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A B S T R A C T

Crowd models can be used for the simulation of people movement in the built environment. Crowd model
outputs have been used for evaluating safety and comfort of pedestrians, inform crowd management and perform
forensic investigations. Microscopic crowd models allow the representation of each person and the obtainment of
information concerning their location over time and interactions with the physical space/other people.
Pandemics such as COVID-19 have posed several questions on safe building usage, given the risk of disease
transmission among building occupants. Here we show how crowd modelling can be used to assess occupant
exposure in confined spaces. The policies adopted concerning building usage and social distancing during a
pandemic can vary greatly, and they are mostly based on the macroscopic analysis of the spread of disease rather
than a safety assessment performed at a building level. The proposed model allows the investigation of occupant
exposure in buildings based on the analysis of microscopic people movement. Risk assessment is performed by
retrofitting crowd models with a universal model for exposure assessment which can account for different types
of disease transmissions. This work allows policy makers to perform informed decisions concerning building
usage during a pandemic.

1. Introduction

Any stakeholder dealing with crowds is greatly affected by a pan-
demic. Events involving large crowds have been cancelled or postponed
worldwide, access to public buildings has been restricted as different
mitigation measures have been adopted around the world to decrease
physical interactions among people during the COVID-19 pandemic
(Anderson et al., 2020). The measures to face pandemics adopted by
policy makers ranged from compulsory lockdowns to recommendations
on social distancing (also called physical distancing). One key aspect
sticks out in the current situation, i.e. the inconsistency in the adopted
measures is evident. For instance, to the date this paper was written
(May 2020), social distancing recommendations are diverse in different
countries and rapidly change over time, e.g., 1 person/4 m2 (Australia),
1 m (Philippines, Qatar) or 2 m outside home (Canada, UAE, UK, South
Korea), or 1–2 m (New Zealand, Italy) (Italian Government, 2020;
Korean Ministry of Economy and Finance, 2020; Movement Strategies,
2020). This raises questions on their implications on space usage
(Honey-Roses et al., 2020), how policy makers have grounded their
decisions and what type of models are currently available to support
these decisions. Moreover, current data do not fully support the 1–2 m

rule for spatial separation assumed for travelling of large droplets (Bahl
et al., 2020) which has been issued in the airborne precautions for the
COVID-19 pandemic in the guidelines by the World Health Organiza-
tion (WHO, 2020). This issue highlights the need for flexible models
able to use different assumptions on disease transmission mechanisms.

Current research supporting decision makers is mostly based on
macroscopic epidemiological models, among which the most used are
different variations of the SIR model. This model is an epidemiological
tool that estimates the number of people infected in given conditions
over time. The SIR model divides the population into three types,
namely (1) susceptible, S; (2) infectious, I; and (3) recovered/removed,
R. The SIR model is based on earlier analytical approaches developed to
study disease spread back in the 1920ies (Kermack and McKendrick,
1927). The current field of mathematical epidemiology adopts a set of
differential equations which generally considers also a (4) exposed
class, E, to create the so-called SEIR model (Anderson et al., 1992).
Several other macroscopic epidemiological models have been devel-
oped and used, including stochastic transmission models (Kucharski
et al., 2020) and mean-field epidemiological models (Giordano et al.,
2020).

The use of macroscopic epidemiological models provides the great
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benefit to be applicable at large scales and give vital information to
decision makers as they yield predictions of the spread of disease.
Nevertheless, their great limitation is that they may not fully consider
the mobility patterns of individuals and the heterogeneity in their in-
teractions. This issue has been raised in the largest conference in the
pedestrian and evacuation dynamics community back in 2012
(Johansson and Goscè, 2014) and has initiated discussions on coupling
the field of crowd dynamics and modelling with epidemiological
modelling (Goscé et al., 2014). The impact of heterogeneity in popu-
lation and mobility patterns have been so far addressed mostly at a
macroscopic scale, especially in transportation environments (Goscé
and Johansson, 2018; Meloni et al., 2011; Saberi et al., 2020) in which
transport networks are investigated to consider them while modelling
the spread of disease. Nevertheless, current disease-spreading models
do not explicitly represent the space usage of pedestrians at a micro-
scopic scale, thus making difficult to assess at a building level what the
impact of a social distance measure could be.

