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Abstract—In this letter we apply the Generalized Method of
Moments (GMM), widely used in econometrics, to receivers op-
erating with imperfect channel state information (CSI) of single-
input-multiple-output (SIMO) block-fading channels where a
single pilot symbol is used. The GMM results in the standard
maximum ratio combining (MRC) receiver, but with an improved
channel estimate. Although not our goal at the outset, this result
reveals an inherent capability of the GMM to improve any
channel estimate through filtering of the initial channel estimate
with a matrix that is constructed from the received signals. The
filtering involves a matrix inverse of size min {T,M}, where M
is the number of receive antennas, and T + 1 is the coherence
interval of the channel. The gain over an MRC receiver, using a
scaled version of the pilot observation as channel estimate, lies
in the range 0.1-3 dB depending on the system configuration.
A coherence interval of about 5 symbol intervals is sufficient to
reach these gains.

Index Terms—Generalized Method of Moments, Block-Fading.

I. INTRODUCTION

We study receiver design for Single-input Multiple-output
(SIMO) transmissions in block fading channels in the face of
additive Gaussian noise where the channel is a-priori unknown.
Such systems have been widely studied and the interplay
between the amount of training and payload data is today well
understood [1], [2]. In this paper we allocate one time slot of
the coherence interval to training data. The literature on possi-
ble receiver designs is vast. The Generalized Likelihood Ratio
Test optimal detector has been studied in [3] and has cubic
complexity in the block length T + 1. If the statistics of the
channel are known, then the true Maximum-Likelihood (ML)
detector operates on the basis of the conditional probability but
has exponential complexity in T + 1 [4]. Another method is
iterative joint channel estimation and data detection [5] which
can approach the performance of the ML detector but with
much less computational complexity.

In this paper we investigate to what extent the Generalized
Method of Moments (GMM) can be utilized for SIMO receiver
design with imperfect channel state information (CSI). The
GMM is a relatively new method that has been widely and
successfully applied within econometrics [6]. However, appli-
cations of the GMM to the field of communications are scarce.
To the best of the authors’ knowledge, it was first applied,
with great success, in [7] for reciprocity calibration of base
stations in a large-scale multiuser Multiple-input Multiple-
output (MIMO) setup. Noteworthy, [7] rediscovered the GMM
as it did not identify the method as an instance of the GMM.

The contributions of this letter are as follows.

• We apply the GMM to SIMO systems with imperfect CSI
and investigate its potential for receiver design.

• We find that the GMM improves the quality of any
channel estimate by filtering it with a matrix that is
constructed explicitly from the received signals.

• We show that the GMM receiver performs maximum ratio
combining (MRC) using the improved channel estimate.

• We show that the complexity overhead compared with an
MRC receiver that forms a channel estimate based on the
pilot observation is small.

Altogether, the GMM detector has low complexity, yields
signal-to-noise ratio (SNR) gains, and can be expressed in
an easily understandable manner. Our current GMM detector
cannot easily be extended to MIMO systems; we mention
where the problem for MIMO occurs later. For a single-input
single-output systems GMM detection does not offer any gain.

II. SYSTEM MODEL

We consider a block fading SIMO system with coherence
time T + 1 symbol times in additive Gaussian noise. The
received signal vector at time k can be expressed as

yk = hxk + nk, 0 ≤ k ≤ T (1)

where x0 = 1 is a known inserted training symbol, {xk}Tk=1

are multi-level QAM data symbols with unit average energy,
h is a random M × 1 vector representing the communication
channel, and nk is complex Gaussian noise with covariance
matrix N0I . The vector h is unknown to the receiver, and we
also assume that the receiver does not know the joint density
of the entries of h. For later use, we assemble the vectors yk
into a matrix Ỹ = [y0 Y ] where Y = [y1 . . . yT ] CM×T
is containing the data observations. Similarly, x denotes the
vector of data symbols x = [x1 . . . xT ] and x̃ = [1 x]. With
that, we have Y = hx+N where N = [n1 . . . nT ].

