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SIMPLIFIED APRIORI ESTIMATE FOR THE TIME PERIODIC
BURGERS EQUATION

MAGNUS FONTES AND OLIVIER VERDIER

Abstract. We present here a simplified version of the proof the existence
and uniqueness of time-periodic solutions for the Burger’s equation published
in [5]. This work was an improvement of the proof of [8] using completely
different techniques, partly based on [6]. We will expose the main steps of the
proof and present a simplified version of the a priori estimate which turns out
to be of central importance in the proof.

Introduction

The study of the Burgers equation has a long history starting with the seminal
papers by Burgers [1], Cole [2] and Hopf [7] where the Cole-Hopf transformation was
introduced. The Cole-Hopf transformation transforms the homogeneous Burgers
equation into the heat equation.

More recently there have been several articles dealing with the forced Burgers
equation:

(1) ut − νuxx + uux = f

The vast majority treats the initial value problem in time with homogeneous Dirich-
let or periodic space boundary conditions (see for instance [9]).

Only recently has the question of the time-periodic forced Burgers equation been
tackled ([8, 3, 10, 4]). In most cases [8, 3] the authors are chiefly interested in the
inviscid limit (the limit when the viscosity ν tends to zero).

The closest related work to ours is that of Jauslin, Kreiss and Moser [8] in which
the authors show existence and uniqueness of a space and time periodic solution of
the Burgers equation for a space and time periodic forcing term which is smooth.

1. Definitions

In this section we recall some well known facts and fix some general notations.

1.1. Fractional Derivatives. For any positive real number s we may define the
fractional derivative of order s in the following way on D′(T, H∗) :

Ds u =
∑
k∈Z

(2πik)sukei2πkt =
∑
k∈Z
|2πik|s ei sgn(k)sπ2 ukei2πkt

where we have used the principal branch of the logarithm. The sign function is
defined as follows:

sgn(k) :=

{
k
|k| if k 6= 0
0 if k = 0

For s = 0 we define D0 = Id. D1 coincides with the usual differentiation operator
on D′(T, H∗). The familiar composition property also holds: Ds ◦Dt = Ds+t for
any t, s ≥ 0.
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The adjoint operator of Ds is defined by using the conjugate of the multiplier of
Ds:

Ds
∗ u =

∑
k∈Z
|2πik|s e−i sgn(k)sπ2 ukei2πkt

Ds and Ds
∗ are adjoints in the sense that for any u ∈ D′(T, H∗) and ϕ ∈ D(T, H):

〈Ds u, ϕ〉 = 〈u,Ds
∗ ϕ〉

and similarly:
〈Ds
∗ u, ϕ〉 = 〈u,Ds ϕ〉

1.2. Hilbert Transform. The Hilbert transform H is defined using the multiplier
−i sgn k. For u ∈ D′(T, H∗) let

H u =
∑
k∈Z
−i sgn k uk ei2πkt

For convenience we will denote in the sequel

ũ := H u

Simple computations then give:

D
1
2
∗ = D

1
2 ◦H = H◦D

1
2

Notice that if H is a function space then H maps real functions to real functions.
The following properties will be useful in the sequel:

∀u ∈ H( 1
2 )(T, H)

(
D

1
2 u,D

1
2
∗ H u

)
L2(T,H)

= −
∥∥∥D 1

2 u
∥∥∥2

L2(T,H)
(2)

∀u ∈ L2(T× I) <((u,H(u))L2(T×I)) = 0(3)

where < denotes the real part of the expression.

1.3. Fractional Sobolev Spaces. We define fractional Sobolev spaces in the fol-
lowing manner, for any s ∈ R:

H(s)(T, H) =
{
u ∈ D′(T, H∗);

∑
k∈Z

∣∣1 + k2∣∣s ‖uk‖2
H <∞

}
Of course H(0)(T, H) = L2(T, H). When s ≥ 0 then for an u ∈ L2(T, H):

u ∈ H(s)(T, H) ⇐⇒ Ds u ∈ L2(T, H). Moreover H(s)(T, H) is then a Hilbert space
with the following scalar product:

(u, v) := (u, v)L2(T,H) + (Ds u,Ds v)L2(T,H)

The following classical result holds:
(
H(s)(T, H)

)∗ = H(−s)(T, H∗).