Microscopic crowd models, such as continuous models (Helbing
et al., 2000; Thompson and Marchant, 1995) and discrete models
(Lovreglio et al., 2015), have been used to represent the individual
movement of pedestrians in confined spaces and provide – among other
outputs – information concerning the trajectories of pedestrians in
space over time (i.e. this is generally in the form of the parametric
equations of each pedestrian). Crowd models have been used so far
mostly to ensure comfort and safety of pedestrians and identify crowd
management solutions to optimize movement flows and reduce waiting
times (Bellomo and Gibelli, 2016; Johansson, 2008). It appears evident
that the simulation of people movement at a microscopic scale could
provide a great help to decision makers for risk assessment in case of
disease spreading in a confined space. During the COVID-19 pandemic,
some of the most known and used crowd models (Lovreglio et al., 2019)
have released new features aimed at microscopic modelling of people
movement considering social distancing or counting the interactions
between pedestrians in a given social distance radius. While these
features are useful to evaluate space usage, given the lack of knowledge
concerning the current spread of disease, they do not allow a compre-
hensive quantitative understanding of the impact of different measures
on building occupant exposure. It is therefore crucial to develop a
general occupant exposure model which could be used to retrofit any
type of microscopic crowd model and that is able to produce quanti-
tative outputs for risk assessment. In turn, crowd models do not

currently provide dedicated comprehensive sub-models which can be
directly used to perform this type of analysis.

In this paper we propose a modelling solution to retrofit any type of
microscopic crowd model for pandemic risk assessment studies. To
achieve this goal, we introduce a universal occupant exposure model
which could be used to retrofit any existing microscopic crowd model
able to track the trajectories of pedestrians over time in a confined
space. The ground for the development of the model has been the re-
view of the current measures adopted to reduce risk transmission
worldwide (e.g. social distancing measures), possible disease trans-
mission mechanisms in confined spaces and the analysis of the char-
acteristics of microscopic crowd modelling tools.

2. Modelling assumptions on occupant exposure

The proposed model is developed using a general formulation rather
than relying on a specific type of disease transmission. This has been
done so that it could be adapted for different types of disease trans-
missions, i.e. based on different distances between pedestrians, types of
contact (e.g. airborne vs droplet, angle of contact, etc.), reference points
(e.g. pedestrian face, nose, shoulder, etc.) and time of exposure. This is
deemed appropriate for new pandemics such as COVID-19 in which
there is no conclusive understanding on the disease transmission
(Lewis, 2020), thus providing the flexibility to update the model results
in case new insights on the pandemics are available.

Since the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) virus transmission is currently not fully understood, one of the
current assumptions is that it can be considered similar to the severe
acute respiratory syndrome coronavirus (SARS-CoV-1) in which the
spread was found to be by (1) physical contact, (2) droplets, and (3)
airborne routes (Yu et al., 2004). Given the uncertainty in disease
transmission mechanisms during the COVID-19 pandemic, five different
assumptions on occupant exposures are here suggested as possible
mechanisms to adopt in the proposed model. These are presented gra-
phically in Fig. 1 and described in Sections 2.1–2.5.

2.1. Exposure by physical contact

Occupant exposure in a confined space is here accounted for when
people are in direct physical contact to each other (i.e. pedestrians
“touch each other”). It should be noted that most current crowd models

Nomenclature

Ck cumulative exposure to a given number of people k
etf the k number of agents j to which each individual agent i

is exposed at the time-step tf
etq the k number of agents j to which each individual agent i

is exposed at the time-step tq
Ei set of number of agents j each individual agent i is ex-

posed to at each time-step tq
Et

i matrix of occupant exposure of each individual agent i to
other agents j at each time-step tq

G global assessment of exposure for the total time tf spent by
all n agents in the building

i individual agent under consideration
j individual agent to which i is exposed to
k number of j agents an individual agent i is exposed to in a

given time-step tq
m generic maximum number of agents to which agents are

exposed to
n maximum number of agents in the building
Ri social distance radius of an individual agenti
t time-step

tf final time-step at which all agents have left the building
tq generic time-step in the simulation
tk max

i
, maximum time of exposure for each simulated agent i to

each number of k agents
tq

i the number of time-steps tq in which each agent i is in-
teracting with a discrete number of people k