We analyze two corner cases: (i) detection with known SNR
γ = E[‖h‖2]/MN0 (measured per receive antenna)1, and (ii)
detection with unknown SNR. The former case corresponds to
a scenario where the statistics of the channel do not change
among the transmitted blocks, such that the SNR can be
estimated with zero asymptotic error. The latter corresponds
to a case where the transmitted blocks are sparse so that the
SNR changes abruptly between two blocks. This occurs, e.g.,
often in machine-to-machine communications, where single
antenna nodes transmit a small packet of control data at a
very low periodicity [8]. Indeed, if the SNR is not known

1Here, E[·] is the expectation operator, and ‖ · ‖ is the Frobenius norm.
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to the receiver, it can be estimated from the received data
block. This is, however, out of scope for this letter, and we
assume the SNR to be either unknown or perfectly known,
which represents the two corner cases.

A. Benchmark Detectors

A standard way to implement a detector for signals of the
form (1) is to estimate the channel as ĥ = βy0. In the case that
the SNR is known, then β = γ(γ + 1)−1 so that minimum
mean square error (MMSE) channel estimation is obtained.
If the SNR is not known, a least squares (LS) estimation
is performed which implies that β = 1. Once the channel
has been estimated, the detector proceeds as if the estimate is
correct and performs MRC, i.e.

x̂ =
1

‖ĥ‖2
ĥ
H
Y . (2)

III. THE GENERALIZED METHOD OF MOMENT DETECTOR

The GMM explores a particular structure of the system
model, more specifically the moment conditions [6]. Inspection
of (1) indicates the moment condition

E[fk,`] , E[ykx` − y`xk] = 0, (3)

where 0 ≤ k < ` ≤ T , and 0 has zeros in all of its
entries. For MIMO, a condition similar to (3) is not available
which limits the application of the GMM to SIMO. With

g ,
[
fT
0,1 · · ·f

T
T−1,T

]T
, the GMM detector is given by

x̂ = argmin
x

gHWg. (4)

Since the optimal form of the weighting matrix W depends
on the unknown second-order statistics of h [6], we proceed
with W = I . The cost function can thus be rewritten as

gHg =

T∑
k=0

T∑
`=k+1

‖ykx` − y`xk‖2

= xΨxH − 2R{bxH}+ ‖Y ‖2, (5)

where Ψ = ‖Ỹ ‖2I − Y HY and b = yH
0 Y . The mini-

mizer to the quadratic form (5) is

x̂ = bΨ−1

=
1

‖Ỹ ‖2
yH
0 Y

[
I − Y HY

‖Ỹ ‖2

]−1
. (6)

As can be seen from (6), the GMM detector operates over
the entire block Y . It is preferable to reach an expression
where the GMM detector operates over one received vector
per time. To get such a form, we rewrite (6) into

x̂ =
1

‖Ỹ ‖2
yH
0

[
I − Y Y H

‖Ỹ ‖2

]−1
Y

= yH
0 EY , (7)

where

E =
1

‖Ỹ ‖2

[
I − Y Y H

‖Ỹ ‖2

]−1
.

The particular form of the GMM detector (7) can, however,
be computationally overwhelming if M > T , since the
inversion required to establish E is of size M × M . As a
remedy we use the matrix inversion lemma and rewrite (7) as

x̂ =
1

‖Ỹ ‖2
yH
0

I +
Y

‖Ỹ ‖

[
I − Y HY

‖Ỹ ‖2

]−1
Y H

‖Ỹ ‖

Y

= yH
0 EY , (8)

where in this case we have

E =
1

‖Ỹ ‖2

I +
Y

‖Ỹ ‖

[
I − Y HY

‖Ỹ ‖2

]−1
Y H

‖Ỹ ‖

 ,
so that only a T × T inversion is needed.