1.4. Anisotropic Fractional Sobolev Spaces. Let I be an interval in R and
s ≥ 0. Let H(s)(I) denote the usual fractional Sobolev space of real-valued s-times
differentiable functions on I. H(s)

0 (I) is the closure of D(I) in H(s)(I). In that case
we have

(
H(s)

0 (I)
)∗ = H(−s)(I). We will also use the following notations, for α, β

nonnegative real numbers:

H(α)(β)(T× I) = H(α)(T,H(β)(I))

and
H(α,β)(T× I) = H(α)(0)(T× I) ∩H(0)(β)(T× I)
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We also introduce H(α,β)
0 (T × I) as the closure of D(T × I) in H(α,β)(T × I). It is

clear that H(α,β)
0 (T× I) = H(α)(0)(T× I)∩L2(T,H(β)

0 (I)). Duals of such spaces are
denoted as:

H[−α,−β](T× I) :=
(
H(α,β)

0 (T× I)
)∗

= H(−α)(T,L2(I)) + L2(T,H(−β)(I))

= H(−α)(0)(T× I) + H(0)(−β)(T× I)

2. Interpolation and regularity

If sk(ξ) is the Fourier transform sk(ξ) = û(k, ξ) of a distribution u defined on
T× R, we have the following Hölder inequality for any θ ∈ [0, 1]:∫

R

∑
k∈Z
|k|2α(1−θ) |ξ|2βθ |sk(ξ)|2 dξ ≤

(∫
R

∑
k∈Z
|k|2α |sk(ξ)|2 dξ

)1−θ (∫
R

∑
k∈Z
|ξ|2β |sk(ξ)|2 dξ

)θ
From this Hölder inequality we deduce

H(α,β)(T× R) ↪→ H((1−θ)α)(T,H(θβ)(R))
So using an extension operator from H(θβ)(I) to H(θβ)(R) one can prove the corre-
sponding inclusion:
(4) H(α,β)(T× I) ↪→ H((1−θ)α)(θβ)(T× I)

For α = 1/2 and β = 1 and θ = 1
3 we get:

H( 1
2 ,1)

0 (T× I) ⊂ H( 1
2 ,1)(T× I) ⊂ H(1/3)(1/3)(T× I)

Then the vectorial Sobolev inequalities yield:
(5)
H( 1

2 ,1)
0 (T× I) ⊂ H(1/3)(1/3)(T× I) ↪→ L4(T,H( 1

3 )(I)) ↪→ L4(T,L4(I)) = L4(T× I)
Here the injection H(1/3)(1/3)(T × I) ↪→ L4(T,H(1/3)) is compact and thus the
injection H( 1

2 ,1)
0 (T× I) ↪→ L4(T× I) is compact.

3. Main Result

We define the Burgers Operator by:
T = L+S

where L and S are defined in the familiar weak form, the bracket being the duality
bracket between H( 1

2 ,1)
0 and H(− 1

2 ,−1):

∀v ∈ H( 1
2 ,1)

0 〈Lu, v〉 :=
(
u√t, v

√
t∗
)

+ µ (ux, vx)
and

∀v ∈ H( 1
2 ,1)

0 〈S(u), v〉 := −1
2
(
u2, vx

)
It turns out that the second definition makes sense because of the embedding
H( 1

2 ,1)
0 ⊂ L4 (see Figure 1).
A weaker result of the main result proved in [5] is

Theorem 1. For f ∈ H(0)(−1) there exists a unique solution u ∈ H( 1
2 ,1)

0 of
Tu = f

We will now briefly sketch the proof of that Theorem.
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Figure 1. H( 1
2 ,1)

0 is included in H( 1
3 )( 1

3 ) which is included in L6 by

the usual Sobolev inclusion theorem. In particular, H( 1
2 ,1)

0 is included

in L4, so u ∈ H( 1
2 ,1)

0 =⇒ u2 ∈ L2. As a result the non-linear term
of the Burgers equation may be written as −(u2, vx) for a test function
v ∈ H( 1

2 ,1)
0 since v ∈ H( 1

2 ,1)
0 =⇒ vx ∈ L2 by definition.

4. A priori estimate

Theorem 2. Let f ∈ H(0,−1). The set⋃
λ∈[0,1]

(L+λS)−1({f})
is bounded in H( 1

2 ,1)
0 .

We will need the following Lemma which may be proved using a scaling argu-
ment.