Tk
i time of exposure of each agent i to a given number of k

agents
Tk distribution of exposure times to a given discrete number

of agents k
ij polar coordinate defining the position of the agent j in the

polar space in relation to each agent i
ij orientation of the agent j in the polar space defined by the

agent i
k factor which increases the exposure in relation to the

value of k
µk average value of the Tk distribution of exposure times to a

given discrete number of agents k
ij polar coordinate defining the position of the agent j in the

polar space in relation to each agent i
k
2 variance of the Tk distribution of exposure times to a given

discrete number of agents k
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generally assume rigid bodies (Duives et al., 2013), i.e. non-deformable
pedestrian bodies which allow the detection of collision and contacts
between agents. Therefore, this is practically implemented considering
the representation of the agents (often represented in crowd models as
circles or ellipses) and exploring that their coordinate in space overlap
within a certain radius corresponding to their dimensions. The example
in Fig. 1.1 shows one agent i and one agent j that are in physical contact
within a room. This assumption requires from a crowd model the in-
formation concerning the pedestrian trajectories over time and the di-
mension of the agents.

2.2. Exposure considering social distance radius

Occupant exposure in a confined space assumes here the number of
people in a social distance radius defined by the user (e.g., 1 or 2 m).
The centre of the social distance radius can be assumed to be the centre
of the modelled pedestrian, its nose or the outer border of the shoulder.
This is implemented by checking the coordinate in spaces of the pe-
destrians and evaluating if they are within the given radius of inter-
action. This can conservatively consider that if one agent has at least

one part of its body within the social distance radius, it is assumed to be
counted. The example in in Fig. 1.2 shows one agent i and one agent j
that are within a given social distance radius Ri. This assumption re-
quires from a crowd model the information concerning the pedestrian
trajectories over time (e.g. the parametric equations of pedestrian tra-
jectories).

2.3. Exposure by face-to-face contact within a social distance radius

Occupant exposure in a confined space is assumed when people are
in face-to-face contact to each other within a given angle of interaction
in a social distance radius defined by the user. To facilitate im-
plementation, the polar coordinates t( )ij and t( )ij can be used for
defining the position of the agent j in the polar space in relation to each
agent i (see Fig. 1.3), where ij changes over time. Zero is the case in
which people physically touch each other, the max value for = Rij i
within the assumed social distance radius, so = R[0, ]ij i . t( )ij changes
over time and it can vary from zero when the agent j is in front of the
agent i to ± when the agent j is right behind the agent i. t( )ij is the
orientation of the agent j in the polar space defined by the agent i. It

Fig. 1. Examples of assumptions on occupant exposure considering a room and a corridor connected by a door and two simulated pedestrians within them.
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can vary from zero when the agent j is facing the agent i to ± when
the agent j is turning its back on the agent i. As such, t( )ij can be used
to evaluate how many agents are at face-to-face contact within a social
distance radius at a given time. This can conservatively assume that if
one agent has at least one part of its body within the social distance
radius, it is assumed to be checked for the face-to-face contact criteria.
This assumption requires from a crowd model the information con-
cerning both the pedestrian trajectories over time (considering a given
position within the simulated agent, e.g., the centre of the agent), as
well as the direction of movement of each pedestrian (in order to know
the face orientation). The user would then need to make assumptions
concerning the angles leading to face-to-face contact between pedes-
trians.

2.4. Exposure by being in the same room

Occupant exposure in a confined space is here assumed when agents
are in the same room/compartment (see Fig. 1.4). This assumption
requires the information from a crowd model concerning the number of
building occupants in each room at each time-step.

2.5. Exposure by being in the same building

Occupant exposure in a confined space is here assumed when agents
are in the same building (see Fig. 1.5). This is the simplest assumption
from a crowd modelling implementation standpoint, as it only requires
the information concerning how many people are in the building in a
given time-step.

3. EXPOSED: The occupant exposure model

In this work, we present a novel occupant exposure model, named
EXPOSED. This model aims at estimating a set of metrics concerning
occupant exposure in confined spaces. The assumptions underpinning
the definition of these metrics is provided in the following paragraphs.
It is worth mentioning that given the current lack of a comprehensive
understanding of the SARS-CoV-2 virus transmission, we propose here a
flexible and simple model to encourage its immediate usage and ex-
ploitation in the crowd modelling community.

Considering that there is no information available on the initial
number of agents who are susceptible, infected, or recovered, the model
aims at quantifying the exposure of the pedestrians in a confined space.
The general formulation of EXPOSED is here presented considering
different types of occupant exposure introduced in Section 2. In other
words, the equations provided in this section can be applied for the five
types of exposure defined in Sections 2.1–2.5.

