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POPULARVETENSKAPLIG SAMMANFATTNING

Inom kvantfiltsteori, precis som inom fysik i ovrigt, ir modeller bara giltiga i ett begrinsat
energiintervall. Med andra ord, s finns det for nirvarande ingen fullindad teori, utan vira
matematiska ramverk ir begrinsade till att beskriva ett beteende dver, eller under, en viss
energinivd. Det som ddremot finns, ir mer eller mindre omfattande modeller.

Genom historien har det begrinsade intervallet ging pa ging expanderats. Allmin rel-
ativitetsteori expanderade intervallet for Newtons gravitationslag, icke-relativistisk kvant-
mekanik intervallet for klassisk mekanik, och relativistisk kvantmekanik intervallet for dess
icke-relativistiska motsvarighet.

Det ir ddremot inte sant att en mer omfattande modell nédvindigtvis 4r bittre. Till exem-
pel dr det mycket smidigare att rikna ut energinivierna hos viteatomen i kvantmekanik dn i
kvantfiltsteori, och planetbanor fas enklare frain Newtons gravitationslag 4n fran allmin rel-
ativitetsteori. Det vill siga, pé vissa lingdskalor 4r den mer omfactande modellen onodigt
komplicerad och det optimala valet for att utfora berdkningar ir iscillet ace arbeta i det
enklaste mojliga ramverk som fingar all relevant fysik.

Aven om man viljer att anvinda den forenklade modellen, ir det dock fortfarande an-
vindbart av att kinna till den mer omfattande teorin. Till exempel, om vi gér var kvant-
mekaniska berikning genom att ta den icke-relativistiska grinsen av kvantfiltsteori, s be-
sitter vi mojligheten att korrigera vart svar till onskad precision, d vir mindre omfattande
modell blir en funktion av parameterarna hos den mer omfattande modellen. Vi behéller
pa sa sdte bekvimligheten av en enkel modell, men utan act forlora i noggrannhet.

Inom kvantfiltsteori kallas forenklade modeller {61 effektiva filtteorier, och spelar en central
roll i denna avhandling — bade i dess mer, och i dess mindre, omfattande format. I dess mer
omfattande form anvinds effektiva filtteorier i ett f6rsok att utdka det nuvarande paradig-
met, den sé kallade Standard Modellen, vilket linge har varit ett mal inom partikelfysiken,
och i dess mindre omfattande form anvinds filtteorier for att jimfora ens modeller med
experiment. D4 sjilva podngen med fysik ir att beskriva verkligheten, dr det sistnimnda
anvindningsomradet av yttersta relevans.
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Phenomenology in multi-scalar extensions of the Standard Model

The Standard Model (SM) has been, more or less, in its modern format since the early
1970s. One of the last pieces to fall into place, on the theoretical side, was the prediction
of a third generation of quarks by Kobayashi and Maskawa in 1973 [1]. Experimentally, the
quark model was confirmed via deep inelastic scattering experiments in 1968 [2,3], followed
by the discovery of the charm quark in 1974 [4, 5], the bottom quark in 1977 [6] and the W
and Z bosons in 1983 [7-10], by which the majority of the physics community were already
convinced that the SM was a valid, low-energy effective description of the fundamental
interactions.

In the wake of the W and Z discoveries, the experimental community instead turned the
majority of their attention to New Physics (NP). They were hoping to find signatures of
something even more comprehensive than the SM and — from the enormous success of the
previous decade — people were optimistic. In the fall of 1984, Carlo Rubbia even claimed
that the UAT experiment would provide substantial proof of supersymmetry (SUSY) before
the end of the year [11]. But the task proved more difficult than expected.

Today, three decades later, we are still in the dark as to what that high-energy theory might
be. There has been plenty of experimental advancement — from the discovery of the top
quark in 1994 [12,13] and the Higgs boson in 2012 [14, 15] to a continually increasing preci-
sion on all existing observables — but nothing conclusive in terms of NP. Yet, as the SM lacks
mechanisms for features such as neutrino mass generation and dark matter, it is obviously
not complete.

This thesis treats two rather different approaches to beyond the SM (BSM) physics, even if
they of course share the same low-energy realization. Paper I and II concern a grand unified



theory (GUT), which greatly extends the SM, while Paper III and IV treat minimal exten-
sions. While the approaches differ, the validity of both is still decided by their agreement
with experiments at low energies. To this end, this thesis is, to a large part, dedicated to
low-energy phenomenology.

1 Effective Field Theories

“Effective field theory is more than a convenience.” — Howard Georgi

As we do not yet have (and might never have) a theory about everything, all models used in
particle physics have a limited range of validity. As such, they are all effective field theories
(EFTs) — including the SM. This section is focused mainly on an EFT referred to as the
Weak Hamiltonian, which plays a central role in Paper III and IV.

Having a limited range of validity is also what leads to one of the most beautiful concepts in
quantum field theory (QFT), namely the renormalization group (RG). This is a key feature
in all four papers and will be the subject of Sec. 2.

1.1 The Weak Hamiltonian

To introduce the Weak Hamiltonian, let us consider the amplitude of ¢ — sud at tree-
level, momentarily ignoring any effects from quantum chromodynamics (QCD). For this
particular process, the effective description corresponds to having integrated out the W-
boson from the electroweak (EW) theory, resulting in the so-called 4-Fermi theory. In
4-Fermi theory there is only one relevant operator for this process, namely

Htﬂ: C (y*Prc) (Zt’y},PLd) , (r.1)

where C is the so-called Wilson coeflicient, 7 = (1 — 75)/2 is a projection operator,
and where, throughout the text, Hamiltonian densities are denoted by the letter H while
ordinary Hamiltonians are denoted by H. The effective action is then given by

Sy = z'C/ déx { (sud|(s7" Ppec)(ury, Prd)|c) }

= _iC(2”)45(4) (pf_Pz') (ﬁj’yﬂPLuf) (Z‘quPL”d)
= iM(22)*6W (pr— p)),

(1.2)



where the lines denote Wick contractions, and where the effective scattering amplitude
hence ends up being

i./\/ltﬁ“z —iC (ﬁ{y"PLuf) (itu’y/,PLZ/,{) . (1.3)

Note that the subscripts on the basis spinors are flavor indices rather than spin labels, which
is the conventional notation in the flavor physics community.

If we obtain the amplitude for the same tree-level process in the UV-completion, which
now involves a W propagator, we have the non-local result

. 2 .
—ig,. B o,
ZMZ[L/ = (lgz> VZ-VW/ <2g2ﬂ> (”:’Y”PL%) (uu’Y PLya') ) (14)

where Vj; are Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, g,,, the metric tensor,
myy the mass of the Whboson, g, the SU(2) gauge coupling, and where the W propagator
is given in the Feynman-t Hooft gauge. In the limit of pz < m%v, the amplitude can
approximately be replaced by the local expression

7 1
iML = _évzrvudT (;‘:’YﬂPL”c) (Z‘u’VﬂPLVd) . (1.5)
2 myy

The Wilson coeflicient is then determined by the tree-level matching between the effective
amplitude in eq. (1.3) and the local amplitude in eq. (1.5), resulting in

1
VeiVid—5 (1.6)
m

N |7

C=

Or, equivalently, if we use the convention of having C = (4GrViV,,)/ V2, the Fermi
constant is given by Gr = & /(4v/2m%,). Either way, the non-relevant degrees of freedom
are incorporated into the effective theory via the matching procedure.

1.2 Operator Product Expansion

To formalize the procedure in Sec. 1.1, let us now introduce the concept of operator product
expansion (OPE). For the type of effective field theories treated in this thesis, the move from
one EFT to the next involves discarding some heavy degree of freedom (dof), such as the W



boson in the previous subsection. Using the notation in Ref. [16], we begin by integrating
out the heavy fields x, leaving us with a non-local action Syz

such that the heavy degrees of freedom exist only as intermediate, virtual particles, and not
as external states. The external states are instead solely constituted by the light fields £. In
other words — while “integrating out” is commonly referred to as the process of obtaining
the local effective theory below the matching scale (i.e. as the process of discarding the heavy
field completely, even as an internal state) — what a Gaussian integration actually amounts
to, is producing the non-local theory above the matching scale, corresponding to eq. (1.4).

To perform the Gaussian integral in eq. (1.7), let us begin with the case of x being a massive
spin-0 field, ¥ = ¢. Here, the generating functional is given by [17]

Z)] = /Dgf)exp [z‘/d4x <£g) —|—](x)¢)(x))} , [,g) = %awam — %gbz . (1.8)

where Eg) is the free Klein-Gordon Lagrangian, and where /(x) is typically an external
classical source, but can equally well be composed of other fields in the theory. In fact, in
the context of integrating out ¢(x), we have no intention of taking functional derivatives
of eq. (1.8), as this would generate n-point functions with ¢ as an external state. As such,
we interpret /(x) as being composed of some fields £ that are not being integrated out. To
indicate that £ contain only the kinetic terms for the scalar field, and not the kinetic terms
for this other field (that constitutes the current), we have used a superscript ¢.

Integrating by parts, we then have

Zl]] = /D¢exp [z’/d4x (;¢ (—0% — m* + ie) ¢+](x)¢(x)>} , (1.9)

where the +7e has been added as a necessary convergence factor for Gaussian integrals.

Then, shifting the field as

6(x) = Blx) — i / dy Dolx — )J00) (1.10)



and again using integration by parts for any terms not yet on the form of having the Klein-
Gordon operator, (0% +m?), on the left-hand side of the Feynman propagator. Then, using
that (9% + m?)Dr(x — y) = —i6*(x — y), we get

2] = exp[ / dixd?y J(x)Dp(x — )J() | , (r.11)

or equivalently, that the non-local action after having integrated out the scalar field ¢, is
given by

L = / dix 8+ / d*xd*y J(x)De(x — y)](y) | (1.12)

where ES denotes the kinetic terms for whichever field that constitutes the current, i.e. the
field that has not been integrated out but remains as both external and internal states.

Now, if we wish to carry out the equivalent procedure for a massive vector boson, to com-
y
pare it with the result in Sec. 1.1, we instead have the Lagrangian

1 _

EW:—E(E?"W*”—E)”W*”)(@,W;—6VW;)+m%VW;W » -
113
2 _ -

+ % (];W b W*ﬂ) :
where we have included only the terms relevant for either tree-level or 1-loop diagrams with
internal W-bosons and external- or internal quarks. The kinetic terms for the fields that
constitute the currents have once again been left out, with the quark currents defined as

T
S = ViiuPid, 0= () (114)

where 7,j = 1,2, 3 are flavor indices, Vj; = ULL Uyr)jj is the CKM matrix, and Uy (p) the
unitary field transformatlon between the flavor eigenbasis and the mass eigenbasis for the

quark type fr(g), f= u, d.

With the kinetic operator being invertible, we can simply take the kinetic part of the La-
grangian in eq. (1.13), £}, and after integration by parts obtain

/ dix LY — / & g WH(B) (—F + )™ + W) W, (=), (L)

2n)4



where the tilde denotes Fourier-transformed quantities. With the W propagator being the
Green's function of this linear operator, i.e. with ((—# + my) g + kuky) A" (k) = 0,0,

its form in momentum space ends up being!

~ —i bk,
A (k) = /62721 <g;w - :;2 ) : (1.16)

— myy - 1€ W

The non-local action, i.e. the equivalent of eq. (1.12) is then given by?

= [ ey gz/ d'xdly J; (A" (x = Y 0) (t17)

where Egj are the kinetic terms for the quarks in eq. (1.14). To lowest order, the propagator
in position space is given by

A (x — y) =~ f:T d W (x—y), (1.18)
w

such that eq. (1.17) simplifies to

Sy = / dh Ly — ;‘% / dhx ], () ] (x) , (r.19)
My

which is local and, after a Legendre transform, given by

Heplx) = —= T (0] (x) = ViVie (diy*Prawg) (i Pry) (r.20)

in agreement with eq. (r.1) for {7,7, 4, ¢} = {2,2,1,1}.

1To see this, write the propagator on the general form Ax” = 2(#*)¢"? + b(# )k, and then apply the
operator and solve for 4, b. Note that this is only possible in the massive case.

2Note that the prefactor of the second term differs from that in Ref. [18] simply because a factor of 1/2 has
been included into the definition of the projection operator in eq. (1.14).



