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Abstract

The central problem of this thesis is estimating receiver­sender node positions from meas­
ured receiver­sender distances or equivalent measurements. This problem arises in many
applications such as microphone array calibration, radio antenna array calibration, mapping
and positioning using ultra­wideband and mapping and positioning using round­trip­time
measurements between mobile phones and Wi­Fi­units. Previous research has explored
some of these problems, creating minimal solvers for instance, but these solutions lack
real world implementation. Due to the nature of using different media, finding reliable
receiver­sender distances is tough, with many of the measurements being erroneous or to
a worse extent missing. Therefore in this thesis, we explore using minimal solvers to create
robust solutions, that encompass small erroneous measurements and work around missing
and grossly erroneous measurements.

This thesis focuses mainly on Time­of­Arrival measurements using radio technologies such
as Two­way­Ranging in Ultra­Wideband and a new IEEE standard 802.11mc found on
many WiFi modules. The methods investigated, also related to Computer Vision problems
such as Stucture­from­Motion. As part of this thesis, a range of new commercial radio
technologies are characterised in terms of ranging in real world enviroments. In doing
so, we have shown how these technologies can be used as a more accurate alternative to
the Global Positioning System in indoor enviroments. Further to these solutions, more
methods are proposed for large scale problems when multiple users will collect the data,
commonly known as Big Data. For these cases, more data is not always better, so a method
is proposed to try find the relevant data to calibrate large systems.
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Popular Summary

Society has always been dependent on good navigation. From using the stars to navigate
the seas, or simply just remembering landmarks to help you go back to an area where there
is a plentiful source of food. These systems of navigation still exist today but with more
urbanised areas and a vastly greater number of people, the demand and precision has also
increased. In modern society, the vast majority of mobile phones, cars and planes all have a
high requirement of good navigation and positioning. For mobile phone users, it can help
you find your way to a specific shop, find local services you may require and also give your
location to others in an emergency. For cars, it can help you find your way from one place
to another and update the route depending on traffic, or to avoid tolls for instance.

One of the main systems that is used today, is Global Positioning System (GPS). This
system has been effective on meeting the high demands of the users, but it comes with its
drawbacks. In urban areas, where the majority of people today live, the buildings can block
the signals from the GPS Satellites. This in turn means the positioning of users can become
inaccurate.

So how can we overcome this issue? This is the key question of this thesis. Here, we
explore using other radio based systems to help navigate and position indoors. One key
infrastructure which already exists in urban areas is Wi­Fi. Most homes and offices, even
telephone boxes, have a Wi­Fi router in them. As part of our work, we have developed
methods to find these routers in order to use them as landmarks to help navigate indoors.
One of the main issues we have incurred due to the complex indoor environment, is that
Wi­Fi measurements we use can also become inaccurate. In our methods we try and find
a model in the data in order to identify the bad measurements. By doing so we can ignore
the bad measurements and accurately find the locations of such Wi­Fi routers.

We also looked at new radio technologies to further increase our precision. These advance­
ments have the potential to help society greatly, and meet the increased needs of navigation
in the future. As we come into the new era of wireless devices, commonly known as 5G,
more and more devices will require positioning and navigation. This generation of wireless
devices has been developed to meet the demands of the Internet of things (IoT). IoT is
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the idea of objects with internet capabilities, such as a toaster. These IoT devices usually
have some form of radio based communication system, such as Wi­Fi, Bluetooth or Ultra­
Wideband (UWB). Although a toaster may not have a need for positioning, IoT devices
could be installed on robots, hospital equipment and even packages. Having the ability
to find or help these objects to navigate is important and advantageous to society. In this
thesis, we also explore using our previous methods to find these radio based devices, in an
environment where there are many devices and multiple users to help give insight to future
requirements.

viii



Populärvetenskaplig Sammanfattning

Samhället har alltid varit beroende av fungerande navigering. Från att använda stjärnorna
för att navigera över haven, eller helt enkelt bara komma ihåg landmärken för att hjälpa
dig återvända till ett område där det finns rikligt med mat. Dessa navigationssystem finns
fortfarande idag men med mer urbaniserade områden och ett mycket större antal män­
niskor har efterfrågan och precisionen också ökat. I det moderna samhället har de allra
flesta mobiltelefoner, bilar och flygplan ett stort krav på väl fungerande navigering och po­
sitionering. För mobiltelefonanvändare kan det hjälpa dig att hitta vägen till en specifik
butik, hitta lokala tjänster som du kan behöva och även ge din plats till andra i en nödsitu­
ation. För bilar kan det hjälpa dig att hitta från en plats till en annan och uppdatera rutten
beroende på trafik eller att undvika vägtullar.

Ett av de viktigaste systemen som används idag är GPS (GPS). Detta system har varit ef­
fektivt för att möta användarnas höga krav, men det har sina nackdelar. I stadsområden,
där majoriteten av människor bor idag, kan byggnaderna blockera signalerna från GPS­
satelliterna. Detta innebär i sin tur att användarnas placering kan bli felaktig.

Så hur kan vi bemöta det här problemet? Detta är den viktigaste frågan i den här avhand­
lingen. Här utforskar vi andra radiobaserade system för att hjälpa till att navigera inomhus.
En viktig infrastruktur som redan finns i stadsområden är Wi­Fi. De flesta hem och kon­
tor, även telefonlådor, har en Wi­Fi­router i sig. Som en del av vårt arbete har vi utvecklat
metoder för att hitta dessa routrar för att använda dem som landmärken för att navigera in­
omhus. Ett av de största problemen vi har haft på grund av den komplexa inomhusmiljön
är att Wi­Fi­mätningar vi använder också kan bli felaktiga. I våra metoder försöker vi hitta
en modell i uppgifterna för att identifiera de dåliga mätningarna. Genom att göra det kan
vi ignorera de dåliga mätningarna och hitta exakt platserna för sådana Wi­Fi­routrar.