Assuming that each agent i can be exposed to a certain number of
occupants based on the exposure assumption in use (see Section 2), it is
possible to obtain the information concerning number of agents to
which the agent i is exposed to at each time-step t = [t t t t, , , , , ]q f0 1
until it has left the building at the final time tf . In this formulation we
assume that the time-steps have the same magnitude (i.e.,

= =+t t t constant q)q q1 . This information can be represented as a
set Ei representing the number of people each agent is exposed to at
each time-step tq.

=E e e e e i{ , , , , , }i
t t tq tf0 1 (1)

where etq is the k number of agents j to which each individual agent i is
exposed at the time-step tq.

The information concerning each occupant exposure at each time-
step can be represented in the form of the matrix Et

i in Eq. (2).

= =E

E

E

E

e e e

e e e

e e e

t
i i i i

n n n

i

n

1 t0
1

tq
1

tf
1

t0 tq tf

t0 tq tf (2)

Since Et
i presents the number of people each agent is exposed to at

each tq, it is therefore possible to obtain the information on the time Tk
i

each i agent has been exposed to a given number of agents k (i.e. the
exposure time to 0 occupants, 1 occupant, …, m occupants) by sum-
ming tq

i , i.e., the number of time-steps tq in which each agent i was
interacting with a discrete number of people k, see Eq. (3). The model
user could assume that the exposure is considered either for any t or
only counting the time-steps in case of a minimum exposure time (e.g.
counting the tq

i if the exposure last at least for a given number of sec-
onds/minutes, i.e. a certain number of consecutive tq

i are required). The
maximum number of occupants that agents are exposed to correspond
to a maximum of n 1 if the number of people in the building is re-
stricted (i.e. if a maximum number of people is allowed in the building
at the same time) or to a generic number of people m if we assume a
transient space.

=T t i k,k
i

t

t

q
i

f

0 (3)

Considering the total time tf spent by all n agents in the building, it
is therefore possible to obtain a set of distributions Tk of exposure times
corresponding to a given discrete number of agents k 0. Using a
distribution from the two-parameter family of continuous probability
distributions, Tk can be defined by its mean (µk) and standard deviation
( k) as shown in Eq. (4).

T µ( , )k k k
2 (4)

These distributions provide useful information concerning the oc-
cupant exposure, including:

(1) Maximum number of agents that people are exposed at the same
time m

(2) Longer time of exposure to each given number of agents tk max
i
,

(3) Average µk and variance k
2 of time spent in contact with a given

number of agents and how those times are spread among contacts
with different number of agents.

The values reported in these distributions - corresponding to each k
– range from a minimum possible value corresponding to no exposure
(i.e. zero exposure) to a maximum time of exposure tk max

i
, for each si-

mulated agent i to each number of k agents they are exposed to. The
summation over the data-points available for each of the values ob-
tained k (see Eq. (5)) helps performing an assessment of the cumu-
lative exposure Ck to a given number of people k. The higher is the
value of the summation, the greater is the occupant exposure for >k 0.
The value of the summation for =k 0 is an indicator of how long people
have not been exposed to other agents in the building; this is called here
C0.

=
=

C Tk
i

n

k
i

1 (5)

The sum of all Ck with >k 0 provides a global assessment of ex-
posure G for the total time tf spent by all n agents in the building (see
Eq. (6)). To obtainG, eachCk is multiplied by a factor kwhich increases
the exposure in relation to the value of k. For instance, k can be as-
sumed equal to 1 for =k 1 and with increasingly higher values when

>k 1. The choice of the values for k is left to the model user.

=
=

G C
k

m

k k
1 (6)
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The model user can therefore obtain different values for G in rela-
tion to the assumptions adopted for occupant exposure (see Section 2).

It should be noted that the matrix in Eq. (2) can also be weighted
considering the vulnerability of each individual occupant (e.g. con-
sidering their individual properties, such as age, physical abilities, etc.
which can often be represented within a microscopic crowd model).

4. Coupled use of EXPOSED and a crowd model

The methodology for the use of EXPOSED together with a crowd
model is presented in Fig. 2 as a set of steps to follow.

