω0),

where ω0 solves (14) and Iℓ is given by (15).

It may here be noted that selecting L according to Def. 3 acts as a safeguard
against the so called sub-octave problem, i.e., associating the spectral lines with
ω0/2P , for P ≥ 1, which is bound to happen if L is chosen excessively large. The
following two propositions verify that Def. 4 behaves in a stable and predictable
way. To simplify the proofs, define

qL(ω0) ! 2π
K
∑

k=1

r̃2
k min
ℓ∈{1,2,...,L}

(ℓω0 − ω̃k)2, (16)

i.e., the minimal cost of transporting Φx to a harmonic spectrum with funda-
mental frequency ω0 and L harmonics. Thus, the fundamental frequency of the
CHS minimizes qL. Furthermore, it may be noted that the following propositions
hold also if one instead of using Def. 3 selects L = K .
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4. An OMT-based definition of pitch

Proposition 3. LetΦx(ω) = 2π
∑K

k=1 r̃2
kδ(ω− kω̃0) be a harmonic spectrum with

fundamental frequency ω̃0. Then, the CHS is identical to Φx, and, in particular,
ω0 = ω̃0.

Proof. Clearly, the maximal harmonic order is L = K . Further, qK (ω̃0) = 0, and
qK (ω′) > 0 for any ω′ ̸= ω̃0.

This proposition ensures that for a perfectly harmonic spectrum, the CHS is
the spectrum itself. As may be seen from (16), the function is qL is non-convex,
with several local minima. Thus, for arbitrarily large inharmonicity parameters
Δk and arbitrary choices of amplitudes r̃k, the fundamental frequency cannot be
guaranteed to be found in a certain region (it may be noted that this is also the
case for the ℓ2 approximation). However, for small harmonic perturbations, the
following proposition holds.

Proposition 4. Let Φ̃(ω) = 2π
∑K

k=1 r̃2
kδ(ω− ω̃k), where ω̃k = kω̃0 +Δk, with

∥Δ∥∞ ! maxk |Δ|k < ω̃0/(2K + 3). Then, L ∈ {K ,K + 1}, and the transport
cost qL has a exactly one local minimum ω0 on the interval
(

ω̃0 − ∥Δ∥∞ , ω̃0 + ∥Δ∥∞
)

. Furthermore,

|ω0 − ω̃0| ≤

∑K
k=1 r̃2

k k
∑K

k=1 r̃2
k k2
∥Δ∥∞ .

Proof. See the appendix.

For non-extreme choices3 of the amplitudes r̃k, the local minimum in Prop. 4
is expected to be also the global minimum, i.e., small inharmonic perturbations is
expected to yield a CHS whose pitch is close to that of the unperturbed perfectly
harmonic signal. With this, one may conclude that Def. 4 provides a reasonable
and well-behaved definition of pitch for inharmonic signals with some advantages
over the ℓ2 approximation. Firstly, as the approximation is performed in the spec-
tral domain, there is no dependency parameters related to the observation of an
instance of the signal, such as sample length or initial phases. Secondly, it codifies
the intuitive idea that a signal is almost harmonic if only a slight perturbation of
its spectrum is needed to obtain an harmonic structure.

3Adversarial examples with combinations of very large and small amplitudes can always be
constructed as to move the global mimimum.
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Figure 3: The OMT cost function, qL, for a perfectly harmonic signal with fun-
damental frequency ω0 = π/10, as well as for an inharmonic signal generated
from the string model in (3) with ω0 = π/10 and β = 10−3.

To illustrate the intuitive appeal of Def. 4, Figure 3 considers the same ex-
ample as in Figures 1 and 2, with the difference being that the approximation is
performed in the spectral domain and in the OMT sense instead of in the tem-
poral domain and ℓ2. As can be seen, using Def. 4 causes only a small perturbation
of the ω0 defining the approximating spectrum as compared to the perfectly har-
monic case. In fact, the harmonic spectrum of Def. 4 is constructed by slightly
shifting the frequency locations of the peaks of the actual signal spectrum. This
is illustrated in Figure 4, displaying the spectrum4 of the inharmonic signal, as
well as the spectra of the approximations from Defs. 2 and 4. As may be noted,
the total power is retained for Def. 4, whereas amplitudes are underestimated
or components altogether missing due to orthogonality for Def. 2. As a side, it

4As the spectra are all singular, the pointmasses are here represented by scaled arrows.
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Figure 4: Spectrum of inharmonic signal, as well as spectra of ℓ2 and CHS ap-
proximations corresponding to Defs. 2 and 4, respectively. Top panel: signal and
ℓ2 approximation. Bottom panel: signal and CHS approximation.

may also be noted that the cost function is quadratic in a neighborhood of this
fundamental frequency.

As the ℓ2 approximation is closely related to the MLE derived under the per-
fectly harmonic assumption, Def. 2 is readily applicable to actual estimation prob-
lems. However, Def. 4 may also be used as a plug-in estimator by replacing the
quantities (̃rk, ω̃k) by finite-sample estimates (̂̃rk, ˆ̃ωk) and consider the obtained
fundamental frequency to be an estimate of ω0. The following proposition de-
tails the asymptotic behavior of such an estimator.

Proposition 5 (CHS estimate). Let (̂̃rk, ˆ̃ωk) be MLEs of (̃rk, ω̃k), for all k, obtained
from an unstructured sinusoidal model with Gaussian noise. Then, under the assump-
tions of Prop 4, the plug-in estimate of the CHS pitch, ω̂0, is an asymptotically, i.e.,
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as N →∞, consistent estimator of the CHS ω0 with asymptotic variance given by

Var(ω̂0) =
6σ̃2

N (N 2 − 1)
∑K

k=1 k2r̃2
k

(17)

+
2σ̃2

N
(

∑K
k=1k2r̃2

k

)4

K
∑

k=1

k2r̃2
k

(

K
∑

ℓ=1

ℓr̃2
ℓ (ℓω̃k−kω̃ℓ)

)2

.

Proof. See the appendix.

Remark 2. It may be noted that the first term of (17) is identical to the asymptotic
CRLB for the pitch in a perfectly harmonic model [22]. Further, in the perfectly
harmonic case, i.e., ω̃k = kω0, for all k, the second term of (17) is equal to
zero, i.e., the CHS plug-in estimate has the same asymptotic performance as the
MLE for the perfectly harmonic model. This is not surprising; in the perfectly
harmonic case and under the assumption of additive Gaussian white noise, the
criterion qL minimized by the CHS is asymptotically equivalent to the EXIP cost
function corresponding to finding an estimate of the pitch from a set of unstruc-
tured frequency estimates [17]. Furthermore, the EXIP estimate has been shown
to asymptotically have the same performance as the MLE [15].

5 Stochastic representation

As may be noted, the parameters of the inharmonic signal in (1) have in Defs. 2
and 4 been assumed to be deterministic (although the spectral representation al-
lows for, e.g., the initial phases to be random), and, as a consequence, the cor-
responding harmonic structure has been defined in terms of approximations. In
the third and last definition presented herein, we take an alternative approach and
view (1) as a realization of a stochastic process in which the frequency parameters
are random. Specifically, for the frequencies ω̃k in (2), we let ω0 be a deterministic
parameter, whereas Δk are independent zero-mean random variables so that

E (ω̃k) = E (kω0 +Δk) = kω0, for k = 1, . . . ,K .

With this, ω0 may be interpreted as the fundamental frequency in an average
sense5. In order to arrive at a model allowing for manipulations, we will herein

5Note, however, that the expectation of xt is not a periodic waveform.
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5. Stochastic representation

further assume that the inharmonicity parameters may be well modeled as Gaus-
sian random variables, i.e., Δk ∈ N (0,σ2

Δ), where σ2
Δ denotes the common

variance6. It may be noted that this representation constitutes a weaker, less struc-
tured assumption on the nature of the inharmonic deviations than that provided
of, e.g., the stiff string model in (3), and may therefore be used to model inhar-
monic signals for which there is no known parametric description. We summarize
this in the following definition.

Definition 5 (Expected harmonic signal). The signal in (1) is a realization of the
random variable

xt =

K
∑

k=1

r̃keiφ̃k+i(kω0+Δk)t , (18)

where the pdf of Δ =
[

Δ1 . . . ΔK
]T

is given by

p(Δ) =
1

(2πσ2
Δ)K /2

exp

(

−
1

2σ2
Δ

∥Δ∥2
2

)

.

The corresponding harmonic signal is given by (4).

It may be noted that there is an interesting relation between Defs. 4 and 5.
Specifically, for a given realization of xt , corresponding to an observation of ω̃k,
the waveform may be explained perfectly by matching amplitudes, initial phases,
and by making any choice of ω0 and Δ such that

kω0 +Δk = ω̃k, for k = 1, . . . ,K .

However, the choice that is most likely, in the sense of maximizing p(Δ), is given
by

ω0 = arg min
ω

K
∑

k=1

(kω− ω̃k)2 =

∑K
k=1 kω̃k
∑K

k=1 k2
,

and Δk = ω̃k − ω0/k, for all k. That is, the estimate of μt corresponds to a
variation of Def. 4 in which the cost of transport is not related to the component

6This choice is made to simplify the exposition. However, all results herein may be readily
extended to allowing the variance to differ among the inharmonicity parameters.
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power, i.e., as if r̃k = 1, for all k. It may also be noted that this model is identifi-
able for all finite σ2

Δ, i.e., one is not forced to identify one of the frequencies ω̃k

with an integer multiple of ω0 in order for the model to be well-defined.
Considering the noisy observation model in (5), we may proceed by asking

what type of performance bounds and estimators that are relevant for the signal

in Def. 5. To this end, let θ̆ =
[

θT ΔT
]T

denote the concatenation of the

deterministic vector θ and the stochastic vector Δ. Furthermore, let x(θ̆) denote
the vector consisting of the N signals samples in (18), parametrized by θ̆. Then,
assuming that the measurement noise is independent of Δ, the joint pdf of the
measurement y and the inharmonicity Δ is given by

p(y,Δ;θ) = p(y | Δ;θ)p(Δ), (19)

where

p(y | Δ;θ) =
1

(πσ̃2)N exp

(

−
1

σ̃2
∥y− x(θ,Δ)∥2

2

)

is the conditional pdf of the measurement. From this, it may be noted that it is
not trivial to compute the CRLB for θ, nor to derive the MLE, as the marginal
density p(y;θ) is not available; this requires computing a K dimensional integral
with a non-linear integrand. Also, the Bayesian CRLB is not applicable in this case
as prior distributions are only available for a subset of the parameters. However,
it is possible to find a performance bound for the model in (19) by means of the
HCRLB [24, 25]. Furthermore, this bound may, as we will see in the numerical
section, be asymptotically attained by a hybrid ML/MAP estimator [26]. The
following result adapted from [24] holds.

Proposition 6 (Hybrid Cramér-Rao lower bound [24]). Let ˆ̆θ be an unbiased
estimator of θ̆ in the sense that Ey,Δ(θ̂) = θ and Ey,Δ(Δ̂) = EΔ(Δ), for any θ.
Then,

Ey,Δ

(

(
ˆ̆θ− θ̆)(ˆ̆θ− θ̆)T

)

≽ F̆ (θ̆)−1, (20)

where

F̆ = Ey,Δ

(

∇θ̆ log p(y,Δ;θ)∇θ̆ log p(y,Δ;θ)T
)

. (21)

Here, Ey,Δ and EΔ denote expectation with respect to the joint pdf of y and Δ,
and the marginal pdf ofΔ, respectively.
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For non-linear measurement models, such as the one considered herein, the
HCRLB is in general only tight asymptotically [25]. However, it can be shown
that if the bound is tight, then it is attained by the hybrid ML/MAP estim-
ator [25]. This property makes the HCRLB attractive, especially for the case
considered herein, where it may be computed easily, as detailed in the following
proposition. Furthermore, the ML/MAP allows for straightforward implementa-
tion.

Proposition 7. For the inharmonic pitch model in (19), the matrix F̆ in (21) defin-
ing the HCRLB is given by

F̆ = EΔ

(

F (θ̆)
)

+

[

0 0
0 1

σ2
Δ

I

]

, (22)

where

F (θ̆) =
2

σ̃2

N−1
∑

t=0

∇θ̆μ
R
t (θ̆)∇θ̆μ

R
t (θ̆)T +∇θ̆μ

I
t (θ̆)∇θ̆μ

I
t (θ̆)T ,

and I denotes the identity matrix of size K × K . A detailed expression for EΔ(F (θ̆))
may be found in the appendix.

Proof. See the appendix.

Remark 3. Partitioning F̆ as

F̆ =

[

Fθ,θ F T
θ,Δ

Fθ,Δ FΔ,Δ,

]

where Fθ,θ is the (2K + 1)× (2K + 1) block corresponding to the non-random
parameters and FΔ,Δ corresponds to the K inharmonicity parameters, it may be
noted Fθ,θ converges to the FIM corresponding to a perfectly harmonic model
when letting σ2

Δ → 0. Also, 1
N FΔ,Δ ≈

1
N

1
σ2
Δ

I when σ2
Δ → 0 and N is reason-

ably large. Noting that the Schur complement of FΔ,Δ in F̆ is

Fθ,θ − F T
θ,ΔF−1

Δ,ΔFθ,Δ

and noting that Fθ,Δ converges to a finite matrix as σ2
Δ → 0, the top (2K + 1)×

(2K + 1) block of F̆−1 converges to F−1
θ,θ, as

F T
θ,ΔF−1

Δ,ΔFθ,Δ → σ
2
ΔF T
θ,ΔFθ,Δ → 0
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when σ2
Δ → 0. That is, the HCRLB converges to the CRLB of the perfectly

harmonic model as σ2
Δ → 0.