Vi tittade också på nya radiotekniker för att ytterligare öka vår precision. Dessa framsteg har
potential att hjälpa samhället kraftigt och möta det ökade navigationsbehovet i framtiden.
När vi kommer in i den nya eran med trådlösa enheter, allmänt känd som 5G, kommer fler
och fler enheter att kräva positionering och navigering. Denna generation trådlösa enheter
har utvecklats för att uppfylla kraven från Internet of Things (IoT). IoT är idén att ha objekt
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med internetfunktioner, till exempel en brödrost. Dessa IoT­enheter har vanligtvis någon
form av radiobaserat kommunikationssystem, till exempel Wi­Fi, Bluetooth eller Ultra­
Wideband (UWB). Även om en brödrost kanske inte har något behov av positionering,
kan IoT­enheter installeras på robotar, sjukhusutrustning eller till och med i paket. Att
ha förmågan att hitta eller hjälpa dessa objekt att navigera är viktigt och fördelaktigt för
samhället. I denna avhandling undersöker vi också våra tidigare metoder för att hitta dessa
radiobaserade enheter, i en miljö där det finns många enheter och flera användare som kan
ge insikt om framtida krav på tekniken.
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Chapter 1

Computer Vision without Vision:
Methods and Applications of Radio
and Audio Based SLAM
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1 Introduction

Navigation has been fundamental to human civilisation and animal­kind alike. By being
able to find and return to places rich in resources gives a person or animal a large evolution­
ary advantage. For humans the principle for navigation has changed very little over time.
We have almost always used reference points to navigate relatively to them, ie. Landscape
and Stars. With the advancement in knowledge, cartography has played a large part in
navigating with more precision, allowing for faster trade routes and military advantages.
Now in the modern era, satellites for a Global Positioning System (GPS) are used from
mobile devices to vehicles, with a precision of roughly two metres. Although this is a very
good precision, issues arise when in urban or precipitous regions due to the reflections and
attenuations of the radio waves sent to and from the GPS satellites. This problem then
gives rise to the research in this thesis. Due to requirements of modern navigation systems
demanding higher precision indoors and in urban areas, robust solutions must be found.
Some solutions do exist currently but each have their own drawbacks. One such solution
is Bluetooth beacons. They are very cheap and most mobile platforms already have the
required existing hardware but they have a short range. For full coverage of an office build­
ing, it would require hundreds, if not thousands of beacons to provide a good precision
in positioning, with each of the beacons to be calibrated beforehand. For most companies
this would be unfeasible. Another such technology could be ultrasound. Most office build­
ings already have loudspeakers located throughout the building, but young children and
animals can hear these frequencies, which for the case of guide dogs can be problematic.

The key challenges in this area, is the ability to calibrate the locations of the broadcasting
media, ie. the reference points, to find a suitable media such that the infrastructure already
exists and widely available in urban areas and lastly, find a robust solution to calibrate the
locations of the broadcasting media so that it can be done though crowdsourced data.

From existing research completed here at the Centre of Mathematical Sciences, LTH, we
have solved algebraically, how to find the locations of the broadcasting media and relative
positions to them with the smallest amount of measurements required [1, 2]. This is what
we call a minimal solver. Further research has also been done on using these minimal solvers
to calibrate larger systems using both sound and Wi­Fi signal strength, [3].

In this thesis, the idea of localisation and mapping are explored through the techniques
more commonly used in Computer Vision. We have investigated existing and new tech­
nologies, along with robust algorithms to simultaneously calibrate the locations of access
points and microphone and the relative position of the user. We also look into addressing
large volume of crowdsourced data and using this to solve the problem.

2



2 Time of Arrival

Time of Arrival is a simple method to discover the location of a target. Using three reference
points, if you measure the time it takes for a emission, such as a sound event, to go from the
target to the reference points, or visa verse, then it is possible to find the targets location.
This is computed based on the prior knowledge that, in this case sound, has a constant
velocity. Due to the constant velocity, c, time measurements can be converted into distances
to each of the three reference points, di,

di = c(ti,end − tstart). (1.1)

In a 2D space, these distances then constitute as a solution set for each of the reference
points, ri, in the form of circles. In the case of having three or more circle solution sets,
then there exist one point that lays on each of these circles. This is the intersection of all
circles hence this is the target location, s, (see Figure 1.1). This can be formally expressed
as,

di = ∥ri − s∥2. (1.2)

These principles form the basis of the majority of navigation systems, for mobile phone
mast triangulation and GPS from satellites with a known position. Here we can see why
precision of knowing the reference points and the distance measurements are key to reliable
navigation. For satellites, they use atomic clocks to measure the time it takes for a radio
signal to reach the user.

What if the reference points are not known? This is the Self Calibration problem. The
idea of the self calibration problem is to find the locations of the reference points and the
target location at the same time. Based on the existing framework, it can be seen that there
will not be one solution. Each reference point will have the freedom to rotate in a circle at
distance di, around the target location. Further more, the coordinate system will be lost,
so a relative coordinate system can only be used (see Figure 1.2).

To constrain this system, more information will be required. One method to do this,
is to allow the reference point to communicate with each other and take measurements.
This means that the reference points will know the distances between them as well as the
distances to the target. This then would form a rigid graph, where all the points can be
calculated through Multidimensional Scaling, [4]. This method works very well for ideal
measurements, but when this is applied to a realistic environment, it is not always feasible
for the reference points to communicate with each other.

Increasing the number of reference points would also not help, once again all the reference
points will have the freedom to rotate. One possibility would be to increase the number
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Figure 1.1: Illustration of trilateration. Receivers positions, r, (Blue squares), Sender positions, s, (Red circles) andmeasurements,
d, (black circles and lines) .

of targets. From now on reference points will be called receiver positions and the targets
will be called sender positions. If we increase the number of sender positions by two, then
there will be enough information, the reason why will be explained in a later section. All
senders will then communicate to all receivers for, in this case, a total of nine measurements.
This forms a rigid bipartite graph, ie. the receivers have not communicated with any other
receiver and the senders have not communicated with any other sender. By having these
extra senders, the receivers will no longer be able to rotate around a given sender, as this will
break the constraints of the other senders, sj. This then means that despite not knowing
the locations of the receivers, ri, they must be in a specific configuration in order to satisfy
the measurements,

dij = ∥ri − sj∥2. (1.3)

From Algebraic Geometry it is found to have a finite number of solutions/ configurations
(see Figure 1.2), [1]. This is discussed further in Section 4.

3 Technologies and Hardware

As discussed before there are currently many systems available for navigation and localisa­
tion. This section will go over the different measurement media used in our methods and
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Figure 1.2: Illustration of Self-Calibration of a minimal solution of three receivers and three senders in 2D. Receivers positions,
r, (Blue squares), Sender positions, s, (Red circles) and measurements, d, (black lines).

give an overview of the other systems which serve as a comparison.