2 'The Renormalization Group

“Ingenting bor hinda, och det gor det ju inte heller. Da dr allt som det ska!”
— Carl-Erik Magnusson

The mathematical procedure of avoiding divergent integrals, until they eventually cancel,
was for a long time viewed upon with suspicion. It was not until the early 1970s that
physicists came to rest with what quantum field theories actually are — not an omniscient
description of the universe, but an effective approach valid only in a certain energy range.
With this, renormalization lost the reputation of sweeping infinities under the carpet and
was instead understood as a natural consequence of our model’s ignorance.

Before introducing the concept of renormalization and the renormalization group, which
is central to all four papers, we will first cover the main features of the Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula. It is one of the central results in QFT and will be
referred back to throughout this thesis.

2.1 The LSZ reduction formula

The LSZ formula gives the relation between S-matrix elements and 7-point correlation
functions. In broad strokes, the proof consists of a series of reductions, where each reduc-
tion corresponds to the conversion of a pole in the #-point Green’s function into a particle
in an asymptotic state. The key steps of the derivation are presented below.

To obtain the first step in the reduction, we Fourier transform the 7-point correlation func-
tion with respect to one argument only, i.e. considering the amplitude

/ dix 7 Q) T{p(x)d(z1)P(22)...} |Q) . (2.1)

In general, our field operator ¢(x) can create both one-particle states (simple poles) and
muld-particle states (branch cuts). However, as we wish to arrive at the S-matrix for m-
to-n scattering, we are interested solely in one-particle states with momentum p;, which
corresponds to isolated poles at p! = Ej. With the analyticity determined by the time
component, it is convenient to split the time-integral into three parts,

o0 T+ T_
/dxo = dx® +/ dx® + dx? | (2.2)
T+ T_ —0o0

where poles occur only in the first- and third interval, as the middle interval is analytic in
2°. Starting with the first interval, and inserting a completeness relation, we then have



Q|<Z7( X)[A7) Mg T{e(z1)d(22)-- } Q) (2.3)

/ dx® /d3x gsz
Ty

with

(Qlo(x)[Az) = (QUe™0(0) ¥ Ag) = (Qo(0)Ag) - 7%, (2.4)

as [Q) and |)\j) are both eigenstates of momentum operator P, with eigenvalues 0 and
g, respectively, and with spin-0 particles transforming trivially under the Lorentz group.
Furthermore, we define

(Qlp(0)[Ag) = VZ, (2.5)

such that the field strength corresponds to how much our field operator is creating a one-
particle state. After a few additional manipulations, we arrive at the endpoint for the first
step of the reduction, namely

[t QI iomoaIs). H0) ~ 5 T (oleo(e). O,

(2.6)
where the tilde corresponds to both sides having the same pole structure, by taking the
on-shell limit p° — E;. Repeating the procedure for the third time-interval in eq. (2.2),

we again convert a pole of the Green’s function into an asymptotic state, but this time into
an asymptotic initial state, rather than an asymptotic final state.

Finally, once the procedure has been repeated for all field operators, to produce 7 final states
and  initial states, we end up with the LSZ reduction formula

(H/d4x o xf><H/d —wf> (QIT{p(x1)-- (%) (1) - D) } | Q)
n \/Z m \/Z . N - -

(2.7)

in the on-shell limit p? — E5 and K — E;; . In the case of having particles with non-zero
spin, there are also basis spinors and spin sums.



2.2 Renormalization

To illustrate the concept of renormalization, let us consider quantum electrodynamics
(QED) to 1-loop order. In QED, before renormalizing, there are a total of three UV-
divergent #-point functions — the amputated electron two-point function, the amputated
photon two-point function, and the trilinear vertex correction, all logarithmically diver-
gent.® Starting with the Lagrangian expressed in terms of bare parameters,

L= —%F""Fﬂy + 0 (i) — mo) b — ey p A, (2.8)

we rescale the fields as ¢ = Zé/ 21/)r and A* = Z;/ zAf , such that the field strength renor-
malizations are absorbed into the Lagrangian and hence no longer present in eq. (2.7). After
this, use the replacements

80222;/2 = /4(474)/2621, szo = m, + 6m, Zl =1+ (Sl', (29)

for i=1,2,3, by which the counterterms §; have absorbed all infinite shifts between the bare-
and renormalized parameters. The factor of #(*~9)/2 is included in order for the mass
dimension of the coupling constant to remain zero in the fractal dimension introduced in
dimensional regularization. The Lagrangian is then given by

| 82 T |
L=-— ZFf Fﬂ” + 9, (Za - mr) b, — ﬂ(d 4)/26%7;4%145’ - 253Ff F;w

+ 1, (152& - 5m) Uy — ]4(‘{_4)/2551@;/}/”1/),1‘1?,

(2.10)

where the first three terms are in the same format as in the bare Lagrangian. The Feyn-
man rules for the photon propagator, electron propagator, and the trilinear fermion-gauge
vertex hence have the same form as in bare perturbation theory, but with bare parameters
exchanged for their renormalized counterparts, denoted by an index r. For the counter-
terms, on the other hand, we have

I
NN Y = —i (¢ — g'q") 03, /é\ e (2.11)

@ = i(por— ).

3From the superficial degree of divergence, D = 4 — N, — 3N, /2, where N, are the number of external
photon legs and V, the number of external electron legs, we would expect for the electron- and photon two-
point functions to be linearly and quadratically divergent, respectively. However, the degree of divergence is
reduced by the custodial chiral symmetry and by the Ward identity.




We now arrive at the key step in renormalization, which is to assign finite values for the
divergent amplitudes at some scale. For a renormalizable theory, independently on what
value we choose, or what scale we pick, this will ensure that all amplitudes are rendered finite
— provided that we introduce as many conditions as there are counterterms. In QED, with
four infinite constants, there are hence four so-called renormalization conditions, given by,
for example

by
S(p=m) =0, —=| =0, I(F=0)=0, —iel*(0)=—iey", (a12)

where the first condition sets the renormalized mass 7, equal to the pole mass 7,, while
the second condition fixes the residue of the electron propagator to 1, as apparent from
considering the two-point function for the electron in renormalized perturbation theory

{}27'++

i + {finite}, e

T pem=3p) Fom

where — in contrast to bare perturbation theory — there is no factor of Z in the numerator,

we have the renormalized mass rather than the bare one, and where —i% (]ﬁ) now also incor-
porates counterterm diagrams. Similarly, the third condition in eq. (2.12) fixes the residue
of the photon propagator to 1. These are so-called on-shell renormalization conditions —
we will return to other possible options in Sec. 2.3.

The four counterterms are then determined through the three divergent 7-point functions.
Starting with II#", we have

AT (q")

i(@"q —4'¢") 1(g")
uz/ :u\/&@\mu + AN (2.14)

i(¢"q = ¢'q") [Mag’) = 0] + -,

where I15(4%) is defined as the 1-loop photon self-energy correction. The third renormal-
ization condition in eq. (2.12) hence results in 63 = II,(0), such that

A5 (7) ~ i (879 — qq”) (") — T12(0)] (2.15)

I0



which is finite, since I15(4%) and I1;(0) carry the same divergent behavior, but come with
a relative sign in eq. (2.15).

The remaining three counterterms are determined from the string of 1PI-diagrams

—iS(p) = —@)— = S e 16

= —iSy(p) +i(po2—6m) + ..

and the vertex correction

—z'ef‘”(p,p :—ze<’y”F1 lU %/ qz)>

_ W<+W<§ M< (17)

= —iey" — iedT"(p,p') — iey"d, +

with 0T (p, p') = v*6F (4%) + %55@2). Combined with the renormalization con-
ditions in eq. (2.12) this results in

¥ (p)
M0y — 0 = X (my), 07 = d;f , 01 = —0F(0), (2.18)

by which all amplitudes in QED at 1-loop are rendered finite.

2.3 Physical and Unphysical Renormalization Schemes

“Close your eyes and regularize!” — Alexey Vladimirov

To explicitly see the cancellation of divergences in eq. (2.15), let us evaluate II(4%). As
always, the process involves introducing Feynman parameters, completing the square to
make the integrand spherically symmetric, simplifying the numerator using a number of
identities, and then Wick rotating from Minkowski space to Euclidean space. If the result-
ing momentum integral(s) are divergent, we then need to introduce a regulator to render
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the Feynman integrals finite, so that they can be dealt with until the divergences cancel in
a later stage. Using dimensional regularization, we end up with [17]

cut=t ! I'(2—d/2)
) =~ Gl [ (1 gy P Y

~ —2"; [é (i —’VE—I—In(47r)> —l-/oldxln (M) x(1 —x)] :

where the diagram is regularized by extending it to 4 = 4 — € dimensions, and not taking
the limit of ¢ — 0 until all 1 /& dependence has cancelled. Using that

(2.19)

l(e) =T(1+¢)~T(1) +l'(1) + O@?), T'(1) = -z, (2.20)

where g is the Euler-Mascheroni constant, eq. (2.19) evaluates to*

(4> = 0) ~ —;; lé (i - 75+ln(47z)> n /01 dx In (Z;) x(1 —x)] , (2.21)

I

for qz = 0, such that eq. (2.15) results in

M5 (%) = i (&7 ¢ = 4"9") [T2(4°) — TL2(0)]
& 1 m? (2.22)
~i(¢"q —q'q") l_2”2/0 dx In (m% —x(f—x)eﬂ) x(1 —x)] ,

which is finite in the limit of ¢ — 0.

Let us now address a few things regarding eq. (2.22). The p-scale, introduced to deal with
the fractal dimension, has cancelled — and while that scale is arbitrary, it is commonly set
equal to the renormalization scale, which in our case is the pole mass of the electron, .
For this choice, the integral in eq. (2.21) is zero, and we obtain eq. (2.22) in an even sim-
pler manner. For the remainder of this work, we will always assume that the dimensional
regularization scale y is set equal to the renormalization scale, using the two concepts inter-
changeably. Also, note that, my and m, has been kept separate throughout the calculation,

“Note that the integral can be evaluated, but is still kept unevaluated for the convenience of the subtraction
in the following step.
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even though 72, = m, in an on-shell scheme, simply to clarify what the end result would
look like in an off-shell scheme.

As the finite piece of the counterterm anyway always cancels for any physical observables,
the sole requirement is for it to contain the pole, such that the divergence is taken care of.
One possible off-shell renormalization scheme is hence the minimal subtraction scheme,
MS, where only the (1/€)-term, and its prefactor, is included in the counterterm. Another
popular choice is the modified minimal subtraction scheme, MS, where the counterterm is
instead proportional to (1/€ — g + In4r).

2.4 The Continuum Renormalization Group

In Sec. 2.2, the amplitudes were renormalized by the use of renormalization conditions at
some scale z. As this scale is arbitrary, we demand that the bare parameters cannot depend
on it. This, in turn, tells us exactly how the renormalized couplings evolve with energy.”

Take for example the fermion-gauge interaction in a non-abelian gauge theory, ;7% TibiAs,
where the bare- and renormalized gauge couplings gy and g are related in the same way as
¢p and e in eq. (2.9). From demanding the bare coupling to be independent of z, we hence
have that

0 d d 2 (2.23)
— -y 2.2

where, after using the product rule, Z; = 1+ 6; and expanding perturbatively (with In(1+
d;) =~ 0; and keeping only terms linear in §,), the beta function is given by

d d 1
Blg) = ﬂ%g =g {_z - ,%67;4 (51 — 0y — 2(53)] , (2.24)

such that the beta function is known once all counterterms have been established [20]. In
other words, from demanding the bare coupling to be independent of #, we have found a
differential equation telling us exactly how the renormalized coupling must evolve.

