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Populärvetenskaplig sammanfattning 

Blod är en viktig komponent i nästan alla multicellulära organismer och en symbol 

för livet. Blod transporterar näringsämnen och syre till de olika organen i kroppen 

och tar bort restprodukter från dem. Blodet är också viktigt för att upprätthålla vår 

kroppstemperatur och för att bekämpa infektioner. Blodceller tillverkas i benmärgen 

som finns i våra ben. I benmärgen finns ett litet antal celler, så kallade stamceller, 

som har förmågan att både kopiera sig själva och producerar alla mogna blodceller. 

En genomsnittlig människa producerar cirka 200 miljarder blodceller per dag. 

Baserat på deras färg delas blodcellerna upp i röda blodceller och vita blodceller. 

De klassificeras också i myeloida celler och lymfoida celler baserat på var de finns 

eller mognar.  

Under normala omständigheter är produktionen av blodceller felfri. Men ibland 

inträffar onormala genetiska förändringar i stamcellerna vilket leder till en 

okontrollerad tillväxt av omogna blodceller som resulterar i blodcancer. Akut 

leukemi är en gruppbeteckning som anger de mest aggressiva cancerformerna som 

uppkommer från vita blodceller. Beroende på om leukemin är av myeloid eller 

lymfoid typ, kategoriseras den i akut myeloid leukemi (AML) respektive akut 

lymfoid leukemi (ALL). Både AML och ALL drivs av en mängd olika genetiska 

avvikelser som förändrar de grundläggande egenskaperna hos normala stamceller 

och därmed förvandlar dem till leukemistamceller. Leukemiceller återfinns främst i 

benmärgen och regleras av ett molekylärt nätverk som består av ett antal gener, 

proteiner, metaboliter etc. För att förstå funktionerna hos dessa celler krävs 

identifiering av nyckelelementen i detta nätverk, och deras roll i leukemiceller. Det 

övergripande syftet med denna avhandling är att identifiera sårbarheter i akut 

leukemi. För att uppnå detta undersökte vi ett antal gener och proteiner med 

banbrytande molekylära tekniker och utvärderade deras förmåga att påverka 

tillväxten av leukemiceller.  

I den första studien (artikel I) använde vi CRISPR, en såkallad gensax, för att ta 

reda på vilka gener som är kritiska för leukemistamcellerna i AML. CRISPR 

är en speciell typ av gensax som kan användas för att effektivt stänga av gener. 

Genom CRISPR stängde vi samtidigt av cirka 100 gener i leukemistamceller och 

studerade effekten på leukemicellernas tillväxt i en musmodell. Vi identifierade 

att genen CXCR4 är absolut nödvändig för leukemicellerna. När denna gen 

stängdes av  mognade leukemistamcellerna ut till celler med begränsad  livslängd.
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Detta berodde delvis på oxidativ stress som involverar uppbyggnad av gifter som 

produceras som en biprodukt i cellerna när syre omvandlas till energi. Vi fann 

också att interaktionen mellan proteinerna CXCL12 och CXCR4 inte 

var nödvändig för leukemistamcellerna. Detta var förvånande eftersom denna 

interaktion är nödvändig för normal produktion av blodceller. Således 

identifierade vi en viktig skillnad mellan funktionen av normala blodstamceller 

och leukemiceller. Detta fynd kan vara användbart vid utveckling av nya terapier 

för AML.  

I nästa studie (artikel II) sökte vi efter cytokiner som påverkar leukemi-initierande 

förmåga hos AML-celler. Cytokiner är proteinmolekyler som fungerar som 

kemiska budbärare mellan celler och påverkar deras funktioner. Vi använde en 

innovativ teknik där leukemistamcellerna var markerade med DNA-

streckkoder. Denna teknik möjliggjorde att vi samtidigt kunde utvärdera hur 

cirka 100 cytokiner påverkade leukemicellerna. Genom detta 

tillvägagångssätt fann vi att en av cytokinerna, TNFSF13, förbättrade den 

leukemi-initierande förmågan hos AML-cellerna genom att öka deras tillväxt.  

I artikel III sökte vi efter gener som är kritiska för en subtyp av ALL som drivs av 

genen DUX4. Vi använde återigen CRISPR, denna gång för att stänga av samtliga 

gener i ALL cellerna och studera effekten på celltillväxt. Vi fann att tre 

gener: FNIP1, IRF4 och SYNCRIP, var avgörande för överlevnaden av 

leukemiceller i denna subtyp av ALL. Ytterligare studier pågår för att förstå via 

vilka mekanismer dessa gener påverkar leukemicellerna.  

Vi hade tidigare identifierat att interleukin 4 (IL4) inhiberar AML-celler i 

en musmodell. Den exakta mekanismen bakom den negativa effekten av IL4 är 

dock inte känd. I artikel IV fann vi att IL4 aktiverar makrofager som sedan 

attackerar och dödar AML-celler. Makrofager är en typ av immunceller som 

vanligtvis äter skadade celler och bakterier. Intressant nog fann vi också att IL4 

delvis skyddar leukemicellerna från de attackerande makrofagerna genom att 

öka nivåerna av CD47, ett protein på ytan av AML-celler. Blockering av CD47 

tillsammans med IL4-stimulering ökade makrofagernas dödande av AML-celler. 

Dessa fynd avslöjar den komplexa roll som IL4 spelar i AML.  

Sammantaget har studierna som ingår i denna avhandling använt flera av de 

senaste molekylära teknikerna för att identifiera nyckelfaktorer som reglerar akut 

leukemi. Denna nya kunskap förbättrar vår förståelse av sjukdomen och kan 

leda till utvecklingen av nya behandlingsmetoder. 
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 Popular science summary 

Blood is a vital component of almost all multicellular organisms and is often a 

symbol for life itself. Blood transports nutrients and oxygen to the different organs 

in our body and removes waste materials from them. It is also important for 

maintaining our body temperature and for fighting against infections. Blood cells 

are made in a spongy tissue located inside some of our bones called bone marrow. 

In the bone marrow, a small number of parent cells called stem cells are present. 

These stem cells make copies of themselves and also produce all mature blood cells. 

An average human body produces about 200 billion blood cells per day. Based on 

their color, blood cells are divided into red and white blood cells. They are also 

classified into myeloid and lymphoid cells based on their place of maturation and 

prevalence. 

Under normal circumstances, the production of blood cells is error-free. 

Occasionally, abnormal genetic changes occur in the stem cells which leads to an 

uncontrolled growth of immature blood cells resulting in blood cancer. Acute 

leukemia is a collective term denoting the aggressive cancers of white blood cells. 

Depending on whether the cancerous white blood cells are of myeloid or lymphoid 

type, it is categorized into acute myeloid leukemia (AML) and acute lymphoid 

leukemia (ALL) respectively. Both AML and ALL are driven by a wide variety of 

genetic abnormalities which alter the fundamental characteristics of normal 

immature blood cells thereby turning them into leukemia stem cells. Leukemia cells 

also reside in the bone marrow and are regulated by a molecular network consisting 

of a number of genes, proteins, metabolites etc. Identifying the key elements of this 

network and their role in leukemia cells could help us understand how these cells 

are regulated. The overarching aim of this thesis is to identify vulnerabilities in acute 

leukemia. In order to achieve this, we used cutting edge molecular techniques to 

assess the functional role of a number of genes and proteins in leukemia cells.  

In the first study (Paper I), we performed a CRISPR screen to identify genes that 

are essential for leukemia stem cells in AML. CRISPR is a special type of gene 

scissors that can be used to turn-off genes effectively. Through CRISPR, we 

simultaneously turned off about 100 genes in leukemia stem cells and studied the 

effect on leukemia cell growth in a mouse model. We identified the gene CXCR4 

to be essential for leukemia stem cells. When this gene was turned off, the leukemia 

stem cells matured into cells with limited lifespan and eventually died. This was 

partly due to oxidative stress which involves the build-up of toxins produced as a 
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by-product in the cells when oxygen is converted into energy. We also found that 

the interaction between the proteins CXCL12 and CXCR4 was not necessary for 

leukemia stem cells. This was surprising because this interaction is essential for 

normal blood stem cells. Thus, we identified a key difference between the 

functioning of normal and leukemia stem cells. This finding could be useful for 

designing new therapies for AML. 

In the next study (Paper II), we searched for cytokines that affect the leukemia-

initiating capacity of AML cells. Cytokines are protein molecules that act as 

chemical messengers between cells and affect their functions. We used an 

innovative technique in which the leukemia stem cells were marked with DNA 

barcodes. This technique allowed us to simultaneously assess the individual effect 

of about 100 cytokines on the leukemia stem cells. By using this approach, we found 

that one of the cytokines, TNFSF13 enhanced the leukemia initiating-capacity of 

AML cells by reducing the cell death and increasing the cell growth.  

In paper III, we searched for genes that are critical for a subtype of ALL driven by 

the gene DUX4. We again used the special gene scissor, CRISPR and turned off all 

the genes in the ALL cells simultaneously and studied its effect on leukemia cell 

growth. We found three genes, FNIP1, IRF4 and SYNCRIP to be essential for the 

survival of leukemia cells of this subtype of ALL. Further studies are ongoing to 

decipher the mechanisms by which these genes affect the leukemia cells. 

We had previously identified interleukin 4 (IL4), a cytokine to be harmful for AML 

cells in a mouse model. However, the exact mechanism behind the negative effect 

of IL4 is not known. In paper IV, we examined if this negative effect was mediated 

by the immune cells. We found that IL4 activates macrophages which then attacks 

and kills AML cells. Macrophages are a type of immune cells that usually eat 

damaged cells and pathogens such as bacteria. Interestingly, we also found that IL4 

partially protects the leukemia cells from the attacking macrophages by increasing 

the levels of CD47, a protein on the surface of AML cells. Blocking of CD47 along 

with IL4 stimulation mitigated the protective effect and increased the killing of 

AML cells by macrophages. These findings reveal the complex role played by IL4 

in AML. 

Collectively, the studies included in this thesis have employed several of the latest 

molecular techniques to identify key factors that regulate acute leukemia. The new 

knowledge created through these studies improves our understanding of the disease 

and may translate into the development of new therapies. 
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Hematopoiesis 

Blood is a unique tissue in the human body that has fascinated the inquisitive minds 

for ages. According to the Greek philosopher Aristotle (384-322 BC), blood is a 

homogenous fluid produced in the heart and is distributed all over the body to 

nourish the different organs and to induce their growth [1, 2]. Between the 17th to 

the 19th century AD, just two types of blood cells were known based on their color 

under a microscope - red blood cells and white blood cells [3]. Modern medical 

science has come a long way from these rudimentary understandings of blood and 

has identified several types of specialized blood cells and their diverse functions 

such as transport of oxygen and nutrients to every cell in the body, defense against 

pathogens, coagulation etc. The process of generation of new blood cells is termed 

hematopoiesis (from Greek; haimato - blood, poiein - to make). The primary site of 

hematopoiesis in adults is the medullary cavity of the bone marrow. In addition, 

extramedullary hematopoiesis can take place in the spleen [4] and lungs [5]. 

The human body is estimated to have about 2.7x1013 blood cells amounting to ~90% 

of all cells in the body [6]. The turnover of blood cells in an average human adult is 

about 1 trillion cells per day [7]. Moreover, during severe physiological stress such 

as infections or blood loss, even more blood cells are produced. In order to maintain 

the number and diversity of the blood cells, hematopoiesis is tightly regulated. By 

the end of 20th century, it was well established that all of the mature blood cells are 

derived from a common pool of cells termed hematopoietic stem cells (HSC) 

through a hierarchical differentiation process.  

Hematopoietic lineages and differentiation  

About a dozen different types of mature blood cells have been identified. They are 

broadly classified into two types – myeloid and lymphoid cells based on their site 

of origin and prevalence. Myeloid (from Greek; muelos - marrow) cells comprise of 

granulocytes, monocytes, erythrocytes and megakaryocytes all of which originate 

and mature in the bone marrow. As the name suggests, granulocytes have large 

cytoplasmic granules that contain enzymes and are classified into four types – 

basophils, eosinophils, neutrophils and mast cells.  Lymphoid cells are 

predominantly found in the lymphatic (from Latin; lympha - clear water) circulation 

and include B-cells, T-cells and Natural Killer (NK) cells. While mature B-cells and 
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NK-cells are produced in the bone marrow, immature T-cells migrate to the thymus 

where they undergo maturation. Both myeloid and lymphoid cells arise from 

progenitor populations which in turn are derived from HSCs through complex 

regulations of differentiation. 

Figure 1. Hematopoietic hierarchical tree 

Mature blood cells of myeloid and lymphoid lineages are produced through a hierarchical differentiation process with 

the HSCs at the apex and progenitor populations in the middle which are progressively committed to their corresponding 

lineages. Dotted lines indicate the recently proposed changes to the hierarchical tree.   

The classical model of hematopoietic lineage commitment is depicted as a 

hierarchical tree involving successive binary fate decisions as HSCs differentiate 

through progenitor populations into mature blood cells (Figure 1) [8]. HSCs which 

are at the top of the hierarchy are defined based on two essential characteristics – 

long-term self-renewal and multipotency, i.e., the capacity to contribute to all types 

of mature blood cells. HSCs lose their self-renewal capacity while differentiating 

into multi-potent progenitor (MPP) populations which have reduced capacity to 

reconstitute the entire hematopoietic system in the long-term [9]. Subsequently, 

MPPs differentiate into committed progenitors namely common myeloid 

progenitors (CMP) [10], common lymphoid progenitors (CLP) [11] and lymphoid-

primed multipotent progenitors (LMPP) [12].  
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CMPs have traditionally been considered as an oligopotent population, which is the 

only source of myeloid progenitors – granulocyte-macrophage progenitors (GMP) 

and megakaryocyte-erythroid progenitors (MEP). Recently, LMPPs with 

predominantly lymphoid developmental capacities have also been shown to give 

rise to GMPs suggesting that the segregation of myeloid and lymphoid lineages do 

not occur early in the hierarchical differentiation tree as previously thought [13]. 