Furthermore, it can be shown that, given some regularity conditions on the
pdf p [25], the HCRLB is asymptotically tight and asymptotically attained by
the hybrid ML/MAP estimator, i.e., by arg maxθ,Δ p(y,Δ;θ). Thus, the bound
in Prop. 7 constitutes a useful predictor of estimation performance. Next, we
present the ML/MAP estimator for the inharmonic pitch model and show that it
lends itself to straightforward implementation. From (19), it may be noted the
ML/MAP estimate of (θ, σ̃2,Δ) maximizes the function

L = −N log σ̃2 −
1

σ̃2

∥

∥

∥y− x(θ̆)
∥

∥

∥

2

2
−

1

2σ2
Δ

∥Δ∥2
2 ,

which is the log-likelihood of (19), excluding constant terms. It may be noted that
we here are required to estimate also the noise variance σ̃2. In order to formulate
the ML/MAP estimator, define the dictionary function A : RK → CN×K

A(ω) =
[

a(ω1) . . . a(ωK )
]

,

where ω =
[

ω1 . . . ωK
]T

, and a : R→ CN is the Fourier vector.

Proposition 8 (ML/MAP estimator). Let ω be the set of frequencies maximizing
the function

ψML/MAP(ω) = −N logΣ(ω)−
1

2σ2
Δ

ν(ω),

where

Σ(ω) =
1

N

∥

∥

∥
y− A(ω)

(

A(ω)H A(ω)
)−1

A(ω)H y
∥

∥

∥

2

2
,

ν(ω) =
K
∑

k=1

(

ωk − k

∑K
ℓ=1 ℓωℓ
∑K

ℓ=1 ℓ
2

)2

.

Then, the ML/MAP estimates of the fundamental frequency and inharmonicity para-
meters are given by

ω0 =

∑K
k=1 kωk
∑K

k=1 k2
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and Δℓ = ωℓ − ℓω0, for ℓ = 1, . . . ,K , respectively. Furthermore, the estimates of
the noise variance and the vector of complex amplitudes are given by σ̃2 = Σ(ω) and

(

A(ω)H A(ω)
)−1

A(ω)H y,

respectively.

Proof. See appendix.

Remark 4. It may be noted that the ML/MAP estimate of the model parameters
are found by maximizing ψML/MAP over a set of K unconstrained frequencies,
which may be realized by a non-linear search. As ψML/MAP is non-convex, such a
search requires a good initial point. In favorable noise conditions, such an initial
point may be obtained by simple peak-picking in the periodogram.

As can be seen from the criterion ψML/MAP, one may obtain two extreme cases
by letting σ2

Δ → ∞ and σ2
Δ → 0, respectively. In the former case, maximizing

ψML/MAP becomes equivalent to minimizing Σ with respect to a set of uncon-
strained frequencies ω, i.e., one obtains the MLE for a model with K unrelated
sinusoids. In the latter case, one in the limit arrives at the problem

maximize
ω

− Σ(ω) , s.t. ν(ω) = 0,

or, equivalently,

maximize
ω0,ω

− Σ(ω) , s.t. ωk = kω0, for k = 1, . . . ,K ,

i.e., the misspecified MLE corresponding to a perfectly harmonic approximation.

6 Numerical examples

In this section, we provide numerical examples illustrating the derived theoretical
results.

6.1 Deterministic waveform

To illustrate the behavior of Def. 2 and the implied MMLE for varying degrees
of inharmonicity, we consider signals generated from the string model in (3). It
may here be noted that the MMLE is given by the non-linear least squares (NLS)
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Figure 5: The pseudo-true fundamental frequency in Def. 2 as well as the CHS
fundamental in Def. 4 for signals generated from the string model in (3) for
varying β . Also plotted are the estimated expectations of the MMLE, ANLS,
and CHS estimators.

estimator from [27]. In particular, let the signal consist of K = 5 components
with amplitudes r̃k = e−ρ(k−K /2)2

with ρ = 0.2, and let ω0 = π/10. The initial
phases φ̃k are chosen uniformly random on [−π, π). Furthermore, let the signal
be observed at N = 500 time instances, and let the SNR, defined as SNR =

10 log10

∑

k r̃2
k/σ̃

2, be 10 dB. For this setting, Figure 5 presents the pseudo-true
pitch i.e., the ω0 defined in Def. 2, when varying the string stiffness parameter
β on [0, 2 × 10−3]. Also presented is the CHS ω0 in Def. 4. As may be noted,
both definitions correspond to small perturbations of the pitch, with the CHS
definition displaying a more linear behavior for a larger range of β . Figure 5
also displays the estimated expected values for the MMLE and CHS estimators,
obtained from 2000 Monte Carlo simulations for each value of β . The CHS
pitches are computed based on unstructured ML estimates of the component
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Figure 6: The MCRLB, the asymptotic MCRLB, and the asymptotic CHS es-
timator variance for estimating the pseudo-true ω0 in Def. 2 and the CHS pitch
in Def. 4, respectively, when the signal is generated from the string model in (3)
for varying β . Also plotted are the corresponding MSE achieved by the MMLE,
ANLS, and CHS estimators.

amplitudes and frequencies in accordance with Prop. 5. As can be seen, the sample
averages correspond well to their theoretical values. Also presented is the average
estimate obtained using the approximate NLS (ANLS) estimator [27], which is
an asymptotic approximation of the MLE for an harmonic model (as N → ∞),
corresponding to harmonic summation from a periodogram estimate. It may here
be noted that the expectation of the ANLS estimator coincides with the pseudo-
true ω0.

Furthermore, Figure 6 presents the exact and asymptotic MCRLB, as well
the asymptotic variance of the CHS estimator, together with the MSE of the
MMLE, ANLS, and CHS estimators. The MSE is here computed using the
pseudo-true ω0 as reference for the MMLE and ANLS, as it corresponds to their
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Figure 7: The pseudo-true fundamental frequency in Def. 2 as well as the CHS
fundamental in Def. 4 for signals generated from the string model in (3) for
varying N . Also plotted are the estimated expectations of the MMLE, ANLS,
and CHS estimators.

expected and asymptotical expected values, respectively, whereas the reference
for the CHS estimator is the CHS ω0. As may be noted, the bounds provide
accurate predictions of the behaviors of the three estimators, with the asymp-
totic MCRLB coinciding fairly well with its exact counterpart. As reference,
the CRLB for the corresponding perfectly harmonic model, as well as for the
lowest-frequency component in an unstructured sinusoidal model with exactly
the same spectral content, are also provided. Figures 7 and 8 display corres-
ponding quantities, i.e., theoretical and estimated expected values and theoretical
and estimated variances, respectively, when fixing β = 5 × 10−4 and varying
the number of samples, N , between 300 and 2000. As can be seen in Figures 7,
the CHS ω0 does not depend on the sample length, as expected. In contrast,
the pseudo-true ω0 depends on N . As r̃2 = r̃3 dominate the amplitudes of the
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Figure 8: The MCRLB, the asymptotic MCRLB, and the asymptotic CHS es-
timator variance for estimating the pseudo-true ω0 in Def. 2 and the CHS pitch
in Def. 4, respectively, when the signal is generated from the string model in (3)
for varying N . Also plotted are the corresponding MSE achieved by the MMLE,
ANLS, and CHS estimators.

other components, we expect the ω0 from Def. 2 to fluctuate close to the interval
[ω0

√

1 + β22,ω0

√

1 + β32] ≈ [0.3145, 0.3149] for large but moderate values
of N (recall that Def. 2 becomes ambiguous as N → ∞). Furthermore, as may
be seen from Figure 8, the MCRLB is far from being linear in the log of N , in
contrast to the CHS asymptotic variance. It may here be noted that the slopes
for the perfectly harmonic CRLB and the CHS asymptotic variance are different
as the second term of (17) dominates for large N . For the same setting, Figure 9
presents the covariance bounds and obtained estimator MSEs for fixed N = 500,
β = 5 × 10−4, and the SNR varying between -10 dB and 30 dB. As can be
seen, the MCRLB and the CHS asymptotic variance are attained by the MMLE
and the CHS estimator, respectively, for high enough SNR. In contrast, for the
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Figure 9: The MCRLB, the asymptotic MCRLB, and the asymptotic CHS estim-
ator variance for estimating the pseudo-true ω0 in Def. 2 and the CHS pitch in
Def. 4, respectively, when the signal is generated from the string model in (3) for
varying SNR. Also plotted are the corresponding MSE achieved by the MMLE,
ANLS, and CHS estimators.

highest SNR values, the MCRLB is not attained by the ANLS estimator; as the
ANLS is only an asymptotic approximation of the MMLE, the approximation
error eventually becomes comparable to the noise variance, as the SNR tends to
infinity.

6.2 Stochastic waveform

We proceed by extending the simulation study to the stochastic model in (18).
Specifically, we let all signal parameters remain the same, with the difference be-
ing that each component frequency is perturbed by a random Gaussian number.
Fixing N = 500 and SNR = 10 dB, we compute the HCRLB for ω0, as well as
for the (random) frequency of the first sinusoidal component, i.e., ω̃1 = ω0+Δ1,
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Figure 10: The MSE obtained when estimating ω0 from the model in (18) for
varying values of the inharmonicity parameter variance σ2

Δ. Also given are MSEs
for the estimates of the fundamental frequencies in Defs. 2 and 4.

for varying values of the inharmonicity variance σ2
Δ. As comparison, we compute

the theoretical MSE for the estimators implied by Defs. 2 and 4. This is per-
formed by sampling Δk ∈ N

(

0,σ2
Δ

)

, computing the MSE for that particular
set of {Δk}, and averaging over realizations. Specifically, the MSE for a given
{Δk} is computed by adding the squared bias, with references ω0 and ω0 +Δ1,
to the covariance bound, i.e., the MCRLB and the CHS asymptotic variance. For
each value of σ2

Δ, the corresponding MSEs are computed by averaging over 1000
Monte Carlo simulations. Furthermore, for each such simulation, noise is added
to the signal waveform according to (5), and the signal parameters are estimated
using MAP/MLE, MMLE, ANLS, and the CHS estimators. The results are dis-
played in Figures 10 and 11, with Figure 10 showing the MSE for the estimate of
ω0 and Figure 11 the MSE for ω̃1 = ω0+Δ1. As may be seen from Figure 10, the
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Figure 11: The MSE obtained when estimating the frequency ω̃1 = ω0 +Δ1 of
the first sinusoidal component from the model in (18) for varying values of the
inharmonicity parameter variance σ2

Δ.

MAP/MLE estimator is able to attain the HCRLB, which is strictly smaller than
the bounds for the estimators derived for the deterministic models. For reference,
Figure 10 provides also the MCRLB, the theoretical CHS asymptotic variance, as
well as the obtained MSEs for estimates of the ω0 of Defs. 2 and 4. From this,
it may be concluded that the variances of the estimators are dominated by their
squared bias when estimating ω0 from the model in (18). Furthermore, it may be
noted from Figure 11 that when considering the estimate of the frequency of the
first sinusoidal component, the HCRLB, as well as the MSE of the MAP/MLE,
tends to the CRLB corresponding to an unstructured sinusoidal model as σ2

Δ

grows, which is due to negative correlation between the estimates of ω0 and Δ1.
In contrast, for large enough inharmonicity, the MSEs of the MMLE, ANLS, and
CHS estimators exceed the CRLB of the sinusoidal model.
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7. Discussion

7 Discussion

The three different definitions of the pitch for inharmonic signals all have their
merits, and one cannot in a strictly objective sense say that one is better than the
others. Instead, their relative usefulness depend on the considered application, as
well as on ones aim with approximating close-to-harmonic signals with perfectly
harmonic counterparts.

As noted, by defining pitch using an approximation in ℓ2, as in Def. 2, one
models the scenario of erroneously assuming that the observed waveform is peri-
odic, and provides means for analyzing the average behavior of the misspecified
MLE, as well as providing a bound on the estimation performance. Thus, Def. 2
is well suited for being used as a benchmark when analyzing the behavior of pitch
estimators when applied to inharmonic signals; the definition makes it possible to
compute the bias and MSE, at least empirically, for any such estimator. However,
the behavior of Def. 2 is, as demonstrated in the numerical examples, non-linear
with respect to both the inharmonicity and sample length, and is in addition
ambiguous for very long signals.

In this respect, the OMT-based approximation of Def. 4 has the appealing
quality of not depending on the actual signal, but only on its spectral properties.
As shown both in the theoretical and numerical results, the behavior of Def. 4
is locally linear with respect to the signal inharmonicity, and corresponds well to
the intuitive idea that inharmonicity corresponds to perturbations in frequency of
spectral peaks. In addition to this, when used for estimation, Def. 4 displays linear
behavior in terms of estimator variance, and coincides with the MLE for the per-
fectly harmonic case. With this in mind, Def. 4 is more satisfactory than Def. 2
when considered a tool for understanding inharmonic signals. Furthermore, its
connection to the EXIP framework, i.e., the idea of fitting given parameter es-
timates to a certain structure, makes it relevant as a benchmark also in practical
estimation scenarios.

In contrast to Defs. 2 and 4, which constitute approximations, Def. 5 views
the inharmonic signal as a waveform resulting from perturbing the frequencies of
the sinusoidal components by zero-mean random variables, causing them to de-
viate from perfect integer multiples of the nominal pitch. In this respect, Def. 5
offers an explanation of why the observed signal waveform is not periodic. How-
ever, as any given observation of the signal has been generated by this random
procedure, one by definition cannot compute the ω0 in Def. 5 from such an
observation. However, adopting this view of inharmonic signals allows for com-
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puting a performance bound constituting a smooth interpolant between perfectly
harmonic models and completely unstructured sinusoidal models, as well as for
finding an easily implemented estimator attaining the bound. In practical terms,
Def. 5 offer tools for processing inharmonic signals for which one suspects that
there may be no deterministic description of the inharmonic deviations. For ex-
ample, such a class of signals could be the voiced part of human speech, for which
one may observe frequency-dependent inharmonicity with no particular structure
(this may very well change over time for a given person due to, e.g., infections).
As the inharmonicity pattern thus could change from day to day for any given
fundamental frequency, Def. 5 likely provides a pragmatic view.