3.1 Global Positioning System (GPS)

GPS is a Satellite based navigation system. It was first developed by the U.S. Department
of Defence in 1978 but became publicly available in 2000. GPS is a radio based system that
uses satellites to broadcast their current time and position constantly. In doing so the user
on the ground can find the time delay between the time the signal was sent and received.
Since the speed of a radio signal is constant, then the distance between the user and the
satellite is known. Therefore if the distance to three other satellites are also found, and since
the location of the satellites is also known, then it is possible to find your location, this is a
trilateration method [5]. Of course the locations calculated using this system are not perfect.
The satellites must have atomic clocks in order to have the most stable and accurate time to
broadcast as well, but these clocks do drift so there are routines to synchronise these clocks
for better performance. Similarly for the GPS device on the Earth. With these methods in
place GPS can have a precision of 4.9m on average using smartphones, [6]. Further errors
arise when the user is in urban areas. The radio signal for the satellites are attenuated and
reflected by building and trees. This means that the timed signal is not received or has a
multipath component hence the signal is received by the user at a later than normal time,
which can lead to large errors. Today GPS is more commonly known as Global Navigation
Satellite System (GNSS), which encompasses multiple Satellite systems, GPS, GLONASS,
Galileo and BeiDuo. These are used to give a reliable service throughout the globe.
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3.2 Received Signal Strength Indicator (RSSI)

RSSI is, more commonly, a Wi­Fi based estimate of the signal strength received at the user
from a Wi­Fi router. As a user gets closer to the Wi­Fi router Signal Strength Indicator
increases and is measured in terms of dBm. The power of the broadcasted radio signal from
Wi­Fi router cannot be known to the user whom receives the signal. In order to estimate
the distance between the user and the Wi­Fi router, a path loss model is commonly used
[7]. An example of such a model is

P = C− 10γlog10(d) + X, (1.4)

where P is the RSSI value in dBm, C is the measured power at 1m, γ is the path loss
exponent, d is the estimated distance and X is a normally distributed noise. More formally,
it can be seen that to calculate the distance, C and γ must be estimated to give an accurate
distance. These types of measurements can be used in Time­Difference­of­Arrival (TDOA)
systems, since the unknown terms create offsets between the user and Wi­Fi router so the
difference in relative RSSI are used to estimate position.

RSSI measurements unfortunately suffer from many multipath components, which can
make it difficult to have reliable localisation systems. Most Wi­Fi routers are located in­
doors where environments are complex and have many walls, which can attenuate the radio
signals.

3.3 Ultra­Wideband (UWB)

Ultra­Wideband devices are commercially available, radio based low powered devices that
broadcast on a large bandwidth. More interestingly to us it also comes with a protocol,
which allows UWB devices to range between devices using two­way timing, [8]. Due to its
low energy consumption, these devices are ideal for robots and Internet of Things. In our
work we have used the Decawave DWM1000 chip on small quadcopter drones, as seen in
Figure 1.3.

These UWB device are becoming more common place, since September 2019 Iphones have
had UWB capabilities and other major companies are looking to follow. Unlike RSSI, the
two­way timing protocol allows for more reliable measurements. Two­way timing works
by the sender device sending packets back and forth with the receiver UWB device. The
sender first sends a Range request at time ts1 to the receiver at time tr1 with its ID. The
receiver then responds after a delay at time tr2 which then arrives at the sender again at time
ts2 . After another short delay at time ts3 , the sender then communicates the ID, ts1 , ts2 and
ts3 back to the receiver, see Figure 1.4.
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Figure 1.3: The Bitcraze quadcopter with Decawave DWM1000 UWB chips.

The receiver can then calculate the range, d, using the data it has received by the using,

d =
c((ts2 − ts1)− (tr2 − tr1) + (tr3 − tr2)− (ts3 − ts2))

4
, (1.5)

for a constant c, the speed of light. At this point the receiver can then report back to the
sender the measured distance, but this is optional.

For this thesis effort was made to characterise these measurements, to try find a suitable
model that would describe them. During the writing of this thesis, there were publications
on characterising these measurements, such as [9], but many used custom antennas, which
you would not find on an commercial device, as it may skew the reported precision of
such devices. Therefore an experiment was conducted to find these characteristics using
the Bitcraze quadcopter and the Decawave DWM1000 UWB devices.

As it can bee seen in Figure 1.5, there is a distribution with an overall mean of 4.6073m and
a standard deviation of 0.1214m. This distribution appears to be a combination of two
Gaussian distributions. The main distribution occurs around 4.5m and another appears
to be at around 4.8m. The second distribution is believed to be a reflection off the table
that the receiver with a stand was on. The stand that held receiver was 12cm tall, which
would correspond to the second distribution. Looking again at the first distribution, the
measurements do correspond to a Gaussian distribution with an error of ±0.2m.
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Figure 1.4: Illustration of Two-way timing protocol.

3.4 Wi­Fi 802.11mc Round­Trip Time (RTT)

The IEEE Standard 802.11mc, [10], is a Wi­Fi protocol for performing Round­Trip Time
measurements. It is also known as Fine Time Measurements (FTM). This protocol is rel­
atively new, although the hardware for this protocol has been around for years, it has only
become widely commercially available for the past year. With the release of Android 10,
this protocol as seen more widespread use, with a handful of routers and mobile phones that
currently support it. Similarly to UWB this form of RTT measurements achieves higher
precision than RSSI due to less interference from multipath components. RTT works by
the sender (mobile phone) device sending packets back and forth with the receiver (router).
The sender first sends a Range request. The receiver then responds after a delay at time tr1
which then arrives at the sender at time ts1 . After a short delay at time ts2 the sender then
communicates back to the receiver arriving at tr2 . The times tr1 and tr2 are then sent back
to the sender for the distance to be calculated, see Figure 1.6.

Similarly to before the distance, d, is calculated using,
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Figure 1.5: Histogram of 17647 UWB Two-way time measurements at a fixed distance of 4.55m.

d =
c((tr2 − tr1)− (ts2 − ts1))

2
, (1.6)

for a constant c, the speed of light.

Unlike UWB two­way timing, when this protocol is used in Android devices, this RTT
measurement is repeated in bursts to give a more accurate measurement, but also a stand­
ard deviation is returned to the sender giving additional measurements to the user. Once
again, due to this protocol being relatively new, experiments were performed to find the
characteristics of the measurements. A Google Pixel 4 XL mobile phone was used with
Android 10. The Google Mesh routers were used as the receivers.