Step 1 is the definition of crowd movement scenarios. The user
would have to set the assumptions on crowd movement and behaviour,
such as circulation paths, group behaviour (intended here as a group of
people moving together (Adrian et al., 2019), building occupant in-
teractions, etc. Crowd movement and behaviour can be represented
with different levels of sophistication in relation to the crowd model in
use (Duives et al., 2013). The second step is the simulation of people
movement using a crowd model selected by the user. After the simu-
lations have been performed, the EXPOSED model user needs to decide
which modelling assumption(s) to use concerning occupant exposure
(Step 3) – as discussed in Section 2 of this paper – and obtain the needed
crowd model outputs accordingly (Step 4). Depending on the type of
disease transmission, the outputs required can include the trajectories
of the agents, their direction of movement, agent dimensions, or the
location of agents in the room/building. Step 5 includes the calculation
of the occupant exposure time, i.e., the time Tk

i each agent i has been
exposed to a given number of occupants k. It is therefore possible to
calculate a set of distributions Tk(µ , )k k

2 of exposure times and their
associated metrics (Step 6). It is therefore possible to calculate the cu-
mulative exposure Ck to a given number of people (Step 7) and the
global assessment of occupant exposure G (Step 8). The occupant ex-
posure metrics can then be used to perform risk assessments on building
usage and subsequently inform decision making (Step 9).

5. Case study

In this section a fictitious case study is presented to provide an ex-
ample of the applicability of the EXPOSED model. The scenarios and
hypotheses included in this case study are deliberately kept simple
given its explanatory purpose. The values in use have been created with
the Mersenne Twister pseudo-random number generator (Matsumoto
and Nishimura, 1998).

A generic building layout with a fixed number of people able to

access it equal to 10 is considered. Assuming that we obtained the re-
quired information concerning the simulated pedestrian movement
from a crowd model, the exposure time is calculated with any of the
five assumed criteria listed in Section 2. In this fictitious example, an
exposure time between 0 and 5 min for each individual agent i to a
given number of agents k in the building has been obtained with a
pseudo-random number generator (presented in Appendix A), i.e. we
are starting the application of the methodology from Step 5 of Fig. 2.

Eq. (3) can be represented for each agent i as in Fig. 3 (representing
the exposure time of each agent i to the other 9 people in the building,
assuming that all cases of interactions occur).

All data-points ( =i n) as in Fig. 3 can be obtained to show the
exposure time of each agent to the other agents in the simulation

k n0 1). Those can be visualized as boxplots (see Fig. 4).
Eq. (4) is therefore associated with a given set of distributions Tk

having a certain average, maximum and standard deviation (see
Table 1).

This information is useful to identify the maximum number of
people that agents are exposed at the same time (this is in this case the
maximum number possible, i.e., n 1 = 9, given the data generated in
the example). In addition, the average and standard deviations of the
time of exposures to each number of people is a useful information for
performing a quantitative risk assessment.

It is now possible to calculate Ck (including C0) based on the

Fig. 2. Steps to be followed for the coupled use of the occupant exposure model EXPOSED and a crowd model.

Fig. 3. Exposure time of an individual agent i to a given number of agents k in
the building.
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summation of the data-points in the distributions (see Eq. (5)).
The calculated Ck values are presented in Table 2. It should be
noted that in this case study, Table 2 presents the Ck values
considering = 1k or k linearly increasing with k (i.e. = 2k

= = = = = =when k when k n when k2, 3 3, , 1 9 9)k k .
Finally, it is possible to obtain the global assessment of occupant

exposure G using Eq. (6) (considering both assumptions of = 1k or k
increasing linearly). The final value for G when = 1k is 231.6 min,
while assuming k increasing linearlyG corresponds to 1131.6 min. The
calculated value for G can be evaluated against an acceptance criteria
or several G values can be calculated to compare different scenarios,
assumptions, or conditions.

6. Discussion

EXPOSED is a simple model which is designed to retrofit existing
microscopic crowd models to perform the assessments of occupant ex-
posure. This represents an invaluable information to perform risk as-
sessments during pandemics in confined spaces such as buildings and
transportation terminals. The outputs obtained with EXPOSED can be

useful to perform several types of analysis and it can be applied for
several types of assumptions concerning disease transmissions leading
to a given exposure. EXPOSED is model-agnostic, as it is designed to
exploit the existing capabilities of any microscopic crowd models able
to simulate pedestrian movement and provide basic outputs concerning
the location of agents in the simulated building over time. Those out-
puts are commonly calculated by most commercial and research crowd
movement models (Duives et al., 2013; Gwynne et al., 1999).