Using this procedure, or an equivalent method, it can be shown that the beta function
for an SU(N) gauge coupling at 1-loop, once all contributions are accounted for, is given

by [21],

>Note that this differs slightly from Wilson’s approach, with a floating finite UV cut-off, where instead the
bare parameters are cut-off dependent in such a way that physical parameters are cut-off independent [19].
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Bl = n =~ (a0 - 3l - 15:9) = 12 a9

which is a separable differential equation, with the solution (using g7 = 47cv;)

_ _ b;
0 () = ()~ 310w (£, (226)
0
or, equivalently,
o (ptg)

ai(p) = (2.27)

_ biou(pg) (ﬁ) ’
1 5 log "

where C,(G) is the Casimir operator for the adjoint representation (rep), & is a constant
equal to 1/2 for two-component fermions and 1 for four-component fermions, S, (F) is
the Dynkin index for a fermion and $,(S) is the Dynkin index for a scalar, with

$5(8)0% = w[0°0%], Sy (F)6“l = u[tt®], C(G)6 = S,(G)5* = frlfted (2.28)

with an implicit summation over repeated indices, and where 0% and # are generators

defined as

Dyi = 0ui — gV djs  Duthi = O0; — igti Vi, (2.29)

with 7, being rep indices and # an adjoint index. In other words, the Casimir opera-
tor and the Dynkin index are both group theoretical invariants, constructed from the
bilinear 77; Y;Z, with the Dynkin index corresponding to contracting 7 with 4, such that

Ty T]f = tr[7%T"?], but with no contraction in the adjoint indices, while Casimir operators
contracts # with 4. In the adjoint representation, the Casimir operator and the Dynkin in-
dex are equal to each other, as the rep indices are also adjoint indices. Hence, we can obtain
the final relation in eq. (2.28) by again contracting 7 with 4, and summing over repeated

indices. Renaming 7, j as ¢, d to emphasize that they are adjoint indices, we hence have that

( Ta)m’( T/?)ﬂ'[ _ (—l'f”d) (_l-fhdc) — fam"fbm’.

From eq. (2.25) we see that the running is fully determined by the number of fermions and
scalars in the theory, and by what representation they are in. For example, the running of
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the SU(3) ¢ gauge coupling, with 18 Weyl fermions and 18 scalars in the fundamental rep
of SU(3) ¢ and one Weyl fermion in the adjoint rep of SU(3)c, is given by

using that C5(G) = N, the Dynkin index is equal to 1/2 for a field in the fundamental
rep of SU(N), and equal to N for a field in the adjoint rep of SU(N), and that k = 1/2
for Weyl fermions. As such, in Paper II, the SU(3)¢ gauge coupling in “Region I” runs
flat, while e.g. an additional fermion in the adjoint rep would have changed this value to

bee = 3.

Itis important to mention that eq. (2.25) was derived in an off-shell renormalization scheme,
which means that Appelquist and Carazzone’s decoupling theorem [22] does not apply.
Hence, to get a sensible outcome of an RG evolution using these equations, one has to
manually discard any particles that are heavier than the current mass scale of the evolution
and each time perform a matching procedure. In other words, in an unphysical scheme
the beta function must be adjusted by hand through switching from one EFT to the next
[23,24]. If we instead would have been using an on-shell scheme, the beta function is mass
dependent, which results in the heavy states automatically having a negligible effect at lower
scales. In a physical scheme, it hence does not matter whether heavy states are kept or not.

3  Electroweak Observables

When extending the SM, we are not always so fortunate as to have all NP effects for the
EW sector entirely parameterized by the Peskin-Takeuchi (PT) parameters. For example,
in cases where the NP scale is not decoupled from the EW scale, or in cases where the Z-
boson mass is altered by the presence of neutral NP gauge bosons, the PT parameters are
not valid, and we instead need to go to the trouble of evaluating the theoretical prediction
for various Z-pole observables, as in Paper III and IV. To demonstrate this procedure, we
consider below one of the most accurately measured observables in the EW sector, namely
the polarization asymmetry in Z-boson production.

Sections 3.2 and 3.3 then treat various features of dealing with unstable particles, such as
the narrow-width approximation and its connection to the optical theorem.
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3.1 Polarization Asymmetry in Z-boson Production

The procedure of obtaining the theoretical prediction for an observable begins with the
perturbative calculation of the corresponding amplitude in terms of the (unphysical) pa-
rameters of the Lagrangian. For the polarization asymmetry in Z-boson production, the
only relevant contribution at 1-loop comes from the diagram

1P11—loop

renorm

; (.1)

« 1_1 » . . ..
where “1Plieno,” denotes all amputated 1PI diagrams at 1-loop, in addition to all the
corresponding counterterms. From this, we obtain the asymmetry

— — 1 2 4
AZR = J(eL 62_ - Z) — U(‘?R fz - Z) _ (f B ch) T Seff (3‘2)
olejef = 2)+0(egey — 2) (- CE)Z +
with s.¢ defined as
0% ()
s%ﬂc = szw/ — SW[W’YT ) (3-3)
Z

where sy is the (unphysical) renormalized MS value for the (sine of the) weak mixing an&
i.e. the quantity appearing in the Lagrangian when expressed in terms of renormalized MS
parameters

1
L=— SWECW |:<2 — 5%V> ery’er — S%V?R’yﬂek Zl‘ —e [?L"}/ﬂq — ?R’yﬂek] A],

(3.4)
+ { Counterterms } ,

and where 11, 7 is defined via the renormalized 1PI vacuum polarization diagrams, as

2
) = PP = g — o) (—W) 6.9
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i.e. defined with a factor (—1/4%) relative to the form used in eq. (2.14), which is the
convention in EW precision physics.

The next step is to express the amplitude in eq. (3.2) in terms of physical parameters, here
denoted by a circumflex, sy and ¢y. In other words, we need to define an expression for
the physical weak mixing angle, in addition to finding a relation between the physical and
unphysical parameters. Starting with the definition of the physical weak mixing angle, one
of the most common choices is

2.0 _ 7h(my)
SW“W = Sy A 2 Y (36)
ﬂGFmZ
that is, to express Sy in terms of the most accurately measured EW observables — the pole
mass of the Z-boson 72z, the fine structure constant ¢ at the m7-scale and the Fermi con-
stant G [25]

mz =91.1876(21) GeV,  a(my)~! = 127.916(15),

. (.7)
Gr = 1.1663787(6) x 107> GeV ™2 |

with the latter two extracted from measurements of the electric magnetic dipole moment
and the lifetime of the muon, respectively.

Finally, we need the expression relating the physical and the unphysical parameters, i.e. the
relation between sy and sy. As we defined sy in terms of the pole mass of the Z-boson, the
Fermi constant and the fine structure constant, this process involves finding expressions for
#z, Gpand & in terms of their unphysical counterparts 72, G and «, and then inverting
the equations. This results in, using the notation in Ref. [20]

2 &
5%W:}%V<1+2,2_}2HR>’ C%VZZ%W(I—'—Z‘”HR)’ (3.8)

)

with

1-1 ~ 1-loop / 1-loo|
_Hwoop(m?z) i 1, (in3) _ Iy (0)
ﬁ12 ~2

HR = )
z my myy

, (3.9)

allowing us to, finally, express the asymmetry in eq. (3.2) in terms of physical parameters,
with
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1-loop / ~
D) A 1I P(mZ)
2 2 5W‘2W o z Z
Seff:SW+ ﬁHR_SWCW’YAiZ s (3.10)
W Sw my

by which we have our 1-loop theoretical prediction for the polarization asymmetry, A5 z(Sw).

3.2 The Optical Theorem

Before being able to discuss the Breit-Wigner distribution and the narrow-width approxi-
mation, we must first cover the optical theorem. The generalized optical theorem follows
straightforwardly from the unitarity of the S-matrix, StS =1, withS = 1+iT, by inserting
a complete set of states. It is given by

M(a— b) — M*(b— a)

(3.11)

n 3.
- "Z H/ ((215)]3 211:: (27)*6%(pi — pu) M(a = FYM* (b — f),
7 \y=1 7

where the naming of , & and f'is a bit awkward, as in an uncut diagram f'is an intermediate
state, and 2 and & the initial and final states, respectively, while in a cut diagram, f represents
final state particles. We are then interested in the special case of having an identical initial
and final state, |@) = |6) = |A). In the case of |4) being a two-particle state, we have what
is commonly referred to as the optical theorem

Im [M(A — A)] = 2Ecmpem Z o(A—f), (3.12)
f

relating the total cross section with the imaginary part of the scattering amplitude. Here,
Pem is the momentum of either of the two particles in the center-of-mass frame, the sum
is over all possible final states f; and E, the total center-of-mass energy. For the case of
|A) being a one-particle state, the derivations differ as to whether they assume the decay
rate to be previously known from scattering theory, as in e.g. Ref. [20], or by it being the
end-result of the derivation, as in e.g. Ref. [17]. We will follow the former approach, by
which the generalized optical theorem simplifies to

Im [M(A = A)| = ma Y T(A—f) =mal, . (3.3)
f

3.3 The Narrow-Width Approximation

To simplify the discussion of the narrow-width approximation, this section considers a
fictitious, unstable spin-0 particle. The result, however, generalizes easily to the spin-1
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case.

Combining eq. (2.7) and eq. (3.13), we have, in bare perturbation theory and in the vicinity
of the pole,

1 _
Ly = —Im| (=iZ) 4.7
m]) i

| ) (@ @D+ -

(3.14)
mp

lon(-0)]- 3]

1

my

using that the tree-level propagator has no imaginary part, and neglecting higher-order
terms. Switching to renormalized perturbation theory gives the same relationship, but
with Z = 1 and with counterterm diagrams now being incorporated into the definition of
M? (pz), as discussed in Sec. 2.2. Hence, in renormalized perturbation theory,

Im [Mz(m;)} ~ —mylip (3.15)

With the amplitude having a non-zero imaginary part for unstable particles, let us then
alter the definition of the pole mass to be

mﬁ — m? + Re [Mz(m]%)] =0, (3.16)

such tha, in the vicinity of the pole, with eq. (3.15),

. i i
B Pz - mz - M(Pz> B Pz - m[% + imprmr ’ G.17)

where the cross-section for an s-channel process in the region of a resonance, is the so-called
Breit-Wigner distribution

i

(3.18)

])2 — m}z7 + impl—‘mt

with the full-width half-maximum corresponding to 2,1, In the limit of I' / my — 0,
this then results in

i
Pz — m]% + imprmt

T
= 5(p* — m? :
mprtot (P mp)’ (3 19)

lim
F/mp—>0
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by using that
lim ———
6113(1) .X‘z + 62
with € = I'y,/m, and x = (p*/m?) — 1.

= 7d(x) , (3.20)

The result in eq. (3.19) is the so-called narrow-width approximation, which says that, as
long as my > Ty, we can, to leading order near a resonance, treat the unstable particle as
being on-shell. Under these conditions, the cross-section hence factorizes, such that there
is no interference between production and decay. For example

P@f%Z%m = o(¢e = Z)Br(Z - X) (3.21)
NWA

where the branching ratio is defined as the decay width of that particular decay, divided by
the total decay width. The narrow-width approximation is used in Paper III and IV.

4 Extending the SM Higgs Sector

All four papers in this thesis are related to extensions of the SM Higgs sector, for which
one of the strictest constraints comes from the mass ratio of the Wand Z bosons. The
SM tree-level prediction is given by pg = miy,/(c}ym%) = 1, which is very close to its
measured value. In the SM this is explained by the parameter being protected from any
sizable radiative corrections by a custodial SU(2) symmetry.®

When extending the SM Higgs sector by 7 scalars ¢; — with weak hypercharge ¥;, weak
isospin 7; and vacuum expectation value (VEV) v; — the Wand Z bosons acquire the
masses [26]

n n Y2
=M TS S 3] CHCASIEE S
. 2

where g1 and g are gauge couplings of SU(2)1, and U(1)y, respectively. Hence, to not
disturb the SM tree-level prediction of py = 1, with ¢}, = ¢}/ (g% + £3), any extension to
the SM Higgs sector must obey the relation

6The SM scalar potential has an SO(4) symmetry, that is spontaneously broken down to SO(3) with EWSB,
which is locally isomorphic to SU(2). The symmetry is however not a symmetry of the full Lagrangian, but is
explicitly broken by g» # 0 and Y, # Y, where ¥, and ¥, are the Yukawa couplings for the up- and down
sectors, respectively. The radiative corrections are then proportional to these symmetry breaking parameters,
which protects them from becoming sizeable.
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7n

4 T =3Y v (+:2)
=1

i=1

While there are infinite solutions to this relation [27], we will focus on the minimal cases
T; = Y, = 0and 7; = Y; = 1/2, which corresponds to adding either scalar singlets
with ¥ = 0, or Higgs doublets with ¥ = 1/2 (and the VEV positioned in its neutral

component).