Moreover, the capacity of CMP to produce a true GMP population is being 

questioned as they fail to differentiate into monocytes and neutrophils. Therefore, a 

suggestion that has been put forward is to rename CMPs as erythro-myeloid 

progenitors (EMP) which generate erythrocytes, basophils, eosinophils and 

megakaryocytes [14]. Megakaryocyte progenitor cells are derived from MEPs 

which further differentiate into megakaryocytes and platelets. However, it has been 

reported that megakaryocyte progenitor cells also arise directly from MPPs [15]. In 

the lymphoid compartment, CLPs that are derived from MPPs or LMPPs further 

differentiate to produce NK-cells, B-cells and T-cells.  

The model of the hierarchical hematopoietic differentiation has been developed 

based on two key experimental pillars – i) immunophenotype-based cell 

purification, ii) in vitro and in vivo clonal assays. Every population in the 

hematopoietic system is defined by its immunophenotype -i.e., a unique profile of 

cell surface markers that can be used to purify the cells. Subsequently, the 

differentiation potential of these purified populations is assessed either by in vitro 

colony forming assays or by in vivo transplantation assays into murine models. For 

example, CMPs isolated based on their immunophenotype generate myeloid, 

erythroid or megakaryocytic colonies in a colony forming assay. In contrast, GMPs 

only give rise to myeloid colonies and MEPs produce erythroid or megakaryocytic 

colonies. Based on these observations, a model was proposed in which CMPs 

differentiate into GMPs and MEPs [10]. However, this interpretation is based on a 

key assumption, that the cells purified based on the immunophenotype are 

functionally homogenous. During the past decade, several studies have established 

that both the HSC pool and the progenitor populations are functionally heterogenous 

[14, 16, 17].  Moreover, the assessment of the differentiation potential of cells 

transplanted into immune-deficient mice does not reflect the fundamental properties 

of unperturbed native hematopoiesis. Using genetic labelling, it has been shown that 

in an unperturbed system, hematopoiesis is mainly driven by multipotent 

progenitors and not HSCs [18, 19]. Due to these limitations, the validity of the 

current model of the hierarchical hematopoietic differentiation is being challenged. 

During the last decade, there has been an explosion of single cell RNA sequencing 

(scRNA-seq) studies [20-25] in the hematopoietic system that has offered a snapshot 

of the expression state of cells at a particular time point. These studies have 

proposed the idea that hematopoietic differentiation is in a continuum rather than in 

distinct differentiation stages [26]. For example, the HSC/MPP compartment in the 

upper tier of the hematopoietic tree has been proposed to be characterized by a 
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continuous differentiation landscape [27] as opposed to distinct subpopulations 

[28]. Moreover, transcriptional priming towards different lineages are initiated 

earlier than first anticipated, already at the MPP stage [27]. Similarly, profiling of 

myeloid progenitors using scRNA-seq has revealed tremendous heterogeneity, 

identifying 18 subpopulations with different degrees of lineage priming [29].  

Figure 2. Alternative model of hematopoietic hierarchy 

HSCs and the progenitor populations are highly heterogenous in their capacity to differentiate into specific lineages. 
Lineage choices are made early in the hematopoietic hierarchy and the cells follow different trajectories of differentiation 
to become mature cells (adapted from Laurenti, et al., [30]). 

scRNA-seq studies in the HSC/MPP compartment have identified three major 

trajectories in the differentiation landscape – lymphoid, erythroid and 

granulocytic/monocytic lineages [31]. Analysis of the progenitor populations 

revealed that multiple types of mature cells arises from more than one trajectory [22, 

27]. These recent findings have led to the proposal of a new representation of the 

hierarchical organization of hematopoiesis which appreciates the heterogeneity of 

the cells, prevalence of early lineage choices and diversity in possible routes of 

differentiation [30] (Figure 2).  
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Regulation of hematopoiesis 

For maintenance of a robust hematopoietic system, fate decisions such as self-

renewal vs differentiation, quiescence vs proliferation, survival vs death and lineage 

choices are tightly regulated in HSCs and other progenitor populations. These fate 

choices are guided both by external stimuli and cell intrinsic factors which affect 

the molecular circuitries of the cells. External factors that regulate hematopoiesis 

include cytokines, chemokines, extracellular matrix and membrane-bound signaling 

molecules provided by the microenvironment where the HSCs reside. The internal 

factors include transcription factors, signaling modulators, epigenetic modifiers and 

cell cycle regulators [32]. 

Hematopoietic niche 

HSCs are proposed to be localized mainly in a hypoxic bone marrow 

microenvironment [33] termed perivascular niche, where they reside adjacent to 

sinusoidal blood vessels [34-36]. The major factors that promote the maintenance 

of HSCs in the bone marrow are stem cell factor (SCF) [37, 38], CXC-chemokine 

ligand 12 (CXCL12) [39, 40] and thrombopoietin [41]. Perivascular mesenchymal 

stromal cells and endothelial cells are the main sources of SCF and CXCL12 [42, 

43] in the bone marrow niche. Other cell types in the niche that regulate HSCs are

osteoblasts [44], osteoclasts [45], schwann cells [46], macrophages [47], and

megakaryocytes [48]. Apart from HSC, osteoblasts and perivascular mesenchymal

stromal cells also affect lymphoid progenitors [42]. During times of hematopoietic

stress such as infection [49], pregnancy [4] or other hematological disorders [50],

HSCs are mobilized from the bone marrow and colonize tissues – predominantly

spleen and liver leading to extramedullary hematopoiesis [51].

Lineage choices 

Transcription factors play a key role in the differentiation of HSCs and progenitors 

into specific lineages. Stochastic fluctuations in the expression of transcription 

factors or environmental cues such as cytokines have been proposed to control the 

lineage choice [52].  For example, expression of GATA1 and SPI1 is mutually 

exclusive during erythroid and myeloid differentiation, respectively. Moreover, 

GATA1 and SPI1 have been shown to repress each other and to activate themselves 

via a positive feedback loop, favoring a stochastic model of lineage commitment 

[53]. However, this model has been challenged by a recent study which suggests 

that the lineage choice is made at an earlier stage and the transcription factors merely 

execute the differentiation of the cell [54].  
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Maintenance of lineage choice is achieved by the sustained expression of lineage-

specific transcription factors in the committed cells and their progeny. Positive 

autoregulation of a transcription factor while inhibiting opposing factors leads to 

stability of lineage commitment. The “GATA switch” is a classic example of this 

phenomenon where early progenitors express the transcription factor GATA2 that 

induces GATA1 expression which in turn represses GATA2 and activates its own 

expression, thereby pushing cells towards the erythropoietic lineage [55].   

Apart from transcription factors, cytokines play a vital role in lineage choices, 

proliferation, maturation, survival and activation of cells in the hematopoietic 

system [56]. For example, ectopic upregulation of granulocyte-macrophage colony 

stimulating factor (GM-CSF) receptor has been shown to instruct the conversion of 

CLPs from the lymphoid to myeloid lineage [57]. Similarly, expansion of lymphoid 

and myeloid progenitors can be induced by high levels of the FMS-like tyrosine 

kinase 3 (FLT3) ligand [58]. Collectively, cytokines instruct the lineage 

commitment of blood cells thereby regulating hematopoiesis.  

Epigenetic modifiers are emerging as important regulators of hematopoiesis apart 

from transcription factors and cytokines. Epigenetic modifications such as histone 

acetylation and methylation of cytosine residues modulates chromatin accessibility 

and transcription of genes involved in lineage commitment [59]. For example, loss 

of DNA methyl transferase 3A (DNMT3A) results in impaired differentiation and 

clonal expansion of HSCs, causing a pre-leukemic state [60] (see Pre-leukemia to 

overt leukemia). 
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Hematological malignancies 

Hematological malignancies represent a heterogenous group of neoplasms that are 

characterized by the abnormal production of blood cells. Under normal conditions, 

key characteristics of hematopoietic stem and progenitor cells (HSPC) such as self-

renewal, differentiation and proliferation are well regulated in order to ensure 

efficient hematopoiesis. Occasionally, unintended genetic and epigenetic changes 

occur in these cells which dysregulates these characteristics resulting in the 

accumulation of abnormally differentiated blood cells that are dysfunctional. 

Interestingly, some of the initiating genetic lesions are not by themselves sufficient 

to cause an overt disease but lead to clonal hematopoiesis [61].  

The genetic changes that lead to malignant transformation of normal HSPCs include 

gene mutations, chromosomal translocations and other structural abnormalities such 

as aneuploidy, copy number variations etc. Over the past two decades, next 

generation sequencing (NGS) technologies have been instrumental in identifying a 

number of these genetic aberrations. Several of these mutations have been used for 

diagnosis, risk stratification, selection of treatment regimen and to predict the 

prognosis of the patients. Similar to normal hematopoiesis, hematological 

malignancies are also broadly classified into myeloid and lymphoid malignancies 

based on the lineage of origin of the neoplasia. Additionally, they are classified into 

acute and chronic malignancies based on the rate of progression of the disease. 

Taking into account the diversity of the hematological malignancies, the world 

health organization (WHO) has made a classification system for these diseases [62-

64] (Figure 3).

Myeloid malignancies 

Myeloid malignancies comprise of four sub-categories - myeloproliferative 

neoplasms (MPN), myelodysplastic syndromes (MDS), 

myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and acute myeloid 

leukemia (AML), all of which are caused by genetic lesions resulting in clonal 

proliferation of defective blood cells of myeloid lineage (Figure 3). Genetic 

mutations associated with myeloid malignancies belong to five main classes: 

transcription factors (e.g. CEBPA, IKZF1), tumor suppressors (e.g. TP53),
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Figure 3.   Major hematological malignancies 

Flowchart depicting the major subtypes of myeloid and lymphoid malignancies included in the WHO classification of hematological malignancies. The subtypes of AML and BCP-
ALL are discussed in detail in the following chapters. 
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signaling pathways (e.g. FLT3, RAS), epigenetic regulators (e.g. DNMT3A, EZH2) 

and components of the spliceosome (e.g. SF3B1, SRSF2) [65]. Understanding the 

complex mutational landscape of these diseases has been instrumental in improving 

risk stratification and prognosis of the patients. 

MPN is characterized by a relatively slow clonal expansion of hematopoietic 

progenitors and increased proliferation of mature myeloid cells in the bone marrow 

[66]. MPN is associated with thrombotic and hemorrhagic events and an increased 

risk of transformation into secondary AML (sAML) [67]. MPN is further classified 

into chronic myelogenous leukemia (CML), chronic neutrophilic leukemia (CNL), 

polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia 

(ET) and chronic eosinophilic leukemia (CEL) [63]. Genetic aberrations that lead to 

constitutive activation of signaling cascades and cytokine-independent proliferation 

are hallmarks of MPN. For example, CML is characterized by a reciprocal 

t(9;22)(q34;q11) translocation occurring in HSCs leading to the formation of the 

BCR/ABL1 fusion gene, which encodes for a constitutively active tyrosine kinase 

that promotes cell proliferation. Development of tyrosine kinase inhibitors have 

revolutionized the treatment of CML patients allowing for a near-normal life [68]. 

MDS is a heterogenous disease characterized by morphological dysplasia of 

myeloid cells and inefficient hematopoiesis resulting in cytopenias [63]. 

Approximately one-third of MDS patients progress to high risk MDS and sAML 

[69]. The founding genetic event in MDS is believed to occur in HSCs resulting in 

clonal hematopoiesis of indeterminate potential (CHIP) (see Pre-leukemia to overt 

leukemia). The transformation from CHIP to MDS is suggested to involve a 

complex interplay between epigenetic changes in the HSCs, dysregulation of the 

bone marrow microenvironment and acquisition of additional driving mutations 

[70]. Due to the heterogeneity of the disease, a risk-adapted treatment strategy is 

adopted. Allogenic HSC transplantation is the only curative option which is offered 

based on the availability of donors and fitness of patients. Other noncurative 

treatments include administration of erythropoiesis stimulating agents (ESA), 

hypomethylating agents (HMA), immunosuppressants and red blood cell 

transfusions, aimed at improving cytopenias and quality of life [71]. 

Myeloid neoplasms that exhibit clinical and morphological characteristics 

overlapping with both MDS and MPN along with ineffective hematopoiesis are 

classified as myelodysplastic/myeloproliferative neoplasms (MDS/MPN). 

MDS/MPN includes five distinct subtypes - chronic myelomonocytic leukemia 

(CMML), atypical chronic myeloid leukemia (aCML), juvenile myelomonocytic 

leukemia (JMML) and MDS/MPN with ring sideroblasts and thrombocytosis 

(MDS/MPN-RS-T) [63]. Many of the somatic mutations and cytogenetic 

abnormalities found in MDS and MPN are also found in MDS/MPN [72]. The 

current treatment options for MDS/MPN comprise of risk- and symptom- based 

therapies co-opted from other myeloid malignancies [73]. 
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AML is an aggressive clonal disorder characterized by the accumulation of 

immature abnormally differentiated myeloid blast cells. It is a heterogenous disease 

with several different subtypes classified based on their biological and prognostic 

characteristics. As three of the studies (Papers I, II & IV) included in this thesis 

focus on AML, it is discussed in detail in a separate chapter (see Acute myeloid 

leukemia). 

Lymphoid malignancies 

Lymphoid malignancies are broadly classified into mature and precursor neoplasms 

based on the differentiation stage of the malignant lymphoid cells (Figure 3). As 

the name suggests, mature lymphoid neoplasms (MLN) are characterized by the 

clonal expansion of mature lymphocytes and are classified based on the type of 

lymphocyte involved into mature T-cell neoplasms, mature NK-cell neoplasms, 

mature B-cell neoplasms. Among these, mature B-cell neoplasms accounts for the 

majority of the cases and comprise of a heterogenous group of disorders driven by 

different genetic aberrations [74]. The WHO classification of lymphoid 

malignancies lists as many as 41 mature B-cell neoplasms [64]. Some of the 

predominant subtypes of mature B-cell neoplasms include chronic lymphocytic 

leukemia (CLL), multiple myeloma (MM), diffuse large B-cell lymphoma, and 

follicular lymphoma.  