8 Appendix

8.1 Information matrix for the HCRLB

Utilizing

EΔk

(

cos
(

(ω+Δk)t + φ̃k
))

= e−
1
2σ

2
Δt2

cos
(

ωt + φ̃k
)

EΔk

(

sin
(

(ω+Δk)t + φ̃k
))

= e−
1
2σ

2
Δt2

sin
(

ωt + φ̃k
)

,

one may write EΔ
(

F (θ̆)
)

=
∑N−1

t=0 Λ
(t), where the matrices

Λ(t) ! EΔ

(

∇θ̆μ
R
t (θ̆)∇θ̆μ

R
t (θ̆)T +∇θ̆μ

I
t (θ̆)∇θ̆μ

I
t (θ̆)T

)

,

for t = 0, . . . ,N − 1, may be expressed as

Λ(t)
ω0,ω0

= t2
∑

k

k2r̃2
k + t2e−σ

2
Δt2 ∑

(k,ℓ):k ̸=ℓ

kℓr̃kr̃ℓ cos
(

ω(k − ℓ)t +φ̃k−φ̃ℓ
)

Λ(t)
ω0,rk

= te−σ
2
Δt2 ∑

ℓ:ℓ ̸=k

ℓr̃ℓ sin
(

ω(k − ℓ)t + φ̃k − φ̃ℓ
)

Λ(t)
ω0,φk

= tkr̃2
k + te−σ

2
Δt2 ∑

ℓ:ℓ ̸=k

ℓr̃k r̃ℓ cos
(

ω(k − ℓ)t + φ̃k − φ̃ℓ
)

Λ(t)
rk,rℓ =

{

1, ℓ = k

e−σ
2
Δt2

cos
(

ω(k − ℓ)t + φ̃k − φ̃ℓ
)

, ℓ ̸= k

Λ(t)
rk,φℓ

=

{

0, ℓ = k

e−σ
2
Δt2

sin
(

ω(k − ℓ)t + φ̃k − φ̃ℓ
)

, ℓ ̸= k
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Λ(t)
φk,φℓ =

{

r̃2
k , ℓ = k

e−σ
2
Δt2

r̃kr̃ℓ cos
(

ω(k − ℓ)t+φ̃k−φ̃ℓ
)

, ℓ ̸= k

and Λ(t)
η,Δk

= tΛ(t)
η,φk

, for η∈{ω0, rk,φk}, and Λ(t)
Δk,Δℓ

= t2Λ(t)
φk,φℓ

.

8.2 Proof of Theorem 1

Proof. Let p denote the pdf of the assumed model. Then, it can be shown that,
for estimators θ̂ satisfying ML conditions, it holds that (see [13])

Ey

(

(θ̂− θ0)(θ̂− θ0)T
)

≽ A(θ0)−1F (θ0)A(θ0)−1,

with Ey denoting expectation with respect to the pdf of the measured signal, and
where

A(θ0) = Ey

(

∇2
θp(y;θ0)

)

,

F (θ0) = Ey

(

∇θp(y;θ0)∇θp(y;θ0)T
)

.

In the herein considered case, the model pdf is given by

p(y;θ) =
1

(πσ2)N exp

(

−
1

σ2

N−1
∑

t=0

|yt − μt (θ)|
2

)

=
1

(πσ2)N exp

(

−
1

σ2

N−1
∑

t=0

(yIt −μ
I
t (θ))2 + (yRt −μ

R
t (θ))2

)

.

As the additive noise of the actual measured signal is circularly symmetric white
Gaussian noise with variance σ̃2, it is readily verified that

Ey

(

∂p(y;θ)

∂θk

∂p(y;θ)

∂θℓ

)

= Bk,ℓ(θ) + B̃k,ℓ(θ)

where k and ℓ denotes indices of the elements of θ and

Bk,ℓ(θ) =
2σ̃2

(σ2)2

N−1
∑

t=0

∂μRt (θ)

∂θk

∂μRt (θ)

∂θℓ
+

∂μIt (θ)

∂θk

∂μIt (θ)

∂θℓ
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and

B̃k,ℓ(θ) =
4

(σ2)2

(

N−1
∑

t=0

∂μRt (θ)

∂θk
ξRt (θ) +

∂μIt (θ)

∂θk
ξIt (θ)

)

·

(

N−1
∑

s=0

∂μRs (θ)

∂θℓ
ξRs (θ) +

∂μIs (θ)

∂θℓ
ξIs (θ)

)

,

with ξ given in Proposition 1. However, by definition, the pseudo-true parameter
θ0 solves the least-squares problem in (6), and in particular, θ0 satisfies the first-
order optimality conditions, i.e.,

N−1
∑

t=0

∂μRt (θ0)

∂θk
ξRt (θ0) +

∂μIt (θ0)

∂θk
ξIt (θ0) = 0

for all parameter indices k. Thus, B̃k,ℓ(θ0) = 0 for all k and ℓ, yielding the
expression for F (θ0). Furthermore, it is straightforward to verify that

−Ey

(

∂2p(y;θ)

∂θk∂θℓ

)

=
2

σ2

N−1
∑

t=0

∂μRt (θ)

∂θk

∂μRt (θ)

∂θℓ
+
∂μIt(θ)

∂θk

∂μIt(θ)

∂θℓ

2

σ2

N−1
∑

t=0

∂2μRt (θ)

∂θk∂θℓ
ξRt (θ)+

∂2μIt (θ)

∂θk∂θk
ξIt (θ),

for any θ, which yields the expression for A(θ0).

8.3 Proof of Proposition 2

Proof. By Lemma 1 below, 1
N F (θ0) and 1

N A(θ0) converge to arrowhead matrices.
As shorthands, let F = F (θ0) and A = A(θ0). For large N , the structure of 1

N A
is

1

N
A = −

1

Nσ2

[

η zT

z diag(d )

]

,

where diag(d ) denotes the diagonal matrix with the vector d as its main diagonal,
and where η = ημ + ηξ and z = zμ + zξ with

ημ = 2
N−1
∑

t=0

(

∂μRt
∂ω

)2

+

(

∂μIt
∂ω

)2
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ηξ = 2
N−1
∑

t=0

ξRt
∂2μRt
∂ω2

+ ξIt
∂2μIt
∂ω2

d = 2
N−1
∑

t=0

∇αμ
R
t ⊙∇αμ

R
t +∇αμ

I
t ⊙∇αμ

I
t

zμ = 2
N−1
∑

t=0

∇αμ
R
t
∂μRt
∂ω

+∇αμ
I
t
∂μIt
∂ω

zξ = 2
N−1
∑

t=0

ξRt
∂

∂ω
∇αμ

R
t + ξIt

∂

∂ω
∇αμ

I
t ,

where ⊙ denotes the Hadamard product, and

α =
[

φ1 . . . φK r1 . . . rK
]T

,

with all derivatives being evaluated at θ = θ0. Then, by the Sherman-Morrison-
Woodbury formula [28], A−1 may be well approximated as

A−1 = −σ2

[

0 0
0 diag(d )−1

]

−
σ2

ρ
uuT

for large N , where u = uμ + uξ, with ρ = η− zT (z./d ) and

uμ =
[

−1 (zμ./d )T
]T

, uξ =
[

0 (zξ./d )T
]T

,

where ./ denotes elementwise division. Similarly, F may be approximated as

F =
σ̃2

(σ2)2

[

ημ zT
μ

zμ diag(d )

]

for large N . Then, the MCRLB corresponding to ω is given by the first diagonal
element of A−1FA−1, which is given by

(σ2)2

ρ2
uT Fu = (σ2)2 1

ρ2

(

uT
μ Fuμ + uT

ξ Fuξ
)

= σ2 C + E

(C − E + Z + D)2 ,

where it used that uT
μ Fuξ = 0, and

C = ημ − zT
μ (zμ./d ) , E = zT

ξ (zξ./d ) , D = −2zT
μ (zξ./d ) , Z = ηξ.
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Assuming that the pseudo-true fundamental frequency is not too close to zero,
the correlation between signal components corresponding to different harmonic
orders tends to zero as N → ∞. The asymptotic expressions for C ,E,D, and Z
stated in the proposition follow directly.

Lemma 1. As N →∞, 1
N F (θ0) and 1

N A(θ0) converge to arrowhead matrices.

Proof. Firstly, it may be noted that as θ0 solves the least squares criterion in (6),
it directly follows from the optimality criterion that

N−1
∑

t=0

ξRt ∇θμ
R
t +

N−1
∑

t=0

ξIt∇θμ
I
t = 0.

Then, as any second derivative of μRt and μIt not involving differentiation with
respect to ω is equal to a common constant real scaling of elements of∇θμRt and
∇θμIt , respectively, only the first column and first row of F̃ (θ0) are non-zero. It is
straightforward to show that elements of F (θ0) not related to partial derivatives of
ω converge linearly to zero when scaled by 1/N , whereas the diagonal is bounded
from below by positive values. Thus, 1

N F (θ0), and thereby 1
N A(θ0), converges to

an arrowhead matrix as N →∞.

8.4 Proof of Proposition 4

Proof. Clearly, if there are at least two consecutive sinusoids with non-zero amp-
litude, d in Definition 3 satisfies d ∈

[

ω̃0 − 2 ∥Δ∥∞ , ω̃0 + 2 ∥Δ∥∞
]

. Then,

(K + 1)d ≥ ω̃K , (K − 1)d < ω̃K ,

if ∥Δ∥∞ ≤ ω̃0/(2K + 3). Thus for ∥Δ∥∞ < ω̃0/(2K + 3), we have that
L ∈ {K ,K + 1}. Furthermore, for any ω̂ ∈

[

ω− ∥Δ∥∞ ,ω+ ∥Δ∥∞
]

,

|kω̂− ω̃k| ≤ (k + 1) ∥Δ∥∞ = ω̃0
k + 1

2K + 3
,

whereas

|(k ± 1)ω̂− ω̃k| ≥ ω̃0
2K + 1− k

2K + 3
.
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Thus, arg min
ℓ

(ℓω̂− ω̃k)2 = k, for k = 1, . . . ,K , implying

qL(ω̂) = 2π
K
∑

k=1

r̃2
k (kω̂− ω̃k)2 = 2π

K
∑

k=1

r̃2
k (k(ω̂− ω̃0)−Δk)2

for any ω̂ ∈
[

ω̃0 − ∥Δ∥∞ , ω̃0 + ∥Δ∥∞
]

. This quadratic function has the
unique stationary point

ω0 =

∑K
k=1 r̃2

k kω̃k
∑K

k=1 r̃2
k k2

= ω̃0 +

∑K
k=1 r̃2

k kΔk
∑K

k=1 r̃2
k k2

,

where it may be noted that
∣

∣

∣

∣

∣

∑K
k=1 r̃2

k kΔk
∑K

k=1 r̃2
k k2

∣

∣

∣

∣

∣

≤

∑K
k=1 r̃2

k k
∑K

k=1 r̃2
k k2
∥Δ∥∞ ≤ ∥Δ∥∞ .

8.5 Proof of Proposition 5

Proof. We here assume that the inharmonic perturbations are small so that, asymp-
totically, i.e., when N → ∞ or the SNR tending to infinity, the assumptions
of Proposition 4 hold in the sense that there exist ω such that |kω − ˆ̃ωk| ≤
ω/(2K + 3), for k = 1, . . . ,K , almost surely. Noting that the covariance matrix

of the vector θ̂ =
[

ˆ̃r1 . . . ˆ̃rK ˆ̃ω1 . . . ˆ̃ωK
]T

is asymptotically given by
(see, e.g., [29])

Cov(θ̂)=
σ̃2

2N

[

I 0
0 C2

]

, C2=
12

N 2−1
diag

([

1/r̃2
1 . . . 1/r̃2

K

])

and that the estimate of the CHS fundamental frequency is given ω̂0 = f (θ̂),
where

f (θ) =

∑K
k=1 r̃2

k kω̃k
∑K

k=1 r̃2
k k2

,

the expression in (17) is the obtained from a first order Taylor expansion of f at θ.
As can be seen from Cov(θ̂), the estimates of ω̃k are asymptotically uncorrelated
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with estimates of the amplitudes, from which it directly follows that ω̂0 is an
asymptotically unbiased estimate ofω0. As θ̂ is the MLE of θ, consistency follows,
with the asymptotic variance being given by

E
(

(ω0 − ω̂0)2
)

= ∇θf (θ)T Cov(θ̂)∇θf (θ).

After some simplification, the expression in (17) follows.