4.1 The HDM

Let us begin with the scenario of extending the SM scalar sector with »— 1 Higgs-doublets,
in a so-called #-Higgs-doublet model (»HDM), which plays a central role in Paper III and
IV, but also as the low-energy limit of Paper I and II. Without any imposed symmetries,
the Yukawa interactions are given by

—Ly = éLFkéde + éLAkékuR + ELH/(¢/€€R + H.c.,, (4.3)

where 4 runs from one to 7, and where I', A and II are Yukawa coupling matrices in flavor
space with general complex entries. Furthermore, the scalar potential with no imposed
symmetries is of the form

V= myél;+ A (619;) (oloe) (49

with indices once again running from one to 7, QNS = iop¢*, and where mi; = my, and
Nijel = Metij = /\;‘lk follows from V' being hermitian. Before accounting for possible field
redefinitions, there are hence a total of #* + #*(#* — 1)/2 independent, real parameters
coming from the scalar potential and 547 from the Yukawa sector.” Furthermore, the
parameters are required to fulfill stability constraints and perturbative unitary bounds [28].

After EWSB, the Higgs-doublets are commonly parameterized as

1 \ﬁ@+ p) - 2
e L ( Vel ) 2 =30 = (246 GeV) (4.5)
V2 \v™ 1+ ixe e

7For example, with 7; being an 7 X » hermitian matrix, there are (7> — 7)/2 complex entries (and
hence #* — 7 real parameters) above the main diagonal. Adding to this the 7 real diagonal entries (the diagonal
elements of an Hermitian matrix is always real), we then end up with a total of #* independent, real parameters.
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where vy, are the VEVs of the scalar fields, and where U(1)y allows for one of the phases «
to be eliminated without loss of generality.® It is also common practice to further decrease
the number of phases via field redefinitions of the Higgs-doublets, provided that these have
not already been used up for eliminating phases in the couplings in the Yukawa- and scalar
sectors.

A convenient way of establishing the maximum number of eliminated phases is to write all
field redefinitions as one large system of equations. Take for example the condition coming
from a parameter in the Yukawa sector, F’f},

—Ly = qulkdtdy, = 0y, + 7+ 04+ 05, =0, (4.6)

where 6, is the phase of 7 th generation of up-type quarks, 04 the phase of j 4 generation of
down-type quarks, 04, the phase of fth Higgs-doublet and 75’ the phase of the correspond-
ing Yukawa coupling Ff; After carrying out the equivalent procedure for all other terms in
the Lagrangian, the rank of the corresponding matrix corresponds to the maximum number
of parameters that can be made simultaneously real.”

4.2 The Alignment Limit

Since the 2012 Higgs boson discovery [14, 15], there is yet to be any significant discrep-
ancy between Higgs measurements and the SM prediction. As such, ZHDM:s are normally

forced to be in the vicinity of the so-called alignment limit, where one of the scalars is taken
to be SM-like.

For demonstrational purposes, let us consider the simplified scenario of having an zHDM
with only real parameters. Here, the Higgs basis (denoted with a superscript H) is the basis
in which the VEV resides solely in the first doublet, such that

N
1 v
¢{[ = ; E yk¢/€7 <¢2{> = \/Eéklv (47)

k=1

with ¢y, 7, and v defined as in eq. (4.5). With this, the doublet becomes

8With all Higgs-doublets having degenerate charges under U(1)y, only one phase can be eliminated by a
global hypercharge rotation. This number can be increased by extending the SM gauge group with additional
gauged abelian symmetries.

°An a X b matrix of rank 7, with 2 < b, has @ — m zero-rows when expressed in row-echelon form.
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N
1 V2GT 1
H = _
o= V2 <1/+H1 + z'G'O> A= v Z“ PE Mk “8)

where Gt is the charged Goldstone boson, G the neutral Goldstone boson, and with 7,
being the CP-even states in the original basis, defined in eq. (4.5). Note that A} has the
same tree-level Yukawa couplings and gauge couplings as the SM Higgs, but that it is in
general nor a mass cigenstate. Here, the alignment limit is defined as the limit in which 4,
aligns itself with the lightest CP-even mass eigenstate 4.

Take, for example, the familiar case of a 2HDM with an imposed Z,-symmetry. By de-
manding the scalar potential to be invariant under ¢; — ¢; and ¢2 — —¢2, we have
that!?

A A
V=miiglén + miaoler + TH(8101)” + T(6162) + As(6101) (916) -
A\ \* 4.9
+Xa(8102) (Bhn) + T (B02)° + T (B’

where the only complex parameters As and v, can be made real by trivial rephasings of the
two doublets. With both VEVs real, the CP-even and CP-odd sectors separate, such that
the mass eigenbasis relates to the original basis by

(D)o () () -u () ()-w()  wo

with Uy = {{cos0,sin@},{—sind,cos0}}, tan 8 = v,/v;, and with the Higgs dou-
blets parameterized as in eq. (4.5), with # = 1,2 and a;; = a, = 0. Here, A a pseudoscalar,
h the lightest CP-even state and A" a charged Higgs. Note that the charged sector and the
CP-odd sector share the same eigenvectors.

From eq. (4.8), we have that /), and its orthogonal combination />, relates to the original
(CP-even) basis with Ug, such that

H H %
<H;> = Us (Zé) - UﬁUJ (b) = U,B'Tfa <h> ) (4.11)

1%Note that the prefactors have been recast with respect to eq. (4.4), as to match the popular convention.
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where T denotes a transpose. Here we see that A aligns with 4 for sin(av — ) = 1, which
corresponds to the so-called alignment limit. For more details, see Ref. [28].

5 Supersymmetry

One of the motivations for working with ZHDMs comes from supersymmetry, which also
happens to be the framework used in Paper I and II. More specifically, as supersymmetry
does not allow for the potential to depend both on a field and its complex conjugate, a
minimum of two Higgs doublets are required for giving mass to both up-type and down-
type quarks. Furthermore, having just a single Higgs doublet spoils anomaly cancellation
for U(1)y [29]. We will return to the subject of anomalies in Sec. 7.

This section covers how the supersymmetry algebra follows almost uniquely from Lorentz
invariance and the Coleman-Mandula theorem. Using the algebra, we then develop the

concepts of superfields and superspace. Supersymmetry plays a central role in Paper I and
1I.

5.1 Representations of the Lorentz Group

The inhomogeneous Lorentz group, also referred to as the Poincaré group, is of great interest
when working with relativistic theories, as it is the group of coordinate transformations that
preserves the Minkowski metric. Considering a coordinate transformation x, — x/ﬂ, we
have the length element

At = d' g, A = dx'® d'a—a—x/pdx/‘ LXMAXVZA”;M‘ A d,  (5.)
5 = g = g7 = i o = N g N
such that g, = A?), g,; A%, where in the last step we defined the Jacobi matrix OX* | Ox”
to be equal to A’,. Note that the Jacobi matrix does not fully determine our coordinate
transformation; from integrating dx/'# = (Ox'* |Ox” )dx” , we get X* = N, x” + a*, where
a* isa constant of integration. The homogeneous Lorentz group is then defined (through its
four-vector representation) as the elements that fulfill g,,, = A%, g,5A%,."" In other words,
the Poincaré group consists of ten generators — the six generators of the homogeneous
Lorentz group (three rotations and three boosts) and four spacetime translations.

If we constrain ourselves to the group elements connected to the identity, we instead have
the proper orthochronous Lorentz group SO™ (1, 3), with detA = 1 and A% > 1. Here,

11Of course, we must also verify that the group axioms are fulfilled before referring to it as a group.
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the group elements can be generated by an exponentiation of the generators for rotations
and boosts, A = exp(Q,,/”?), or infinitesimally as

1
Ay, =60, + EQPU(]”")",,, (5.2)

where the indices p and o indicate the two dimensions being mixed; the mixing of two
spatial dimensions corresponds to rotations /;, and the mixing between a time dimension
and a spatial dimension corresponds to boosts X;.

From using that (/#7),, is anti-symmetric in the g, v-indices, we then arrive at the Lie
algebra so™ (1, 3)

[]lv]]] - ieijk]/ea [K;a [(]] = Zlez’j/e[(b [](17 K;] - iei]’k[(/ea (53)

which, even though obtained in the four-vector representation, holds for any representation
of the Lorentz group. Furthermore, we see that so(1,3) = su(2) @ su(2) by forming the
linear combinations 4; = (J; + iK;) /2 and B; = (J; — iK;) /2, such that

[A,,A]] = iei]’kAb [B,,B]] = iezj‘kBka [AMB]] = 07 (54)

where the final Lie bracket tells us that the subalgebras commute. Hence, representations
of the homogeneous Lorentz group are labeled as (A4, B) with dimension (24+1)(2B+1),
where s = A, B are the two spins and where 2 and 4 each run in unit steps over the spin
projections for each vector space. That is, 2 runs from —A4 to A and 4 from —B to B.

For example, Weyl spinors belong to one of the irreducible representations (irreps) of
su(2) @ su(2), i.e. they are either in the (3, 0) rep or the (0, 1) rep, while Dirac spinors
are in the (3,0) + (0, 1) rep, the generators /# are in the (1,0) -+ (0,1) rep, and the
generators of translations P are in the (%, %) rep.

Even though Weyl spinors are irreps, while Dirac spinors are a reducible representation, it
is often more convenient to use Dirac spinors due to their transformation properties under
parity. With parity affecting boosts, PK; P~! = —K, but not rotations, P/;P~! = J;, we
have that

PA,P' =B, PBP'=A4; = P: (A B) — (BA), (5.5)

such that Dirac spinors are invariant under parity, while Weyl spinors are not (unless they
are Majorana).
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In supersymmetry, however, the convention is to use Weyl spinors. In Sec. 5.2 we will
see the main reason for this — the symmetry generator that links fermionic and bosonic
particles happens to be forced to be in the Weyl representation. It is of course still possible
to formulate supersymmetry in terms of Dirac spinors, as done in e.g. Ref. [30], just a bit
inconvenient.

5.2 'The Graded Algebra

Let us begin by stating that we would like to have a symmetry generator that links bosonic
and fermionic particles —i.e. an operator that acts on the infinite-dimensional Hilbert space
of quantum states, whose specific action on one-particle states, [, s), is to transform it to
another one-particle state with the opposite statistics, where p is the momentum and s is
the spin. As the symmetry generator is supposed to relate bosonic and fermionic states,
it must be of half-integer spin (we have not yet specified it to be spin 1/2 though!) and
hence transforms non-trivially under the homogeneous Lorentz group. More specifically,
the generator Q7 is in some representation (4, B), and its Hermitian adjoint in some
representation (B, A), where either 4 is a half-integer and B an integer, or vice versa.

To find which representation (A, B) the generator is in, we can consider the anti-commutator
of Q1 with its Hermitian adjoint, which must be proportional to a direct sum of bosonic

irreps of the tensor product (4, B) x (B, A). Here, the Coleman-Mandula theorem tells

that the only bosonic generators that can be in an extension of the Poincaré algebra is P,

J" and so-called internal operators, i.e. generators that commute with the generators of
the Poincaré group [30].

As an internal operator could not possibly give us a Lorentz covariant expression, we are left
with only % and /#, which are in the (4, 1) rep and the (1,0) + (0, 1) rep, respectively.
Combining this information with the fact that 4 is an half-integer and B an integer, or vice
versa, and that they should be irreps of the tensor product (4, B) x (B, A), the only option
is for Q%% to be in either of the Weyl representations, with (0, 1) x (3,0) = (3, 3).

In other words, we can denote the generator as Q,, and its Hermitian adjoint as Qg, where
the undotted and dotted spinor indices denote whether the generator belongs to the irrep
(1,0) or the irrep (0, 1), and where the barred notation has no other purpose than to

clarify which subalgebra we are in whenever spinor indices are suppressed.

Qq then acts on a so-called supermultiplet consisting of a one-particle state and its super-
partner of the opposite statistics, i.e. the supermultiplet is in the irreducible representation.
There are two types of supermultiplets — chiral supermultiplets consisting of a fermion and
a sfermion, and vector supermultiplets consisting of a gauge boson and a gaugino. Since the
one-particle states in a supermultiplet are related by Qq,, which commutes with the squared

26



mass operator, the two components are guaranteed to have the same mass. In this text, we
consider only one pair of generators, i.e. N = 1 supersymmetry.