Precursor lymphoid neoplasms are characterized by the accumulation of abnormally 

differentiated lymphoblasts and are historically referred as acute lymphoblastic 

leukemia (ALL). ALL is the most common form of cancer among children [75]. 

Depending on whether B- or T-lymphoblasts are involved, ALL is further classified 

into T-cell acute lymphoblastic leukemia (T-ALL) or B-cell precursor acute 

lymphoblastic leukemia (BCP-ALL) respectively. Both classes of ALL comprise of 

multiple subtypes which are stratified based on the genetic lesions such as structural 

chromosomal alterations, DNA copy number alterations and gene mutations that 

contribute towards leukemia development [76]. Treatment of childhood ALL is 

considered a success story with an overall survival rate of ~80% and with certain 

subtypes approaching a cure rate of ~98% [77, 78]. However, survival and outcomes 

of adult ALL cases (18-60 years of age) continues to remain poor and is about 35% 

[79].  

BCP-ALL accounts for about 85% of ALL cases [80]. One of the studies (Paper 

III) in this thesis focuses on BCP-ALL and is therefore discussed in detail in a 

separate chapter (see B-cell precursor acute lymphoblastic leukemia).
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Leukemogenesis 

Acute leukemia is a collective term referring to a group of aggressive hematological 

malignancies of either myeloid or lymphoid lineage and is characterized by a rapid 

clonal expansion of blast cells with impaired differentiation. The evolutionary path 

of leukemogenesis starting with the acquisition of the first somatic mutation 

eventually leading to the development of overt leukemia is poorly understood. A 

detailed genetic analysis of acute leukemia using NGS technology has revealed a 

complex clonal architecture with multiple driver and cooperating mutations, 

coexistence of multiple subclones and their evolution over time [81, 82]. Moreover, 

the varied response of different subclones to therapies adds another layer of 

complexity to the disease. A clear understanding of the process of leukemogenesis 

in AML and BCP-ALL would be beneficial in devising effective therapies.  

Rise of leukemia 

Somatic mutations in human genome are estimated to occur at a rate of ~0.06 – 1.47 

x 10-9 mutations per base pair per cell division [83]. The functional effect of a 

particular mutation depends on the type of mutation, the cell type and the genomic 

region in which the mutation occurs. Many of the mutations are functionally 

irrelevant and do not affect the fitness of the cells. However, some mutations will 

alter the fundamental characteristics of the cells such as self-renewal, differentiation 

or proliferation, which eventually may result in a neoplasm. A widely accepted 

model for the development of acute leukemia is that the occurrence of the first 

genetic lesion in specific hematopoietic cells results in a pre-leukemic state and the 

subsequent acquisition of additional mutations leads to the leukemic transformation. 

Pre-leukemia to overt leukemia 

As we age, there is an accumulation of mutations in different cell types. In the 

hematopoietic cells, several recurrent mutations have been shown to drive clonal 

hematopoiesis which is characterized by the overrepresentation of blood cells 

derived from a single clone containing the mutation. This is probably due to the 
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Figure 4. Development of acute leukemia 

Schematic pictures depicting the transformation of normal hematopoietic cells into a pre-leukemic state and 

subsequently into overt leukemia in (a) AML and (b) BCP-ALL. Each colored dot represents a unique mutation. The 

curved arrow in (a) represents the self-renewal capacity of the cells. 

acquisition of mutations in HSCs that provide them with a growth advantage [84]. 

As clonal hematopoiesis may or may not transform into a hematological 

malignancy, it is labeled as CHIP. CHIP refers to the existence of a cancer-

associated variant in the hematopoietic cells in the absence of malignancy but is 

associated with an increased risk of progressing into malignancies [85, 86]. A 

majority of mutations associated with CHIP occur in the genes encoding epigenetic 

modifiers, such as DNMT3A and TET2. Other genes frequently mutated in CHIP 

include ASXL1, JAK2, SF3B1 and TP53 [87]. Many of the genes mutated in CHIP 

have also been identified as recurrent mutations in MDS and AML [88-91]. 

Therefore, CHIP has been postulated as a pre-leukemic state which could progress 

into MDS and subsequently into AML (Figure 4a). The committed progenitor 

populations of the pre-leukemic cells are susceptible to additional somatic mutations 

such as NPM1 and FLT3 [92-94] which then leads to leukemic transformation. In 

population-based cohorts, CHIP was associated with a ~10-fold increased relative 

risk of the development of hematological malignancies over several years of follow-

up [84]. 
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Relative to AML, BCP-ALL is more common among children where the occurrence 

of clonal hematopoiesis is rare suggesting that there are other mechanisms of 

leukemogenesis in pediatric leukemias. A number of genetic lesions associated with 

BCP-ALL have been shown to arise in utero [95-99]. As secondary mutations are 

required for the leukemic transformation of most of the subtypes, some of these 

prenatal genetic lesions are hypothesized to produce a pre-leukemic state (Figure 

4b) [100]. The secondary genetic events often target genes critical for lymphoid 

development such as RUNX1, IKZF1 and PAX5 [101]. The mechanisms by which 

prenatal pre-leukemia transforms into postnatal BCP-ALL is unclear. Since only a 

part of the carriers of the pre-leukemic lesions suffers secondary mutations and 

subsequent leukemic transformation, it has been hypothesized that environmental 

factors such as infections are involved in the acquisition of the secondary mutations 

[102, 103]. Dysregulation of immune cells, particularly T-helper cells and NK-cells 

by infections has been proposed to play a major role in the leukemic transformation 

[104, 105]. Interestingly, MLL-rearranged BCP-ALL (official name KMT2A) have 

been found to occur already in newborns [106] and is the only leukemia-related 

genetic lesion in some patients [107, 108] suggesting that the fusion itself is 

sufficient for leukemia onset.  

Cell of origin 

The beginning of leukemia can be traced back to a normal hematopoietic cell termed 

cell of origin of leukemia (COL) in which the first initiating genetic aberration 

occurs. In AML, HSPCs and myeloid progenitors have been shown to be the COL 

through transplantation based murine leukemia models [109]. However, only 

HSPCs are suggested to be the COL of human AML due to the presence of somatic 

mutations in pre-leukemic HSPCs that lead to CHIP and subsequently into AML 

[110]. In BCP-ALL, the COL varies between HSCs and committed lymphoid 

progenitors according to the underlying genetic lesion. For example, BCR-ABL1 

fusions can originate either from HSCs or from a B-cell progenitor depending on 

the isoform of BCR-ABL1 [111]. It is important to note that identification of COL 

is generally challenging as the initiating genetic lesions can alter its properties such 

that the cell is reprogrammed into a different stage of differentiation [112].  

Acute leukemia is sustained by a population of cells termed leukemia stem cells 

(LSC). LSCs are functionally defined as the cells with the ability to maintain and 

repopulate leukemia. They share the characteristic of self-renewal with normal 

HSCs. LSCs are also termed as leukemia initiating cells (LIC) as they can initiate 

leukemia when transplanted into a host. The use of the term “LIC” has been 

contentious as it has also been occasionally used to denote COL. Since additional 

mutations are often required for leukemic transformation, LSC/LIC may not always 

be the COL and is important to clarify the context in which these terms are used. 
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In AML, LSCs were initially thought to be a small population that shares 

immunophenotypic characteristics with normal HSCs [113, 114]. However, with 

refinements in the immunophenotypic definition of HSCs, LSCs were proposed to 

be present in non-HSC progenitor stages [115, 116]. Subsequently, LSCs have been 

shown to closely mirror normal LMPPs and GMPs suggesting that LSCs acquire 

abnormal self-renewal potential and maintains a hierarchical structure [117]. LSCs 

give rise to cells that lack the self-renewal capacity and the ability to terminally 

differentiate termed blast cells. Transcriptome analysis of LSCs revealed the 

presence of a “stemness” signature which is associated with adverse prognosis in 

AML [118]. In BCP-ALL, several studies have shown that the ability of leukemia 

cells to engraft immunodeficient mice is not restricted to specific 

immunophenotypes suggesting a stochastic stem cell model according to which 

most of the leukemia cells have the ability to propagate the disease [119-121]. 

Clonal heterogeneity and evolution 

Accumulation of genetic alterations in the neoplastic cells is one of the defining 

features of cancer. Acquisition of a mutation that confers a cell with a selective 

growth advantage results in clonal expansion thereby creating a population of cells 

termed as a clone which carries the mutation. With the accumulation of additional 

mutations, many subclones are created which compete with each other and with 

normal cells over resources in the tissue microenvironment. Thus, cancer 

progression is essentially a process of mutational diversification and clonal 

evolution [122]. Different models of clonal evolution in tumors have been proposed 

[123]. Linear clonal evolution involves the stepwise accumulation of mutations that 

confer a strong selective advantage to progeny clones which replace the parent 

clones in full selective sweep [124]. By contrast, branching evolution involves the 

coexistence of multiple subclones, each with their selective growth advantages that 

compete for ascendency [125].  

Due to the mobile nature of leukemia cells as opposed to the fixed tissue architecture 

of solid tumors, they can undergo more cellular mixing and a homogenous 

population through a linear clonal evolution could have been expected [126]. 

However, several genomic studies of acute leukemia have shown the presence of a 

heterogenous mixture of clonal populations suggesting a branching clonal evolution 

[127-132]. Thus, the eventual composition of the leukemic clones is determined by 

the competition between the different mutant populations. 
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Acute myeloid leukemia 

Epidemiology 

The incidence of AML per 100,000 people in USA is estimated to be ~4.3 [133]. In 

Sweden, about 350 AML cases are diagnosed every year (www.cancerfonden.se) 

and the overall prevalence is estimated to be 13.7 per 100,000 people [134]. AML 

is more common in the elderly with a median age of 72 years and a peak in incidence 

at 80-84 years of age [134]. About 25% of the patients diagnosed with AML have a 

previous hematological disease [135]. 

Classification 

AML is a heterogenous disease encompassing a wide range of variations in cell 

morphology, molecular profile, response to treatment and prognosis. A robust 

classification system of the disease is necessary to gain insights into biology of the 

leukemia cells and to develop effective therapies for the specific subtypes. An early 

effort to have a standardized classification system for AML was undertaken by 

French-American-British (FAB) co-operative group in 1976. This classification was 

entirely based on the morphology of the leukemia cells in the bone marrow and 

peripheral blood taking into account the degree of maturation and the direction of 

differentiation towards one or more mature cell lines [136]. During the 1980s, the 

FAB-classification of AML was revised to include additional subtypes and modified 

diagnostic criteria to account for the stage of impaired differentiation of the 

leukemia cells in the patient sample [137, 138] (Table 1). Although morphological 

heterogeneity of AML is taken into consideration in the FAB-classification, it does 

not always reflect the diversity of genetic lesion in the disease.  

Over the past two decades, the WHO has proposed and revised a new classification 

system for AML based on the morphology, presence of specific genetic 

abnormalities, therapy-responses and prior history of myeloid malignancy [63, 139, 

140] (Table 1). The recurrent genetic abnormalities included in the WHO-

classification system primarily involves structural changes. However, ~50% of 

AML patients present with normal karyotype and exhibit variable clinical response 

to conventional chemotherapy indicating disease heterogeneity within the group 

http://www.cancerfonden.se/
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[141]. Advancements in sequencing technologies have led to the identification of a 

number of recurring mutations in AML patient samples [88, 142-144]. The present 

WHO-classification system does not include several of these mutations. Therefore, 

a new system of classification based on the genomic mutation profile has been 

proposed that can better address the heterogeneity and risk stratification of AML 

[144]. 

Table 1. FAB and WHO classifications of AML 

FAB Classification 

M0 Minimally differentiated AML 

M1 AML without maturation 

M2 AML with maturation 

M3 Acute promyelocytic leukemia 

M4 Acute myelomonocytic leukemia 

M5 Acute monoblastic/monocytic leukemia 

M6 Acute erythroleukemia 

M7 Acute megakaryoblastic leukemia 

WHO classification 

AML with recurrent genetic abnormalities Genetic abnormality 

AML with t(8;21)(q22;q22.1) RUNX1-RUNX1T1 fusion gene 

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22) CBFB-MYH11 fusion gene 

AML with t(15;17)(q22;q21) PML-RARA fusion gene 

AML with t(9;11)(p21.3;q23.3) MLL-AF9 fusion gene

AML with t(6;9)(p23;q34.1) DEK-NUP214 fusion gene 

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2) MECOM activation or RPN1-EVI1 fusion gene 

AML (megakaryoblastic) with t(1;22)(p13.3;q13.3) RBM15-MKL1 fusion gene 

AML with mutated NPM1 NPM1 loss of function mutations 

AML with biallelic mutations of CEBPA CEBPA dominant-negative mutations 

AML with BCR-ABL1 (provisional entity) BCR-ABL1 fusion gene 

AML with mutated RUNX1 (provisional entity) RUNX1 loss of function mutations 

AML with myelodysplasia related changes 

Therapy-related myeloid neoplasms 

AML not otherwise specified 
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Genetic aberrations in AML 

Cytogenetic abnormalities 

About five decades ago, the first somatic chromosomal abnormality involving a 

balanced translocation t(8;21) was identified in AML [145]. Since then, a number 

of cytogenetic aberrations have been identified which are found in nearly half of 

the newly diagnosed adult AML patients [141]. Karyotyping serves as the primary 

diagnostic tool to identify the recurrent cytogenetic abnormalities which include 

chromosomal deletions, inversions, aneuploidy and translocations. Based on the 

number of cytogenetic aberrations, the AML cases are classified into normal 

karyotype and complex karyotype (≥ 3 abnormalities). 

Some of the major chromosomal translocations include t(8;21)(q22;q22.1), 

t(15;17)(q22;q21), inv(16)(p13.1q22)/t(16;16)(p13.1;q22) and 11q23 abnormalities 

which together are found in ~29% of adult AML patients [146]. AML arising due 

the t(15;17)(q22;q21) translocation is characterized by a rapid expansion of 

abnormal promyelocytes and is termed acute promyelocytic leukemia [147]. This 

translocation results in the expression of the PML-RARA fusion gene which drives 

the leukemic transformation by blocking differentiation through transcriptional 

regulation of its target genes. Both t(8;21)(q22;q22) and 

inv(16)(p13.1q22)/t(16;16)(p13.1;q22) affect the proteins involved in the core 

binding factor (CBF) transcription complex and hence are termed CBF-AML [148]. 