Let us now discuss the interpretation of the GMM detector
x̂ = yH

0 EY . The benchmark (2) applies MRC based on
ĥ. With unknown SNR, ĥ coincides with y0 so that the
benchmark detector reads, omitting the scaling term in (2) for
now, yH

0 Y . In view of this, we can see that the GMM detector
x̂ = yH

0 EY takes the LS estimate y0, purifies it through the
matrix E, and then applies MRC, i.e.

x̂ = ĥ
H

GMMY = (Eĥ)HY .

Thus, the GMM provides a simple method for improving the
LS channel estimate. In the next section we will draw on this
and show that the matrix E in fact improves any channel
estimate, not only the LS one, especially as T grows large. The
purification of the channel estimate is done once per received
block. The additional complexity compared to the benchmark
detector lies in computing the matrix E and the vector (Eĥ)H

once per coherence time. Thus the complexity is dominated
by a matrix inversion of size min {T,M}×min {T,M}. The
GMM detector x̂ = yH

0 EY is linear in Y once E has been
computed. An important remark is that for T = 1, the GMM
detector coincides with MRC based on ĥLS and thus provides
no additional benefit.

Finally, note that the matrix Y Y H/‖Ỹ ‖2 is not the sample
covariance matrix of Y as it is normalized with its own
energy, rather than with the block length. A problem with
the GMM detector is that as the block length T + 1 grows
large, the matrix E converges to the all zero matrix. In
other words, it is a biased estimator. For constant modulus
constellations this is not an issue, but it quickly renders the
GMM detector unsuitable for multi-level QAM constellations.
Before discussing the bias, we turn to an SNR analysis for
which the bias effect is irrelevant.

IV. SNR ASYMPTOTIC ANALYSIS

In this section we analyze the asymptotic SNR of the
GMM detector as the block length grow large. As scalings
are irrelevant for SNR computations, we ignore the scaling
of the matrix E, so that we let the GMM detector for xk
be x̂k = yH

0 (I − Y Y H/‖Ỹ ‖2)−1yk. However, recalling that
y0 is the LS channel estimate of h, we here replace y0 with
any estimate ĥ that has the form ĥ = αh + w where w
is complex Gaussian noise with covariance matrix NwI . We
will now show that the matrix E will improve any channel
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estimate regardless of Nw and α. The LS and MMSE channel
estimates are then the special cases Nw = α2N0, with α = 1
and α = γ(γ + 1)−1, respectively.

The post-processing SNR of the GMM detector is denoted
by γGMM and is defined as follows. Define the random
variable zk = x̂k|(xk = 1). The SNR is then defined as
γGMM = 2|E[zk]|2/Var[zk], where Var[·] denotes the variance
of its input. We summarize our findings for the asymptotic post
processing SNR γ∞GMM = limT→∞ γGMM in Proposition 1.

Proposition 1. As T → ∞, the post-processing SNR of the
GMM detector x̂ = (Eĥ)HY , is

γ∞GMM =
α2λ2

αλ(N0 +Nw) +N0Nw +
N3

0Nw(M−1)3
(λ+(M−1)N0)2

.

Furthermore, the post-processing SNR of the benchmark de-
tector x̂ = ĥ

H
Y , γBM, satisfies γBM < γ∞GMM.

Proof. Let Q[
√
λ 0 . . . 0]T denote the singular value

decompostion of the channel vector h. As T → ∞, we have
that (I − Y Y H/‖Ỹ ‖2)−1 → QDQH where

D=diag

([
λ+MN0

(M−1)N0

λ+MN0

λ+(M−1)N0
· · · λ+MN0

λ+(M−1)N0

])
.

We now have,

x̂k = ([α
√
λ 0]QH +wH)QDQH(Q[α

√
λ 0]Txk + nk)

= λ
λ+MN0

(M − 1)N0
xk + η, (9)

where η is a noise variable and 0 is a 1× (M−1) vector with
all elements equal to zero. Based on (9) it is straightforward
to derive the variance of η. By doing so, the SNR equals

γ∞GMM =
α2λ2

αλ(N0 +Nw) +N0Nw +
N3

0Nw(M−1)3
(λ+(M−1)N0)2

.