In order for the anti-commutator to be proportional to the generator of translations P,
while simultaneously being Lorentz covariant, it must be of the form

{QOH _Qg} - 2(Uﬂ)aBP]47 (56)

where (o) 4 links the two subalgebras. Once we know that Qq is in the Weyl represen-
tation, we can also determine the remainder of the SUSY algebra to be

{QOHQ.B}:{QO'MQB}:O? [Pﬂ)QOé]:[Pﬂ7Qd]:07
U, Qal = =i(o™) Q5,1 QY = —ie™)% Q.

Note that we have used the same notation for /#” as in Sec. 5.1, even though the generators

(5.7)

here act on the Hilbert space, rather than on the four-vector representation. Note also that
the algebra does not close beyond mass shell when acting on field operators. To solve this
issue, we need to introduce auxiliary fields F and D, with only off-shell degrees of freedom,
i.e. fields that lack a kinetic term. We will return to this subject in Sec. 5.3.

5.3 Superfields and Superspace

For the discussion of superfields and superspace, we want to switch to a different repre-
sentation of the generators. Rather than having them acting on the Hilbert space, we now
want to have them acting on fields on superspace. These generators will be denoted by a
circumflex, but of course still fulfill the algebra in eq. (5.6) and eq. (5.7).

From comparing the graded algebra in Sec. 5.2 to the Poincaré algebra i[P*, V7| = g P7 —
g"’ PY and [P¥#, P¥] = 0, we expect that Qa behaves in similarity to P*, which is the gen-
erator of ordinary spacetime translations, represented by —:0, on field operators. In fact,
as worked out by Salam and Strathdee [31], a form for the representation of the fermionic
generators that agrees with the graded algebra, is given by

B Ny R )
Qo = i% — (0%)aa0"0,, Qs = _iﬁ +0%(0")acOu, (5.8)

such that we can think of Q. and Qg as generators of translations in superspace, where
superspace is defined as the extension of ordinary spacetime by four Grassman-valued co-
ordinates, 01, 6, 8 and 65, contained in the two-component spinors % and 6.
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In other words, an infinitesimal supersymmetry transformation

0% — 0% + ea, éd — éd + €q, X=X+ iea(aﬂ)adﬁa, (5.9)

induces a transformation on a so-called superfield, S(x*, 0, 9), on the form

S — —i(eaQa + €d£Qd)S (5.10)

in similarity to how an ordinary Lorentz transformation x* — A’,x” induces a transfor-
mation on e.g. a scalar field ¢(x) — ¢(A~'x). Here, the general form of the superfield is
given by

S(x*,0,0) = a+ 6 + 6x + 606 + 60c + 657 0v, + 660 + 066( + 0060d,  (5.11)

where the subscripts for ) , are suppressed, and where all lowercase Greek letters apart
from o are fermionic, while the lowercase Latin letters are bosonic.

For the purpose of eventually describing the chiral- and vector supermultiplets in Sec. 5.2,
we apply constraints on the superfield S. For chiral superfields, the constraints are on the
form

DoS* =0, DgiS =0, (5.12)

where the super-derivative is defined as

0 , 4 = 0 ,
295 +i(0%) 5 070, Dy = i i0° (0”) 55 Ons (5.13)
and where the corresponding superfield is commonly denoted as ®. After applying this
constraint to eq. (5.11), we have that the chiral superfield is given by

D, =

Dy, 0) = B(+* + i05"0,0) = p(y*) + V200 (") + 00F("), (5.14)

where the parameters 4, € and & has been renamed as ¢, v/21) and F, respectively, based on
how they transform under supersymmetry transformations and with the factor of v/2 being
conventional. Note also that, since the super-derivative commutes with Qy, it is consistent
with our symmetry. The field F is the auxiliary field mentioned in Sec. s.2.

In other words, the constraints in eq. (5.12) gave us the corresponding field operators for
all one-particle states of the chiral multiplet, as desired. Similarly, superfields fulfilling the
constraint § = S™ are so-called vector superfields, and will result in the only remaining
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Figure 6.1: Box diagrams for K 0_Ko mixing in the SM, using the convention that all momentum
arrows on external legs are pointing to the right.

terms being those of field operators for the gauge boson, the gaugino and the auxiliary field
D. The vector superfields are typically denoted as V.

As any holomorphic function of @ is again a chiral superfield, we can construct the super-
Lagrangian, W(y”, 0), as a holomorphic polynomial in ®

S= / dxd*0 W(y*,0) = / dx £5USY, (5.15)

where, in the last step, we obtained an ordinary, but supersymmetric Lagrangian, by inte-
grating over 0.

6 Meson Observables

This section is focused on some of the key observables in the meson sector, namely mass
splittings and CP violation. When allowing for non-zero NP flavor changing interactions,
these observables are highly constraining for NP parameters such as NP scalar masses and
Yukawa couplings between NP scalars and SM quarks, and play a central role in Paper III
and IV.

6.1 Neutral Kaon Oscillation

With there being no difference in conserved quantum numbers for K 0 and KO, the two
states can mix via weak interactions, as shown in figure 6.1. Starting with some linear
combination of the two flavor eigenstates, the state vector after a time ¢ is given by

[%(9) = ¢ 1(0)) = A(DIK®) + B(1)|K°), (6.1)

where |1)(2)) is the Schrodinger picture state vector, and where the time-dependent param-
eters A and B are determined by the insertion of a complete set of flavor eigenstates, such
that

A(D) = (K°le™[3p(0)), B(r) = (K°[e~]4(0)). (6.2)
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Under charge conjugation and parity, we have that
CIK’) = |K°), CP|K’)=—|K"), (63)

which involves choosing a phase convention. Here, the convention for the charge conju-
gation differs between treatments, while almost everyone decides for the flavor eigenstates
to transform with a minus sign under parity due to them being pseudoscalars. The CP
eigenstates are then given by

K)= = (K FKY). CPli) = £IK) (6.4

With |K°) being represented by (1,0) and |[K°) by (0, 1), the Hamiltonian in eq. (6.1) is
given by

M— 1 P
. — .. = 2 .
]-‘[l] M] FZ] - < qZ M— £F> ) (65)

with )
z *
p2 = M]z — 51}2, ql M* F127 (66)
where I'y; = I'}, and M1 = My, follows from M;; and Fij being Hermitian matrices
(such that /I is anti-Hermitian), and where M1} = My; = Mand 'y = 'y = T

follows from CPT invariance. The eigenstates and eigenvalues of the Hamiltonian are then
given by

K
Ky = \/\p|2+\ 7 K

where, as always in scattering theory, the decay width is given by the imaginary part of the

+¢lK°), Ae=M—iT +pq, (6.7)
N

eigenvalue, times a factor (—2), and the mass by the real part of the eigenvalue, such that
Mi = M+ Re(pg), T =T  2m(pg), (6.8)
hence resulting in
AMyg = M — Ms = 2Re(pq), Al'x=Ts5—TI; = 4Im(pq), (6.9)
where AMy and Al g are defined such that they are both positive quantities.

As apparent from eq. (6.7), the mass eigenstates are only CP eigenstates for p = ¢, for
which K7 is identified with K3, and K with Kj. As CP is only slightly violated in the SM,

a convenient parameterization is

_ 1 _ __P—
Ki) = = <|Kz>+e|K;>>,6f . (6.10)
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Note, however, that € cannot be used as a measure of CP violation, as it depends on the
phase convention in eq. (6.4). We will return to this subject in Sec. 6.3. Also, with € < 1,
we have that M, ~ M7, and I'1, ~ I'],, or in other words that the real parts of M, and
I'12 are much larger than the imaginary part, such that

AM[( ML — MS ZReMlz, AF[(E FS - FL ~ 2ReF12. (6.11)

Experimentally, AM and AT g are measured by starting in a pure K° or K state at # = 0.
By inverting eq. (6.7) and plugging it into egs. (6.2) and (6.1), the state after some time ¢ is
given by

K°(2) = ()|KO>+pg (1)IK?), |K°(2) =§gf(f)|1(0>+g+(f)|k0>a (6.12)
with
() = %e—ry/ze—iMy [1 n E—AFt/ZeiAMt} ’ 6.13)

resulting in AMy = 3.484(6) x 1071 GeV [25].

To relate this system to an effective weak Hamiltonian, we can use second-order perturba-
tion theory in the Fermi coupling GF, as the weak interactions are feeble in comparison to
the strong- and electromagnetic ones. The unperturbed system then corresponds to com-
pletely turning off the strangeness-violating weak interactions, for which K° and K are
two degenerate mass eigenstates, and we have that [32, 33]

e ] s, o I | 1 PG )
2 K O 2 2 © )
p my myg my’ — E, + ic

(6.14)

where the factor 2mx comes from normalizing our states as (5 | s|p, ) = 2E];5,;(27z)35(3) (p'—
7), and where the final term corresponds to the decay width only for physical intermediate
states, as in Sec. 3.3. The term of interest from eq. (6.14) is

2, = (KOHE|K), (619

which, combined with eq. (6.11), allows us to relate the theoretical prediction with mea-
surements. Note that this equation is commonly, but incorrectly, presented without the
factor of 2mg.1?

2From the relativistically invariant continuum normalization, with 6 (7 — 7 ') having dimension -3 and E;
having dimension 1, the states must each be of dimension -1. As such, the dimensionality of the right-hand side
of eq. (6.15) is 2, with the Hamiltonian density having dimension 4, which does not match the dimensionality
of the left-hand unless the factor of 7 is present.
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6.2 New Physics Contributions to Box Diagrams

To check whether NP is compatible with the experimental values for AMg, we need to
evaluate all NP contributions to AS = 2. Take for example a 2HDM, which in general
allows for flavor-changing neutral currents at tree-level, and neutral- and charged currents

at 1-loop,
d s d > T > S
\\ ’(/ HU :
/x\ = T + !
ad AN |
s d s < 1 . d
}"IUA,IT-I+J’V+
J . J s (6.16)
+ 1 +
5§ —e—LAAANT—<— ( s d

where the both dashed and wiggled line denotes either a scalar or a gauge boson. Note
that H° only comes in combination with itself, and with a sum over any up-type quark
combination, while for the charged particles, we have every combination of A" and W
together with every possible combination of down-type quarks. The WW-combination is,
however, not an NP contribution.

To demonstrate the process of obtaining the Wilson coefficients, let us focus on only one
of these contributions, e.g. the pure charged Higgs box diagram, given by

H+ Uj
wi 'y A U - H+‘+ TH+ = 2n)i /ez—m%{—kz's
§ —<—"~1 - > - L <« s —<—L1—<«—1—<«—(
H+ U
X—(_'[) HT _ P HT 'M—'PH 4 —iPr (I17);
Uy z L( R)Zz z R( L)Zz /€2—m2+i€( z R( R)zl z L( L)zl)vd ( )
i 6.17
i(f—m;
X |7, (—iPL(HL)zj—iPR(H})zj) /ez<mzi)z€ (—iPR(HR)ﬂ —iPL(HL)jl) ud]
J

_ { Same but with [ﬁ:()ud} {Dx(...)vﬂf} and m; < m; } ;

where 7y is the charged Higgs mass, 72; j an up-type quark mass with flavor index 7,7 =
1,2,3, and where II;; is the general Yukawa coupling for a charged scalar, defined as
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—Ly=u; [PL(HL)j]' + PR(HR){]’] d]HF + H.c. (6.18)

As in Sec. 1.1, the subscripts on the basis spinors denote the flavor of the corresponding
quarks, rather than being spin indices. Note that the external momenta have been put to
zero, even though all internal propagators are far from massive in the case of 7,7 = 1,2.
The reason why this is allowed, and a common practice for this process, is because it does
not affect the Wilson coefficients. Note also that one does not need to perform external
field renormalization, as both UV- and IR divergences cancel in the matching. For more
details on this, see Ref. [34].