One of the great advantages of EXPOSED is that it is not a new
microscopic model of occupant exposure, but it can be used either as a
post-processor of an existing crowd model or it can be implemented
directly within an existing crowd model. To date, over 70 models are
already available in the crowd modelling market, thus it was deemed
appropriate to develop a model to retrofit existing tools (as they have
already a large base of users (Lovreglio et al., 2019) and many have
gone through dedicated verification and validation testing (Ronchi
et al., 2014)) rather than developing a brand new model. Its flexibility
along with its simplicity is deemed to encourage its immediate usage
and exploitation in the crowd modelling community. This is particu-
larly important during new pandemics in which new knowledge is
constantly available and there may be a need to update the assumptions
performed on disease transmission. In fact, the outputs provided by
EXPOSED allow users to perform risk assessments of disease spreads in
confined spaces as a function of the assumptions adopted for occupant
exposure.

EXPOSED can be used both to evaluate crowd management solu-
tions as well as for building design. During pandemics, crowd man-
agement solutions can be implemented within buildings to ensure that
social distances are kept by building occupants and the risk of disease
transmission is minimized. The results of EXPOSED can be used to
quantitatively compare the effectiveness of different crowd manage-
ment solutions and identify the ones which yield the lowest occupant
exposure (i.e. the one corresponding to the lowest value of G defined in
Eq. (6)). EXPOSED gives also the opportunity to obtain a quantitative
understanding on the impact of (e.g., crowd management) solutions
aiming at influencing behavioural itineraries and crowd movement on
occupant exposure in confined spaces.

Crowd models are currently designed for safety/comfort applica-
tions such as the optimisation of pedestrian flows or the calculation of
evacuation times in case of a threat (Bellomo et al., 2016; Bellomo and
Dogbé, 2008; Lovreglio et al., 2019; Ronchi, 2015). Therefore, their
ability to investigate occupant exposure is limited, as they are not na-
tively designed for this purpose. Previous attempts to implement cap-
abilities for disease transmission applications with crowd modelling are
either linked to specific assumptions on occupant exposure (Goscé
et al., 2014) or they are based on assumptions which are generally not
known to the modeller (i.e. how many people are initially infected in a
building (D’Orazio et al., 2020). EXPOSED is deliberately designed to be
a universal model which can be applied to any pedestrian crowd models
regardless of their set of assumptions. It is also expected that new
features of crowd models will be available as these tools can be used to
simulate people movement during pandemics. This includes the re-
presentation of movement patterns, and social interactions during
pandemics. It is expected that new crowd model features concerning
change in movement and behaviours during pandemics would make the
results obtained with EXPOSED more reliable and usable for risk as-
sessment.

A possible application of EXPOSED is the possibility to compare the

Fig. 4. Boxplots of exposure times of all n agents to the other n 1 agents in
the building (k from 0 to 9 from left to right).

Table 1
Average, standard deviation and maximum based on the distributions of ex-
posure times Tn

k for all occupants in the building and a given number k of oc-
cupants they are exposed to (times are here reported in seconds).

k (#) Average (s) Standard deviation (s) Max (s)

0 95 62 209
1 183 80 291
2 142 95 287
3 145 70 259
4 135 46 229
5 183 82 294
6 170 45 246
7 160 98 291
8 148 90 279
9 123 93 273

Table 2
Calculated values of weighted cumulative exposure in relation to the factor which increases the exposure in relation to the value of k (approximations made at 1
decimal).

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

γk = 1 15.9 30.5 23.7 24.2 22.5 30.5 28.3 26.7 24.6 20.5
γk increases linearly 15.9 30.5 47.4 72.5 90.0 152.7 170.0 187.2 196.9 184.4
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impact on occupant exposure while reducing/increasing the number of
people in a building. This is a crucial type of information for policy
makers, as during the re-opening phase of a pandemic, they often face
the challenge to decide which type of people movement restrictions are
the most appropriate for a given type of building. Similarly, EXPOSED
can be used to evaluate how the occupant exposure changes in relation
to the assumptions adopted for disease transmission. This is particularly
important for the case of new pandemics (such as COVID-19) for which
a clear understanding on the mechanism of disease transmission is not
available yet (Lewis, 2020).

In the long term, EXPOSED could also be used to inform building
design and minimize occupant exposure based on the geometric layout
of a building. This can be particularly relevant for confined spaces in
which a higher risk of disease transmission is expected (e.g. in the
healthcare domain).