8.6 Proof of Proposition 7

Proof. We have

∇θ̆ log p(y,Δ;θ) = ∇θ̆ log p(y | Δ;θ) +∇θ̆ log p(Δ),

where∇θ̆ log p(Δ) = diag
(

0T −ΔT /σ2
Δ

)

, where 0 is a zero vector of length
2K + 1. Further, as

Ey|Δ

(

∇θ̆ log p(y | Δ;θ)
)

= 0,

and Δ is independent of the measurement noise, it follows that

Ey|Δ

(

∇θ̆ log p ∇θ̆ log pT
)

= F (θ̆) +

[

0 0
0 1

(σ2
Δ)2ΔΔ

T

]

,

where we use the shorthand p = p(y,Δ;θ), and

F (θ̆) = Ey|Δ

(

∇θ̆ log p(y | Δ;θ)∇θ̆ log p(y | Δ;θ)T
)

=
2

σ̃2

N−1
∑

t=0

∇θ̆μ
R
t (θ̆)∇θ̆μ

R
t (θ̆)T +∇θ̆μ

I
t (θ̆)∇θ̆μ

I
t (θ̆)T

as the measurement noise is circularly symmetric white Gaussian. AsEΔ
(

ΔΔT
)

=

σ2
ΔI , the expression for F̆ follows directly. It may also be readily verified that

Ey|Δ

(

∇θ̆ log p(y | Δ;θ)
∂

∂σ̃2
log p(y | Δ;θ)

)

= 0,

i.e., the HCRLB for θ̆ does not depend on whether σ̃2 is known or not, implying
that no partial derivatives with respect to σ̃2 need to be considered in order to
compute the HCRLB of θ̆.
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8.7 Proof of Proposition 8

Proof. Clearly, for any choice of θ̆, L is maximized with respect to σ̃2 by

σ̃2 =
1

N

∥

∥

∥
y− x(θ̆)

∥

∥

∥

2

2
.

Plugging this in, we get, excluding constant terms, the criterion

L′ = −N log ∥y− x(θ,Δ)∥2
2 −

1

2σ2
Δ

∥Δ∥2
2 .

Then, letting ω =
[

ω0 +Δ1 . . . ω0 +ΔK
]T

, the criterion is, for any
choice of (ω0,Δ), minimized with respect to the complex amplitudes by

x(θ) = A(ω)
(

A(ω)H A(ω)
)−1

A(ω)H y.

Also, for any set of frequencies ω1, . . . ,ωK , one may maximize the second term in
the criterion, i.e., the negative of the sum of squared inharmonicities, by choosing
the nominal fundamental frequency ω0 as

ω0 =

∑K
k=1 kωk
∑K

k=1 k2
,

which does not affect the data fit term
∥

∥

∥y− x(θ̆)
∥

∥

∥

2

2
. This results in the criterion

ψML/MAP, which is to be maximized over a set of K unconstrained frequencies.
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Mismatched Estimation of
Polynomially Damped Signals

Filip Elvander, Johan Swärd, and Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this work, we consider the problem of estimating the parameters of polyno-
mially damped sinusoidal signals, commonly encountered in, for instance, spec-
troscopy. Generally, finding the parameter values of such signals constitutes a
high-dimensional problem, often further complicated by not knowing the num-
ber of signal components or their specific signal structures. In order to alleviate
the computational burden, we herein propose a mismatched estimation proced-
ure using simplified, approximate signal models. Despite the approximation, we
show that such a procedure is expected to yield predictable results, allowing for
statistically and computationally efficient estimates of the signal parameters.

Key words: Mismatched estimation, computational efficiency, NMR
spectroscopy, Lorentzian and Voigt line shapes
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1 Introduction

Signals that may be well modeled as a superposition of exponentially decaying
complex-valued sinusoids appear in a wide variety of fields, such as radar, geology,
non-destructive testing, and spectroscopy (see, e.g., [1–3]). In this work, we are
primarily interested in nuclear magnetic resonance (NMR) spectroscopy, where
the signal parameters correspond to properties of the material under study, such
as intra-molecular forces. Historically, the model most commonly considered is
the so-called Lorentzian line shape [4], i.e., wherein the decay of the signal com-
ponents are modeled as an exponential first-degree polynomial, although more
detailed signal models are also common, such as the Voigt line shape, which uses
a second-order polynomial decay [5].

The estimation of the parameters of the Lorentzian signal model has been
approached in a variety of ways (see [1] for a more general review), e.g., by ex-
ploiting subspace decompositions [6, 7], linear system descriptions [8], as well as
compressed sensing methods [9–11]. However, for some responses, the first-order
polynomial is insufficient for accurately modeling the observed data, and one in-
stead requires the use of Voigt line shapes to more accurately capture the structure
of the signal. This model extension then implies that methods based on linear
prediction no longer are applicable, demanding more advanced procedures for
estimating the signal parameters.

A common approach for addressing this issue is to form estimates by minim-
izing a non-linear least squares criterion [12], although such an approach requires
prior information about the model order, or that such information is estimated,
e.g., by adding sparsity enhancing penalties to the cost function, iteratively solving
for one signal component at the time [13], or performing model order estimation
using some predefined criterion [14]. Performing these searches can be compu-
tationally cumbersome due to the large parameter space that the signal model
entail. To find a remedy for this problem, we propose an estimation procedure
that gradually increases the model complexity, such that one is restricting the para-
meter space over which the parameter search is performed. To alleviate this, we
use the framework mismatched estimation (see, e.g., [15] for a recent overview).
Specifically, we present a brief analysis on the expected behavior of approximate
maximum likelihood estimators (MLEs) derived under simplified model assump-
tions, i.e., when using lower-order polynomials for describing the signal decay.

In the first part of the paper, we describe the signal model and state the
sought optimization problem. After this, we present the expected behavior of
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mismatched MLEs for simplifications of this model. We then propose a com-
putationally efficient statistical test based on the spectral properties for discrim-
inating between different polynomial decay models. In particular, the proposed
test does not require estimates of the parameters corresponding to the more com-
plex signal models, thereby avoiding computationally cumbersome searches for
redundant signal parameters. Lastly, we present numerical examples illustrating
the performance of the proposed procedure as compared to the Cramér-Rao lower
bound (CRLB) [13].

2 Signal model

Consider a signal consisting of K polynomially damped sinusoids1

yn =

K
∑

k=1

rkeiφk+iωktn−βktn−γkt2
n + εn, (1)

for n = 0, . . . ,N − 1, where rk denotes the amplitude, φk the phase, ωk the
angular frequency, βk ≥ 0 the Lorentzian damping, γk ≥ 0 the Voigt damping
for kth signal component, and tn the time at sample n. Furthermore, εn denotes an
additive noise, herein assumed to be well modeled as a circularly symmetric white
Gaussian noise2. In this work, we aim to formulate a procedure for estimating
the parameters of (1) in a computationally and statistically efficient manner. It
should be stressed that no knowledge of K , nor of the number of components of
each signal class, i.e., whether certain parameters βk or γk are strictly positive, is
assumed. Thus, the number of signal components, as well as their class, has to be
estimated.

As a preliminary, it may be noted that the MLE, assuming knowledge of K ,
may be formed as

arg min
ψ1,...,ψK

N−1
∑

n=0

∣

∣

∣

∣

∣

yn −
K
∑

k=1

μ(tn;ψk, α)

∣

∣

∣

∣

∣

2

, (2)

1We here restrict our attention to Lorentzian and Voigt line shapes, but note that the presented
procedure may also be used for higher order polynomial decays. Such models are used in, for
instance, non-destructive testing [2].

2It may be noted that this constitutes a valid assumption in many spectroscopy applications,
with εn corresponding to thermal (Johnson) noise.
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where ψk = [rk,φk,ωk, βk,γk] is the parameter vector for component k, and

μ(tn;ψk, α) = rkα(tn;ψk)eiφk+iωktn (3)

with α(tn;ψk) = e−βktn−γkt2
n denoting the envelope function. Assuming that the

classes of the signal components are unknown, a straightforward approach would
be, having estimated all parameters, to conduct a hypothesis test in order to de-
termine whether βk > 0 and/or γk > 0, for each individual component. How-
ever, finding the solution to (2) generally requires a 3K -dimensional search, i.e.,
over ωk, βk, and γk, as solving for rk and φk may be done using ordinary least
squares. As an alternative, one may apply sparse reconstruction techniques by con-
structing a dictionary over all candidate parameters, reminiscent to the method
in [9], but such a scheme quickly becomes practically infeasible due to the size
of the problem for any reasonably fine grid for the different parameters. Motiv-
ated by mismatched estimation, we here instead formulate a sequential estimation
scheme avoiding these difficulties, while still yielding an efficient estimator.

3 Mismatched estimation

Consider an observation of the signal in (1) for the special case when K = 1,

collected in the vector y =
[

y0 . . . yN−1

]T
. The corresponding probability

density function (pdf ) is then given by

p(y;ψ, α)=
1

(πσ2)N exp

{

−
1

σ2

N−1
∑

n=0

|yn−μ(tn;ψ, α)|2
}

, (4)

where σ2 is the variance of the additive noise. It is worth noting that the pdf is
parametrized by the envelope function α, allowing for expressing the difference
between the pdf for sinusoidal, Lorentzian, and Voigt models solely in terms of α.
Specifically, we are concerned with the implication of parameter estimation in the
case when α is replaced with a misspecified version ᾰ. We do this by considering
the following definition:

Definition 1 (Pseudo-true parameter [15]). Consider a signal sample with pdf p,
parametrized by the parameter vector ψ. For another parametric pdf, p̆, paramet-
rized by θ, the pseudo-true parameter, θ0, is defined as

θ0 = arg min
θ

− Ep
(

log p̆(y;θ)
)

.

190



3. Mismatched estimation

Thus, θ0 minimizes the Kullback-Leibler divergence between the assumed
and true signal models. Interestingly, and of importance for the problem of mis-
matched estimation, the mismatched maximum likelihood estimator, i.e.,

θ̂MLE = arg max
θ

log p̆(y;θ),

where y is sampled from p, converges, under some regularity conditions, to the
pseudo-true parameter θ0 as the signal-to-noise ratio (SNR), or sample size, de-
pending on the application, increases [15]. Herein, we are interested in estimat-
ing the parameters of purely sinusoidal and Lorentzian models when the actual
measured signal may be Lorentzian or Voigt, respectively. The following two pro-
positions detail the expected behavior in the one-component case.

Proposition 1. The pseudo-true parameter vector θ0 = [r0,ω0,φ0] corresponding
to a model with ᾰ(tn;θ) ≡ 1, when y is sampled from (4), is given by

r0 =
r
N

N−1
∑

n=0

α(tn;ψ) , ω0 = ω , φ0 = φ.

Proof. See the appendix.

Thus, the estimate of the frequency and phase parameters are asymptotically
unbiased, whereas the amplitude r will be underestimated. Further, for the mis-
matched estimation of a Lorentzian component, the following proposition holds.

Proposition 2. Consider estimating the parameters θ0 = [r0,φ0,ω0, β0] corres-
ponding to a model with ᾰ(tn;θ) = e−β tn , when y is sampled from (4). Then,
ω0 = ω and φ0 = φ. Furthermore,

r0 = r

∑N−1
n=0 α(tn;ψ)e−β0tn

∑N−1
n=0 e−2β0tn

,

where the pseudo-true decay parameter satisfies

β0 ∈
(

β , β + γ (tN−1 + tN−2)
]

for any γ > 0.

Proof. See the appendix.
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It should be noted that the estimate of the frequency and phase parameters
are thus unbiased, even if using an erroneous model, whereas the estimate of the
linear decay parameter will incur a strictly positive bias. This result may be used
as a bound when forming a final estimate of the parameter β . It should be stressed
that the results of Propositions 1 and 2 are only exact for the single-component
case. However, they will hold approximately for multi-component signals that do
not contain components that are too closely spaced in frequency.

In the following section, we address the problem of how one may proceed to,
in a computationally efficient manner, i.e., without having to form estimates of
parameters of more complex models, determine whether a fitted model is suffi-
cient for describing the measured data.

4 Spectrum test

As noted earlier, a Lorentzian model may be obtained as a special case of a Voigt
model by setting γ = 0, and a sinusoidal model may be obtained by setting
β = γ = 0. Thus, one may discern between the different models using stand-
ard hypothesis tests, i.e., by considering the statistical significance of the signal
parameters [13]. However, such a procedure then requires estimating the full
set of signal parameters. In order to avoid fitting unnecessarily complex models,
we propose to exploit the difference in spectral properties of the three considered
models. As detailed in Propositions 1 and 2, we expect that, for signals that do not
contain too closely spaced components, the estimates of the frequency and phase
parameters will be unbiased. Thus, components estimated under mismatched
model assumptions will have spectra with the same modes as the actual signal,
but with erroneous shapes. Also, in the residual spectra, we expect the power
to be concentrated in a neighborhood of the estimated frequencies. With this
observation, we propose to decide whether a fitted model is sufficient by consid-
ering the whiteness of the residual spectrum using the following proposition (see,
e.g., [16]).

Proposition 3. Under the null-hypothesis that the signal template coincides with
the measurement model, it holds that the periodogram spectral estimate is distributed
according to

2Φ̂per(ω)

σ2
∼ χ2(2),
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for ω = k/2πN , with k = 1, 2, . . . ,N − 1 and σ2 denoting the additive noise
variance under the null hypothesis. Further, the test statistic

ξ(ω̂) !

1
|I(ω̂)|

∑

k∈I(ω̂) Φ̂
per(ωk)

1
N−|I(ω̂)|

∑

k/∈I(ω̂) Φ̂
per(ωk)

,

where I(ω̂) is a set of indices such that
{

ωk = k
N 2π | k ∈ I(ω̂)

}

is distributed ac-

cording to

ξ(ω̂) ∼ F
(

|I(ω̂)| ,N − |I(ω̂)|
)

,

where F(d1, d2) denotes an F-distribution with (d1, d2) degrees of freedom.

Letting I(ω̂) be a set of indices corresponding to a neighborhood of the es-
timated frequency ω̂ (e.g., ±5 grid points), one may thus use Proposition 3 for
detecting residual spectral power by comparing the test statistic ξ(ω̂) to quantiles
of the F-distribution. In the numerical examples, the 95%-quantile is used. The
benefit of this approach, as compared to standard hypothesis testing, is that one
does not have to estimate the parameters of the more complex model in order to
decide whether it is needed or not; all that is required is a candidate, potentially
mismatched, the model, and an estimated spectrum. For simplicity, we here con-
sider the periodogram estimate, although one could envision more sophisticated
alternatives, although the distribution of the test statistic may in such case be dif-
ferent. In practice, for the case of multi-component signals, the set of spectral
points used to estimate the noise power may be taken to be the complement of
the union of all neighborhoods I(ω̂), as opposed to the complement of the single
neighborhood I(ω̂) in Proposition 3.