As it can be seen in Figure 1.7, once again we have a Gaussian distribution with a mean of
4.75m and a standard deviation of 0.33m. It can be noted that there appears to be an offset
from the groundtruth distance 4.19m. This offset has only been noticed when using the
Android implementation and not previous implementations used for publications. This
offset is mentioned in the notes for the RTT API in Android but regardless of this, the
precision of RTT is usually ±1.2m.
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Figure 1.6: Illustration of RTT protocol.

3.5 Massive Multiple Input and Multiple Output (Massive MIMO)

Massive MIMO is a relatively new technology, the main principle of which is to have base
stations with a large number of antennas. In doing so these types of base stations have the
ability to provide a good service to many terminals at the same time. This technology is
currently being used to provide 5G services to many users at high bandwidths. So what
use is this to positioning? By having many antennas in an array, it is possible to obtain
the Angle of arrival (AoA) and Angle of Departure (AoD) of a communicating signal in
addition to RSSI. Further to this it is possible to find out if the signal was Line of Sight or
not, giving further information on the geometry of the environment, [11].

With regards to the accuracy of the measurements, this is still relatively unknown. In paper
vII, we estimate a accuracy of 13 cm. There has been many different novel techniques, but
no standardisation. The aim from this technology is to improve the accuracy from LTE
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Figure 1.7: Histogram of 2987 RTT measurements at a fixed distance of 4.19m.

which has an accuracy of 10m, [12].

4 Time­of­Arrival Minimal Solvers

As discussed in Section 2, Time­of­Arrival (TOA) can have a fixed number of solutions for
the self­calibration problem. In order to find the receiver positions ri and sender positions
sj, we can look at the square form of Equation (1.3),

d2
ij = ∥ri − sj∥2

2, (1.7)

⇒ d2
ij = (ri − sj)

T(ri − sj), (1.8)

⇒ d2
ij = rTi ri + sTj sj − 2rTi sj. (1.9)

This can be thought of as equivalent to the original TOA problem equation (1.3) since the
distance measurements are real and positive. By performing a series of invertible linear
combinations of d2

ij we can form

B =


d2

11 d2
12 − d2

11 . . . d2
1n − d2

11
d2

21 − d2
11

. . . B̂
d2
m2 − d2

11

 , (1.10)
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where the compaction matrix B̂ ∈ R(m−1)×(n−1) can be defined as having entries B̂ij =
d2
i,j − d2

i1 − d2
1j + d2

11

−2
, with i = 2, . . .m and j = 2, . . . , n. The first row and column of

the matrix B are used as constraints for the solution.

Here we can form a factorisation problem for B̂, where B̂ = RTS. The matrix Ri can be
thought of as the vector from the first receiver r1 to the receivers ri, i.e.Ri =

[
(ri − r1)

]
,

similarly for the matrix Sj =
[
(sj − s1)

]
. This formulation of R and S then implies that

they must be in a 3D affine space, which in turn implies that the matrix B̂ has at most rank
3. Due to this fact, we can use this information to make a low rank approximation of the
matrix, this is explained further in section 6.1. This rank constraint also implies that we
require m ≥ 4 receivers and n ≥ 4 senders.

By fixing r1 = 0 at the origin and s1 = Lb as a vector from the origin for an invertible
transformation matrix L and vector b. Hence, the problem is reformulated as follows,

ri = L−TR̃i, i = 2 . . .m,

sj = L(S̃j + b), j = 2 . . . n,
(1.11)

where R̃ = LTR, S̃ = L−1S, and hence B̂ = R̃TL−1LS̃ = RTS.

Using this parametrisation, the constraints from the first row and columns of matrix B,
become

d2
11 = (r1 − s1)

T(r1 − s1) = sT1 s1 = bTLTLb

= bTH−1b, (1.12)
d2

1j − d2
11 = sTj sj − sT1 s1 = S̃T

j L
TLS̃j + 2bTLTLS̃j

= S̃T
j H

−1S̃j + 2bTH−1S̃j, (1.13)

d2
i1 − d2

11 = rTi ri − 2rTi s1 = R̃T
i (L

TL)−1R̃i − 2bTR̃i

= R̃T
i HR̃i − 2bTR̃i, (1.14)

where the symmetric matrix H = (LTL)−1. In order to solve this system of equations,
there are in total nine unknowns, six unknowns for L and three unknowns for b.

The symmetric matrix H = (LTL)−1 can also be written as H =
adjH
detH , hence the system

of equations become,

d2
11detH− bTadjHb = 0, (1.15)

(d2
1j − d2

11)detH− S̃T
j adjHS̃j − 2bTadjHS̃j = 0, (1.16)

d2
i1 − d2

11 − R̃T
i HR̃i + 2bTR̃i = 0. (1.17)
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This system of equations can be solved as a system of polynomials. As we can see from equa­
tion (1.17), this equation is linear in its constraints, whereas equations (1.15) and (1.16) are
not. We can therefore turn to a branch of mathematics called Algebraic Geometry. Algeb­
raic Geometry classically is the study of solving multivariate polynomials, but more recently
has also introduced computational methods and software packages, such as Macaulay2 [13],
for solving polynomials algebraically.

For ease of understanding, I will introduce very basic concepts of Algebraic Geometry.
Further details of which can be found at [14]. We can define a polynomial f as a finite linear
combination of monomials X = {x1, x2, . . . , xn} which is a finite product of variables.
With a set of polynomials, we can form what is known as an Ideal I. An Ideal can be
formulation as follows,

I = ⟨f1, f2, . . . , fm⟩ =
{ ∑

l=1,m

hlfl | hl ∈ C[X]
}
. (1.18)

Since all the polynomials f = 0 for a some selection X then the polynomials can also be
expressed as a linear combination. The solutions to this Ideal I, is known as a variety V(I),
where

V(I) = {x ∈ Cn | f(x) = 0, ∀f ∈ I}. (1.19)

This is essentially the goal for polynomial solving. We wish to find the values for the
monomials such that the polynomials are solved. Properties that are found to be advant­
ageous, is that a Gröbner Basis G can be formed. A Gröbner basis is a type of generating
set of polynomials for an ideal I. In simpler terms this is a set basis polynomials that can
be used to form the polynomials in an Ideal. The advantage of the Gröbner Basis is that
the number of possible monomials less than highest order terms in the Ideal is the same
as the number of solutions in the variety V(I). There are various methods to finding such
Gröbner Bases and Varieties, details of which can be found [14, 15].

Going back to the problem at hand, equations (1.15),(1.16) and (1.17) can be used to form
an ideal. For the m = n = 5 minimal solver, the linear constraints in (1.17) reduce the
system to five equations in (1.15) and (1.16) with five unknowns X = {x1, x2, x3, x4, x5} and
42 solutions for det(H) ̸= 0, [2].