The t(8;21)(q22;q22.1) rearrangement is characterized by RUNX1-RUNX1T1 

(official name – AML1-ETO) fusion gene that encodes a protein which acts as a 

dominant negative regulator of RUNX1 target genes [149, 150]. However, the 

translocation by itself is insufficient to cause leukemia and secondary cooperative 

mutations are likely required [151]. Such additional mutations include activating 

mutations in KRAS, NRAS, ASXL1, KIT, PTPN11 and/or loss-of-function mutations 

in NF1, which are found in about two-thirds of t(8;21)(q22;q22.1) AML patients 

[152-154]. Abnormalities in chromosome 16 includes inversion (16)(p13.1q22) and 

translocation (16;16)(p13.1;q22), both resulting in the formation of the CBFB-

MYH11 fusion gene that alters the transcriptional profile of the cells leading to 

leukemic transformation. The inv(16) is more common than t(16;16) and is often 

accompanied by aneuploidies such as +22, +8, del(7q) and +21 [155].  

MLL gene (official name KMT2A), a H3K4 methyltransferase is a key epigenetic 

regulator playing a critical role in the emergence of fetal HSCs and maintenance of 

adult HSPC [156, 157]. 11q23 abnormalities involve chromosomal translocations 

resulting in in-frame fusions of the MLL gene to more than 100 different partner 

genes [158]. However, six fusion partners – AF9, ENL, AF10, ELL, PTD and AF6 

constitute ~83% of the MLL-rearranged AML cases [158]. The distribution of the 

different MLL-rearrangements varies with age with AF10 and AF9 being the most 
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common MLL-fusion partners in infant and pediatric AML cases, respectively. 

Although the proteins encoded by the different MLL-fusion genes have diverse 

functions, they can be classified into two groups based on their localization, either 

in the cytoplasm or nucleus of the cells. Cytoplasmic fusion partners include ESP15, 

GAS7, SH3GL1, AFDN and FOXO4 which have been shown to be important for the 

dimerization of MLL which contributes to leukemic transformation [159].  Nuclear 

proteins constitute the majority of the MLL-fusion partners and are involved in the 

regulation of transcriptional elongation via recruitment of polymerase associated 

factor (PAF) complex, the DOT1-like histone lysine methyltransferase (DOT1L) 

complex and positive transcription elongation factor b (pTEFb) complex that leads 

to deregulated transcription [160-164]. DOT1L is also a methyltransferase that 

catalyzes H3K79 dimethylation which is associated with actively transcribed genes. 

Through its interactions with MLL-fusion protein, DOT1L mediates H3K79 

methylation on the regulatory regions of later HOXA cluster genes including 

HOXA9. This results in a distinct gene expression signature [165] with elevated 

expression of HOXA cluster genes and the HOX cofactor MEIS1 which has been 

shown to be essential for leukemia development [166, 167].  

Mutational landscape 

The first whole cancer genome was sequenced in 2008 from an AML patient [168]. 

Since then, several hundred AML genomes have been sequenced by NGS which has 

resulted in the emergence of the mutational landscape of AML [88, 144, 169]. The 

most common genetic change in AML involves mutations in the NPM1 gene 

amounting for 27% of adult AML cases [144]. NPM1 is a nuclear protein playing a 

critical role in ribosome biogenesis, DNA repair and regulation of apoptosis. The 

mutations result in the aberrant localization of the NPM1 protein in the cytosol 

which contributes to leukemogenesis [170].  

Other recurrent mutations found in AML can be classified into several groups based 

on their functional role. These include mutations in activated signaling pathway 

components, epigenetic/chromatin modifiers, cohesin complex, RNA splicing 

factors, tumor suppressor and transcription factors (Table 2). The most commonly 

mutated gene involved in signaling pathways is FLT3, which encodes a tyrosine 

kinase that acts as a cytokine receptor for the FLT3 ligand. FLT3 mutations can 

occur either as FLT3-internal tandem duplication (FLT3-ITD) in the juxtamembrane 

region or as point mutations in the tyrosine kinase domain (FLT3-TKD) resulting in 

constitutive activation of the tyrosine kinase. This results in the activation of RAS, 

MAPK and STAT5 signaling pathways which leads to increased proliferation [171]. 

Other genes mutated in signaling pathway components include c-KIT, KRAS, NRAS 

and other kinases [88]. Mutations in genes encoding epigenetic and chromatin 

modifiers are usually the dominant clones in AML patients suggesting that they are 
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Table 2. Recurrent gene mutations in AML 

Mutation category Genes 

FLT3, NRAS, KRAS, PTPN11, NF1, KIT, CBL 

DNMT3A, TET2, IDH1, IDH2-R140, IDH2-R172, WT1, ASXL1, MLL-

PTD, PHF6, ASXL2, BCOR, EZH2 

RAD21, SMC1A, SMC3, STAG1, STAG2 

SRSF2, SF3B1, U2AF1, ZRSR2 

TP53 

RUNX1, CEBPA 

Activated signaling pathway components 

Epigenetic/chromatin modifiers 

Cohesin complex 

Splicesome 

Tumor suppressor 

Transcription factors 

Other NPM1 

founding mutations [144]. These include mutations in DNMT3A, TET2, ASXL1, 

IDH1 and IDH2 which independently results in the dysregulation of DNA and 

histone methylation. The cohesin complex plays a key role in mediating sister 

chromatid cohesion during mitosis. Apart from that, it is also involved in DNA 

damage repair and transcriptional regulation. Mutations in the genes encoding the 

cohesin complex such as STAG1 and STAG2 results in the deregulation of cohesin 

mediated gene regulation [172]. Commonly mutated genes involved in RNA 

splicing are SF3B1, U2AF1, SRSF2 and ZRSR2 which are also frequently found in 

MDS patients suggesting that they progressed into secondary AML [173]. 

Mutations in the transcription factors CEBPA and RUNX1 together accounts for 

~14% of AML cases [144] and leads to a block in myeloid differentiation. Many of 

the recurrent mutations mentioned above were found to co-occur suggesting that 

they are cooperating genetic lesions. Most prominent co-occurring mutations are in 

DNMT3A, NPM1 and FLT3. 

AML microenvironment 

The bone marrow microenvironment plays an important role in AML development 

as it does in normal hematopoiesis (see Hematopoietic niche) [174]. Genetic lesions 

that occur in non-hematopoietic niche cells can contribute to the leukemic 

transformation. For example, constitutive activation of Wnt signaling pathway in 

murine osteoblast cells due to an activating mutation in β-catenin (official name 

Ctnnb1) has been shown to initiate an AML-like disease with common 

chromosomal aberrations [175]. Alternatively, AML cells can also remodel the bone 

marrow niche to support disease progression. This is achieved through the 

dysregulation of signaling in the niche cells resulting in aberrant cytokine secretion 

that supports the expansion of AML cells. For example, the secretion of CXCL12 

by the mesenchymal stromal cells derived from the bone marrow of AML patients 

is markedly lower compared to that of healthy subjects. This results in an overall 
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reduction of CXCL12 levels in the bone marrow plasma of AML patients which 

could contribute to the impaired maintenance of normal HSCs [176]. A corollary of 

this finding is that the AML cells could be less dependent on CXCL12 for the 

disease progression. In line with this, in article I, we show that CXCL12 expression 

in the bone marrow is dispensable for AML development in a murine model. Apart 

from these changes, the bone marrow microenvironment has also been shown to 

protect LSCs from chemotherapy thereby contributing to therapy resistance and 

disease relapse [177]. 

Murine models of AML 

Much of what we know about the mechanism of action of different genetic 

alterations associated with AML is through in vivo mouse models. They are also an 

integral part of drug development pipelines by providing a platform to test different 

pharmaceutical compounds prior to clinical trials. The existing mouse models of 

AML can be broadly categorized into three groups – carcinogen induced AML 

models, xenograft models and genetically engineered models [178]. Carcinogens 

such as chemicals, radiation and murine viruses have been used for random 

mutagenesis in murine hematopoietic cells leading to leukemia development [179-

181]. Although these models have been instrumental in the identification of proto-

oncogenes and development of anti-leukemic therapies, they do not fully phenocopy 

human AML.  

AML patient-derived xenograft (PDX) mouse models are generated by the 

transplantation of leukemia cells from AML patients into mice which engraft in their 

bone marrow and mimic the human disease. Successful engraftment and 

repopulation of patient cells into mice depends on factors such as the availability of 

niche space, intensity of murine immune responses against the graft and the 

presence of supportive cross-reactive signals for human cells in the mice. In order 

to reduce the rejection of the transplantation, mice with different levels of 

immunodeficiencies such as nude, severe combined immunodeficient (SCID), non-

obese diabetic (NOD)/SCID and NOD/SCID/IL2Rγnull (NSG) mice have been used 

[182]. In addition, ablation of mouse hematopoietic cells in the bone marrow 

through irradiation or use of c-Kit mutant mice [183] creates open niches for 

transplanted human cells to home and engraft. To further support the growth of 

human cells, NSG mice expressing three human cytokines – IL3, GM-CSF, SCF 

has been developed (NSG-S mice) which allows for higher engraftment of AML 

patient cells [184]. Additionally, NSG strains with mutated major histocompatibility 

complex (MHC) class I and class II beta2-microglobulin (NSG-β2mnull) [185] have 

been developed which reduces the immune reactivity of human cells against host 

tissue. Irrespective of the manipulations in the host, efficient expansion of PDX also 

depends on the underlying genetic aberrations in the AML cells [186]. 
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Genetically engineered mouse models include transgenic mice with constitutive or 

conditional expression of PML-RARA [187], RUNX1-RUNX1T1 [188], MLL-AF9 

[189], MLL-ENL [190] or cooperating mutations such as NPM1 + FLT3-ITD/NRAS-

G12D [191, 192], MLL-PTD + FLT3-ITD [193], TET2 + FLT3-ITD [194] in 

hematopoietic lineage cells. Genome editing techniques such as CRISPR/Cas9 and 

TALEN have been used to generate mouse models containing AML specific 

mutations [195] or cytogenetic abnormalities [196, 197]. Genetically engineered 

mouse models have also been generated through adaptive transfer of hematopoietic 

cells that are virally expressing AML-associated fusion genes such as MLL-ENL 

[198], MOZ-TIF2 [199] or MLL-AF9 [200].  

The MLL-AF9 driven AML mouse model is well characterized and has been used 

extensively in this thesis. In this model, AML is initiated in committed GMPs 

through retroviral introduction of MLL-AF9 and the leukemia cells can be serially 

propagated in mice. The transformed leukemia cells possess a gene expression 

signature associated with self-renewal indicating the progression of the disease from 

committed progenitor to LSCs. Moreover, a portion of the murine gene signature 

associated with self-renewal of leukemia cells is found in the human MLL-AF9 

rearranged AML [200]. Serial propagations of the leukemia cells in recipient mice 

results in reduced disease latency possibly due to the enrichment of leukemia 

initiating cells in vivo [201]. For example, transplantation of 1x106 quaternary 

transplant cells results in a fully developed AML along with splenomegaly in the 

mice in ~2-3 weeks. The short disease latency and the recapitulation of many of the 

AML characteristics makes it a suitable model for studying AML [200, 202]. 

Despite extensive efforts in the development of different AML mouse models, they 

do not completely recapitulate the complexity of human AML. Nevertheless, they 

are valuable in studying AML pathology and development of therapies for AML. 

With advancements in genome editing techniques, it is expected that newer mouse 

strains will be developed which better models the disease. 

Clinical aspects 

Diagnosis 

Early symptoms of the early stages of AML include fever, lethargy, fatigue, frequent 

infections and unusual bleedings. Diagnosis of AML is performed based on 

morphology, immunophenotyping, cytogenetics and gene mutations in the cells 

according to the recommendations from the European leukemia network (ELN) 

[146]. Except for AML§ with t(15;17), t(8;21), inv(16)/t(16;16), a blood blast count 

of ≥20% is required for the diagnosis of AML.  Immunophenotyping is performed  
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Table 3. Risk stratification of AML patients according to the underlying genetic abnormalities 

Risk category Genetic abnormality 

Favorable t(8;21)(q22;q22.1) 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22) 

Mutated NPM1 without FLT3-ITD or with FLT3-ITDlow 

Biallelic mutated CEBPA 

Intermediate Mutated NPM1 and FLT3-ITDhigh 

Wild-type NPM1 without FLT3-ITD or with FLT3-ITDlow 

t(9;11)(p21.3;q23.3) 

Cytogenetic abnormalities not classified as favorable or adverse 

Adverse t(6;9)(p23;q34.1) 

t(v;11q23.3) 

t(9;22)(q34.1;q11.2) 

inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2) 

−5 or del(5q); −7; −17/abn(17p)

Complex karyotype, monosomal karyotype 

Wild-type NPM1 and FLT3-ITDhigh 

Mutated RUNX1 

Mutated ASXL1 

Mutated TP53 

to assess the expression levels of specific lineage markers for establishing the 

diagnosis of AML and distinguishing it from mixed-phenotype acute leukemia 

[203]. Subsequently, cytogenetic analysis is performed to identify any of the 

recurrent chromosomal abnormalities. Additionally, screening for mutations in 

NPM1, CEBPA, RUNX1, FLT3, TP53 and ASXL1 genes is performed for 

establishing the subtype and the prognosis of the AML cases. 

Risk stratification 

According to the ELN recommendations [146], AML cases are risk stratified based 

on the underlying genetic abnormality and their response to standard therapy (Table 

3). With increased numbers of AML genomes sequenced, patterns of co-occurring 

mutations have been identified which could be used to further refine the risk 

stratification. For example, co-occurrence of FLT3-ITD, NPM1 and DNMT3A 

mutations has a worse prognosis compared to mutations in just FLT3-ITD and 

NPM1. Similarly, mutations in IDH2 or DNMT3A do not by themselves have 

prognostic information, but their co-occurrence results in a worse prognosis [144]. 
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Therapies 

Although AML is a heterogenous disease with several molecular subtypes, the 

treatment regimen is surprisingly similar involving induction chemotherapy 

followed by consolidation chemotherapy for the majority of the patients. 