5 Proposed algorithm

Based on the results in the previous section, we propose to address the estimation
problem using the following procedure3

1. Fit a purely sinusoidal model to the signal of interest.

3The further steps are here only taken if the currently used model at each step is deemed to have
been insufficient.
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Figure 1: Empirical distribution functions for the error of initial frequency estim-
ates. Top: Lorentzian component. Note that the Lorentzian and sine components
are closely spaced. Bottom: Voigt component. Note that the Voigt component is
well separated for the other two signal components.

2. Identify the damped components using Proposition 3. Add the identified
components to signal residual.

3. Fit a Lorentzian model to the signal residual.

4. Identify the non-linearly damped components using Proposition 3. Add
these to the signal residual.

5. Fit a Voigt model to the signal residual.

For the first and third steps, we propose to use the estimators SURE-IR [17] and
D-SURE [11]. These estimators are approximate ML estimators tailored for si-
nusoidal and Lorentzian models, respectively, and both include techniques for
arriving at sparse estimates not requiring a priori model order knowledge. Also,

194



5. Proposed algorithm

1.3 1.4 1.5 1.6 1.7 1.8

hat - 10-3

0

0.25

0.5

0.75

1

cd
f

30 dB
40 dB
50 dB
60 dB
70 dB
80 dB

-1.5 -1 -0.5 0 0.5 1 1.5

hat - 10-4

0

0.25

0.5

0.75

1
cd

f

30 dB
40 dB
50 dB
60 dB
70 dB
80 dB

Figure 2: Empirical distribution functions for the error of initial linear decay
estimates. Top: Lorentzian component. Bottom: Voigt component. Note that
the bound for the estimation bias is 4× 10−3.

by not relying on a fixed gridding of the parameter space, the need for large signal
dictionaries is alleviated, allowing for rapid implementation. In practice, the com-
plexity of these estimators are O(K̂ 3), where K̂ is the number of signal compon-
ents identified by the estimators. Clearly, steps 1 and 3 may also be implemented
using other estimators, such as, e.g., root-MUSIC [18] and its extensions [6, 7],
although such methods in general require accurate a priori model order know-
ledge. In any case, in order to utilize the results from Propositions 1 and 2, the
chosen estimators should approximate the MLE for the respective models.

As noted earlier, one could, as an alternative to the proposed sequential es-
timation, instead form a full dictionary that spans the whole parameter space and
thus contains a (large) set of signal candidates and estimate the parameters by
solving a sparsity enforcing optimization problem, e.g. Lasso [10, 19]. However,
this approach has the major drawback of requiring a large number of candidate

195



Paper D

10 20 30 40 50 60 70 80

1/ 2 (dB)

10-10

10-5

100

R
M

SE

CRLB sine
CRLB Lorentzian
CRLB Voigt

10 20 30 40 50 60 70 80

1/ 2 (dB)

0

0.25

0.5

0.75

1
P(

co
rr

ec
t m

od
el

)

sine estimate
Lorentzian estimate
Voigt estimate

Figure 3: Top: Empirical probability of correctly classifying the three signal com-
ponents. Bottom: Root-MSE for the frequency parameters, ωk.

signal components in order to form reliable estimates. For instance, if one is to
form the dictionary with P grid point for each parameter, the resulting dictionary
would be of the size N × P3. To yield a satisfactory estimation precision for each
parameter, P generally has to be quite large, often in the range of 102 − 104.
Solving problems on this scales requires significant computational resources and
ignores available information.

In contrast, steps 1-4 above allows for an efficient estimation of the parameters
of sinusoidal and Lorentzian components, as well as identifying Voigt compon-
ents. Using Proposition 2, one may then use a non-linear search to efficiently
estimate the Voigt parameters, as the proposition allows a limit on the relevant
search space. As a final step, a local refinement search in a limited neighborhood
of the estimated parameters may be performed. It should be noted that the pro-
posed scheme allows for the dimension of the estimate to be kept to a minimum
in every step by sequentially identifying and estimating the signal components.
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Figure 4: Top: Root-MSE for the linear decay parameters, βk. Bottom: Root-
MSE for the quadratic decay parameter, γ.

6 Numerical illustration

We consider a signal consisting of a pure sinusoidal, a Lorentzian, and a Voigt
component, measured at tn = n, for n = 0, 1, . . . ,N − 1, with N = 200.
The signal parameters are (ω1,ω2,ω3) = (0.7, 0.5, 1.5), ( β2, β3) = ( 1

200 ,
1

150 ),
and γ3 = 10−5, where the indices 1, 2, and 3 correspond to the sinusoidal,
Lorentzian, and Voigt components, respectively, and r1 = r2 = r3 = 1, with the
phases drawn uniformly on [0, 2π). We add circularly symmetric white Gaussian
noise, and attempt to recover the signal parameters using the proposed estimation
method. We repeat this procedure in 500 Monte Carlo simulations for different
levels of noise.4 Figure 1 displays the empirical cumulative distribution function
for the error of the frequency estimates for the Lorentzian and Voigt components

4We stress that the estimator is not provided with oracle knowledge of the number of signal
components, nor their specific signal category.
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obtained in Step 1, i.e., when fitting a purely sinusoidal model. There is a small
negative estimation bias for the Lorentzian component, caused by its proxim-
ity to the sine component, whereas the estimate for the Voigt component, that is
well-separated from the other two components, is unbiased. Figure 2 displays cor-
responding results for the linear decay parameters obtained in Step 3, i.e., when
fitting Lorentzian components. The estimate corresponding to the Voigt compon-
ent has a substantial bias, given the scale of the parameters, although it is within
the upper bound 4× 10−3 predicted by Proposition 2. The empirical probability
of correct model classification, i.e., the probability of determining K = 3 as well
as correctly classifying the model type for each component, is displayed in the
top panel of Figure 3. As can be seen, the probability approaches 1, for all three
components, as the noise variance falls below 10−3. Considering the simulations
in which the components were correctly classified, the obtained root-MSE, being
refined with a local non-linear search, for the signal parameters is shown in the
bottom panels of Figure 3 and 4, as compared with the corresponding CRLB.

7 Appendix

7.1 Proof of Proposition 1

Proof. Excluding constant terms as well as positive scalings, expectation is given
by

2r0r
N−1
∑

n=0

ᾰ(tn)Re

(

ei(ω0−ω)t+i(φ0−φ)
)

− Nr2
0 .

Here, Re
(

ei(ω0−ω)t+i(φ0−φ)
)

≤ 1, with equality being achieved for all tn if and
only if ω0 = ω and φ0 = φ+k2π, for k ∈ Z. Substituting this in and minimizing
the negative of the resulting expression with respect to r0 yields the above stated
result.

7.2 Proof of Proposition 2

Proof. The values of ω0, φ0, and r0 may be obtained using the same reasoning as
in the proof of Proposition 1. To find β0, one needs to maximize

Λ( β0 ) =

(

∑N−1
n=0 e−β tn−γt2

n−β0tn
)2

∑N−1
n=0 e−2β0tn

.
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Differentiation with respect to (w.r.t) β0 yields

∂Λ(β0)

∂β0
=
λ1( β0 ) + λ2( β0 )

q( β0 )
,

where q is a strictly positive function and

λ1( β0 )=−2

(

N−1
∑

n=0

e−β tn−γt2
n−β0tn

)(

N−1
∑

n=0

tne−β tn−γt2
n−β0tn

)(

N−1
∑

n=0

e−2β0tn

)

and

λ2( β0 ) = 2

(

N−1
∑

n=0

e−β tn−γt2
n−β0tn

)2(N−1
∑

n=0

tne−2β0tn

)

.

Excluding common positive terms, one may arrive at the function (note explicit
dependence on γ)

Ψ( β0,γ) =

(

N−1
∑

n=0

e−β tn−γt2
n−β0tn

)(

N−1
∑

n=0

tne−2β0tn

)

−

(

N−1
∑

n=0

tne−β tn−γt2
n−β0tn

)(

N−1
∑

n=0

e−2β0tn

)

=

N−1
∑

m=1

m−1
∑

n=0

(tm − tn)e−β0(tm+tn)

·
(

e−β tn−γt2
n−β0tm − e−β tm−γt2

m−β0tn
)

which has the same zeros w.r.t. to β0 and sign as the derivative of the original
objective function Λ. It may be noted that Ψ( β , 0) = 0, i.e., the β0 = β for γ =
0. However, for γ > 0, we will show that β0 > β by showing that Ψ( β̃ ,γ) > 0
for any β̃ ∈ [0, β] and γ > 0. In fact, all terms of the last expression of Ψ( β̃ ,γ)

are positive for β̃ ∈ [0, β]. To see this, note that (tm − tn)e−β̃(tm+tn) > 0 for
tm > tn. Thus, positivity is equivalent to

e−β tn−γt2
n−β̃ tm > e−β tm−γt2

m−β̃ tn ⇐⇒
β̃ − β

γ
< tm + tn.
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As β̃ − β ≤ 0 for β̃ ∈ [0, β], the inequality holds for all tm and tn. Thus,
Ψ( β̃ ,γ) > 0 for all β̃ ∈ [0, β] as it is a sum of strictly positive terms. Using
the same line of reasoning, we have that all terms of the sum are non-positive if
β̃ ≥ β + γ (tN−1 + tN−2), i.e., there exists a finite β̃ such that Ψ( β̃ ,γ) ≤ 0.
As Ψ( β̃ ,γ) is continuous in β̃ , we may conclude that Ψ( β̃ ,γ) = 0 for some
β̃ ∈

(

β , β + γ(tN−1 + tN−2)
]

, which concludes the proof.

7.3 A note on estimation performance

When estimating the parameters of a template model not coinciding with the
model generating the measurements, standard bounds on estimation perform-
ance, such as the CRLB, are not applicable to the variance of estimators of the
pseudo-true parameter. However, for estimators θ̂ of θ0 that are unbiased under
the true signal pdf p, a lower bound on the estimator variance is provided by the
misspecified CRLB (MCRLB) [20], i.e.,

Ep

(

(θ̂− θ0)(θ̂− θ0)T
)

≽ MCRLB(θ0).

For the case of fitting a sinusoidal model to signal measurements sampled from
(4), the MCRLB may be expressed in closed form solely in terms of the true
parameter vector ψ. In fact, it may be shown that

MCRLB(θ0) =
σ2

2

⎡

⎣

1
N 0 0
0
0

1
r2 A(ψ)−1BA(ψ)−1

⎤

⎦ ,

where σ2 is the variance of the additive noise and where

A(ψ)=

[
∑N−1

n=0 t2
nα(tn)

∑N−1
n=0 tnα(tn)

∑N−1
n=0 tnα(tn)

∑N−1
n=0 α(tn)

]

,B=

[
∑N−1

n=0 t2
n
∑N−1

n=0 tn
∑N−1

n=0 tn N

]

,

with α(tn) ≡ α(tn;ψ). This reveals an interesting asymptotic property: assum-
ing that the sampling times tn constitute a strictly increasing sequence, the lower
bounds on the variances for estimates of ω0 and φ0 diverge if β > 0 or γ > 0, as
N → ∞. To see this, note that as α(t) goes to zero exponentially fast as t → ∞
for non-zero decay parameters, implying that A(ψ), and thereby also A(ψ)−1, con-
verge to a finite positive definite matrix as N → ∞. In contrast, the elements of
B tend to infinity as N →∞, implying that A(ψ)−1BA(ψ)−1 diverges. Thus, for
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Figure 5: Root-MSE for the MMLE corresponding to a sinusoidal template ap-
plied to measurements from a Lorentzian and Voigt signal, respectively, for vary-
ing sample sizes N . Here, the noise variance is σ2 = 10−3.

large enough sample sizes N , the estimation performance will deteriorate as more
samples are added. This is shown in Figure 5, displaying the (root) MCRLB for
the pseudo-true frequency ω0 corresponding to a sinusoidal template when the
signal is either Lorentzian or Voigt. As may be noted, after initially decreasing,
the bounds are strictly increasing for N larger than 250. Also shown is the root
MSE obtained using the mismatched MLE (MMLE) in a Monte Carlo simula-
tion study with 500 simulations for each sample size N . It may be noted that
the MCRLB correctly predicts the performance of the MMLE. As reference, the
corresponding CRLBs for the Lorentzian and Voigt models are also provided. As
can be seen, the CRLBs converge to non-zero numbers as N →∞.
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Designing Sampling Schemes for
Multi-Dimensional Data

Johan Swärd, Filip Elvander, and Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this work, we propose a method for determining a non-uniform sampling
scheme for multi-dimensional signals by solving a convex optimization problem
reminiscent of the sensor selection problem. The resulting sampling scheme min-
imizes the sum of the Cramér-Rao lower bounds for the parameters of interest,
given a desired number of sampling points. The proposed framework allows for
selecting an arbitrary subset of the parameters detailing the model, as well as
weighing the importance of the different parameters. Also presented is a scheme
for incorporating any imprecise a priori knowledge of the locations of the para-
meters, as well as defining estimation performance bounds for the parameters of
interest. Numerical examples illustrate the efficiency of the proposed scheme.