Then, using Fierz identities, the amplitude simplifies to

M=23 ( [(Wmvﬁ;)@?wwﬁ) - <uWPRu3><v?v,,PRv§>]

i

o ]+ 24 ) ) — (5 i) 0 )|

+ Zag [LHR] > X T;ZDZ(WI?, m]z, mig, miy)
(6.19)

vy <5 v ) (5 P )|+ 0]
vl {w?PRvsxv?PmS) G @1 + [LHRD

(m?, ]2, My, M) X mim;

167[

where o, 3 are color indices, and where Dy, D, are Passarino-Veltman functions, defined
as in Ref. [35]. Here, the couplings allj_g are all on the form

ij T T
Ay = (1) 2:(Hy) i (IL,) 2 (Lx)jn, (6.20)
with
i /- i
a = ‘ZRRRR’ ‘lz a3 = “RRLD 4 = dLLLL’ (6.21)
i g i i g i g 21

a5 = 4aipiry 4 — 47 = A1RR1> 48 = AR[RL

At the NP scale, i.e. the scale where the charged Higgses are integrated out, the full theory
is then to be matched onto the effective theory. Here, the effective Hamiltonian density is
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given by

HAS=? Z C.O; + Z clo, (6.22)

with the local operators
01 = (v Pd™) Py, Prd’), 0y = (*Prd*)(°PLd”),
03 = (*Pd’)(FPd™), 04 = (" Prd”) (P Prd’), (6.23)
Os = (*Prd’)(° Prd™),

and where the primed operators O , 5 has the same form as their non-primed counterparts,
but with Z <+ R. Starting with the Wilson coefficient C,, we have that

Sp = —2iC, /d4x {(Js|(§PLd)(§PLd)|§d> + <Js(,§PLd)(,§PLd)|§d>}
(6.24)

= —-2iC, {(BSPLZJLZ)(I_/;PLua’) - (ﬁ:PLud)G/xPLUa’)} (2”)454(Pf_])i)
= iMJ (22)46% (- 1),

where the color indices have been suppressed, as the color contractions are always within the
same bracket. From comparing with eq. (6.19), the pure charged Higgs box contribution
then results in

327z Z Do(m}, m?, miy, mz;) mom; aé (6.25)
The remaining Wilson coeflicients are determined in an equivalent fashion, with
C=— 28% ZZDZ ml, mH,mH)a
Gy = 32”2 ZDO mi, ms iy, miy) mim [‘ZZ + ”;]] ; (6.26)

G = WZDZ kg, ) [+ ]
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where C7 , 5 has the same form as Cy 5 3 but with L <> R, in agreement with Ref. [35].
Note that the Wilson coeflicients above also receive box contributions from the charged
Higgs in combination with the W-boson.

The Wilson coefficients are then RG-evolved from the NP-scale to the meson-scale, using

that 4
A (AnpnY _
pg (A0)) =0, (6:27)

with no implicit sum over 7 unless there is operator mixing. In other words, the scale
dependence of the operators and the Wilson coefficients exactly cancel. However, rather
than doing the RG-evolution for every single parameter point in a scan, a much more
efficient (and common) procedure is to use already computed results for the evolution by
matching onto a standardized set of operators. The two most common sets of operators for
AS = 2 is the one shown in eq. (6.23), used in e.g. Ref. [35], and one where Os is replaced
with

O = (4 Prd™) (P Ppd’) = CH =26, (6.28)

used in e.g. Ref. [36]. Here, the relation between the Wilson coefficients comes from the
Fierz identity

(Pr1)i(PrLR)t = %(’YﬂPL,R)il(’YﬂPR,L)/eja (6.29)
such that
(th‘Py}g) (a?pRug;) + (zngyg) (a?pwg) - (a?pmg) (a?pRyf;)
- (a?PRuﬁ) (a?PLyj)

6.
= [ (o) (uman) + (i) (#0010 @
(s () — (s ) () |
Finally, to compare with experiments, we have that
2mi My ~ (KHE2IK) = >~ Cp) (K100 () K°), (631

where the hadronic matrix element (K°| OEI)( #)|K?) is evaluated with some non-perturbative
method, e.g. lattice.
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6.3 Direct versus Indirect CP violation

There are two kinds of CP violation in the Kaon system, direct and indirect. The source of
indirect CP violation comes from the fact that X; and K, due to CP violation, are not CP
eigenstates. In other words, even if K7 is almost equal to the CP-odd eigenstate K3, it also
has a small element of the CP-even eigenstate Kj, and can hence (with a small branching
fraction) decay to the CP-even final state of two pions, without the decay itself being CP-
violating. Similarly, K can, with a small branching fraction, decay to the CP-odd final
state of three pions via 5. Direct CP-violation, on the other hand, comes from the decay
itself being CP-violating, i.e. by involving K} — 37, or K, — 2.

There are a great number of ways to study CPviolation phenomenologically. In this section,
we will focus solely on one type of process, namely the ratios transition amplitudes

A(K — 7°70) A(Kp — ntz7)

0 TP =t T P 6.
Too A(KS N 7[07[0)7 1+ A(KS N 7Z+7Z7)7 ( 32’)

where, experimentally, the norm of 19y and 74 _ are extracted from the corresponding
decay widths, resulting in [25]

Imoo| = 2.220(11) x 1073, |ne_| =2.232(11) x 1072 . (6.33)

Before specifying this further, let us take a short detour into isospin representations. Let us
pretend for a moment that 7, = my, such that strong SU(2) isospin is an exact symmetry.
Then, the pions are in the adjoint rep of SU(2), i.e. they are in the isospin-1 rep, with
dimensionality 3. As such, with |j, m), the three projections are

I7zt) =|1,1), |2°) =|1,0), |z7)=|1,-1). (6.34)
If we want to consider a two-pion state, we hence have

Dimensionality: 3®3=5®3®1,

6.
Isospin: 1®1=2d1PO0. (6:35)

Starting with the highest weight state and using ladder operators to obtain the remainder,
with
Ti - Tl + iTZa [T; T}] = ieijkaa
Teljm) = \JjG+1) = m(m+1) [j,m£1),

(6.36)
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where 7 are the generators of SU(2) isospin, the isospin-2 rep is given by

12, 2) 1 [1,1;1,1)

12, 1) 7 (11,0:1,1) +1,1;1,0))

12,0) | = ﬁ(|1,—1;1,1)+2|1,0;1,0>+|1,1;1,—1>) , (6.37)
2, 1) 7 (1,0:1,=1) +]1,-1;1,0))

2,-2) 11,-1;1,—1)

where |j, m)®|j’, m') = |j, m;j', m'). In asimilar manner, but using also the orthogonality
between |2,0) and |1,0), and |2, 1) and |1, 1), the isospin-1 rep is given by

|1, 1> \%(|170;171>_|1a1;170>)
1,0) | = | 5 (L-L1L1)~ L1, -1)) |, (6.38)
1,-1) 7 (1,0:1,-1) = [1,-1;1,0))
and, finally, the isospin-0 rep by
1

V3

With the two-pion states being totally symmetric in isospin space, and with them separately
belonging to projections of the isospin-1 state, they must be represented by

1
12°7%) = [1,0;1,0), |zTz7)=—=(]1,-1;1,1) +1,1;1,—1)), (6.40)

V2

in isospin space, such that, combined with egs. (6.37-6.39), we obtain the Clebsch-Gordan
decomposition

12020 — —\}g 0, 0) + \g 2,00, |7ta) = \/g 0, 0) +\}§|2, 0). (6.47)

In order words, there are four possible transition amplitudes in isospin space for Kaons
decaying into two pions, namely

(nm, 1= 0[HdK®), (zrm,]=2|H4K"),

_ _ 6.42
(nm, 1= 0|HgK®), (nm,1=2|H4K°), (6-42)
with |0,0) = |zz,/=0) and |2,0) = |zx,] = 2), and with A(i — f) = (ﬂ'Htﬁﬁ)

Now there is only one last thing to consider before we can specify the Kaon decays - namely
that there can exist elastic scattering among the decay products. This is usually incorporated
by including a so-called scattering phase shift  for the two final states [£) and |f). In short,
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the phase shift dy(4) is one possible way of parameterizing the scattering amplitude when
written as a partial wave expansion. They are real functions of momenta 4 and the factor
0e®) gives the contribution to the £™ partial wave. In our case, they are the S-wave
phase shifts for |2, 0) and |0, 0), respectively. Combining this fact with unitarity and CP7-
invariance leads to Watson’s theorem [37], stating that

[P HUAR)| = & (1K), (6.43)
such that, by defining the following transition amplitudes in isospin space
Ao = e (an, I = 0[HfK"), Ay =e ™ (nn,I=2|HK"), (6.44)

it immediately follows that
Ay =e ™ (nn, [=0 |Heﬁ1[_(0>, A= ngn, I=2 |/Heﬁ4[_(0>, (6.45)
and, hence, from eq. (6.41),

2 . 1 ,
A([(O — 7Z+7Z_) = \/;A()fl(so + % AzfléZ,

. 5 (6.46)
A[(O—)OO:—iA i50_’_\/>A 152.
( T ) \/?) 0€ 3 €

Combining these results with eq. (6.7), we find that

Moo = € — 26/5 Ny— > e+ ela (647)
with
¢ =" Im (Az> 0200 o= (0, 0 giK) _ey Amldo) Im(MIZ)ei”/4, (6.48)
V2 Ao (0, 0|H€7§4K5> Re(Ao)  V2AMy

which is then to be compared with eq. (6.33), to establish whether NP is compatible with
current measurements. For more details, see e.g. Ref. [37].

7 Extending the SM Gauge Sector

All four papers in this thesis involves extensions of the SM gauge sector. In this section we
focus specifically on two limitations related to this — namely the effect it can have on the pole
mass of the Z-boson and the possibility of gauge anomalies. These are both key restrictions,
as the Z-boson pole mass is one of the most accurately measured EW observables, while
gauge anomalies can induce unitarity violation.
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7.1 Mixing between Z and Z’

When extending the SM gauge sector with an abelian symmetry, as in Paper III and IV,
a mixing is introduced between Z and Z’. To generalize the discussion, let us consider
the mixing in the context of having 7 scalar doublets, ®;, and  scalar singlets, S;, charged
under the new U(1)" symmetry. Starting with obtaining the gauge boson bilinears, we have

2 2 1 o b L N -
[DuSH+ D 1Du( @] = Syt + 3 ZWEwWe ()
with
1 X103 —xig1g  —200d W;
iy = 7| e ag?  ogd |, A= B |, (7.2)
*szgzg! 2x2g1gj 4x3g12 Z/i

and with x, x, and x3 defined as

x| = Z o ZX@//?, X3 = ZXq%iyf + ZXSZiwf, (7.3)

i=1 i=1 i=1 i=1

where v; and X, are the VEVs and U(1)’-charges of the Higgs doublets, and where w; and
X, the VEVs and U(1)'-charges of the scalar singlets, respectively.
The move from the gauge flavor basis (W;, Bﬂ,Z;) to the mass cigenbasis (Aﬂ,Zﬂ,Z;),
is then conveniently carried out via an intermediate basis which, in the limit of ¢ tending
to zero, automatically identifies the photon and the Z boson with the SM ones. In other
words, the intermediate basis, denoted by (A],, Zy, Z;) is related to the gauge flavor basis
and the mass eigenbasis via the transformations

W; sw cw O Ifl;t A, 10 0 {lﬂ
{3/4 =|cw —sw O g]l ) Zyl =10 e —sm gﬂ , (7.4
Z/: 0 0 1 Z/i Z;, 0 sy cu Zl:

respectively, such that, starting with the mass matrix in eq. (7.2) and using the first basis
transformation in eq. (7.4),

0 0 0 A

1 o Ay

A =2 (4, 2, )0 m(@+g) ~20V8+4 || 2
0 —2x2gj\/g% —i—g% 4X3g! Z;t

(7.5)
0 0 A,

0
E(A,, Z, z;,) o i i, | |2,
0

oIk, ie, ) \Z
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From the intermediate basis, we then rotate to the mass basis using the second basis trans-
formation in eq. (7.4)

my LA = (4, Z, Z1) [0 m zZ, |, (7.6)

by which the mass of Z- and Z’ is given by

1 /- . PN . -
respectively, resulting in the mixing angle
20012,
tan(20y) = ——Z2— (7.8)
W, I

where M2, M2, and §M2,, are defined in terms of the VEVs, U(1)’ charges and gauge
couplings, as specified in eq. (7.5).

7.2 Anomalies

While classical symmetries correspond to transformations leaving the action invariant, sym-
metries in a quantum theory must also preserve the path integral measure. If it does not,
the symmetry is said to be anomalous, meaning that the associated current is not con-
served. Anomalies are not necessarily problematic. Global anomalies, such violation of
baryon number, are present in the Standard Model, and even necessary for baryogenesis.
However, if the anomalous current happens to couple to a massless spin-1 particle, the
corresponding Ward identity is violated and we end up with unphysical, longitudinal po-
larizations. Hence, when extending the SM gauge sector, a central part is to avoid gauge
anomalies.