Future applications of EXPOSED could make use of the advances in
crowd modelling (e.g. more detailed microscopic representations of
people movement and behaviour during pandemics), thus including
further mechanisms of transmission and more sophisticated interactions
with the environment, e.g., physical contacts to objects rather than only
considering people and areas. Current crowd models do several sim-
plifications in the representation of the human body (calculations are
generally made considering a circle/ellipse representing a human in a
2D space (Fruin, 1987) which is then extruded in a 3D environment).
Novel crowd modelling approaches are investigating more accurate
representation of human movement based on biomechanical models
(Thompson et al., 2015), thus it is expected that they will be able in the
future to investigate even more microscopic interactions with objects.
This information could directly be exploited in risk assessments using
EXPOSED.

An additional advantage on the use of microscopic modelling of
crowd movement to assess occupant exposure is that it allows for in-
depth considerations on the individual attributes of the agents. For
instance, existing crowd models often implement socio-demographic
variables (e.g. age, gender, physical abilities, functional limitations)
(Duives et al., 2013; Geoerg et al., 2018) which affect people movement
and in turn can affect occupant exposure. This means that the use of
EXPOSED coupled with a microscopic crowd model takes into account
the higher exposure of individuals whose attribute make them more
vulnerable in a crowd (e.g. people walking slower or spending more
time in performing way-finding in a building).

EXPOSED can also be used for the assessment of occupant exposure
in buildings of the same type or different types. Policy makers can
ensure that measures aiming at minimizing disease transmission result
in a consistent level of occupant exposure. This type of modelling effort

is deemed to facilitate the identifications of restrictions which provide a
consistent level of disease transmission risk to building occupants.
Similarly, EXPOSED can be used to perform a risk assessment of in-
dividual buildings. It is sensitive to assume that acceptance criteria
corresponding to tolerable levels of exposure are identified (thresholds
of tenability for buildings, in a similar fashion to what is currently
performed in risk assessments for other building hazards (Meacham
anad Custer, 1995)) and used to evaluate the appropriate level of
building usage.

The main limitations of the methodology proposed in this paper rely
on the assumptions necessary for the calibration of both the underlying
crowd model and EXPOSED. The verification and validation (V&V) of
crowd models have been scrutinized through several research efforts
over the years, including dedicated V&V procedures designed for dif-
ferent types of applications (IMO, 2016; Rimea, 2016; Ronchi et al.,
2013). The outputs obtained with EXPOSED will greatly be affected by
the validity of the underlying model used to simulate pedestrian
movement. In addition, the EXPOSED model user would need to per-
form a set of assumptions to calibrate the model. The first key user
input regards the assumptions for occupant exposure. Another im-
portant input to be identified is the value of the k multiplier (see Eq.
(6)), as this can significantly affect the results. As more knowledge
concerning the mechanisms of disease transmission and crowd beha-
viour during pandemics is available, the user would be able to appro-
priately calibrate those inputs.

7. Conclusion

This paper presents EXPOSED, a model designed to support risk
assessment based on occupant exposure in confined spaces during
pandemics. EXPOSED is model-agnostic as it is designed to make use of
common outputs of existing microscopic crowd models. EXPOSED is
designed to allow more informed decisions concerning building access
restrictions during pandemics by performing a quantitative assessment
of occupant exposure.
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Appendix A. Pseudo-random generated exposure times (in min) of all n agents to the other n-1 agents in the building

i 1 2 3 4 5 6 7 8 9 10

k
0 0.640 0.110 1.477 0.328 2.734 3.485 1.098 2.255 2.114 1.621
1 0.718 3.732 3.521 0.954 4.843 3.206 2.085 3.846 4.579 3.063
2 1.640 0.121 2.620 4.289 4.788 1.081 1.103 4.002 0.673 3.369
3 1.439 1.060 3.435 1.261 3.821 2.569 4.308 3.393 1.439 1.429
4 2.222 1.798 2.755 2.356 3.824 1.803 1.710 2.308 2.931 0.804
5 3.378 4.595 3.632 1.211 4.908 3.561 1.453 4.490 1.454 1.847
6 4.103 2.996 2.100 3.457 3.187 2.948 2.737 1.135 2.676 2.995
7 3.427 1.217 3.227 0.102 4.837 3.507 3.110 2.316 0.148 4.856
8 0.784 3.586 1.800 4.655 2.220 0.582 3.680 2.826 0.249 4.233
9 1.223 3.951 0.145 4.554 0.455 3.013 2.249 0.468 0.812 3.620
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