Key words: Sampling schemes, Cramér-Rao lower bound, convex optimization
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1 Introduction

Determining how to suitably sample a signal is an important problem in many
signal processing applications, such as sensor positioning and selection in net-
work monitoring [1,2], localization and tracking [3], magnetic resonance imaging
(MRI) [4], graph signal processing [5, 6], and selecting the temporal sampling
[7]. In general, these problems can be viewed as sampling a multi-dimensional
space containing partly known signal components. For high-dimensional data,
it quickly becomes infeasible to sample the space uniformly, especially, in areas
such as nuclear magnetic resonance (NMR) spectroscopy when examining living
cells, which have limited lifetimes. For example, a recent study of 4-D NMR
measurements that would have taken about 2.5 years to perform using regu-
lar sampling was shown to be possible to construct in merely 90 hours using
a non-uniform sampling scheme [8]. This has caused an interest in formulating
sampling schemes for NMR signals, allowing for notable improvements [7,9–13].

Among the developed schemes are some exploiting a compressive sensing
framework, allowing for an accurate signal reconstruction using fewer samples
than the Nyquist-Shannon sampling theorem necessitates for uniformly sampled
signals (see, e.g., [11, 12, 14, 15]). However, the developed schemes typically
do not optimize the sampling scheme with respect to the expected signals, even
though these are often fairly well known. In this work, we strive to exploit this
knowledge in order to design a sampling scheme that would allow for an optimal
estimation accuracy given the assumed prior knowledge.

There are many related problems to the herein studied sampling scheme prob-
lem. In [16], the problem of how to optimally measure a signal in problems re-
lated to propagating wave fields was studied. More specifically, the authors studied
how to best recover the input wave field from noisy measurements of the output
field given that each measurement is associated with a cost, where the selected cost
was set higher for measurement devices with better resolution. The results were
presented as trade-off curves between the error of estimation and the total cost
budget. In [17], a framework for joint hypothesis testing and estimation using a
minimal sample size was developed. The proposed framework guarantees, under
a Bayesian setup, that the overall detection and estimation performance, given the
minimization of the sample size, is the best possible. In [18], the optimal place-
ment of phasor measurement units on power grids was studied. Other works have
been studying problems related to sampling in random fields [19, 20] and wire-
less sensor networks [21]. A notable example of the latter category is [21], where
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the problem of target tracking in wireless sensor networks is studied. The sensors
with the most information are found by utilizing a proposed probabilistic sensor
management scheme based on the compressed sensing framework. This scheme is
determined based on the probability of transmission at each node, found by max-
imizing the trace of the Fisher information matrix (FIM). Using this approach,
sensors with less information can be discarded, implying that fewer sensors need
to communicate, thus leading to energy savings.

Lately, for the related problem of optimal sensor placement, there has been
several methods proposed in which the combinatorial problem of selecting a sub-
set of sensors is relaxed using convex optimization. In [22], the authors consider
the case when signal measurements are linear in the unknown parameters and pro-
pose a sensor selection scheme based on solving a convex optimization problem
inspired by the determinant criterion (D-optimality) of experimental design [23].
This work was then further developed in [2, 24–27], wherein the authors con-
sider non-linear measurement equations, as well as replacing D-optimality with
the average variance criterion (A-optimality) as a performance measure. Specific-
ally, as A-optimality can be interpreted as the sum of the diagonal elements of
the Cramér-Rao lower bound (CRLB) for the signal parameters, the problem was
formulated as to minimize the number of required sensors subject to an upper
bound on the resulting diagonal sum of the CRLB. Assuming that the bound is
tight, the method thus finds a sparse set of sensors, i.e., activates a few out of a
set of candidate sensors, while keeping the variance of the estimated parameters
below a fixed level.

In this paper, we expand on this idea, proposing a method for finding a
suitable sampling scheme in order to estimate the parameters for signal models
where, in general, the signal measurements are non-linear functions of the un-
known parameters. By taking the available prior information of the signal into
consideration, we propose a sampling scheme that is found by solving a convex
optimization problem that guarantees a bound on the worst case CRLB. The
sampling pattern is selected via a variable vector, corresponding to the available
sample positions, which is penalized using the ℓ1-norm, resulting in a sampling
scheme that is limited in the number of samples. Furthermore, we reformulate
the optimization problem into a semidefinite programming (SDP) problem that
allows for more flexibility and can be used for adding additional constraints on
the optimization. In general, when estimating a set of parameters, it might be
that the scale of the parameters, as well as the accuracy with which they can be es-

211



Paper E

timated, are significantly different. Also, some of the unknown parameters might
be of greater interest than the others; again, using NMR as an example, the signal
decay is often of more interest than the signal frequencies, the latter often be-
ing relatively well known for a given substance, whereas the former measures the
sought interactions. We here propose to use a weighting scheme in order to allow
for a relative balancing of the variances of the different parameters, allowing for
designing sampling schemes specifically tailored to yield good estimation accuracy
for the parameters of interest.

In some applications, one may assume some prior knowledge of the signal of
interest, such as, for example, knowledge of the subspace where the signal para-
meters are to be found. Again using NMR as an illustrative example, the signals of
interest consist of decaying modes, being well modeled as a sum of damped sinus-
oids. These modes are, as noted, often well known in frequency, at least within
some reasonably well defined frequency band, whereas the uncertainty of, and the
interest in, the signal decays is often more significant. Typically, the problem of
interest is thus to specify the damping parameter as accurately as possible using as
few samples as possible. To allow for this case, we herein propose using a gridding
of the parameter space in order to guarantee performance within certain bounds,
allowing for uncertainty in the parameters.

To summarize, the main components of this paper are:

• The development of a unified framework for incorporating strong prior
knowledge when designing a sampling scheme, such that one may determ-
ine which samples that are most appropriate to select for a signal that may
contain the specified components. It should be stressed that any assumed
component does not actually need to be present in the signal; the scheme
will select samples that are sufficient to estimate signal components at the
considered locations well, but these may be absent in an actual measure-
ment.

• The method allows samples to be selected such that some parameters are
deemed more important, i.e., of higher interest for the application, than
others, and the sample scheme is prioritized accordingly. For instance, one
is often more interested in the decay rate of the signal components than
their actual frequencies (which are commonly well known), and may then
focus the sampling scheme to allow for accurate estimation of these para-
meters.
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2. Problem statement and proposed sampling scheme

• The method allows for uncertainty in the assumed model, allowing a user
to indicate regions of interest wherein parameters are assumed to lie. This
allows the proposed method to design sampling patterns for signals that are
only partly known, relaxing the assumption of the signal modelled being
known in detail a priori.

• The proposed method is valid for high-dimensional data sets, with the
achievable gain growing (rapidly) with the growing dimensionality of the
problem.

To illustrate the proposed method, we consider multi-dimensional NMR sig-
nals. However, the proposed framework is not limited to this case. Indeed, it is
applicable to any signal model having a parametric description that allows for the
existence of a Fisher information matrix. Although, we show that the proposed
method yields Cramér-Rao lower bounds that are attainable, it should be stressed
that this paper is not concerned with parameter estimation as such; any efficient
estimator allowing for non-uniformly sampled data may be applied.

This paper is organized as follows. In Section 2, we introduce the prob-
lem statement and derive the proposed optimization problem. In Section 3, we
present extensive numerical simulations and results that validates our proposed
method. Finally, in Section 4, we conclude upon our work.

2 Problem statement and proposed sampling scheme

Consider a measured signal y(tn), defined on a D-dimensional space with N po-
tential D-dimensional sampling points, tn, n = 1, 2, . . . ,N . It is assumed that
the probability density function (pdf ) of y(tn), here denoted by p

(

y(tn);θ
)

, is
parametrized by the parameter vector θ ∈ RP and that two samples y(tn) and
y(tm) are independent if tn ̸= tm. The FIM for sample y(tn) may then be defined
as

F(tn;θ) = E

{

∇θ log
(

p( y(tn);θ)
)

∇θ log
(

p( y(tn);θ)
)H
}

,

where E {·} ,∇θ, and (·)H denote the statistical expectation, the gradient with
respect to θ, and the conjugate transpose, respectively. The herein proposed
sampling scheme is designed such that it is optimal in the sense of either min-
imizing the CRLB of the parameters of interest, given that M of the N potential
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uniform samples are used, or conversely, minimizing the number of samples used
given a desired upper bound on the CRLB of the parameters. It is worth noting
that as the potential signal samples are assumed to be independent, for any set of
sample indicesΩ, it holds that

∑

n∈Ω

F(tn;θ)

is the corresponding FIM using this sample scheme. Let the N -dimensional vec-
tor w denote an indicator for the possible sampling points in the D-dimensional
sampling space, such that if the nth index, wn, is set to one, this sampling point
is used, whereas if it is set to zero, it is not. Reminiscent of the case of optimal
sensor selection, the resulting sampling design problem may then be formulated
as (see also [24])

minimize
w

tr

⎛

⎝

(

N
∑

n=1

wnF(tn;θ)

)−1
⎞

⎠

subject to ∥w∥1 ≤ γ

wn ∈ {0, 1} , n = 1, 2, . . . ,N ,

(1)

where γ > 0 and tr(·) denotes the trace operator. The choice of objective function
is related to the so-called A-optimality criterion from design of experiments [23]
as the trace of the inverse FIM corresponds to the sum of the CRLBs of the
signal parameters in θ. Here, the parameter γ constitutes an upper bound on the
ℓ1-norm of the sample selection vector. The sampling design scheme (1) is not
convex due to the restriction that wn, for n = 1, . . . ,N , is defined over a non-
convex set. A convex approximation to this problem may be found by relaxing
the binary constraint and instead allowing wn to take any value in the range [0, 1]
(see, e.g., [25]), resulting in

minimize
w

tr

⎛

⎝

(

N
∑

n=1

wnF(tn;θ)

)−1
⎞

⎠

subject to 1T w ≤ γ

wn ∈ [0, 1] , n = 1, 2, . . . ,N ,

(2)

where 1 is a vector of ones of appropriate dimension. It should be noted that
we can here replace ||w||1 with simply 1T w, since each element in w is equal
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to or greater than zero. Given a solution ŵ to (2), we define the FIM for the
corresponding sampling pattern as

I(ŵ;θ) =
∑

ℓ∈Ω

F(tℓ;θ), Ω = {ℓ | ŵℓ > ξ} , (3)

where ξ ≥ 0 is a threshold determining whether a sample weight ŵℓ should be
rounded toward one or zero, i.e., whether the sampling point should be included
or not. This formulation allows for the minimization of the sum of the CRLBs
given an upper bound on the number of samples used. Note that the problem
could alternatively be formulated as minimizing the number of sampling points
given an upper bound on the sum of the CRLBs. It is also worth noting that
the signal to noise ratio (SNR) will not affect the sampling scheme as such, as the
noise power will only affect the optimisation problem by scaling the cost function.
Obviously, the SNR will result the performance of any estimator subsequently
used to estimate the signal parameters using the selected samples, but thus not
the actual selection of these samples.

However, the sampling design in (2) does not allow for the case when one is
primarily interested in a subset of the available parameters. Neither does the for-
mulation take into account that the different parameters might have significantly
different variances. For example, for a sum of damped sinusoids, the trace con-
straint in (2) will clearly be dominated by the CRLB for the amplitudes, as these
are orders of magnitude larger than those for the frequencies, and the optimization
will therefore put an emphasis on minimizing the CRLBs of the amplitude para-
meters. In order to allow for sampling schemes that put an emphasis on a selection
of the parameters of interest, we recently proposed to introduce a weighting mat-
rix, A(θ), acting upon the FIM in [28]. Specifically, instead of minimizing the
cost function using the FIM, we proposed to perform the minimization using
weighted FIMs

F̃(tn;θ) = A(θ)F(tn;θ)A(θ)T ,

i.e., performing a linear transformation of the variables and minimizing the sum
of the CRLBs corresponding to the transformed parameters θ̃ = A(θ)θ. How-
ever, although this formulation allows for shifting emphasis to the parameters of
interest, it does not allow for complete disregard of nuisance parameters as A(θ)
has to be non-singular in order for the matrix inverse to be defined. In order to
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allow for an arbitrary weighting, we note that the following useful identity holds
for any invertible P × P matrix B;

tr
(

B−1
)

=

P
∑

p=1

eT
p B−1ep,

where ep denotes the pth canonical basis vector, i.e., a vector with all its elements
equal to zero except the pth being equal to one. Furthermore, it is noted that for
any positive definite matrix B, scalar μ, and arbitrary vector a, it follows from the
Schur complement (see, e.g., [29]) that

μ− aT B−1a ≥ 0 ⇐⇒

[

B a
aT μ

]

≽ 0,

where X ≽ 0 indicates that the matrix X is positive semidefinite. Thus, it follows
that

minimize
B≻0

aT B−1a

and

minimize
μ,B≻0

μ

subject to

[

B a
aT μ

]

≽ 0

are minimized by the same matrix B. Here, B ≻ 0 indicates that the matrix B is
positive definite. This observation allows us to reformulate (2) as the semidefinite
program (SDP) (cf. [2, 18])

minimize
μ,w

P
∑

p=1

ψpμp

subject to

[ ∑N
n=1 wnF(tn;θ) ep

eT
p μp

]

≽ 0, p = 1, . . . ,P

N
∑

n=1

wnF(tn;θ) ≻ 0

1T w ≤ γ , wn ∈ [0, 1], n = 1, . . . ,N ,

(4)

216



2. Problem statement and proposed sampling scheme

where ψp are weight parameters allowing for putting emphasis on different com-
ponents of the vector θ. For example, if ψq = 1 and ψp = 0, ∀p ̸= q, then
the CRLB for the parameter θq will be the only one minimized, as μq precisely
corresponds to this lower bound, whereas the CRLBs for the other parameters θp,
p ̸= q will be disregarded. Similarly, for ψp = 1, ∀p, the problems (2) and (4) are
equivalent.