Lemma 4.1. There exists a constant C ∈ R such that for any u ∈ H( 1
2 ,1)

0 (Q):∫
Q

|u(t, x)|4 dtdx ≤ C2
(∫

Q

|u|2 dtdx+
∫
Q

∣∣u√t∣∣2 dtdx
)
·
(∫

Q

|ux|2 dtdx
)

which implies that:
(6)

∣∣u2∣∣ ≤ C ‖u‖ |ux|
Proof of Theorem 2. By definition Lu+ λS(u) = f means:

(7) ∀v ∈ H( 1
2 ,1)

0
(
u√t, v

√
t∗

)
+ µ (ux, vx)−

1
2λ
(
u2, vx

)
= 〈f, v〉

(1) We notice that for smooth u:(
u2, ux

)
=
∫
Q

u2ux

= 1
3

∫
Q

(u3)x

= 0

and then by density and continuity this holds for all u ∈ H( 1
2 ,1)

0 .
(2) With v = u in (7) we get:(

u√t, u
√
t∗

)︸ ︷︷ ︸
=0

+µ (ux, ux) + 1
2λ
(
u2, ux

)︸ ︷︷ ︸
=0

= 〈f, u〉
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which gives:

|ux|2 = 〈f, u〉
µ
≤ ‖f‖ |ux|

µ

From this we deduce that

(8) |ux| ≤
‖f‖
µ

(3) Pairing in (7) with the Hilbert transform of u, v = ũ we get:(
u√t, ũ

√
t∗

)
+ µ (ux, ũx)︸ ︷︷ ︸

=0

+1
2λ
(
u2, ũx

)
= 〈f, ũ〉

Using the identity (2), the fact that
∣∣ũx∣∣ = |ux| and that λ ≤ 1 we get:

(9)
∣∣u√t∣∣2 ≤ 1

2
∣∣(u2, ũx

)∣∣+ ‖f‖ |ux|
(4) We estimate

∣∣(u2, ũx
)∣∣ using Lemma 4.1:∣∣(u2, ũx

)∣∣ ≤ ∣∣u2∣∣ |ux|
≤ C ‖u‖ |ux|2

(10)

(5) Using the estimate (8) inside (10) we obtain:∣∣u√t∣∣2 ≤ C2 ‖f‖ |ux|2 + ‖f‖ |ux|

≤ ‖f‖
2

µ

(
C
2µ ‖u‖+ 1

)(11)

Since that estimate does not depend on λ the theorem is proved.
�

The a priori estimate above may now be used to prove existence of solutions by a
(nonlinear, compact) degree argument using the Leray-Schauder Theorem (cf. [5]).

5. Cole-Hopf Transformation

The Cole-Hopf transformation is defined by

u = ϕx
ϕ

In our case there are complications due to the fact that u ∈ H( 1
2 ,1)

0 and u is
periodic. This change of variable will transform the periodicity problem into an
eigenvalue problem (because the Cole-Hopf transformation linearises the Burger’s
equation). After working out the details one shows that the uniqueness problem is
equivalent to the uniqueness of the ground state eigenvalue problem:

Proposition 5.1. Given v ∈ H( 1
2 ,1)

0 the solution set of the following equation in
K and ϕ

(12)



ϕt − µϕxx + vϕx +Kϕ = 0
ϕ > 0
ϕx|∂Q = 0
ϕ ∈ H(1,2)

K ∈ R

is K = 0 and ϕ = 1 if and only if Tu = T v implies u = v (that is, the solution to
the original Burger’s equation is unique).
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Figure 2. The first step of the Cole-Hopf Transformation is an inte-
gration in x. This function U obtained thus ends up in H(0)(1)∩H( 1

2 )(1),
which delimits the plain line on the graph above. But it follows from
Tu ∈ H(0)(−1) that u is actually also in H(1)(−1) so U ends up in H(1)(2)

and we have an inclusion in H( 2
3 )( 2

3 ) which is embedded in continuous
Hölder functions.

The proof of that proposition essentially hinges on the embedding properties
exposed in section 2 (see Figure 2).

The remaining part of the proof is concerned with the eigenvalue problem of
the Proposition above. One first shows that the eigenvalue is zero using a weaker
version of the Perron-Frobenius theorem. The second step is to show that the
remaining eigenvalue problem is non degenerate, namely that the dimension of the
eigenspace must be one. This last step makes use of the a priori estimate proved
in Theorem 2.

The details of that part of the proof are too lengthy to be exposed here in depth
so the interested reader is referred to [5].
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