Colloquially termed “7+3” regimen, the induction therapy involves administration 

of cytarabine for 7 days along with short infusions of an anthracycline, 

usually daunorubicin on each of the first 3 days [204]. While the use of such high 

doses of chemotherapy is aimed at achieving complete remission (less than 5% 

blasts in the bone marrow) by targeting rapidly dividing AML blast cells, it 

also exerts toxic effects on normal cells and is therefore not suitable for elderly 

patients. In such patients, non-intensive treatments such as hypomethylating 

agents, for example, azacytidine, low dose cytarabine or cytostatic drugs 

such as hydroxyurea are administered [146].  

In the absence of additional treatments, the great majority of patients relapse after 

achieving complete remission following induction therapy [205]. Therefore, 

appropriate post-remission consolidation therapy is necessary. Consolidation 

therapy usually involves administration of additional intermediate-dose 

chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT) i.e., 

transplantation of HSCs from the bone marrow of a healthy matching donor. 

Although allogenic HSCT has a strong anti-leukemic effect, it is associated high 

risk of non-relapse treatment related mortality due to graft versus host disease and 

is therefore recommended only for intermediate- and adverse- risk patients [146].  

Even after receiving standard therapy, the relapse rate is ~50% in AML patients < 

60 years of age and is as high as ~85% in older patients [206]. Such high relapse 

rates in AML is often attributed to the inability to target quiescent LSCs using 

standard chemotherapy. Moreover, AML cells may also acquire additional 

mutations that confer them with resistance to additional chemotherapy [127]. Other 

possible mechanisms by which AML cells acquire chemoresistance include 

increased anti-apoptotic signaling through upregulation of BCL2 [207] and drug 

efflux [208].  

Apart from standard therapy, targeted therapies have been developed for specific 

subgroups of AML. The use of all-trans-retinoic acid (ATRA) and arsenic trioxide 

(ATO) in the treatment of patients diagnosed with acute promyelocytic leukemia 

characterized by the PML-RARA rearrangement has been highly effective achieving 

a remission rate of >90 % [209]. ATRA/ATO combination therapy degrades PML-

RARA fusion protein and results in the differentiation of the leukemia cells [210]. 

Recently, several new targeted therapies have been approved for the treatment of 

AML patients. These include a drug conjugated anti-CD33 antibody (gemtuzumab 

ozogamicin), FLT3 inhibitors (midostaurin, gilteritinib), IDH1/IDH2 inhibitors 

(Enasidenib, Ivosidenib) and a BCL2 inhibitor (Venetoclax) [211]. Venetoclax in 

combination with hypomethylating agents and low dose cytarabine has been 
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approved for treating AML patients who are previously untreated and unfit for 

intensive chemotherapy. This combination has shown promising results for patients 

in this group who lack effective treatment options.   

Immunotherapy 

Successful usage of allogeneic HSCT to induce a graft versus leukemia effect shows 

that AML cells are susceptible targets of donor immune cells, specifically NK- and 

T-cells [212]. Autologous immune cells have also been shown to target AML cells 

when stimulated with cytokines [213]. Thus, it is clear that immune cells have the 

ability to target AML cells which is the fundamental principle behind 

immunotherapy. Immunotherapies can be based either on boosting the patient’s own 

immune system with cytokines or vaccines or by conferring immunity by adoptive 

T-cell therapy, NK-cell therapy or by monoclonal antibodies.  

Cytokines are key regulatory factors of leukemic cells and have also been shown to 

activate immune cells of AML patients. Administration of interleukin 2 (IL2) 

supplemented with histamine dihydrochloride (HDC) has been shown to activate 

NK- and T-cells and be efficacious in AML patients [214]. Interleukin 15 (IL15) 

has also been shown to enhance autologous NK-cell cytotoxicity in pre-clinical 

studies [215]. In paper IV of this thesis, we elucidate the complex regulatory role 

of interleukin 4 (IL4) on macrophages. Thus, it is clear that cytokines regulate 

immune cells and could potentially be developed as immunotherapy. Therefore, it 

is worth investigating the role of other cytokines in immune regulation. 

Immune evasion in AML is mediated by the expression of cell surface proteins on 

the leukemia cells that binds to inhibitory receptors on immune cells. A classic 

example of this phenomenon is the upregulation of CD47 by AML cells which 

inhibits phagocytosis by providing a “don’t eat me” signal to macrophages. 

Blocking of CD47 on AML cells using monoclonal antibodies has been shown to 

enhance phagocytosis of leukemia cells in pre-clinical studies [216]. 

AML cells can also be targeted by directing monoclonal antibodies against cell 

surface receptors that are upregulated selectively on AML cells. Gemtuzumab 

ozogamicin is a drug conjugated antibody targeting CD33 which is upregulated on 

AML cells. Upon binding to CD33, the antibody-drug conjugate is internalized by 

the leukemia cells resulting in cell death [217]. IL1RAP [218], CD123 [219], CLL-

1 [220] and TIM-3 [221] are some of the other cell surface receptors that have been 

identified as therapeutic targets of AML using monoclonal antibodies. Upon binding 

the target cells, the monoclonal antibodies could elicit anti-leukemic activity by 

modulating the signaling mediated through the receptor as well as recruit immune 

cells through the fragment crystallizable (Fc) region leading to antibody dependent 

cell cytotoxicity (ADCC) [222]. Thus, the use of monoclonal antibodies has strong 

anti-leukemic effect due to the dual mechanism of inhibition of AML cells. 
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B-cell precursor acute lymphoblastic 

leukemia 

Epidemiology 

BCP-ALL is the most common type of pediatric cancer with about 75% of cases 

occurring between 2-5 years of age [223, 224]. In children younger than 14 years of 

age, the age-adjusted incidence of BCP-ALL in Sweden between 1989 and 2001 

was 3.36 – 3.59/100,000 children with a slightly higher predominance in boys [225].  

Classification 

Based on the morphology of the leukemic blasts, ALL was first classified into L1, 

L2 and L3 subtypes according to FAB classification [136, 226]. A major limitation 

of this system of classification was that these subtypes did not distinguish BCP-ALL 

from T-ALL. Subsequently, the European group for the immunological 

characterization of leukemias (EGIL) proposed a revised classification of BCP-ALL 

into B-I (pro-B), B-II (common-B) and B-III (pre-B) ALL based on the 

immunophenotype corresponding to the differentiation stage of the leukemic blasts 

[227]. With the identification of a number of cytogenetic aberrations and gene 

mutations associated with BCP-ALL, WHO has proposed a molecular classification 

system based on recurrent genetic abnormalities (Table 4) [63]. Until recently, 

~20% of the BCP-ALL cases were still unclassified due to the lack any known 

genetic aberration. Deep genomic characterization of these cases has led to the 

identification of several new oncogenic subtypes [228] inclusion of which would 

further refine the current WHO classification system.   

Genetic abnormalities 

The established molecular subtypes of BCP-ALL are defined by the presence of 

aneuploidies – high hyperdiploidy (50-67 chromosomes) and hypodiploidy (less 

than 44 chromosomes) or fusion genes – BCR-ABL1, IL3-IGH, ETV6-RUNX1 (also  
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Table 4. WHO classification of BCP-ALL 

Category Genetic abnormality 

BCP-ALL with recurrent genetic abnormalities 

BCR-ABL1 fusion gene 

MLL-rearranged fusion gene

ETV6-RUNX1 fusion gene 

Hyperdiploidy 

Hypodiploidy 

IL3-IGH fusion gene 

TCF3-PBX1 fusion gene 

Translocations involving kinases - ABL1, ABL2, 

PGFRB, NTRK3, TYK2, CSF1R, JAK2  

BCP-ALL with t(9;22)(q34.1;q11.2) 

BCP-ALL with t(v;11q23.3) 

BCP-ALL with t(12;21)(p13.2;q22.1) 

BCP-ALL with hyperdiploidy 

BCP-ALL with hypodiploidy 

BCP-ALL with t(5;14)(q31.1;q32.3) 

BCP-ALL with t(1;19)(q23;p13.3) 

BCP-ALL with BCR-ABL1–like 

BCP-ALL with iAMP21 Amplification of a portion of chromosome 21 resulting 

in 5 or more copies of RUNX1 

BCP-ALL not otherwise specified 

termed TEL-AML1), TCF3-PBX1 (also termed E2A-PBX1) or MLL-rearrangements. 

Additionally, two more subtypes - BCR-ABL1-like and iAMP21 have been 

provisionally included in the classification system [63]. Among the different 

molecular subtypes, high hyperdiploidy and ETV6-RUNX1 together accounts for 

more than half of pediatric BCP-ALL cases while the other subtypes individually 

constitute less than 10% (Figure 5) [228].  

The genetic aberrations in ALL have been shown to deregulate transcription, 

resulting in distinct gene expression patterns [229, 230]. For example, the 

t(12;21)(p13;q22) translocation characterized by the formation of the ETV6-

RUNX1 fusion protein, alters the transcriptional profile by inhibiting the expression 

of RUNX1 target genes through the recruitment of a transcriptional co-repressor 

complex with histone deacetylase (HDAC) activity [231, 232]. This altered 

transcription profile affects the differentiation capacity of the cells as RUNX1 has 

been shown to be critical for normal hematopoiesis [233, 234]. Similarly, the 

t(1;19)(q23;p13.3) translocation characterized by the TCF3-PBX1 fusion protein 

results in the aberrant activation of PBX1 target genes [235]. Additionally, the 

fusion protein represses the expression of TCF3 target genes leading to uncontrolled 

cell cycle progression [236]. The genetic abnormalities of these established subtypes 

are assumed to be the initiating events that are accompanied by secondary genetic 

aberrations, which contribute to disease evolution and progression. These mutations 

occur in genes such as IKAROS, PAX5, EBF1, ARIDB5, CEBPE, CDKN2A, many 

of which encode key transcriptional regulators of B-cell development [237].  
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Figure 5. Molecular subtypes of pediatric BCP-ALL 

Cytogenetic abnormalities are a hallmark of pediatric BCP-ALL and are used to stratify them into molecular subtypes 
with unique gene expression profiles. The data presented in the pie chart is adapted from Lilljebjörn et al [238].  

Recent studies of BCP-ALL cases using high-resolution sequencing techniques 

have led to the identification of additional molecular subtypes with recurrent 

chromosomal rearrangements and distinct gene expression profiles [238-241]. 

Double-homeobox 4 (DUX4)-rearranged BCP-ALL is one of these new subtypes 

which constitutes ~ 4-5% of all pediatric BCP-ALL cases (Figure 5). As a newly 

identified subtype, DUX4-rearranged BCP-ALL is yet to be fully characterized. 

DUX4-rearranged BCP-ALL 

DUX4 is a transcription factor which is normally expressed during human 

embryonic development from oocyte to the 4-cell stage to initiate zygotic genome 

activation [242]. It is epigenetically silenced thereafter during the rest of the 

development and in somatic tissues. The reactivation of DUX4 expression in 

skeletal muscle leads to the degradation of the muscle cells resulting in 

facioscapulohumeral muscular dystrophy (FSHD) [243]. Apart from BCP-ALL, 

DUX4-rearrangements resulting in aberrant expression of DUX4 have also been 

reported in Ewing-like sarcoma [244] and rhabdomyosarcoma [245]. 

DUX4 is present in 11-100 copies on each allele in the subtelomeric D4Z4 repeat 

region on chromosome 4q and 10q. The leukemia-initiating event in DUX4-

rearranged BCP-ALL is a chromosomal translocation which leads to the insertion 

of DUX4 within the IGH locus in chromosome 14. This results in the expression of 
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a chimeric IGH-DUX4 protein in which the C-terminus of DUX4 is truncated which 

leads to transcriptional deregulation and subsequent differentiation arrest in the late 

pro-B/pre-B-cell stage of B-cell development [246]. Although IGH translocations 

are common driver events in several malignancies of lymphoid lineage [247-249], 

the precise contribution of IGH locus in DUX4-rearranged BCP-ALL is currently 

unclear. Wild-type DUX4 is a transcription factor that contains a double-homeobox 

domain with transactivation capacity. Although IGH-DUX4 shares a similar DNA 

binding mechanism with the wild-type DUX4, the transactivation capacity of IGH-

DUX4 is markedly reduced due to the truncation of the C-terminal domain [250]. 

Consistent with this, IGH-DUX4 exhibits a distinct transcription profile compared 

to wild-type DUX4 [251]. 

A large number of DUX4-rearranged BCP-ALL cases also exhibit heterozygous 

intragenic ETS-related gene (ERG) deletions [238, 239]. ERG encodes a 

transcription factor that is essential for B-cell development and ERG deletions have 

previously been identified as a molecular subtype of BCP-ALL [252, 253]. 

Interestingly, IGH-DUX4 has also been shown to induce the expression of a C-

terminal truncated isoform of ERG with a non-canonical transcription start site 

termed ERGalt. ERGalt acts as a dominant negative inhibitor of wild-type ERG and 

has the potential of leukemic transformation in mice [239]. Thus, ERG deregulation 

seems to cooperate with the DUX4-rearrangement in disease progression.  

Models of BCP-ALL 

Studies of BCP-ALL have been greatly facilitated by the establishment of cell lines 

derived from patient samples. More than 150 individual BCP-ALL cell lines have 

been reported in the literature [254]. These include cell lines such as MHH-CALL2, 

REH, 697, TOM1, SEM and NALM6 each representing one of the distinct 

molecular subtypes of BCP-ALL. Although the NALM6 cell line was established 

about four decades ago [255] and has been extensively studied as a pre-B ALL cell 

line, the underlying genetic abnormality, a DUX4-rearrangement, was identified 

only a few years ago [240]. The use of cell lines as models to study BCP-ALL has 

several advantages such as monoclonality, ease of manipulation and can be grown 

in vitro in large numbers. However, cell lines do not fully reflect the disease as their 

physiology, phenotype and other features are altered due to adaptation to in vitro 

growth conditions. 