Another benefit of this formulation is that it allows for a straightforward way
of incorporating performance constraints in the minimization problem, such as
if, for instance, there is some upper tolerance bound λp for the CRLB of para-
meter θp. This kind of performance specifications can then be incorporated in
the minimization problem via linear inequality constraints according to

minimize
μ,w

P
∑

p=1

ψpμp

subject to

[ ∑N
n=1 wnF(tn;θ) ep

eT
p μp

]

≽ 0, p = 1, . . . ,P

N
∑

n=1

wnF(tn;θ) ≻ 0 , 1T w ≤ γ

wn ∈ [0, 1], n = 1, . . . ,N , μp ≤ λp , p = 1, . . . ,P.

(5)

Furthermore, one may not only be interested in designing a sampling scheme
for a single parameter vector θ, but rather for a set of parameter vectors. For
example, consider the case when the parameters in θ are only partly known, such
that one may assume that θ instead lies in a set of possible parameters, Θ . In
such cases, it may be desired to treat some of the parameters as known, whereas
others are only partly known, within some set of uncertainty. To allow for this, as
well as taking the weighting into account, we further generalize (5) such that the
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sampling scheme is designed as

minimize
μ,w

P
∑

p=1

ψpμp

subject to

[
∑N

n=1 wnF(tn;θ) ep

eT
p μp

]

≽ 0, ∀θ ∈ Θ, p = 1, . . . ,P

N
∑

n=1

wnF(tn;θ) ≻ 0

1T w ≤ γ , wn ∈ [0, 1], n = 1, . . . ,N

μp ≤ λp , p = 1, . . . ,P.

(6)

Using this formulation, the optimal μp will, assuming that ψp > 0, now corres-
pond to a worst case CRLB for the pth component of θ, when θ ∈ Θ , i.e., for
the obtained sampling sampling scheme

μp = arg max
θ∈Θ

eT
p I(ŵ;θ)−1ep.

Thus, the solution to (6) is a sampling scheme minimizing the worst case CRLB
for the parameters of interest if the parameter vector θ is known to be in the set
Θ .

Further, one could also consider the case where there is some cost associated
with changing sampling points in one of the dimensions. For instance, if one of
the sampling dimensions corresponds to a certain setting of a machine, e.g., time
delay or magnetic flow, it could be more costly to acquire many different sample
points in this dimension. Illustrating this in the 2-D case, one could include such
a cost in the optimization by forming the N1 × N2 matrix W by reshaping the
vector w, and adding the constraints

∣

∣

∣

∣

∣

∣
WT
∣

∣

∣

∣

∣

∣

2,1
=

N1
∑

n=1

∣

∣

∣

∣W(:,n)

∣

∣

∣

∣

2
≤ γ1

||W||2,1 =

N2
∑

n=1

∣

∣

∣

∣W(n,:)

∣

∣

∣

∣

2
≤ γ2

to the optimization in (6). Here, γ1 and γ2 are tuning parameters that may be set
according to the associated cost. This constraint can easily be omitted simply by
setting γ1 = γ2 =∞.
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It is also worth noting that when relaxing (1) in favor for (2), we can no longer
guarantee that the weights are exactly 0 or 1. In this case, as is noted in (3), we
simple choose an appropriate threshold such that values above the threshold are
deemed as ones, and the values below are deemed as zeros. However, a better
approximation of (1) is found by using re-weighting. This may be done by first
solving (6), yielding the estimated w(1), where the superscript (·)(j) denotes jth it-
eration. Then, (6) is solved again, but this time with 1

w(1)
n +δ

as a scaling factor for

each wn, where δ is a small number added to the denominator to avoid numerical
problems. This procedure can then repeated until convergence. The re-weighting
is a better approximation of the ℓ0-norm, and thus is more likely to produce
weights with values close to zero or one. As we have empirically found that using
re-weighting for the here studied examples offers only a marginal improvement,
while significantly increasing the computational cost due to the iterative proced-
ure, we have in our examples chosen to use the simpler thresholding approach.

The SDP formulations in equations (4)-(6) may be minimized using, e.g.,
off-the-shelf solvers such as SeDuMi [30] or SDPT3 [31]. Typically, these require
O(J 3) operations per iteration, where J is the number of variables. Clearly, this
implies that the solution will be computationally demanding for large potential
sampling grids and high-dimensional data. However, as noted in the introduc-
tion, in many experimental applications, the time required to carry out an ex-
periment is often several orders of magnitude greater than the time needed for
determining the optimal sampling scheme, even using standard solvers not ex-
ploiting any inherent structure in the problem. As a result, the scheme allows
for a substantial overall decrease of the experimental time, even if the forming
of the sampling scheme is somewhat cumbersome, as this step only needs to be
done once for a given experimental setup, whereas the resulting experiment would
typically be done multiple times, with each measurement typically taking substan-
tially longer than the design of the sampling scheme.

3 Numerical results

3.1 Illustration in 1-D

To illustrate the proposed sampling scheme, we consider the NMR signal model,
as noted being formed as a sum of damped sinusoids (for ease of notation, we
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initially focus on the 1-D case), such that

y(tn) =
K
∑

k=1

αk exp
(

2iπfktn − βktn + iφk
)

+ ε(tn), (7)

for n = 1, . . . ,N , where αk, fk, βk, and φk are the amplitude, frequency, damping,
and phase of the kth component, respectively, and where ε is an additive noise
term, here assumed to be well modeled as a white circularly symmetric Gaussian
noise1 with variance σ2, with tn being the time at sample n. For simplicity, we
consider uniformly sampled candidate sampling times, tn. For the signal model
in (7), the FIM corresponding to sampling time tn is given by

F(tn;θ) =
2

σ2

⎛

⎜

⎜

⎜

⎝

F1,1(tn) F1,2(tn) . . . F1,K (tn) 0
...

... . . .
...

...
FK ,1(tn) FK ,2(tn) . . . FK ,K (tn) 0

0 0 . . . 0 1/σ2

⎞

⎟

⎟

⎟

⎠

,

where

Fk,ℓ(tn) =

⎛

⎜

⎜

⎜

⎜

⎝

ck,ℓ(tn)
αkαℓ

2πtnsk,ℓ(tn)
αk

−tnck,ℓ(tn)
αk

sk,ℓ(tn)
αk

−2πtnsk,ℓ(tn)
αℓ

(2πtn)2ck,ℓ(tn) 2πt2
n sk,ℓ(tn) 2πtnck,ℓ(tn)

−tnck,ℓ(tn)
αℓ

−2πt2
n sk,ℓ(tn) t2

n ck,ℓ(tn) −tnsk,ℓ(tn)
−sk,ℓ(tn)
αℓ

2πtnck,ℓ(tn) tnsk,ℓ(tn) ck,ℓ(tn)

⎞

⎟

⎟

⎟

⎟

⎠

,

with

ck,ℓ(tn) = αkαℓe
−( βk+βℓ)tn cos

(

2π( fk − fℓ)tn + (φk − φℓ)
)

sk,ℓ(tn) = αkαℓe
−( βk+βℓ)tn sin

(

2π( fk − fℓ)tn + (φk − φℓ)
)

.

Here, the parameter vector θ is defined as

θ =
[

θ
T
1 . . . θT

K

]T

θk =
[

αk fk βk φk
]T

.

As an illustration, Figure 1 shows an example of sampling schemes found by
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Figure 1: The resulting sampling scheme for two different values of β plotted
against the real part of the signal. The upper most figure details the sampling
scheme for β = 1

10 and the bottom figure the sampling scheme for β = 1
20 .

solving (4) for two different levels of decay for a single damped sinusoid such that
β = 1/10 for the top figure, and β = 1/20 for the bottom figure, but otherwise
identical signal parameters. In both cases, γ = 13 so that M = 13 sample points,
out of N = 50 possible candidates, are selected. Also, ψp = 1, p = 1, . . . , 4,
i.e., all signal parameters are considered in the minimization. As can be seen,
the placing of the samples are determined by the damping parameter. As may be
expected, for both values of β , some samples are placed in the beginning of the
signal, where the SNR is at its maximum. To allow for an accurate estimation of

1 The assumption of white circularly symmetric Gaussian noise is appropriate for the considered
application to spectroscopy, where the noise is primarily resulting from thermal (Johnson) noise
[32]. It is worth stressing that this is not a limitation for the sampling method as such, and the noise
model may be selected to be non-Gaussian if deemed appropriate for the considered application;
such a change would only affect the form of the used FIM.
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Figure 2: The resulting sample scheming for three different settings of γ, namely
γ = 15, γ = 20, and γ = 25, where the signal contains two linear chirps.

the damping constant, one can also note that a further set of samples are selected
later in the signal, with the more strongly decaying signal selecting them earlier
than the less damped version, agreeing with the intuition that the more rapidly
decaying signal contains less information at later sampling times.

As a further example, we next consider an example showing the resulting
sample scheme for a signal containing two linear chirp components on the form

y(tn) =
2
∑

k=1

αk exp
(

2iπ
(

f 0
k + f 1

k tn
)

tn + iφk
)

+ ε(tn),

where f 0
k and f 1

k denote the frequency starting point and the slope of the chirp
component k, respectively. Figure 2 shows the three sampling schemes yielded by
the proposed method for three different setting on γ, namely γ = 15, γ = 20,
and γ = 25. The here used parameters had the values α1 = α2 = 5, f 0

1 = 0.1,
f 0
2 = 0.5, f 1

1 = 0.01, f 1
2 = −0.003, and the phases were set to φ1 = π/2, and

φ2 = π/3. Due to the linear drift in frequency, it is reasonable to assume that the
resulting sample scheme should have at least two clusters; one in the beginning
of the signal, and one at the end of the signal. Looking at the sampling schemes
in Figure 2 supports this intuition; three clusters are present for all three settings
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Figure 3: The resulting sampling scheme consisting of 50 selected samples for a
signal consisting of a 2-D damped sinusoid as found when solving (4) with all
ψp = 1.

of γ. When γ increases the two first clusters get bigger, whereas the last cluster
remains more or less unchanged.

3.2 Illustration in 2-D

As further illustration of the impact of the choice of weight parameters ψp, con-
sider the 2-D case with one damped sinusoid, i.e.,

y(t1, t2) = αe2iπ( f1t1+f2t2)−( β1t1+β2t2)+iφ + ε(t1, t2), (8)

with α = 1, f1 = 0.2, f2 = 0.5, β1 = 1/20, β2 = 1/10, φ = 1/2, and noise
variance σ2 = 0.1. Figure 3 presents the sampling scheme found by solving (4)
with γ = 50, i.e., 50 sampling points are chosen, for the case when ψp = 1 for
all parameters.
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As can be seen, the optimal sampling pattern here consists of three clusters of
selected sampling points; one close to the origin and two close to the two time
axes. Note that this is analogous to the 1-D case as the sampling cluster close to
the first time axis is located further from the origin due to the decay in the first
dimension being slower.

In contrast, Figure 4 displays the corresponding scheme found when solving
(4), again with γ = 50, but only giving weight to the frequency and damping
parameters, i.e., the ψp corresponding to the amplitude and phase parameters
are set to zero. As can be seen, assigning the amplitude and phase parameters
zero weight has the effect of shifting sampling points away from the origin to the
clusters close to the t1 and t2 axes, in order to put more emphasis on the frequency
and damping parameters. Indeed, the sum of the CRLBs for the parameters, as
given by the sampling scheme in Figure 3, is 2.31 ·10−2, whereas it is 3.61 ·10−2

for the sampling scheme in Figure 4. However, if one considers the sum of the
CRLBs for the frequency and damping parameters, these are 6.53 · 10−4 and
4.42 · 10−4 for Figures 3 and 4, respectively.

3.3 Simulations in 1-D

3.3.1 Optimization vs simulation

In Figure 5, we motivate that solving (6) is indeed a reasonable approach to de-
termine optimal sampling patterns. The figure shows the obtained sum of the
CRLBs for the parameters, i.e., tr

(

I(ŵ;θ)−1
)

, where the sampling pattern is ob-
tained by solving (6) for the case of K = 1 using the model (7), for a singleton
set Θ . This is done for varying values of γ such that the number of samples used
vary between M = 5 and M = 25. As a comparison, for each sample size M , we
carry out 106 Monte Carlo simulations, in which we randomly decide on which
M sampling points to use. We then compute which one of these 106 sampling
patterns that results in the lowest sum of CRLBs. This will generally result in a
sampling scheme significantly preferable to any fixed sampling scheme, such as
Poisson gap sampling. As can be seen from the figure, the randomized approach
achieves better results for small sample sizes, this as the simulations then become
an exhaustive search, i.e., the simulations will with high likelihood find the ex-
act solution to (1). However, as the sample size increases, so does the number
of possible sampling patterns, which is

(N
M

)

. As can be seen from the figure, the
sampling scheme determined by (6) is then able to achieve an optimal perform-
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Figure 4: The resulting sampling scheme consisting of 50 selected samples for a
signal consisting of a 2-D damped sinusoid as found when solving (4) with all
ψp = 1 except for the amplitude and phase parameters, for which ψp = 0.

ance as the sample size increases.

3.3.2 Weighting

In Figures 6 and 7, we proceed to examine the effect of using different weightings
for the signal parameters when solving (4). This is done for a signal consisting
of two damped sinusoids with parameters (α1, f1, β1,φ1) = (1, 0.2, 1/12, 0.5)
and (α2, f2, β2,φ2) = (1, 0.65, 1/20, π/5). The noise variance was σ2 = 0.01
and N = 50. Assuming that we are interested only in the frequencies f1, f2, and
the damping factors β1, β2, but not in the amplitudes or the phases, the weight
parameters ψp are set to one for the frequency and damping parameters, whereas
they are set to zero for the amplitudes and phases. Thus, the sought sampling
pattern will be designed to increase the accuracy for the frequency and damping
parameters at the expense of the amplitude and phase parameters.
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Figure 5: Sum of CRLBs for the parameters, i.e., tr
(

I(ŵ;θ)−1
)

, for the sampling
patterns given by the optimization problem and the best simulation, respectively,
for different number of sampling points.