For the benchmark detector x̂k = ĥ
H
yk we obtain the SNR

by replacing D with the identity matrix. This gives,

γBM =
α2λ2

αλ(N0 +Nw) +MN0Nw
.

The relation γ∞GMM > γBM is shown as follows,

γ∞GMM >
α2λ2

αλ(N0 +Nw) +N0Nw +
N3

0Nw(M−1)3
(0+(M−1)N0)2

= γBM.

From the proof of Proposition 1 we can observe that
as N0 → 0, we have asymptotically no SNR gain2, i.e.,
γ∞GMM/γBM → 1. We can also deduce the following corollary.

Corollary 1. As T → ∞, the phase of the GMM channel
estimate ĥGMM = Eĥ is closer to the phase of the true
channel than the phase of the initial estimate, that is,∥∥∥∥∥ ĥGMM

‖ĥGMM‖
− h

‖h‖

∥∥∥∥∥ ≤
∥∥∥∥∥ ĥ

‖ĥ‖
− h

‖h‖

∥∥∥∥∥ .
2This does not imply that error rates converge.

Proof. Since relative magnitudes between ĥGMM and ĥ are
irrelevant for SNR computations, the increased SNR implies
that |ĥ

H

GMMh|/‖ĥGMM‖ ≥ |ĥ
H
h|/‖ĥ‖. Thus, the phase of

ĥGMM is better aligned with the phase of h than the phase of
ĥ, which yields the inequality.

V. BIAS CONSIDERATIONS OF THE GMM DETECTOR

From Corollary 1 we know that the phase of ĥGMM is better
aligned to the phase of h than the phase of ĥ is. However, the
magnitude ‖ĥGMM‖ needs not to be closer to ‖h‖ than the
magnitude ‖ĥ‖ is. In fact, the magnitude ‖ĥGMM‖ is typically
very small. The reason is that as T grows, the GMM detector
converges to the all-zero solution. To resolve this, we constrain
‖ĥGMM‖ to be equal to ‖ĥ‖. Thus, we construct ĥGMM as

ĥGMM =
‖ĥ‖
‖Eĥ‖

Eĥ.

The GMM detector performs MRC scaling similar to (2)
and is given by

x̂ =
1

‖ĥGMM‖2
ĥ
H

GMMY

=
1

‖ĥ‖‖Eĥ‖
ĥ
H
EY (10)

where ĥ = βy0. The GMM detector (10) can be reached
without knowing the SNR, in which case β = 1.

The vector x̂ can be modeled as x̂ = ρx + ñ where ρ
is a bias which depends on the system parameters and on
the unknown channel distribution. This bias is given by the
expectation ρ = E[zk], where zk is defined shortly before
Proposition 1. Notice that the expectation is not dependent on
k, since all zk are statistically equivalent. Since the phase of
ĥGMM is better aligned with the phase of h than the phase
of ĥ is, the bias ρ is closer to unity than the corresponding
bias for the benchmark detector is. Thus, we expect superior
performance with the GMM detector also for QAM constel-
lations.

Up to this point, we have not made use of any knowledge of
the SNR. If the SNR is at hand, we can seek to compensate for
the bias. However, the expectation ρ = E[zk] is not feasible to
find in closed form, and we resort to approximations. We point
out that if the receiver has access to multiple received blocks,
then the bias ρ can be estimated over time. For Gaussian
channels, we empirically found that a good approximation of
ρ is given by

ρ =
1

2

(
1 + tanh

(
(k1 + 10 log10(γ)

k2

))
. (11)

The two parameters k1 and k2 depends on M and T , but can
be tabulated off-line. Thus, for the case where the SNR is
known to the receiver, the GMM detector becomes

x̂ =
1

ρ

1

‖y0‖‖Ey0‖
yH
0 EY . (12)

The reason for using y0 in (12) and not the more general
notation of ĥ is that (11) has been computed for initial LS
estimation so that ĥ = y0. As MMSE estimation and LS
estimation only differs with a constant, this is irrelevant for
performance provided that ρ is computed for LS estimation.
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Fig. 1: Symbol error rate with 16-QAM signaling, different
values of M , and T + 1 = 5. The dashed curves represent
the LS and MMSE (linear) detectors, and the solid marked
curves represent the GMM detector when the SNR is known
and unknown. The solid curve represents the receiver where
joint ML detection of h and x is performed [3], [4].