Apart from cell lines, in vivo mouse models provide insights into disease processes 

and act as preclinical platforms for testing of therapies. The classical approach to 

develop mouse models of different hematological malignancies is to overexpress 

the oncogene of interest in normal HSPCs of mice [256]. However, development of 

in vivo mouse models of BCP-ALL using this approach has largely been 
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unsuccessful. For example, mouse models generated by overexpression of ETV6-

RUNX1 in murine bone marrow cells lead to the accumulation of early progenitors 

in the B-cell compartment but do not result in leukemic transformation [257-259]. 

Notably, additional cooperating mutations caused due to low-dose irradiation along 

with the loss of Cdkn2a induced leukemic transformation [260]. These findings 

demonstrate that the expression of the ETV6-RUNX1 fusion gene by itself is not 

sufficient for the development of BCP-ALL which is in line with the clinical 

observations [96]. Similarly, transgenic mice generated by the overexpression of 

TCF3-PBX1 in lymphoid cells developed T-cell ALL instead of B-cell ALL [261]. 

Subsequently, two mouse models of TCF3-PBX1 BCP-ALL have been developed 

either by expression of TCF3-PBX1 specifically in B-cell lineage cells [262] or in 

bone marrow cells of T-cell deficient mice [263]. Additionally, mouse models for 

several other subtypes of BCP-ALL have been developed with varying levels of 

success [256]. One of the common features in the majority of these mouse models 

is the long latency periods with the expression of single leukemia associated 

aberration which makes the studies difficult and time-consuming. Engineering 

additional cooperating mutations in these models using advanced genome editing 

techniques could result in models with a more rapid manifestation of the disease. 

Clinical aspects 

Diagnosis 

Common symptoms of BCP-ALL include B-symptoms (fever, weight loss, night 

sweats), easy bleedings, fatigue, dyspnea and infections [264]. Other symptoms 

include anemia, thrombocytopenia and leukopenia. The primary diagnostic criteria 

for BCP-ALL is the presence of 20% of lymphoblasts in the bone marrow during 

morphological analysis. Additionally, cytogenetic analysis is routinely performed 

to identify the common chromosomal abnormalities except for t(12;21)(p13;q22) 

translocation (ETV6-RUNX1) which is detected using fluorescence in situ 

hybridization (FISH) assay [140]. Eosinophilia in the peripheral blood is a marker 

of t(5;14)(q31;q32) (IL3-IGH) translocation [265] and is included in the diagnostic 

criteria of this subtype. Apart from this, cerebrospinal fluid analysis is performed to 

investigate central nervous system (CNS) involvement in the disease. 

Risk stratification 

Different ALL study groups around the world have risk stratified BCP-ALL patients 

into standard-risk, intermediate-risk and high-risk groups according to their specific 

criteria. Broadly, the risk stratification is based on major prognostic factors which 
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includes age, white blood cell (WBC) count, cytogenetic abnormalities, 

immunophenotype and treatment responses. Increasing age is associated with poor 

prognosis of BCP-ALL with patients over the age of 60 having poor long-term 

survival [266]. Similarly, patients with cytogenetic abnormalities such as 

hypodiploidy, MLL-rearrangement or BCR-ABL1 are classified in the high-risk 

category due to their poor prognosis.  

Therapies 

The standard treatment of BCP-ALL is one of the most effective risk-based 

treatment regimens with high overall survival. Although there are small differences 

in the standard treatment protocols adopted by different ALL study groups, they 

broadly consist of a multidrug regimen that is administered in three phases – 

induction, consolidation and maintenance with an overall duration of about 2 to 3 

years [178]. The drugs administered in the induction phase are vincristine, 

corticosteroids, asparaginase and anthracycline and lasts for 4-6 weeks. About 95% 

of the patients achieve complete remission following the completion of induction 

therapy. Allogenic HSCT is sometimes performed upon achieving complete 

remission. The consolidation phase usually includes a combination of 

chemotherapeutic drugs that are not used in the induction phase to minimize drug 

resistance. The duration and intensity of consolidation therapy depends on the risk 

group of the patients and usually lasts for 6 to 9 months. Maintenance chemotherapy 

is the final and the longest phase of standard treatment regimen lasting for about 2 

years and involves administration of low intensity chemotherapy and anti-

metabolite therapy. Additionally, therapy is directed towards the brain both as a 

prophylaxis and for patients with a clinical CNS disease. Despite achieving 

complete remission, about 10-20% of pediatric BCP-ALL patients relapse after 

standard therapy and the treatment options for relapsed BCP-ALL are limited [267]. 

In addition to the standard treatment, several targeted therapies have been developed 

for the treatment of BCP-ALL patients. Antibody-based immunotherapies -

Rituximab [268], inotuzumab ozagomycin [269, 270] and blinatumomab [271] 

targeting CD20, CD22 and CD19 respectively have improved outcomes for specific 

groups of patients who do not respond to standard therapy. Other successful 

immunotherapeutic strategy in BCP-ALL is the development of chimeric antigen 

receptor (CAR) T-cells that combines the specificity provided by monoclonal 

antibodies and the cytotoxicity provided by engineered autologous T-cells. CAR T- 

cell therapy targeting CD19 has been highly effective in relapsed/refractory BCP-

ALL patients with 70-97% of patients achieving complete remission [272]. 
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CRISPR/Cas9 mediated genome 

engineering 

Our ability to manipulate the DNA through genome engineering is instrumental in 

deciphering the functions of different coding genes and non-coding regions of the 

genome. Early efforts to edit the genome of eukaryotic cells was through 

homologous recombination [273, 274]. Although homologous recombination was a 

revolutionary technique of its time, it was labor-intensive, time consuming and had 

poor editing efficiencies. Subsequently, two programmable nucleases - zinc finger 

nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) were 

developed both of which include sequence-specific DNA-binding domains attached 

to a non-specific DNA cleavage module inducing targeted double-strand breaks 

[275, 276]. Although ZFNs and TALENs can be used to make precise genome 

editing, both these techniques have several disadvantages which include low editing 

efficiency, off-target effects, and high costs. The latest addition to the list of 

programmable nucleases is CRISPR/Cas9, which has revolutionized the field of 

genome engineering due to its high efficiency, low costs and being more user-

friendly than previous technologies. 

CRISPR/Cas – an adaptive immune system in 

prokaryotes 

About three decades ago, short palindromic repeat sequences with unknown 

function were identified in several bacterial and archaea genomes [277-279]. 

Subsequently, these repeats were named as clustered regularly interspaced short 

palindromic repeats (CRISPR) and several CRISPR-associated (Cas) genes close to 

the CRISPR loci were identified [280]. Interestingly, the spacer sequences between 

the repeats were homologous to genetic elements in bacteriophages and conjugative 

plasmids [281]. The presence of these specific sequences in the genome of phages 

prevent them from infecting bacteria containing the corresponding spacer sequences 

[282]. A key study revealed the presence of an inheritable adaptive immune system 

in bacteria against phages by showing that the Cas genes mediated the degradation 

of the viral genome. The degraded protospacer DNA sequences were integrated as 

new spacer sequences in the CRISPR locus of the bacterial genome [283]. The 
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spacer units are expressed as short guide CRISPR RNAs (crRNA) which are used 

to silence invading pathogens containing foreign nucleic acids in a sequence specific 

manner [284].  

Based on the sequences and organization of the CRISPR repeats and CRISPR/Cas 

loci, the CRISPR/Cas systems are classified into three major types; type I, II and III 

[285]. The type II CRISPR/Cas system exists exclusively in bacteria and is 

characterized by the presence of Cas9, a protein with endonuclease activity. Cas9 

contains HNH and RuvC-like nuclease domains each of which cleaves one of the 

strands of DNA. In Streptococcus pyogenes, a trans-activating CRISPR RNA 

(tracrRNA) binds to mature crRNA through base pairing resulting in a duplex 

structure [286]. This RNA-duplex directs the Cas9 endonuclease to cleave the 

invading phage-derived DNA at specific sites. The target loci is determined by 

sequence complementarity between the target protospacer DNA and the crRNA and 

a motif adjacent to the protospacer referred as the protospacer adjacent motif (PAM) 

[287]. This results in the degradation of the target DNA thereby conferring 

Streptococcus pyogenes with immunity against certain phages. 

CRISPR/Cas9 system as a genome editing tool 

Successful engineering of the type II CRISPR/Cas system of Streptococcus 

pyogenes into an RNA programmable nuclease was a major innovation in the field 

of genome editing. This involved the fusion of the tracrRNA and customized crRNA 

to form a chimeric RNA termed single guide RNA (sgRNA), which provides 

specificity for the Cas9 nuclease to cleave the target DNA [287] (Figure 6a). 

Subsequently, the CRISPR/Cas9 system was applied on mammalian cells to create 

double strand breaks in the DNA in a site-specific manner [288, 289]. There are two 

major pathways for repairing double-strand DNA breaks – Non-homologous end 

joining (NHEJ) and Homology-directed repair (HDR) (Figure 6b). The usage of 

the two DNA repair pathways depends on the organism, cell type and phase of the 

cell cycle. NHEJ-mediated repair of double-strand break is more common in 

vertebrate cells compared to less complex eukaryotes [290]. The process of NHEJ 

is error-prone and can result in the introduction of insertions/deletions (indels). 

HDR mediated DNA repair can be used to perform more precise genome edits such 

as point mutations or insertion of pieces of DNA. This is achieved through 

recombination of the target locus with exogenous donor DNA template. Apart from 

Cas9, variants of the Cas12 nuclease has also been engineered for genome editing 

applications [291-293].  
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Figure 6. CRISPR/Cas9 genome editing tool 

a) The CRISPR/Cas9 system has been engineered by the fusion of crRNA and tracrRNA resulting in a synthetic sgRNA 
which combines with the Cas9 protein to form the Cas9-sgRNA complex. In this complex, the sgRNA guides the Cas9 
nuclease to the target the DNA site to induce a double strand break. b) NHEJ and HDR are the two DNA repair 
mechanisms that could be triggered following the cleavage by Cas9.  

Applications of the CRISPR/Cas9 system 

Due to the versatility and efficacy of the CRISPR/Cas9 system, it has a wide range 

of applications. The most common use of the CRISPR/Cas9 technology is the 

disruption of the open reading frame of coding genes thereby inhibiting their protein 

expression. In this process, random mutations are introduced as indels through 

NHEJ-mediated repair at the site of the double-strand break. Alternatively, specific 

mutations such as single nucleotide polymorphism (SNP) can be introduced through 

HDR-mediated repair. The CRISPR/Cas9 system can also be used to introduce large 

deletions or to engineer chromosomal rearrangements [196, 294] by simultaneous 

cleavage of DNA at two genomic locations. Apart from these, CRISPR/Cas9-

mediated gene knockout can also be performed in a multiplexed manner in high-

throughput loss-of-function screens [295, 296]. In this thesis, we have used the 

CRISPR/Cas9 technique both for simple gene knockout and to perform in vivo and 

in vitro functional screens (Papers I, III). 
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To utilize the DNA binding capacity of the CRISPR/Cas9 system without its 

nuclease activity, a mutant form of Cas9, termed dead-Cas9 (dCas9) was 

engineered, which lacks the ability to induce double-strand breaks [297]. Tethering 

of various protein effectors to dCas9 opened up a new set of applications for the 

CRISPR/Cas9 technique. These include modulation of gene expression by fusing 

dCas9 to transcriptional repression or activation domains [298]. CRISPR/dCas9 can 

also be used to induce epigenetic changes [299], study chromatin interactions [300] 

and imaging specific genomic loci [301] by tethering appropriate effector proteins 

to dCas9.  
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Functional screens  

In humans and other complex organisms, biological function is determined at the 

cellular level through different biological processes including cell division, 

proliferation, differentiation, apoptosis, nutrient transport etc. These processes are 

mediated by different entities such as genes, proteins and other molecules. A major 

challenge in understanding the cellular function of these entities is to identify their 

roles in different biological processes. Functional screens are used to determine the 

effect of a number of entities in specific biological processes by assaying the change 

in phenotypes associated with these processes [302, 303]. As the read-out of a 

functional screen is based on the phenotype of interest, functional screens are often 

termed as phenotypic screens. In general, cell-based functional screens involve two 

main steps – i) cell perturbation and ii) assessment of change in phenotype. 

Cell perturbation 

In cell biology, perturbation refers to the alteration of the functioning of a cell 

through external means [304]. A common method of perturbation in functional 

screens is by treatment of cells with molecules such as chemical compounds, 

peptides and cytokines. For example, in paper II, we have performed a functional 

screen by treating murine AML cells with a library of cytokines. Alternatively, cell 

perturbation can also be achieved through modulation of gene expression which has 

been useful in establishing links between individual genes and specific biological 

phenomena [303]. The two common forms of genetic screens are gain-of-function 

and loss-of-function screens. Gain-of-function screens involve the ectopic 

expression of genes by introducing a library of corresponding cDNAs or open 

reading frames (ORF) into cells [305]. Loss-of-function genetic screens have 

traditionally been performed by inhibiting the expression of genes through RNA 

interference (RNAi). Although RNAi is a useful tool for inhibiting gene expression, 

it has major limitations in terms of its off-target effects and low knock-down 

efficiencies [306]. Currently, loss-of-function genetic screens are often performed 

using CRISPR/Cas9 genome editing technique due to its low off-target effects and 

higher inhibition of gene expression compared to RNAi. In line with this, we have 

performed CRISPR/Cas9 mediated loss-of-function screens in papers I & III. 
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Assessment of change in phenotype 

The choice of the phenotype to be assessed depends on the type of cell perturbation 

and the biological question that is being addressed using the functional screens. Cell 

viability is the most common phenotype assessed in functional screens as it allows 

for the identification of entities that modulate cell growth. This strategy has been 

particularly effective in identifying active compounds or genes that are critical for 

the survival of cancer cells [307, 308]. In papers I & III, we have assessed cell 

viability as a measure of gene functionality. Cell viability could also be used as a 

surrogate phenotypic read-out to address more complex biological questions. For 

example, in paper II, we have established an ex vivo functional cytokine screen 

where the assessment of leukemia cell viability in vivo is a surrogate phenotypic 

read-out of the effect of cytokines on the leukemia initiating capacity of the cells. 