5 Random Sample Consensus

Random sample consensus (RANSAC) is a key tool for robust model estimation. The al­
gorithm was first published by Fischler and Bolles as a method for the Local Determination
Problem, [16]. When using data that has large amounts of errors, this can cause havoc for
optimization solvers leading to incorrect local minima solutions or divergence. One way

13



to work around this, is to try and determine the data that has the errors, in other words
outlier detection. In doing so, you can find a subset of the data that does correspond to a
given model. The RANSAC method takes advantage of minimal solvers. A minimal solver
uses the smallest amount of data in order to obtain a solution. These can be computed
quickly and give a solution which can then be analysed. RANSAC can be broken down
into 5 main steps.

1. Randomly select a minimal subset of the data required for a model

2. With this subset compute the model parameters

3. Using a predefined threshold, find how many other points fit this model

4. Repeat steps 1­3, N times

5. Choose the model with the most number of points and best fit. This will be the
inlier set.

The simplest example of the RANSAC method is 2D line fitting. To fit a line, only two
data points are required. As seen in Figure 1.8, there are two possible line fittings have been
drawn l1 and l2. One of which is clearly the better solution. By using a threshold, ϵ, then
we can quantify which of the two lines is better, by counting the number of points that are
in the region of the threshold.

b

b

b

b

b b

b b
l2

l2 + ǫ

l2 − ǫ

l1

l1 − ǫ

l1 + ǫ

Figure 1.8: Illustration of RANSAC Line fitting. Two possible lines (blue) are drawn with their thresholds (dashed blue) and data
points (red).

By iterating enough times, it can bee seen that a solution can be found quickly and the
estimate of the inliers can be found. Now when calculating the final model parameters, we
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can use the inlier dataset and ignore the gross errors to hopefully give the global optimum.
This algorithm has two main issues. One issue is trying to determine the threshold used
in step 3. Too large and there is a possibility of introducing too many points with gross
error, too little then there is a possibility of not finding a good estimate of the inlier set.
The other issue, is to determine the number of iterations, too few and the correct inliers set
can be missed, too many is a waste of computational time, for very little gain. Regardless
of these issues, RANSAC itself does not guarantee optimality, [17], but there are variants
of the RANSAC algorithm that does, [18].

6 Matrix Factorisation

For many computer vision problems, such as structure­from­motion [19], matrix factor­
isation is a key part in the calculation. Given a matrix H ∈ Rm×n of rank r, this can be
factorised as

H = AB, (1.20)

where A ∈ Rm×r and B ∈ Rr×n. This factorisation can be performed in many different
ways, using different algorithms which can give different results. The different results are
fine, as there is no unique solution. For every solution there exists an invertible matrix
L ∈ Rr×r such that

H = AB = (AL)(L−1B). (1.21)

The rank of a matrix H is the maximum number of linearly independent columns. For
matrix H, this means

rank(H) ≤ min(m, n). (1.22)

With rank in mind a common factorisation method is Singular Value Decomposition
(SVD), which is denoted as follows,

H = USVT (1.23)

where U ∈ Rm×m and is orthogonal, U ∈ Rn×n and is orthogonal and S ∈ Rm×n and
is a diagonal matrix with non­negative elements. The elements of S are the singular values
σi(H) and are commonly ordered in descending order, ie.

σ1(H) ≥ σ2(H) ≥ ... ≥ σr(H) ≥ 0. (1.24)

Here the rank is equal to the number of non­zero singular values.

6.1 Low Rank Matrix Approximation

In this thesis many of the problems have full rank, due to using measurements which have
errors. From studying the problem we know that these problems should have a fixed rank.
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Therefore it is possible to approximate the measurements with a fixed rank. The rank ap­
proximation can be formulated as follows, [20],

min
K

∥H−K∥2
F subject to rank(K) = t ≤ r, (1.25)

where K is a low rank approximation of H. This can be found by truncating the singular
matrix S in H = USVT, ie.

H = Udiag(σ1, σ2, ..., σr)V
T u Udiag(σ1, σ2, ..., σt, 0, ..., 0)VT = K. (1.26)

Now for a problem where the rank is known, for example 2, then

Ĥ = Udiag(σ1, σ2, 0, ..., 0)VT. (1.27)

6.2 Matrix Factorisation with Missing Information

Again when working with real measurements it is never guaranteed the that you get meas­
urements all the time. When working with Wi­Fi for instance, walls can attenuate the radio
signal or in computer vision image points can be obscured by other object. Due to these
reasons, the matrix you wish to factorise has missing data. Therefore strategies are created
to work around these problem areas. One such strategy is to reorder the matrix in such a
way, so that all the missing data is in one smaller block of the matrix and a full block is
created which can then be factorised.

For large amounts of missing data, such as structure for motion problems, reorganising the
matrix is not possible. These types of problems often form a banded matrix structure. This
is due to the points of an object being obscured by the object itself as the camera rotates
around the object. For these types of problems most of the matrix has missing data. The
strategy for this problem is to solve sub­blocks of the matrix. We can define a matrixHwith
rank r, which consists of two sub­matrices HA and HB where rank(H) = rank(HA) =
rank(HB) = r, as shown in Figure 1.9. Both sub­matrices contain no missing entries. This
in turn allows for each sub­matrix to be factorised,

HA = UAV
T
A , (1.28)

HB = UBV
T
B . (1.29)

Since the factorisations are not unique then both HA and HB have ambiguities, that is
there exists an invertible matrix L such that,

HB = (UBL)(L
−1VT

B) (1.30)
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Figure 1.9: Illustration of the matrix H with it two sub-blocks HA (yellow) and HB (blue). The overlapping region, HAB, is
shown in green and the missing data, ?, is in white.

In this current form, we have two separate factorisations, if these two sub­matrices HA and
HB have a sufficiently large overlapping region, which we can define as HAB ∈ Rm×n.
Here m and n must be ≥ r in order to maintain the rank of H, hence a sufficiently large
overlapping region. Since the overlapping region exists in both factorisations, then

HAB = ÛAV̂
T
A = ÛBV̂

T
B , (1.31)

⇒ HAB = ÛAV̂
T
A = (ÛBL)(L

−1V̂T
B), (1.32)

where V̂ and Û are the corresponding sub regions in the factorisation of HA and HB .