The resulting root CRLB, as a function of the number of samples used, for
the frequencies f1 and f2 and the dampings β1 and β2 are shown in Figures 6 and
7, respectively. The root CRLB for the frequencies f1 and f2 is here defined as the
root of the sum the individual CRLBs, and correspondingly for the dampings, β1

and β2. For comparison, the figures also present the root CRLBs corresponding to
the optimal sampling patterns obtained for the case when no weighting is applied,
i.e., ψp = 1 for all signal parameters. As can be seen, the weighting scheme results
in sampling patterns that decrease the CRLB for the parameters of interest, in
this case the frequencies and dampings. Also plotted is the obtained root mean
squared error (RMSE) for the frequency and damping parameters, respectively,
obtained when estimating these parameters using non-linear least squares (NLS)
applied to simulated signals. The NLS estimate is found by solving

θ̂ = argmin
θ

1

2
∥y− g(θ)∥2

2 , (9)
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Figure 6: Obtained RMSE for the frequencies, when using the sampling patterns
for the weighted and non-weighted cases, respectively.
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Figure 7: Obtained RMSE for the damping, when using the sampling patterns
for the weighted and non-weighted cases, respectively.

where y is the data and g(θ) is the (non-linear) data model with parameter θ. In
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Figure 8: Obtained RMSE for the frequency f , when estimating θ for the
sampling pattern obtained for a grid of damping parameters β .

this paper, a minimum of (9) is found by evaluating the cost function over a grid
of parameter values θ. The θ that achieves the lowest value of (9) then becomes
the resulting estimate. The RMSE is here defined as the root of the sum of the
individual MSEs for the frequencies and dampings, respectively. As can be seen,
the RMSE coincides with the root CRLB, implying that the bound is tight.

3.3.3 Gridding

Figures 8 and 9 show the effect of finding an optimal sampling pattern for a set
of parameters θ ∈ Θ when solving (6). The results are obtained for a single
decaying sinusoid. Here, we let Θ = {θℓ}

L
ℓ=1 express uncertainty in only the

damping parameter β by fixing α, f , and φ, and letting Θ be a gridding over
the damping parameter β , such that the parameter vectors constituting Θ are
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Figure 9: Obtained RMSE for the damping β , when estimating θ for the
sampling pattern obtained for a grid of damping parameters β .

θℓ = (α, f , βℓ,φ)T , where βℓ = βlower +
ℓ−1

L Δβ with Δβ denoting the grid
spacing, in effect letting β reside in the uncertainty interval

Jβ =

[

βlower, βlower +
L− 1

L
Δβ

]

.

The parameters used are α = 1, φ = 0.5, σ2 = 0.1, βlower = 0.1, Δβ = 0.022,
and L = 10. Using this, we solve (6) to get optimal sampling patterns as the
number of samples grows. To evaluate the performance of the obtained sampling
schemes, we then randomly sample the parameter vectors θ where β is sampled
uniformly on Jβ , i.e., on the interval covered by the grid Θ , but not on the grid
points βℓ, ℓ = 0, 1, . . . ,L − 1. We then estimate θ using NLS and compute the
RMSE for the parameters θ. The figures show the obtained RMSE using 5000
Monte Carlo simulations for the frequency f and the damping β , respectively.
Also presented are the best and worst case root CRLBs found on the grid Θ for
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Figure 10: The sum of variances of the parameters of interest as a function of the
number of selected samples.

each parameter. The obtained RMSE lies between the lowest and highest on-grid
root CRLB for both parameters and for all considered sample sizes, suggesting that
(6) indeed yields sampling schemes with a guaranteed worst case performance, as
well as a lower limit on the possible RMSE.

3.4 Simulations in 2-D

3.4.1 Optimization vs simulation

As was seen in the 1-D setting, the optimization scheme was able to outperform
the method of randomly selecting sampling points and then choosing the scheme
minimizing the sum of the CRLB. In 2-D, this becomes even more apparent as the
number of potential sampling points increase rapidly with increasing dimension.
An illustration of this is shown in Figure 10, showing the sum of the CRLBs
obtained when solving (6) for varying numbers of desired sampling points. The
signal considered is the 2-D damped sinusoid in (8) with parameters α = 1, f1 =

0.2, f2 = 0.5, β1 = 1/20, β2 = 1/10, φ = 1/2, and σ2 = 0.1. We here let ψp =

1 for all signal parameters, and consider a sampling space of 50 × 50 potential
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sampling times. Also presented is the sum of the CRLBs for the best (defined as
the one with smallest sum of CRLBs) among 107 sampling scheme obtained by
randomly choosing sampling points. As can be seen from the figure, the proposed
method outperforms the random sampling for all numbers of selected samples. It
is worth noting that the computational time to evaluate the 107 sampling schemes
was three times longer than solving the proposed problem using a off-the-shelf
convex solver [33].

3.4.2 Weighting

We here consider the case of a signal consisting of two 2-D damped sinusoid, i.e.,

y(t1, t2) =
K
∑

k=1

αkeiφkΠ 2
d=1e2iπ fk,d td−βk,d td + ε(t1, t2),

for K = 2. Let the parameters be ( f1,1, f2,1) = (0.1, 0.2) and ( β1,1, β2,1) =

(0.1, 0.1) for the first dimension, ( f1,1, f2,1) = (0.1, 0.2) and ( β1,1, β2,1) =

(0.1, 0.1) for the second dimension, and let α1 = 1, α2 = 1.3, φ1 = π
3 , φ2 = π

3 ,
and σ2 = 0.01. We then determine optimal sampling schemes by solving (4) for
varying numbers of sampling points. This is done for both the equally weighted
case, i.e., with ψp = 1 for all signal parameters, as well as for the case when only
the frequency and damping parameters are given weight, i.e., with ψp = 0 for
the amplitude and phase parameters. The results are shown in Figures 11-14.
In Figure 11, the root of the sum of the CRLBs for the frequencies in the first
dimension, i.e., f1,1 and f2,1, is shown. Similarly, Figure 12 corresponds to the
frequencies in the second dimension, while Figures 13 and 14 correspond to the
damping parameters in the first and second dimension, respectively. Also presen-
ted is the corresponding RMSE obtained when estimating the parameters using
NLS. As can be seen, the obtained RMSEs coincides with the CRLBs for both the
weighted and non-weighted case, implying that the bound is tight. Note also that
the schemes corresponding to assigning no weight to the amplitude and phase
parameters all result in a lower sum of CRLB for the frequency and damping
parameters than the non-weighted schemes. This comes at the price of a larger
sum of CRLB for the amplitudes α1 and α2, which is illustrated in Figure 15. As
can be seen in the figure, the non-weighted sampling scheme here leads to more
accurate estimates of the amplitudes.
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Figure 11: Obtained RMSE for the frequencies in the first dimension, when using
the sampling patterns for the weighted and non-weighted cases, respectively.
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Figure 12: Obtained RMSE for the frequencies in the second dimension, when
using the sampling patterns for the weighted and non-weighted cases, respectively.
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Figure 13: Obtained RMSE for the dampings in the first dimension, when using
the sampling patterns for the weighted and non-weighted cases, respectively.
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Figure 14: Obtained RMSE for the dampings in the second dimension, when
using the sampling patterns for the weighted and non-weighted cases, respectively.
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Figure 15: Obtained RMSE for the amplitudes, when using the sampling patterns
for the weighted and non-weighted cases, respectively.

3.5 Real NMR signal

In order to illustrate the proposed framework’s applicability to real, measured data,
we first consider a 2-D NMR signal obtained from a 15N-HSQC experiment
made on a Histidine sample. The signal is sampled on a uniform 25 × 25 grid.
In this form of experiments, the spectrometer measures the signal resulting from
repeatedly pulsing the studied substance, each pulse resulting in a so-called free-
induction decay (FID). This measurement is made in the direct dimension, i.e.,
along time. By modifying the pulse sequence, for instance changing the timing
between pulses, one obtain measurements also in a second (indirect) dimension.
By further modifications to the pulse sequence, one may similarly obtain higher
dimensional data sets, where each dimension corresponds to the range over each
of the considered pulse settings [34]. Figure 16 shows the 2-D periodogram of
the signal using all available samples. As can be seen, the signal consists of a num-
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Figure 16: Estimates obtained using SEMA when applied to a real NMR sig-
nal using all available samples, superimposed on the corresponding periodogram
estimate.

ber of components of varying powers, all which may be fairly well modeled as
damped complex sinusoids. Superimposed on the periodogram are estimates ob-
tained using the SEMA method presented in [35], also using all available samples.
This method is a sparse reconstruction algorithm requiring no prior knowledge
of the number of components constituting the signal. Considering only the four
most prominent components estimated by SEMA, we then compute a sampling
scheme consisting of 225 samples in total, i.e., a mere 36% of the number of
available samples, using the formulation in (4), and estimate the number of sig-
nal components, as well as the parameters of the components, using SEMA. The
result is presented in Figure 17, displaying the periodogram using all samples su-
perimposed with the obtained SEMA estimates. Comparing Figures 16 and 17,
it may be noted that the considerably reduced sample size does not cause any
significant degradation in estimation performance.

Proceeding, we examine the generation of a 3-D sampling scheme for a laser
spectroscopy measurement containing 4 damped sinusoids. The measured data
set contains 40 × 40 × 20 samples, out of which we select a total of 80 samples
using (4). Figure 18 shows the resulting sampling scheme. The figure again
illustrates, reminiscent to Figures 1 and 3, that samples are selected where the local
SNR is highest, to allow for accurate frequency estimation, as well as a smaller
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Figure 17: Estimates obtained using SEMA when applied to a real NMR signal
36% of the available samples as selected by (4), superimposed on the periodogram
estimate using all available samples.

number of additional samples selected later in the sequences to better capture the
damping behavior.

4 Conclusion

In this work, we have proposed a convex optimization problem for finding suit-
able sampling schemes for multidimensional data models. The optimization
problem is formed as to, from a set of available samples, determine a subset of
given cardinality such that linear combinations of the variances of the signal para-
meters of interest are minimized. Due to the structure of the optimization prob-
lem, it is easy to add additional constraints, e.g., adding performance bounds
on selected parameters, or putting more emphasize on a subset of the paramet-
ers, and to model for the uncertainty in a priori assumptions of the parameter
values. In the numerical section, we show that solving the proposed optimiza-
tion problem is a more efficient approach than randomly selecting the sampling
points, especially in the multi-dimensional setting. Further, we show that us-
ing the sampling schemes found by solving the proposed optimization problem,
will provide a lower Cramér-Rao lower bound than that found from using ordin-
ary uniform sampling. By using an efficient parameter estimator on the signal
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Figure 18: The resulting sampling scheme for a 3-D laser spectroscopic signal
containing 4 damped sinusoids.

sampled according to the found sampling scheme, we show that these Cramér-
Rao lower bounds are, in fact, tight.
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[16] A. Özcelikkale, H. M. Ozaktas, and E. Arikan, “Signal Recovery with Cost-
Constrained Measurements,” IEEE Trans. Signal Process., vol. 58, no. 7, pp.
3607–3617, July 2010.

[17] Y. Yilmaz, S. Li, and X. Wang, “Sequential Joint Detection and Estimation:
Optimum Tests and Applications,” IEEE Trans. Signal Process., vol. 64, no.
20, pp. 5311, Oct 2016.

[18] V. Kekatos, G. B. Giannakis, and B. Wollenberg, “Optimal Placement of
Phasor Measurement Units via Convex Relaxation,” IEEE Trans. on Power
Systems, vol. 27, no. 3, pp. 1521–1530, Aug 2012.

240



References

[19] T. C-Gulcu and H. M. Ozaktas, “Choice of Sampling Interval and Extent
for Finite-Energy Fields,” IEEE Trans. Signal Process., vol. 65, no. 7, pp.
1741–1751, April 2017.

[20] H. Zhang, J. M. F. Moura, and B. K. Krogh, “Dynamic Field Estima-
tion Using Wireless Sensor Networks: Tradeoffs Between Estimation Error
and Communication Cost,” IEEE Trans. Signal Process., vol. 57, no. 6, pp.
2383–2395, June 2009.

[21] S. Liu, E. Masazade, and P. K. Varshney, “Temporally Staggered Sensing
for Field Estimation with Quantized Data in Wireless Sensor Networks,”
in IEEE Statistical Signal Processing Workshop (SSP), Ann Arbor, MI, USA,
August 2012.

[22] S. Joshi and S. Boyd, “Sensor Selection via Convex Optimization,” IEEE
Trans. Signal Process., vol. 57, no. 2, pp. 451–462, 2 2009.

[23] F. Pukelsheim, Optimal design of experiments, Wiley series in probability and
mathematical statistics. Wiley, New York, 1993.

[24] S. P. Chepuri, Sparse Sensing for Statistical Inference - Theory, Algorithms, and
Applications, Ph.D. thesis, Delft University of Technology, 2015.

[25] S. P. Chepuri and G. Leus, “Sparsity-Promoting Sensor Selection for Non-
Linear Measurement Models,” IEEE Trans. Signal Process., vol. 63, no. 3,
pp. 684–698, 2 2015.

[26] S. Liu, S. P. Chepuri, M. Fardad, E. Masazade, and G. Leus P. K. Varsh-
ney, “Sensor Selection for Estimation with Correlated Measurement Noise,”
IEEE Trans. Signal Process., vol. 64, no. 13, pp. 3509–3522, July 2016.

[27] S. P. Chepuri and G. Leus, “Continuous Sensor Placement,” IEEE Signal
Process. L, vol. 22, no. 5, pp. 544–548, May 2015.
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