Other common phenotypes assayed in functional screens include proliferation, 

apoptosis, cell cycle, cell signaling and differentiation [303].  

Arrayed vs pooled functional screens 

Cell-based functional screens are typically performed either in an arrayed format or 

in a pooled format. In arrayed well-by-well format, a single known perturbation is 

applied to the cells in each well and the phenotype of interest is assayed in individual 

wells. Although it allows for the assessment of complex and multi-parametric read-

outs, an arrayed format is usually expensive, labor intensive and requires specialized 

equipment for liquid and plate handling to increase reproducibility. By contrast, 

pooled screens are rapid, cost-effective and allows for high-throughput analysis 

[309]. In pooled screens, cell perturbations are performed using molecular barcoded 

reagents which allow for multiplexing of the assay (see Barcoded-pooled samples).  
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Molecular barcodes 

One of the important aspects of any assay is the throughput it offers, i.e., the number 

of attributes that can be simultaneously measured in the assay. Advancements in 

automation of laboratory hardware such as robotic liquid handling systems have 

allowed for multiplexed approaches which increase the throughput of the assays 

thereby reducing the time and cost. Similarly, recent innovations with the molecular 

barcoding technology has enabled the application of molecular tags that greatly 

increase the throughput of assays with a molecular read-out [310]. The molecular 

tags act as unique identifiers which can be used to label individual cells, cell 

lineages, macromolecules and pooled samples. Commonly used molecular tags are 

either short DNA oligonucleotides detected by NGS or fluorochromes detected by 

their spectral emission. Due to the limitations of spectral overlap, fluorochromes 

offer lower multiplexing capabilities compared to DNA oligonucleotides. 

Barcoding of individual cells 

A high degree of cellular heterogeneity exists both in healthy and diseased tissues 

[311, 312]. However, most of our current genomic studies have focused on 

analyzing bulk tissue samples consisting of a large number of cells. Although 

effective in assessing the collective effects in these population-averaged datasets, 

cell-to-cell variations are difficult to resolve.  Single-cell sequencing offers a 

solution to overcome this limitation and provides a better overview of the cellular 

heterogeneity. DNA barcoding has been instrumental in the development of high-

throughput single cell sequencing assays. Advancements in droplet microfluidics 

technology allow for the capture and barcoding of individual cells in liquid drops 

[313]. This greatly increases the number of individual cells that can be analyzed 

simultaneously thereby improving throughput of the sequencing assays.  

DNA barcoding has also improved the throughput of lineage tracing, i.e., 

identification of the progeny of the cells of interest. This has traditionally relied on 

methods such as direct observations through microscopy [314], radioactive labels 

[315], dyes [316] and fluorescent markers [317]. A major drawback of these 

methods is that only a limited number of lineages can be traced in parallel. This 

limitation has been overcome through molecular barcoding where insertion of 

unique DNA barcodes into the genome of the cells ensures that it will be transmitted 
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to the next generation after cell division. Lentiviral DNA barcodes have been used 

to study cell lineages in the hematopoietic system in vivo [318-320]. 

Barcoded macromolecules  

Molecular barcoding techniques can be used to label macromolecules such as 

antibodies or chemical compounds. Conjugating antibodies to DNA barcodes 

enable the simultaneous measurement of transcription and translation of individual 

cells in methods such as cellular indexing of transcriptomes and epitopes by 

sequencing (CITE-seq) [321], RNA expression and protein sequencing (REAP-seq) 

[322] and cell hashing [323]. Here, barcoded antibodies bind to cell surface proteins 

and the cells are subsequently captured for scRNA-seq. The DNA barcodes attached 

to the antibody allows for the coupling of the immunophenotype to the 

transcriptome of individual cells.  

Screening of chemical compound libraries is performed to identify binding 

molecules to protein targets of pharmaceutical interest. This process is limited by 

large library sizes and logistical issues.  DNA-encoded chemical libraries (DECL) 

has enabled the screening of libraries consisting of millions of chemical compounds 

at moderate costs [324]. DECLs are collections of compounds that are individually 

conjugated to DNA barcodes thereby enabling multiplexing.  

Barcoded pooled samples 

Despite the significant reduction in the cost for NGS in recent years, it still remains 

an expensive assay. Molecular barcoding offers a multiplexing strategy wherein 

samples from different origins are barcoded and pooled prior to sequencing [325]. 

While processing the sequencing data, the origin of each sequencing read can be 

identified by its DNA barcode allowing the demultiplexing of the samples. This 

considerably reduces the sequencing cost and processing time per sample.  

Molecular barcoding also allows for the development of pooled competitive cell 

growth assays. Pooled loss-of-function short hairpin RNA (shRNA) or 

CRISPR/Cas9 screens are classic examples of a molecular barcoded competitive 

cell growth assay [326]. Here, the cells are transduced with retro- or lentiviral 

shRNAs or sgRNAs which gets integrated in the genome and functions both as a 

means of genetic perturbation as well as a barcode. Thus, cells with unique 

molecular barcodes and genetic perturbations are made to compete with each other 

for cell growth. The change in representation of the barcodes (shRNA or sgRNA) 
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assessed by NGS is a measure of the effect of the corresponding genetic perturbation 

on cell growth.  

Molecular barcoding could also be used to increase the throughput of functional 

screens involving non-genetic perturbations. For example, in paper II, we have 

assessed the ex vivo effect of a library of cytokines on the leukemia initiating 

capacity of AML cells in vivo. One of the technical challenges in addressing this 

biological question is that a large number of experimental animals are required to 

get a meaningful in vivo read-out. Therefore, we used molecular barcoding to 

multiplex the assay. Unlike lentiviral shRNA/sgRNA, cytokines cannot be used as 

a molecular barcode. Therefore, the classical pooled approach used in the genetic 

screens could not be applied. In order to overcome this limitation, we designed a 

hybrid functional screening assay by combining ex vivo cytokine stimulation of 

barcoded AML cells in an arrayed format with a competitive in vivo read-out of 

leukemia initiating capacity of AML cells in a pooled format. Through this 

multiplexing strategy, the effect of a large number of cytokines on AML cells could 

be assessed using a relatively small number of experimental animals.  
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Present investigation 

Leukemia has been known to human-kind as a blood disorder since the times of the 

ancient Greeks in the 4th - 5th century BC [327]. Our understanding of leukemia in 

general and acute leukemia in particular has improved over time which can be 

classified in chronological order as the morphological era, the cytogenetic era and 

the molecular era. Each of these eras have been driven by major technological 

advancements. The advent of the microscope in the 17th - 18th century was the 

beginning of the morphological era which provided an opportunity to visually 

characterize the leukemia cells for the first time. The cytogenetic era commenced 

with the development of techniques such as karyotyping during the last century 

which allowed for the visualization of chromosomes. This facilitated the 

characterization of leukemia as a genetic disease and together with morphological 

data allowed for classification of the disease into distinct entities. The last two 

decades have heralded the dawning of the molecular era in which NGS technologies 

have been instrumental in characterizing the diversity of genetic aberrations in 

leukemia. Additionally, the recent development of an array of tools for genetic 

manipulation has revolutionized our ability to investigate the complex molecular 

regulation of leukemia cells.  

As the acute forms of leukemia are associated with poor survival, especially among 

the elderly population, there is a need to identify new and more effective therapies. 

To achieve this, it is critical to decipher the molecular networks that sustain acute 

leukemia. In this thesis, we apply cutting-edge molecular tools such as 

CRISPR/Cas9 and molecular barcoding in functional screens combined with 

massively parallel sequencing to identify and characterize key molecular regulators 

of acute leukemia. 

Objectives 

The specific objectives of the individual studies are as follows: 

Paper I - Identification of cell surface receptors critical for the survival of AML stem 

cells in vivo. 

Paper II - Identification of cytokines that positively regulate AML stem cells. 

Paper III - Identification of key dependencies of DUX4-rearranged BCP-ALL. 

Paper IV - Deciphering the immune-dependent anti-leukemic role of IL4 in AML. 
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Results and Discussion 

Paper I 

CXCR4 Signaling Has a CXCL12-Independent Essential Role in Murine 

MLL-AF9-Driven Acute Myeloid Leukemia 

AML is propagated by LSCs that reside in the bone marrow and are resistant to 

standard chemotherapy [93]. LSCs modulate the bone marrow microenvironment 

which in turn regulates the LSCs through signaling cues [174]. This interaction 

between the LSCs and the microenvironment is mediated by cell surface receptors 

on LSCs. In order to identify cell surface receptors that are biologically important 

for the survival of LSCs under physiological conditions, we performed a pooled in 

vivo CRISPR/Cas9 screen targeting 96 cell surface genes that are upregulated in 

murine MLL-AF9 LSCs. We identified CXCR4 as the top positive cell surface 

regulator of AML cell growth and survival in vivo.  

CXCR4 expression is critical for normal hematopoiesis and plays a key role in the 

maintenance of HSCs in the bone marrow niche [328]. Although high CXCR4 

expression is associated with poor prognosis of AML patients [329], its functional 

role in AML has remained elusive [330, 331]. Therefore, we selected CXCR4 for 

follow-up studies. CRISPR-mediated disruption of Cxcr4 resulted in a strong 

depletion of murine MLL-AF9 AML cells in vivo but only had a mild effect on the 

cells in vitro. Interestingly, there was no negative effect in the homing of the AML 

cells to the bone marrow due to the loss of CXCR4 expression as CXCR4 has 

previously been shown to be critical for the homing of normal HSCs to the bone 

marrow [332]. However, loss of CXCR4 signaling resulted in the activation of p38 

MAPK and NF-κB signaling pathways accompanied by increased oxidative stress 

and differentiation. This suggests that CXCR4 signaling is dispensable for homing 

of leukemia cells to the bone marrow but is essential for the maintenance of AML 

cells in vivo. 

CXCL12 is the main ligand for CXCR4 and is expressed by several cell types in the 

bone marrow. Particularly, CXCL12 expression in endothelial cells and 

mesenchymal progenitor cells has been shown to be critical for the retention of 

HSPCs in the bone marrow [42, 333]. However, it is unclear whether CXCL12 also 

regulates AML cells in the bone marrow. Using transgenic mice with Cxcl12 

deletion either globally or specifically in endothelial cells and mesenchymal 

progenitor cells, we showed that CXCL12 expression in the bone marrow is 

dispensable for murine MLL-AF9 AML development. These findings indicate that 

unlike normal HSPCs, AML cells are less dependent on these niches for disease 

development. 
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To further validate the role of CXCR4 signaling in AML development, we generated 

Cxcr4 variants with mutations in codons critical either for down-stream signaling 

or for CXCL12 binding. Using these variants, we showed that CXCR4 signaling but 

not CXCL12 binding is critical for murine MLL-AF9 AML development. 

Additionally, we showed that two other known ligands of CXCR4, MIF and 

UBIQUITIN, do not regulate AML cells in a CXCR4-dependent manner. This 

suggests that CXCR4 provides baseline signaling independent of ligand stimulation 

which supports AML development in vivo. 

In conclusion, we performed an in vivo CRISPR/Cas9 screen targeting cell surface 

receptors and identified key dependencies of murine MLL-AF9 AML cells. Our 

study reveals a critical role of CXCR4 signaling independent of CXCL12 

stimulation in AML cells by protecting them from oxidative stress and 

differentiation (Figure 7). 

 

 

 

Figure 7. Graphical abstract of paper I (adapted from Ramakrishnan et al., [334]). 
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Paper II 

Arrayed molecular barcoding identifies TNFSF13 as a positive regulator of 

acute myeloid leukemia-initiating cells 

One of the key characteristics of AML is the modification of the bone marrow niche. 

This includes the dysregulation of cytokines which contribute to the selective 

growth and survival of LSCs [174]. Cytokines such as CCL3, IL6, TGFβ have 

previously been shown to play critical roles in different hematological malignancies 

[335-337]. One of the challenges in screening for regulators of LSCs in the niche is 

the low-throughput of in vivo assays. Using arrayed molecular barcoding, we 

developed a high-throughput ex vivo cytokine screen which allowed us to assess the 

effect of multiple cytokines on the leukemia cells in a competitive manner with an 

in vivo read-out of leukemia-initiating capacity. With this approach, we studied the 

effect of 114 murine cytokines on the leukemia-initiating capacity of murine MLL-

AF9 AML cells and identified TNFSF13 as a top positive regulator of LSCs. 

TNFSF13 has been shown to have a pro-tumor effect in several solid cancers [338-

340] and B-cell malignancies [341-343]. Although elevated levels of TNFSF13

have been reported in AML patients [344], TNFSF13 has not been previously been

associated with myelopoiesis or LSCs.  Therefore, TNFSF13 was selected for

follow-up studies. Measurement of TNFSF13 levels in healthy control and leukemic

mice showed that although TNFSF13 was present at physiologically relevant levels

in both the groups, it was secreted predominantly by normal myeloid cells and not

by AML cells, suggesting that mature myeloid cells support murine MLL-AF9 AML

cell growth by secretion of TNFSF13. Characterization of the hematopoietic cells

of Tnfsf13-/- mice revealed a significant reduction in GMP cells, accompanied by

lower numbers of monocytes. Notably, TNFRSF17, one of the receptors of

TNFSF13, was highly expressed in monocytes relative to other hematopoietic

progenitors in wild-type mice. Taken together, our data suggests that TNFSF13

supports normal myelopoiesis by binding to TNFRSF17.

Next, we assessed the role of extrinsic TNFSF13 in leukemia initiation and 

progression in vivo by retroviral overexpression of MLL-AF9 in c-Kit+ Tnfsf13-/- 

bone marrow cells followed by serial transplantations into Tnfsf13+/+ or Tnfsf13-/- 

recipient mice. We found a significant reduction in the leukemia burden and 

increased survival in the Tnfsf13-/- recipient group. TNFSF13 has previously been 

shown to elicit an anti-apoptotic effect in B-cell malignancies [345, 346]. Consistent 

with this, we also observed that TNFSF13 promoted the AML cells by suppressing 

apoptosis and promoting cell cycle progression. Collectively, our data suggests that 

TNFSF13 supports leukemia initiation and maintenance in vivo.  