Now we can find L such that

ÛA = ÛBL, (1.33)
V̂T

A = L−1V̂T
B , (1.34)

this can be solve by least squares and forms the optimisation problem,

min
L

∥ÛA − ÛBL∥2
F + ∥LV̂T

A − V̂T
B∥2

F. (1.35)

Using this solution, one can form the whole factorisation by concatenating UA with UBL
excluding the overlapping region and similarly with UVA with L−1VB again excluding
the overlapping region. Hence

H = UVT =

[
UA

ŨBL

] [
VT

A L−1ṼT
B
]
, (1.36)

where Ũ and Ṽ represent the non overlapping region.
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7 Summary of Estimation Problems

In this section, I will give a summary of the estimation problems studied in this thesis. As
discuss in previous sections of this thesis, when the measurements are perfect, the theory
already exists to solve problems, like Structure­from­Motion and TOA self calibration. Is­
sues arise when working with real measurements, where not all measurements are accurate
and in fact sometimes missing. For these problems, robust algorithms must be made to
make this theory useable and reliable. Throughout the research conducted for this thesis,
each of the problems must undergo a non­linear optimisation stage to find the local min­
imum. This form of optimisation is very sensitive to outliers (bad data), and if the outliers
are included, we will arrive at a unusable local minimum. In the cases studied as part of
this thesis, we test and formulate methods to classify inliers (good data) from the outliers.
By optimising over the inlier set, we can form usable solutions.

7.1 Low Rank Matrix Factorisation with Missing Data and Outliers

When it comes to low rank matrix factorisation with missing data and outliers, the previous
section has shown how to handle missing data and low rank approximations. When work­
ing with problems in computer vision geometry, such as Affine Structure­from­Motion
problems, where the observation matrix is factorised to obtain the camera motion and the
3D structure, these types of problems have structured data but do contain missing data and
outliers. To overcome the outliers, an alternative formulation of matrix factorisation must
be made. This section forms the basis for Paper Iv and has influence on Paper v. Given
the matrix H ∈ Rm×n and we wish to find a low rank factorisation given by the SVD,
K = ÛSV̂T where rank(K) = t. Here we can shorten K ∈ Rm×n by combining the
singular matrix S with one of the unitary matrices Û or V̂T, such that K = UVT, where
U ∈ Rm×t and VT ∈ Rt×n. Then is it possible to formulate the problem as,

e = ∥H−UVT∥F. (1.37)

Since the matrix H contains missing elements, we can introduce an indexing matrix W
with dimensions m× n whose elements are

Wi,j =

{
1 if Hi,j ∈ R,
0 otherwise.

(1.38)

. Therefore the formulated problem can be amended as follows,

e = ∥(H−UVT)⊙W∥F, (1.39)

where ⊙ represents element­wise multiplication and a residual can be formed ar ri,j =
(Hi,j − Ui,.V

T
.,j) ⊙ Wi,j. From understanding the type of data we are working with, it

18



can be assumed that inlier residuals approximately follow a Gaussian distribution, whereas
outlier residuals have approximately uniformly distributed errors. This assumption in turn
makes it better to form a truncated squared error.

l(ri,j) =

{
r2i,j if |ri,j| ≤ ϵ,

ϵ2 otherwise.
(1.40)

For some reasonable error limit ϵ. With the assumption of good measurements, the prob­
lem formulation for low rank matrix factorisation with missing data and outliers can then
be made as follows,

min
U,V

∑
i,j

l(ri,j). (1.41)

It is further possible to update the indexing matrix W, to only include the inlier set, hence
outliers and missing data can be set to zero.

7.2 Time­of­Arrival Estimation with Missing Data and Outliers

This section forms the basis for Papers I, II, v and vI. In Section 4, it has been discussed how
to solve TOA problems. Once again, these solvers rely on accurate measurements, which
is not possible when using a media, such as WiFi IEEE 802.11mc, that have a variety of
erroneous measurement due to complex indoor environments. Much of this thesis focuses
on creating robust methods for solving such issues. By studying the characteristics of the
TOA measurements for a particular media, we can estimate the type of noise these meas­
urements have. For the most part of thesis, inlier measurement typically have a Gaussian
distribution, therefore the problem can be formulated as follows,

dij = ∥ri − sj∥2 + ϵij. (1.42)

Here the errors ϵij ∈ N(0, σ) are assumed to have a zero mean Gaussian distribution. In
reality only inlier measurements will be a zero mean Gaussian distribution, for a complex
environment, like an office, radio signals reflect off surfaces causing multipath components,
and some measurements are missed completely. With this in mind, we can then reformu­
late the problem to function for only inlier measurements, giving rise to the optimisation
problem,

min
r,s

∑
(i,j)∈W̃

(di,j − ||ri − sj||2)2. (1.43)

Here, once again we introduce an indexing matrixWwith dimensionsm×nwhose elements
are

Wi,j =

{
1 if di,j ∈ R,
0 otherwise.

(1.44)
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At this point the problem formulation can ignore the missing information but all the meas­
urement are still assumes to be inliers. If the subset W̃ contains no outliers and if the ini­
tialisation for the optimisation problem is good, then the l2­norm can give good estimates.
Otherwise the optimisation will find a poor estimates. It is imperative that we try to ex­
clude the outlier measurements so we can find good estimates of receiver positions r and
sender positions s. Finding good estimates of the receiver positions r, has more importance
for real world calibration, as other less computationally expensive methods can be used to
track senders but they require good estimates of the receiver positions r. Hence a strategy
can be made, such that the focus is finding good measurements.

In our papers we present a RANSAC scheme to identify these inliers. By understanding
the geometry of the model used, it can be found that the compaction matrix, B̂, must
be of fixed rank with relation to the dimensionality of model, i.e. rank(B̂) = 3 for a 3D
setup. Using this fact, a minimal number of receivers are selected along with a minimal
number of senders to form a minimal B̂ with a fixed rank. This is then factorised and
a unit vector v is selected from the left null space. Using the same receiver selection, a
compaction matrix Ĉtest is formed using the rest of the senders, that have not missing data.
In doing so we can now test to see if the rest of the data is orthogonal to the selected unit
vector v i.e. if a vector from Ĉtest, which we can define as ctest, is orthogonal to v, that can
be expressed as |v.ctest| ≤ T where T is a reasonable tolerance. For the measurement that
satisfy |v.ctest| ≤ T, these measurements can be defined as an inlier. This is then repeated
many times to find the most amount of inliers.