A natural starting point when wanting to relate classical conservation laws and QFT is, of
course, to consider Ward identities. Hence, let us begin with the abelian case, by defining
the Fourier transformed current three-point functions

T (k, p, q) / dhx dYy d*z e E¥129709) (0] T{j#(x) /¥ () P(2) } |0),

. (7.9)
T (k. p,9) / dix dly d'z e b9 0| T{ ()7 )3 (2) } 0),
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where the axial-, vector- and pseudoscalar currents are given by

JE =Py, =y, P=gy, (7.10)

and where, in the classical theory, the axial current is conserved only in the massless limit

Oujs = (Ou) YV U + Y O, = 2mithy*p = 2mi P,
Duj" = (0,0) V0 + "0, = imp — imnp = 0,

using that (7)1 = 7949740, the equations of motion, and the fact that 7> and 7* anti-
commute.

(7.11)

The axial Ward identity is then obtained by contracting 77" A with g, such that, up to a
surface term and a Schwinger term,'3

P T = /d4xd diz oiktry=a2) <0|T{j (x)7" () ( SWAE )} |0)
= 2m /d4x d ) d4z ei(k~x+P'}'*q-z) <0|T{jﬂ(x)jy()/) P(z)} |0> (7.12)
=2mTH",

where, in the first step, we used that g eilkxtpy—qz) — i05, (ei(k'x"'f” '7_“)) and integrated
by parts. Similarly, the vector Ward identities, up to surface- and Schwinger terms, are
given by

kﬂTﬂu,\:i/dz;xd dig pilkxtry—g2) <O|T{( i#(x)) j ”@)]5( )} |0) =0, (7.13)

and equivalently p, 7#** = 0, using eq. (7.11).

However, while Schwinger terms can safely be neglected [38], nothing ensures that the
surface terms can be. In general, the relations are hence of the form

DTN = 2mT + A, BT = AP, p, TH = A, (7.14)

13After integrating by parts, we end up with having a derivative acting on a time-ordered correlation func-
tion. Writing the time-ordering in terms of Heaviside functions and using the product rule, the terms where
the derivative acts on the Heaviside function are referred to as Schwinger terms [19].
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such that the axial current (with m = 0) and the vector currents are all still anomalous,
unless some, or all, of the factors A; can be set to zero.

To determine the factors A;, let us evaluate the amputated three-point function 77 A per-
turbatively. Starting with the massless case, the lowest order diagrams (which also happens
to be the only order contributing to the anomalies for QED [23]) are given by

"
3 (7.15)

"
7 + s
i
[ ) il s =9, if—p ks p
- /<zn>4t +{WV}’

]4
TV =g tie | ((—k2+ie
where the overall minus sign comes from there being a closed fermion loop. Contracting

with ¢y, using Feynman slash identities and evaluating the traces, we then have

d* 0°p° K k>
THA — 4P P 16
7 o [ (s aeme) eon) 09

and, in a similar manner, the contraction with /eﬂ results in

v vApo d4£ (g_k)p(g_FP)U kHP
e = e [ ((f—/e>2<e+p>2> +{w>v}' 717

At a first glance, it might appear as if both eq. (7.16) and eq. (7.17) can be made to vanish
by a simple variable shift, as the Levi-Civita tensor is completely anti-symmetric. However,
this is not the case. As the integral is linearly divergent, it is not invariant under a linear
shift. In other words, after the change of variables ¢# — ¢#+ 4" in eq. (7.16) and eq. (7.17),
they each have one surviving term, given by

4
v = | <jﬂ§4 (F (07 + &) — 7 (47)) # 0. (719

where f7 is used to denote the shifted integrand. To evaluate this one remaining term,
we Wick rotate, Taylor expand /7 and use Gauss’s theorem, such that, to the first non-
vanishing order
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3
wiay =i | (”’ .z "(%gf"”( Dei | S, g

where 0Q is the surface of the 4-ball. Taking the limit of the radius |4z| going to infinity
and considering a general shift ## = 6, k" + b,p”, we can then obtain [20]

q)\]'?“’)‘ = T;E}Wpdkp O'(bl — bz),
k wa)\ 4 l/)\psz (7‘20)

42 pa(l_bl"’_bZ)
In other words, there is no choice of 41 and &, for which both the vector- and axial currents
are anomaly-free simultaneously. We cither end up with anomalous vector currents or
anomalous axial currents, and here the decision is simple. For massless QED, the vector
symmetry is local and couples to a massless spin-1 particle, while the axial symmetry is

global. Hence, we set 41 = b, + 1, ending up with

I THA = AM ky, A = THA = . (7.21)
where A* is the Adler-Bell-Jackiw (ABJ) anomaly [39, 40]

i
wwo__ Hvpo
A" = ol kopo- (7.22)
In the massive case, we get an identical result, but with an additional factor of 2m 77 in

the right-hand side of the first equation in eq. (7.21). As such, that calculation also involves
evaluating diagrams with the axial current replaced by the pseudoscalar current, i.e.

gt Vs

™ = p--- + P--- . (7.23)

7.3 Anomaly Conditions

Generalizing the above procedure to the non-abelian case, we instead have the three-point
functions
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Tabc b p’ /d4xd d4z el’(/@x-‘r]")’_q'z) <0|T{];ﬂ¢(x)]z[i()’) Pc(z)} |0>7

(7.24)
T hpa) = [ ddtydte et ed o1 { o200 )

vs_/ith the axial-, vector—_and pseudoscalar currents defined as j ]54“ = Vs Tiby, jo =
Vi Ty and P = Ypys Ty, and where 4, b, ¢ are adjoint rep indices and 7,; funda-
mental rep indices. Placing again the anomaly fully in the axial Ward identity, the end
result is given by

§ Ty = 2T + Al R Ty = p" Ty = 0, (7.25)

with the anomaly

Ak = gf;ewpgkppg w({T%, TV} T°). (7.26)

In other words, the vector current is conserved, while the axial current is anomalous unless
the trace in eq. (7.26) vanishes. As the axial symmetry may, in general, be gauged, it is of
interest to investigate under which conditions the trace is zero. Let us use a subscript X =
1,2, 3 for the generators in eq. (7.26), and define 7% as a generator of SU(3) x SU(2) x U(1)

T3 = Ty ® Lsyz) ® Ly,
75 = Lsye) ® TSU(z) ® HU(1)7 (7.27)
TV = Lye) @ Ly @ T (1),

where TSU(3) is a generator in the fundamental rep of SU(3). Note that the index a runs

from one to eight in the first equation, from one to three in the second equation, and not
at all in the third equation.

Hence, if we want to evaluate the trace for e.g. [S U(Z)]2 U(1), we have that

> w7 T = Y e (L @ { Ty T } © Toy)

species species

- tr{ SU(2)1 SU(Z)} >_ o (lsu) o (T;J(l)) ’

species

(7.28)
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where in the first step, we used eq. (7.27) and the relation (2 ® 6)(c ® d) = (ac) ® (bd),
while in the second step, we used that tr(¢® &) = tr(a)tr(4). To account for the possibility
of having several copies of fermions in a certain rep, we sum over “species”. If we consider

e.g. the SM, we hence have that

1 1
Z u ({73, sz}Tf) = tr{TfU(zy TSbU(Z)} <3 5 3+1- (_2) '3> =0, (7.29)

species

using that the trace of [gy3) is three for the quark doublet ¢; and one for the lepton doublet
{;, while the (trace of the generator of) hypercharge is 1/6 and —1/2, respectively. Here
the number of species corresponds to the number of generations. Note that the anomaly
would have cancelled also without summing over generations.

In Paper IIT and IV, where the SM gauge sector is extended by a gauged U(1)" symmetry,
anomaly cancellation hence constrains the possible U(1)" charges, limiting the number of
valid implementations. In appendix 1.A, we present an additional classification, namely all
anomaly-free implementations of the gauged Branco-Grimus-Lavoura (BGL) model [41,
42] with three generations of right-handed neutrinos and a type-I seesaw mechanism.

8 Concluding Remarks

We have now covered some of the main topics required for putting Paper I-IV into context.
To mention a few concepts of particular importance for Paper I and II — which treats the
construction and evolution of a supersymmetric model from the GUT scale to the EW
scale — we have the procedure of RGE evolution and manual alteration of beta functions
described in Sec. 2.4, matching in Sec. 1.1 and 6.2, and supersymmetry in Sec. s.

For Paper III and IV — which instead involves the classification and comparison of anomaly-
free implementations in 2HDMs with a gauged abelian symmetry — the topics of central
importance are the weak Hamiltonian covered in Sec. 1.1, electroweak observables and the
narrow-width approximation in Sec. 3, #-Higgs-doublet models and the alignment limit in
Sec. 4, meson observables in Sec. 6 and, finally, the anomaly conditions in Sec. 7.3.
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9 DPublications

Paper I

José E. Camargo-Molina, Anténio P Morais, Astrid Ordell, Roman Pasechnik, Marco
O. P Sampaio, and Jonas Wessén: Reviving trinification models through an Eg-extended
supersymmetric GUT, e-print: arXiv:1610.03642 [hep-ph]. Phys. Rev. D9s (2017), 075031

This article introduces the SHUT model, based on an idea from previous work by Roman,
Anténio, Eliel, Jonas and Marco. Anténio, Roman and Eliel had a central part in finding
the particular implementation, after which the majority of the results were obtained during
my master thesis project, with calculations carried out by Anténio and I (independently),
under the supervision of Roman and Jonas. I took part in both the writing and editing
process.

Paper 11

José E. Camargo-Molina, Anténio P. Morais, Astrid Ordell, Roman Pasechnik and Jonas
Wessén: Scale hierarchies, symmetry breaking and particle spectra in SU(3)~-family extended
SUSY trinification, e-print: arXiv:1711.05199 [hep-ph]. Phys. Rev. D99 (2019), 035041.

A more in-depth study of the SHUT model, with the majority of results obtained by An-
tonio and I (independently), again under the supervision of Roman and Jonas. Parts of the
results in Sec. III and IV were also obtained by Jonas and Eliel. I took part in either writing
or major editing of all sections.

Paper I11

Franz Nottensteiner, Astrid Ordell, Roman Pasechnik and Hugo Ser6dio: Classification
of anomaly-free 2HDMs with a gauged U(1)’ symmetry, e-print: arXivi:1909.05548 [hep-ph].
Phys. Rev. Droo (2019), 115038.

In this paper, we classified and compared all anomaly-free 2HDM-U(1)’s within the SM
fermion content. The classification itself was initiated in a master thesis project by Franz
in 2017, supervised by Hugo and Roman, and then verified and generalized by me in 2019.
The remainder of the content in Paper III was worked out by Hugo and I. Hugo invented
the classification method and was also in charge of the phenomenological analysis, while
I performed analytical calculations required for the scan. For example, I calculated the 1-
loop contributions to the Wilson coeflicients for all AF = 2 processes, and for & — s7.
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Furthermore, the various calculations in Sec. III were carried out by both Hugo and I,
independently.

The writing was split rather evenly between Hugo and I, with Hugo having the main respon-
sibility for Sec. I, II-B, IV and parts of Sec. III and V, while I had the main responsibility for
Sec. II-A, 1I-C, VI, the majority of IIT and parts of V. All authors took part in the editing

process.

Paper IV

Astrid Ordell, Roman Pasechnik and Hugo Serddio: Anomaly-free 2HDMs with a gauged
Abelian symmetry and two generations of right-handed neutrinos. Preprint number: LU-TP
20-28. Accepted for publication in Phys. Rev. D.

In this work, we classified and compared all anomaly-free 2HDM-U(1):s in the case of
having two generations of right-handed neutrinos and a type-I seesaw mechanism. The
classification was carried out by Hugo and I, independently. Again, Hugo did the phe-
nomenological analysis, while I performed analytical calculations going into it, such as the
Wilson coefficients for ¢ — ¢/, and Wilson coefficients and branching ratio for ¢ — 3¢. 1
also prepared the input cards for Hugo’s code. Regarding the writing, Roman wrote Sec. I,
Hugo most of Sec. V, while I wrote Sec. I, 111, IV, VI, VII and parts of V. Again, all authors
took part in the editing process.
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Appendix 1.A Anomaly-free Implementations of the Gauged BGL
Model

The Branco-Grimus-Lavoura (BGL) model is, to this day, one of the most frequently used
implementations of the two-Higgs-doublet model 2HDM). In this appendix, we classify
all of its allowed instances, in the case of having a gauged abelian flavor symmetry and three
generations of massive neutrinos, gaining their mass via a type-I seesaw mechanism. With
this setting, there are a total of three valid implementations, out of which neither have been
previously explored. The results presented below have been independently confirmed by
Hugo Serddio.