Additionally, TNFSF13 stimulated the proliferation of several human myeloid 

leukemia cell lines. Notably, TNFSF13 promoted monomac 6 (MM6) cells by 

suppressing apoptosis which was consistent with our observation in murine c-Kit+ 
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AML cells. The pro-leukemic effect of TNFSF13 on MM6 cells was mediated 

through its receptor TNFRSF17 and was dependent on the activation of the NF-κB 

signaling pathway. This is in line with studies showing that TNFSF13 activates NF-

κB signaling in B-cell malignancies [342, 343]. Taken together, these findings 

demonstrate that TNFSF13 also supports the growth of human AML cells in an NF-

κB dependent manner.  

In summary, we developed an ex vivo screening technique using arrayed molecular 

barcoding and identified a previously unknown role of TNFSF13 as a positive 

regulator of AML cells (Figure 8). This screening methodology can be extended to 

other types of ex vivo screens where a multiplexed in vivo read-out of stem-cell 

functionality is required.  

Figure 8. Graphical abstract of paper II. 
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Paper III 

A genome-wide CRISPR screen identifies key regulators of DUX4-rearranged 

BCP-ALL 

DUX4-rearranged BCP-ALL is characterized by the aberrant expression of DUX4 

in B-cell progenitors, leading to leukemic transformation [238-240]. As a newly 

identified subtype of BCP-ALL, the molecular mechanisms by which DUX4 drives 

leukemia progression is currently unknown. To identify key dependencies of DUX4-

rearranged BCP-ALL, we performed genome-wide CRISPR screens in the NALM6 

cell line harboring the IGH-DUX4 rearrangement along with two non-DUX4-

rearranged BCP-ALL reference cell lines, 697 and REH. By comparing the 

depletion of sgRNAs in NALM6 relative to 697 and REH, we generated a ranked 

gene list of positive regulators of DUX4-rearranged BCP-ALL. 

To identify the genes regulated by DUX4 among the top hits in the screen, we 

silenced DUX4 expression in NALM6 cells using shRNA and performed RNA 

sequencing. Among the top ranked genes in the screen, we identified FNIP1, IRF4 

and SYNCRIP as differentially expressed. Notably, FNIP1 and IRF4 were 

upregulated due to the knock-down of DUX4 suggesting that DUX4 either directly 

or indirectly inhibits these genes. In contrast, SYNCRIP expression was 

downregulated upon DUX4 knock-down, indicating that DUX4 is a positive 

regulator of SYNCRIP.  

FNIP1 is a metabolic regulator which has also been shown to be critical for B-cell 

development [347, 348]. Transcriptome analysis of FNIP1-disrupted NALM6 cells 

revealed an enrichment of gene sets associated with mTOR, FOXO and ROS 

signaling pathways, all of which are associated with cellular metabolism [349-351]. 

We also observed an enrichment of genes related to the B-cell receptor signaling 

pathway. Collectively, these findings suggest that loss of FNIP1 results in metabolic 

dysregulation and affects B-cell signaling in DUX4-rearranged BCP-ALL cells. 

IRF4 is a transcription factor that is a well-known regulator of lymphopoiesis [352, 

353] and has previously been associated with CLL and multiple myeloma [354,

355]. Disruption of IRF4 resulted in upregulation of genes associated with

apoptosis, the ROS signaling pathway and B-cell differentiation, suggesting that

IRF4 regulates multiple functions in the leukemia cells that are critical for their

survival.

SYNCRIP is a ubiquitously expressed RNA-binding protein that plays a critical role 

in RNA processing [356, 357]. We observed a downregulation of genes associated 

with RNA processing and protein translation upon loss of SYNCRIP expression in 

NALM6 cells. In addition, we observed a downregulation of the TGFβ-SMAD 

signaling pathway. SYNCRIP has previously been shown to interact with MSI2 and 

regulate AML stem cells [358], as well as positively regulate the expression of 

TGFβR1 and SMAD3 in hematopoietic stem cells [359]. Hence, we speculate that 
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DUX4 induces SYNCRIP expression that interacts with MSI2 leading to activation 

of the TGFβ-SMAD signaling pathway, which could be responsible for the block in 

B-cell differentiation. 

Taken together, we have performed a genome-wide CRISPR screen and identified 

FNIP1, IRF4 and SYNCRIP as key regulators of DUX4-rearranged BCP-ALL 

(Figure 9). Further studies are ongoing to validate these findings at the protein level 

and in primary patient samples. 

Figure 9. Graphical abstract of paper III. 
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Paper IV 

IL4 has a dual role in regulating phagocytosis of murine leukemia cells 

IL4 is a pleiotropic cytokine which has been shown to have both pro- and anti-tumor 

effects and its precise role in cancer is unclear [360]. In a cytokine screen, we 

previously identified IL4 as a negative regulator of AML that induces apoptosis in 

the leukemia cells [361]. As IL4 is also known to regulate several immunological 

processes [362, 363] under physiological conditions, we hypothesized that the anti-

leukemic effect of IL4 is partially mediated by immune cells. 

To test this hypothesis, we transplanted MLL-AF9 AML cells overexpressing IL4 

into immunocompetent wild-type mice and two strains of immunodeficient recipient 

mice, NOD/SCID and NSG. We observed an increase in leukemia burden in the 

immunodeficient mice, indicating a critical role for immune cells in the anti-

leukemic effect of IL4. Interestingly, the immunocompetent mice transplanted with 

constitutive IL4-expressing AML cells also died despite having low levels of 

leukemia cells in the bone marrow. In addition, we observed an expansion of F4/80+ 

macrophages in the bone marrow and spleen of these mice and depletion of 

macrophages in vivo resulted in the elimination of the antileukemic effect of IL4. 

Notably, the macrophage expansion was accompanied by a reduction in white blood 

cells, red blood cells and platelets in the peripheral blood. Constitutive expression 

of IL4 in mice has previously been associated with excessive phagocytosis, 

decreased blood cell counts and increased mortality [364, 365]. Combined, these 

findings suggest that although elevated IL4 levels reduce the leukemia burden by 

activation of macrophages, it also triggers excessive phagocytosis resulting in bone 

marrow failure. 

Next, we studied the effect of IL4 on macrophages by performing RNA sequencing 

of macrophages with or without IL4 stimulation both in vitro and in vivo. We 

observed that IL4 stimulation resulted in the upregulation of several genes 

associated with activation of macrophages derived from monocytes that is distinct 

from tumor associated macrophages (TAM). While TAMs which are classically 

associated to an M2 phenotype are known to suppress the immune system and 

thereby have an anti-tumor effect, other types of macrophages play a critical role in 

tumor immune surveillance through phagocytosis [366]. In addition, gene signatures 

associated with phagocytosis, inflammation and immune activation were enriched 

in macrophages harvested from mice in the IL4 group. Consistent with these 

findings, we observed an increased phagocytosis due to IL4 stimulation of murine 

macrophages in an in vitro phagocytosis assay. However, stimulation of human 

macrophages with human IL4 resulted in reduced phagocytosis of human AML cell 

lines. This result is in line with previous findings showing that IL4 differentiated 

human monocytes into anti-inflammatory, alternatively activated macrophages 

[367]. Thus, our data indicates that while IL4 stimulation boosts murine 
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phagocytosis due to the expansion of monocyte-derived macrophages, it suppressed 

phagocytosis by human macrophages. 

CD47 is the main inhibitory receptor for macrophages and its upregulation protects 

AML cells from phagocytosis [368]. Since IL4 stimulation resulted in selective 

elimination of AML cells by macrophages through phagocytosis, we hypothesized 

that IL4 downregulates the expression of CD47 on AML cells. In contrast, we found 

that IL4 induces CD47 expression on AML cells in a STAT6 dependent manner. 

The IL4-mediated upregulation of CD47 resulted in reduced phagocytosis of AML 

cells. Interestingly, IL4 also upregulated CD47 transcript expression on normal c-

Kit+ bone marrow cells, suggesting that this is a regulatory mechanism that possibly 

has evolved to protect endogenous cells from phagocytosis in environments with 

high IL4 levels. Consistent with our finding, blocking of CD47 on AML cells 

combined with IL4 stimulation of macrophages resulted in increased phagocytosis 

of AML cells.  

In summary, we show that IL4 has opposing roles in murine phagocytosis with 

direct activation of macrophages thereby boosting phagocytosis while also 

upregulating CD47 expression on AML cells thereby inhibiting phagocytosis 

(Figure 10).  

 

 

 

Figure 10. Graphical abstract of paper IV. 
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Conclusions and future perspectives 

Hematological malignancies are driven by different genetic aberrations which alter 

the normal biology of blood cells resulting in their uncontrolled growth. 

Identification and characterization of factors that regulate leukemia cells in a 

physiological context contributes towards a better understanding of their altered 

biology. In this thesis, we have employed advanced molecular techniques and 

identified several key regulators of acute leukemia.  

The CXCR4-CXCL12 axis is an example of a tumor-microenvironment interaction 

that is critical in several types of cancers [369] and has been assumed to be important 

for AML biology as well. However, we have uncovered a previously unknown 

critical role for CXCR4-signaling independent of CXCL12 in the maintenance of 

AML stem cells in vivo (Paper I). These findings suggest that therapeutic strategies 

targeting CXCR4 signaling in AML cells could be more effective than just the 

disruption of the CXCR4-CXCL12 axis. A major limitation of this study is that the 

experiments were performed only using the MLL-AF9 AML mouse model. It 

remains to be studied whether our findings also extend to other types of AML.  

In papers II & IV, we deciphered important roles of the cytokines TNFSF13 and 

IL4 in the regulation of AML cells. Although we demonstrated that TNFSF13 

positively regulates AML cells in a NF-κB dependent manner, we observed that 

TNFSF13 is also required for normal myelopoiesis. This indicates that there could 

be challenges in the development of anti-TNFSF13 therapies. However, elevated 

serum levels of TNFSF13 have been reported in AML patients and shown to be 

associated with chemoresistance of AML cells [344, 370]. Therefore, TNFSF13 

could potentially be utilized as a prognostic marker in AML. For IL4, we revealed 

the complex regulatory role it plays on murine AML cells and macrophages. IL4 

induces murine phagocytosis of AML cells through macrophage activation resulting 

in a negative regulation of AML cells.  At the same time, IL4 inhibits murine 

phagocytosis by upregulating the expression of CD47 in AML cells resulting in a 

positive regulation of AML cells.  The net effect of IL4 on AML cell survival is 

determined by the equilibrium of these opposing signals. In a previous study, we 

have shown that IL4 also induces apoptosis in both murine and human AML cells 

[361]. Here, we find that while IL4 activates murine macrophages which are the 

main effector cells of its anti-leukemic activity, it inhibits human macrophages. 

Therefore, the therapeutic potential of IL4 in AML patients is limited. Nevertheless, 

the concept of using cytokines that activate macrophages combined with the 

inhibition of immune checkpoint proteins such as CD47 could potentially be 

developed as a therapeutic approach for leukemia. 

The ongoing work in paper III aims to the characterize the dependencies of DUX4-

rearranged BCP-ALL. Identification of FNIP1 and IRF4 as regulators of DUX4-

rearranged BCP-ALL is of particular interest as both have been shown to be critical 
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for normal B-cell development. However, transcription of these genes is also 

inhibited by DUX4 suggesting that the expression levels of FNIP1 and IRF4 need 

to be at a moderate level for the maintenance of DUX4-rearranged BCP-ALL. In 

contrast, we demonstrate that DUX4 positively regulates SYNCRIP in DUX4-

rearranged BCP-ALL and therefore is either a direct or indirect downstream target 

of DUX4 that drives leukemia. Further studies are ongoing to explore the 

mechanism of action of these genes in DUX4-rearranged BCP-ALL. Given that 

DUX4 is a transcription factor with potential binding sites to the regulatory regions 

of a large number of genes, there are probably multiple pathways by which DUX4 

drives BCP-ALL. It is possible that some of the genes regulated by DUX4 are also 

critical for other types of BCP-ALL. However, these genes could not be identified 

in this study as the hits from the CRISPR screen were filtered to identify genes 

specific for the survival of DUX4-rearranged BCP-ALL. 

The unifying aspect of papers I-III in this thesis is the use of high-throughput 

functional screens featuring CRISPR/Cas9 and molecular barcoding technologies 

on leukemia cells to identify factors that are critical either for the growth and 

survival of leukemia cells. The read-out of these screens was based on the change 

in growth and survival of the cells being assayed. Although effective, this screening 

strategy does not take into consideration the cellular heterogeneity. Moreover, the 

initial screens do not provide information about the mechanistic basis for the 

functional role of the identified factors. With the advancements in single-cell 

genomics, it is now possible to perform high-throughput functional screens at single 

cell resolution with a multi-modal read-out. One such innovation is the recently 

developed screening method termed Expanded CRISPR-compatible CITE-seq 

(ECCITE-seq) which combines the CRISPR/Cas9 technology with cell hashing, 

scRNA-seq and CITE-seq techniques [371]. Here, the read-out includes both the 

transcriptome and cell surface proteins of the assayed single cells, making it a 

powerful technique to address interesting research questions. For example, therapies 

have been developed targeting immune checkpoints on the surface of cancer cells. 

However, the genes and the regulatory networks that control the expression of these 

genes is currently unclear. Through ECCITE-seq, it would be possible to screen for 

the genes that modulate the expression of the immune checkpoint genes using the 

read-out at the transcript and protein level. Apart from this, advanced molecular 

barcoding techniques could also be used to perform other phenotypic screens with 

multi-modal read-outs. 

In conclusion, this thesis demonstrates the power of high-throughput functional 

screens to identify key regulators of leukemia cells. The new knowledge generated 

through this work enhances our understanding of the vulnerabilities of acute 

leukemia, findings that may translate into new therapies.  
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