When a inlier set has been identified, this can then be used to solve the TOA self calibration
problem. The inliers are used to form a complete and low noise compaction matrix B̂opt,
and minimal solvers are used to find the parameters ofL and b. This then hopefully creates
a good initial estimate of the receiver positions r and sender positions s. At this stage we can
perform Levenberg­Marquardt optimisation, [21, 22], to refine the receiver positions r and
sender positions s and solving the optimisation problem equation (1.43). From this point,
residuals that don’t follow the error term ϵij and are non Gaussian, can also be classified as
an outlier. The process of finding inliers and classifying outliers can be repeated multiple
times, to find the most amount of inliers while maintaining good estimates.

7.3 Constant Offset Time­Difference­of­Arrival Estimation with Missing Data
and Outliers

This section deals only with Paper III, but the general concepts are seen in all papers. Con­
stant Offset Time­Difference­of­Arrival (COTDOA) self­calibration is the problem of es­
timating receiver positions r and sender positions s in the presence of a unknown constant
offset. This problem lays between TDOA and TOA. Time­difference­of­arrival problem,
[23], is the problem of estimating receiver positions r and sender positions s which can
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allow for a different offset o for every j, i.e.

zij = ∥ri − sj∥2 + oj. (1.45)

Time­of­Arrival however has no offset oj.

The type of media that is suitable for COTDOA would be a repeating signal, such as a
repeating sound chirp. The waveform of such a chirp is irrelevant for this scenario, just
that it is repeated on a regular period. These chirp emissions occur at time Tj and are
unknown, but can be written as follows,

Tj = k1j+ k0, (1.46)

where k1 is the known interval.

Similar to the other problems like TOA, the problem we are considering involvesm receiver
positions ri and n sender positions sj. If the chirp event j is then detected at receiver
positions ri at time tij, then a distance can then be calculated,

c(tij − Tj) = ∥ri − sj∥2, (1.47)

for a constant velocity c.

Since the time of the first chirp event is unknown but the period is known, then we can
form a measurement matrix zij,

c(tij − Tj) = ∥ri − sj∥2, (1.48)
⇒ c(tij − k1j− k0) = ∥ri − sj∥2, (1.49)
⇒ c(tij − k1j) = ∥ri − sj∥2 + ck0, (1.50)

⇒ zij = ∥ri − sj∥2 + o. (1.51)

We can then assume in realistic environments, the errors in the measurements are ϵij ∈
N(0, σ), and that not every measurement will be detected, hence missing information,
then we can also define a indexing matrix W with dimensions m× n whose elements are

Wi,j =

{
1 if zi,j ∈ R,
0 otherwise.

(1.52)

The problem can be formulated as follows,

z̃ij = ∥ri − sj∥2 + o+ ϵij, (1.53)
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which in turn can formulate the optimisation problem for parameters θ1 = {r, s, o},

min
θ1

f(θ1) =
∑

(i,j)∈Win

(zij − (∥ri − sj∥2 + o))2. (1.54)

In a similar spirit to the TOA problem, a compaction matrix M = UTV can also be
formed whose elements are

Mij = (zij − o)2 − ai − bj = uTi,.v.,j. (1.55)

This compaction matrix has a fixed rank of 3 and a relaxed optimization problem can be
formed with for parameters θ2 = {U,V,a,b, o},

min
θ2

f(θ2) =
∑

(i,j)∈Win

(
zij − (

√
uTi vj + ai + bj + o)

)2

. (1.56)

As part of the research for this problem, a minimal solver was found for m = n = 5. This
solver gives four solutions for the offset o. A RANSAC method was then created using
this minimal solver. Five receivers and five senders were randomly selected, then the four
solutions for the offset o is calculated. For each o, the parameters θ2 were calculated and
used to test of inliers in the remaining senders according to equation (2.28). The solution
for o, is then used to find more inliers in a RANSAC scheme similar in manner to the TOA
RANSAC scheme. Once an inlier set is found, then optimisation using equation (1.54)
is performed to refine the parameters of receiver positions r and sender positions s in the
presence of a unknown constant offset o and to refine the inlier indexing matrix W.

8 Topics for Future Research

The papers studied in this thesis, focus heavily on calibration of receiver positions and
sender positions in TOA and related problems. Research efforts were in general, solving
these highly non­linear problems when the measurements suffered from errors and miss­
ing information. We have also investigated commercially available technologies to simul­
taneously calibrate receiver positions and sender positions and look into addressing large
volume of crowdsourced data. Although these papers have shown ways to overcome these
problem, there are always improvements that can be made and other problems arise.

One area in particular I could imagine future research would be a better understanding of
IEEE 802.11mc measurements. In our models we assume a Gaussian distribution in the
errors. Looking at Figure 1.7, we can see this assumption is not quite true. The measure­
ments seem to show a second peak at a distance further away from the main distribution.
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Unfortunately exactly how WiFi modules choose the radio signals in which they use for
timing, are known only by the manufactures and not available to the public. This leads me
to believe that these measurements may be first order reflected signals. This would imply
that classifying these measurements as outliers may not be the correct thing to do, but in­
stead should be classified as reflected signals. These reflected models can have an alternative
optimisation function and used to help achieved better estimations. Further to this, it may
be possible to estimate room geometry, which would be an interesting area of research.
Existing Wifi methods such as fingerprinting do inadvertently achieve a room estimation.
Due to the gridded nature of fingerprinting, creating a fingerprint at a location of wall is
physically tricky. Other RSSI methods for positioning are usually unreliable due the errors
in the measurements. Other radio technologies, such as UWB, are not good for reflections
when using Two Way Timing, this would put IEEE 802.11mc at a convenient advantage.

Another area of research would be handling big data. Although a method has be proposed
in one of the papers in this thesis, it is by no means the only way. The method proposed
still must perform large optimisation steps, but it too has its limits in number of paramet­
ers. Research into qualitatively quantifying how good a self calibration estimation without
comparing to other maps, would be a step in the right direction. By having this step, it
would be much easier to ignore some datasets and find a advantageous selection of maps
to create a database of WiFi router locations. At the moment research into large scale self­
calibration is very sparse, but hopefully in the near future, this will not be the case. As
part of the IEEE 802.11mc protocol, WiFi routers will be able to broadcast there location
coordinates to help with positioning, but this is currently changed manually in the routers.
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9 Overview of Papers

9.1 Paper I

In the first paper, a framework to robustly solve the TOA self calibration problem with
missing information and the presence of outliers in the given data. We proposed a novel
hypothesis and test framework that efficiently finds initial estimates of the unknown para­
meters and combine such methods with optimization techniques to obtain accurate and
robust systems. The proposed system was then evaluated using Wi­Fi round­trip time meas­
urements to give a realistic example of indoor localization. This paper was a showcase of
how 802.11mc could be used. At the time of this paper, 802.11mc was not commercially
released.