VI. NUMERICAL EVALUATIONS

We next provide numerical examples for the performance
improvement attained by the GMM detectors over their linear
counterparts, i.e., the benchmark detectors of Sec. II-A. In
all presented cases, the entries of h are chosen as zero
mean independent and identically distributed complex Gaus-
sian entries with unit variance. We set min {T,M} = 4
for most simulations, and hence low additional complexity is
required to perform GMM detection. Relaxing this complexity
constraint trades off with better performance.

Fig. 1 shows the symbol error rate (SER) performance of
different detectors. GMM detection provides SNR gains that
increase with higher values of M . This dependency is shown
explicitly in Fig. 2 for a given SER. Higher gains are harvested
when the SNR is unknown. These gains seem linear in M
which renders the method especially interesting for massive
SIMO systems. A few dBs are harvested for rather small
block length values. Fig. 3 shows the convergence of the post
processing SNR of the GMM detector γGMM to its asymptotic
bound found in Proposition 1. Estimating γGMM is done by
means of Monte Carlo computations of E[zk] and Var[zk].
Most gains seem to be reached at moderate values of T , e.g.
say T+1 = 10 for the cases of Fig. 3, but this varies depending
on the parameters setting chosen. Gains close to 2 dB are
reached compared to the standard LS scheme, i.e. T = 1.

VII. CONCLUSIONS

The GMM receiver explores the structure of block fading
channels to improve the channel estimate quality, i.e. it filters
the raw channel estimate with a matrix constructed from the
received pilots and data. The computation overhead of the
GMM receiver is relatively small compared to benchmark
schemes as LS and MMSE. This overhead trades off with
SNR gains, that can be harvested with small block lengths.
For example, gains of 1.5 dB compared to benchmark schemes
are attained with a block length of five and eight receive
antennas. For a fixed system setup, these gains converge
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Fig. 2: Gain of the GMM receiver without SNR knowledge
over the LS scheme (upper curve), and gain of the GMM
receiver with SNR knowledge over the MMSE scheme (lower
curve), respectively. In both cases, we use 16-QAM symbols,
T = 4, and SER ≈ 10−3.
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Fig. 3: Monte Carlo computations of the SNR of the GMM
detector, and respective asymptotic bound, for different system
parameters combinations. Here {xk}Tk=1 are 4-QAM symbols.

asymptotically with the block length, and appear linear with
the number of receive antennas which renders the method
especially interesting for massive SIMO systems.

ACKNOWLEDGMENTS

This work was funded by the Swedish foundation for strategic
research SSF, VR, the strategic research area ELLIIT, and the
European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement n 619086 (MAMMOET).

REFERENCES

[1] B. Hassibi and B. Hochwald, “How much training is needed in multiple-
antenna wireless links?” Information Theory, IEEE Transactions on,
vol. 49, no. 4, pp. 951–963, April 2003.

[2] T. Marzetta and B. Hochwald, “Capacity of a mobile multiple-antenna
communication link in Rayleigh flat fading,” Information Theory, IEEE
Transactions on, vol. 45, no. 1, pp. 139–157, Jan 1999.

[3] D. J. Ryan, I. B. Collings, and I. V. L. Clarkson, “GLRT-optimal
noncoherent lattice decoding,” Signal Processing, IEEE Transactions on,
vol. 55, no. 7, pp. 3773–3786, July 2007.

[4] F. Rusek, “Achievable rates of IID Gaussian symbols on the non-
coherent block-fading channel without channel distribution knowledge at
the receiver,” Wireless Communications, IEEE Transactions on, vol. 11,
no. 4, pp. 1277–1282, Apr 2012.
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