1.A.1  The Model

Below we extend the Standard Model (SM) gauge group with a gauged abelian flavor sym-
metry, U(1)’, and the SM particle content with the corresponding neutral gauge boson
Z', three generations of right-handed neutrinos 1/11e , a scalar singlet S and an additional

Higgs doublet ®,. In general, the entire particle content is charged under the new abelian
14

2

symmetry, with the charges allowed to vary in between generations.

In addition, we demand that the scalar singlet, and at least one of the scalar doublets, are
charged under U(1)'. With this, a minimum of two vacuum expectation values (VEV5s)
enter into the breaking of the flavor symmetry. Without the scalar singlet, only the elec-
troweak (EW) scale would enter the breaking, which almost completely eliminates the valid
parameter space.

Using the definitions in Paper IV, the Yukawa interactions in the flavor eigenbasis are given

by
—Lyukawa = ;gra¢46£e + ngai)au% + Enﬂq)afok + @EaéﬂVR

1— (1.A.1)
+ Eu}g (A+ BS+ CS")vg + Hec.,

with 4 running from one to two, ® = io,®*, and with the BGL quark Yukawa textures

However, there are of course charge assignments under which several generations could end up with the
same charge, or where a subset of the charges are zero.
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given by

I;: , I

(1.A.2)

X X o X X
X X o X X
S O X oo

A]i ,Az:

oo o X X
S OO X oo
X © O X oo

0 0 0

while the textures of I1,, ¥,, A, Band C are, at this stage, completely arbitrary.

1.A.2  Method of Finding Anomaly-Free Implementations

The method presented in this section follows the same basic principle as introduced in
Paper IIT and IV, but implemented in a new context. In short, we have that i/ the abelian
flavor symmetry is a symmetry of the Lagrangian, then (for the quark Yukawa sector)
0(X,—X; — B, —X,.
(Fa)z'j — / (Xy de X%)(Fa)z‘j7 (Aa)ij _ eH(Xq, X]-i—X«bﬂ)(Aﬂ)ij7 (I-A-3)
such that the Yukawa textures correspond to linear constraints on the corresponding charges

(Lo)j=any if X, — X, = Xo,,

. (1.A.4)
(Fﬂ)ij =0 if qu, *de # Xop, ,

and similarly for the up-sector, where X;, X,,, X, Xg are the U(1)’ charges of the left-handed
quark doublets, the right-handed up-type quarks, the right-handed down-type quarks and
the scalar doublets, respectively. As such, the BGL textures in eq. (1.A.2) correspond to the
following 36 constraints

qu,z - Xd1,z,3 = Xo,, Xq3 - Xﬂ’1,2,3 # Xp,, an - Xa’uzﬁs = Xo,,
qu,z _Xd1,2,3 7& X‘1>27 qu,z - Xus 7£ _X‘1>17 qu - X3 = _X<D27 (LA.S)
qu.z _Xul,z = _X‘i’n an _Xu1,2,3 7£ _X‘i’n qu,z _Xu1,2,3 7£ _X‘I’za

an _Xul,z 7é _X‘i’z'

Similarly, there will be (linear) conditions coming from the textures in the leptonic sec-
tors, and (linear, quadratic and cubic) conditions coming from the anomaly constraints
involving U(1)’,15
[U()T?, Uy [Gravity)*, U(1) [U(1)y],
2
u1y [SU@L?, u1) [SUB)cl’, [U(1)]T Uy,
15As the right-handed neutrinos are only charged under U(1)’, the only anomalies altered in comparison to

Paper I11 are the ones coming from [U(1)']” and U(1)’ [Gravity]®. There, the right-handed neutrino charge
will contribute with a term of the exact same form as that of the right-handed electron.

(1.A.6)
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excluding the ones that anyway cancel trivially. In total, we hence have one large system of
equations for the U(1)’ charges, with equations coming from the quark sector, the leptonic
sector and the anomaly constraints. Any solution to this system, for which all charges are
rational, is then classified as valid.

To find the linear constraints from the leptonic sectors, we must loop over all possible
textures for the charged leptons, II; », the Majorana neutrinos 4, B and C, and the Dirac
neutrinos X 7. Starting out with the physical requirements, we have

(i) No massless charged leptons, det M, # 0;
(ii) Three generations of massive neutrinos, det A/, # 0;!¢

(iii) A non-zero complex phase in the PMNS matrix, det [M,JWZ, M,,ML] #0,

where the second condition is the only one differing from the conditions in Paper III and
IV. For a type-I seesaw mechanism, the second condition translates into Mg and Mp both
being 3 x 3 matrices with non-zero determinants.

Note also that any two models that are reachable from one another via the following per-
mutations, are degenerate

I, =P T12P;, A, =P AP, 1, =P 1L2P,

(1.A.7)
()= PIS,P, A =PrAP,, B =PrBP, C =P CP, /

as it would simply correspond to a relabelling of flavor indices. Here, P is the three-
dimensional representation of the permutation group S3, with all indices running from
one to six. For time efficiency, degenerate textures are excluded from the loop.

Majorana Neutrino Sector

In total, there are 11 minimal textures for A, Band C that fulfil the constraint of My, being
a3 X 3 symmetric matrix with a non-zero determinant,

16Note that there exist no anomaly-free implementation of the BGL textures with two generations of massive
neutrinos, as shown in Paper IV.
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x 0 0
(1) 4 0 0 x|, B:0, C:0,
0 x 0
x 0 0 0 0 O
(2) A: 10 0 O}, B:({0 0O x], C:0,
0 0 O 0 x 0
(1.A.8)
x 0 0 0 0 O 0 0
3) A: {0 o of,B: 0o x o], c:|0o o ,
0 0 O 0 0 O 0 0 x
0 x 0 0 0 x 0 0 O
(4) A:|x 0 O], B:10 O O}, C:{0 0 x|,
0 0 O x 0 0 0 x 0

where texture (1) and (2) come in three, respectively six, versions — all possible permutations
of A, Band C. For texture (3) and (4), on the other hand, we only need to consider the
presented texture, as permutations of rows and columns solely correspond to a relabelling
of flavor indices.

Here, invariance under the flavor symmetry corresponds to

Ay =t R g g = ot Xt ) g (.A.9)
and equivalently for Cj;, but with the sign in front of X flipped. Hence, texture (1) trans-
lates to

2X, =0, X, + Xl/3 =0, (1.A.10)

and texture (4) to
X0 +X,=0, X, +X,=X5, X,+X,=—X;s (1.A.11)
and so on.

Note that, in contrast to the quark sector, where the textures are known, we do not include
conditions of the form X, + Xy, # 0. For example, with the condition in eq. (1.A.10), the
texture of A will always be forced to have those three non-zero entires (the so-called minimal
texture), but it is not limited to having only this. The solution to the system of equations
may very well allow for one or several additional non-zero entries. As such, the 11 minimal
textures in eq. (1.A.8) actually incorporate every single allowed texture imaginable, up to a
relabelling of flavor indices.
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In addition to this, from the phase-sensitive part of the scalar potential we have one of the
following four conditions

1
XS =+ (Xq>1 - Xq)z) s XS = j:i (Xq)l - X‘Pz) s (I.A.Iz)

where either one is allowed in the case of having only non-zero textures in A. For more
details, see Paper IV.

Charged Lepton Sector

For the charged lepton sector, we have the same minimal textures as in Paper III and IV.
To avoid repetition, we will here present only the final result, which are the following four
minimal textures

x 0 0 0 0 O
(1) I:{0o x o], m:[o o o],
0 0 x 0 0 O
x 0 0 0 0 0
2 m:[0 x o], m:{0o o o],
0 0 0 0 0 x (LA5)
I.A.I
x 0 0 0 0 0 ’
(3) H] 0O 0 O s Hz: 0 x 0 s
0 0 O 0 0 x
0 0 O x 0 0
(4) I o 0 0], 11, : 0 x 0
0 0 0 0 0 x

Dirac Neutrino Sector

For the Dirac neutrino textures, permutation of rows and columns are no longer indepen-
dent from those in the charged lepton- and Majorana neutrino sectors. As a result, besides
fulfilling the constraint of Mp having a non-zero determinant, we must now also con-
sider textures that are equivalent up to permutations. In total, this amounts to six possible
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minimal combined textures,

X © o o o X
S O X O X O
S X © X © O
S X © o o X
X © O X O O
S O X o X ©
X © O © X ©
S X © © o X
S O X X ©O O

which in turn corresponds to 48 possible textures for X; , — eight for each of the textures
displayed above; 111, 112, 121, 211, 122, 212, 221 and 222, where the numbers cor-
respond to whether the non-zero texture appear in ¥; or X. As an example, the eight
possibilities for texture number 2 are given by

x 0 0 0 0 O
(111)  $: 10 0 x|, S:l0 0 o],
0 x 0 0 0 O
x 0 0 0 0 O
(112)  %;:10 0 x|, S:l0 0 o],
0 0 O 0 x 0
x 0 0 0 0 O
(121) 21: 0 0 O ,222 0 0 x s
0 x 0 0 0 O
0O 0 O x 0 0
(211) 1:10 0 x|], ¥:10 0 0],
0 x 0 0 0 O

and so on for 122, 212, 221, 222.

1.A.3 Anomaly-Free Solutions for the BGL Model

Using the procedure described in Sec. 1.A.2, we find a total of three anomaly-free imple-
mentations for the BGL model with type-I seesaw, namely
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vBGL-I Scenario

x x 0 0 0 O
I, %,B=|x x 0|, I 0o 0 0],
0 0 O 0 0 x A
0 0 x (r.A.14)
A=0, C=10 0 x
x x 0
vBGL-IIa Scenario
x 0 0 0 0 O 0 x 0
Hl,Elz 0 x 0 s H2= (X 0 0 s 22: (O 0 0 5
0 0 O 0 0 x 0 0 X
(r.A.15)
x 0 0 0 0 O
A=10 0 0], B=]10 0 x|, C=0
0 0 O 0 x 0
vBGL-IIb Scenario
x 0 0 0 0 0 0 x 0
Hl, ¥y = 0 x 0 (X 0 0 s Yo = (0 0 O R
0 0 O 0 0 x 0 0 x
(1.A.16)
0 0 O x 0 0
A=10 0 x 0O 0 0o, C=0
0 x 0 0 0 O

The corresponding charges for each model are presented in Tab. 1.1.

For the gauged BGL model with three generations of right-handed neutrinos and a type-I
seesaw mechanism, there are hence only three valid implementations. Out of these three,
model I has no flavor-changing interactions in the leptonic sector at tree-level, as II; and
IT, commute, and equivalently for 3. For model Ila and IIb, on the other hand, there
are tree-level flavor-changing interactions mediated by neutral NP scalars and Z’. The
phenomenological validity of either of these models is yet to be determined.
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Table 1.1: Allowed charges for the various models. For model ¥BGL-I and -Ila we have x,;, =
—7x + 2y and x,g = —16x + 5y. Model vBGL-IIb has x,; = (—13x + 4y)/3 and
xp = (—32x+ 11y)/3.

Charges vBGL-I vBGL-ITa vBGL-IIb
[ x
qr X - -
| X
[y
U y —— —
L Xk
[ 2x—y
dg 2x—y —— —
L 2x—y
[ —3x ] [ x—y 1 [ —x—2y
19 —3x —7x+y 3 —17x+2y
| 21x— 06y | | 21x— 06y 39x — 12y
[ —2x—y ] [ —2x—2y | 2x — 5y
er —2x—y —6x 3 —l4x—y
| 30x—9y | | 30x—9y 58x — 19y
[ —4x+y ] [ 0 —4x+y
Ng —4x+y —8x+ 2y = | —20x+ 5y
| 12x—3y | | 12x—3y 20x — 5y
® —x+y —x+y 1[ 3(=x+y)
| —9x+ 3y | —9x+3y 31 —19x+7y
8x —2
N 8x—2y —4x+y ik
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