Author Contributions:

KÅ and MO conceived and planned the study. KÅ, MO and KB contributed equally to
creating the algorithms and experimentation was performed by KB and KÅ equally. The
paper was jointly written by KÅ, MO and KB

9.2 Paper II

The second paper is somewhat similar to the first paper. The framework to robustly solve
the TOA self calibration problem with missing information and the presence of outliers
was refined and more rigorously tested for it’s validity. The proposed systems are evaluated
against current state­of­the­art methods on a large set of benchmark tests. This is evalu­
ated further on Wi­Fi round­trip time and ultra­wideband measurements to give a realistic
examples of self calibration for indoor localization.

Author Contributions:

KÅ and MO conceived and planned the study. KÅ, MO and KB contributed equally to
creating the algorithms and experimentation was performed by MO, KB and KÅ equally.
The paper was jointly written by KÅ, MO and KB.
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9.3 Paper III

In the third paper we study the problem of estimating receiver and sender positions from
time­difference­of­arrival measurements, assuming an unknown constant time­difference­
of­arrival offset. This problem arises for example with repetitive sound events or a fixed
offset on an access point. In this paper it is shown that there are three minimal cases to the
problem. One of these (the five receiver, five sender problem) is of particular importance.
A fast solver (with run­time under 4 μs) is given. We show how this solver can be used in
robust estimation algorithms, based on RANSAC, for obtaining an initial estimate followed
by local optimization using a robust error norm. The system is verified on both real sound
recordings and synthetic data.

Author Contributions:

KÅ, VL and MO conceived and planned the study. KÅ, VL,MO, GF and KB contributed
to creating the algorithms and experimentation was evaluated by MO, VL, GF, KB and
KÅ. The sound recordings were performed by TB and HRG in Bulgaria and the sound
recordings in Lund were performed by GF, KB and KÅ. The paper was jointly written by
all parties.

9.4 Paper IV

In the forth papers a method for performing low rank matrix factorization was proposed.
Low­rank matrix factorization is an essential problem in computer vision as described in the
introduction. The Low­rank matrix factorizations focused in this paper involve matrices
with a specific structure, with large amounts of missing information. Then a RANSAC
method was proposed to try multiple iterations of finding usable subsets and expanding
the subset. This gives a robust and fast system, with state­of­the­art performance. The
system was verified on well known affine structure­from­motion benchmark datasets.

Author Contributions:

MO conceived and planned the study. MO contributed most to creating the algorithms
and experimentation was performed by MO, KB and KÅ. The paper was mostly written
by MO but contributions were made by KÅ and KB.
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9.5 Paper V

This paper follows on nicely from Paper Iv. This paper uses many of the methods from the
previous papers but to make a real­time implementation. One of the largest hurdles to over­
come is the speed of the optimisation, due to the large number of parameters. Too much
data, and the optimisation takes too long, too few data and the robust method will not
produce useable receiver positions. Hence a middle ground must be found. Its was there­
fore proposed that batches of data was collected and then matched together. Thankfully
for TOA problems using radio, then number of receivers are a lot fewer than the number
of sender positions, also the receivers do not move. Due to this reason, the distance mat­
rix is of a fixed structure, which can be taken advanced of. The batches can therefore be
’glued’ together using a linear transform, this is then fast and still robust. This then unlocks
the potential of having real time calibration. This is then validated using Ultra­Wideband
Time­of­Arrival data gathered by a Bitcraze Crazyflie quadcopter in 2D motion, 3D motion
and full flight.

Author Contributions:

KB conceived and planned the study following ideas from MO and KÅ. KÅ and MO
helped develop the idea. All of the algorithms created, experimentation and evaluation was
performed by KB. The paper was mostly written by KB with contributions from KÅ and
MO.

9.6 Paper VI

In this paper we take a glimpse at large scale TOA self calibration. With indoor localisa­
tion being demanded more, with Internet­Of­Things devices (IoT), a good calibration of
receiver positions becomes an infeasible task. The shear number of receivers, let alone good
calibrations would be an impossible job when you think about the number of WiFi routers
there are in a single office building. With hardware advancements making Ultra­Wideband
devices more accurate and low powered, this unlocks the potential of having such devices
in commonplace around factories and homes, enabling an alternative method of naviga­
tion indoors. Therefore a push for crowd­sourced data acquisition would be necessary, to
calibrate such a large number of receivers. In this paper, we presented a method to fuse
radio SLAM (also known as Time­Of­ Arrival self­calibration) maps together in a linear
way. We introduce an automatic scheme to determine which of the maps are best to use,
to further improve the receiver calibration. Additionally, when a map is fused in a linear
way, it is a very computationally cheap process and produces a reasonable map which is
required for crowd­sourced data acquisition.
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Author Contributions:

KB conceived and planned the study following ideas from MO and KÅ. KÅ and MO
helped develop the idea. All of the algorithms created, experimentation and evaluation was
performed by KB. The paper was mostly written by KB with contributions from KÅ and
MO.

9.7 Paper VII

In this paper a phase­based positioning framework using a massive MIMO system was
presented. The massive MIMO system could track Multipath Components, which can
then be used as TOA measurements. The main issue in solving this TOA self calibration
problem is dimensionality of the movement of the sender positions. This system is more
aligned to a far field approach. However, due to the possibility of multipath components
being tracked, the reflected signal give rise to virtual receiver positions, hence improving
the dimensionality. The positioning result shows that the mean deviation of the estimated
user equipment trajectory from the ground truth is 13cm, hence the proposed framework
promises a high­resolution radio­based positioning solution for current and next generation
cellular systems.

Author Contributions:

XL, CG and FT conceived and planned the study. The physical experimentation was per­
formed by XL, CG and FT. All evaluation for solely the Localisation algorithms were con­
ducted by KB, KÅ and MO jointly. All other evaluation was performed by XL, CG and
FT. The paper was jointly written by all parties.
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Robust Time­of­Arrival Self
Calibration and Indoor Localization
using Wi­Fi Round­Trip Time
Measurements

KENNETH BATSTONE, MAgNuS OSkARSSON AND KALLE ÅSTRöM
Centre of Mathematical Sciences, Lund University, Lund, Sweden

Abstract: The problem of estimating receiver­sender node positions from measured receiver­sender
distances is a key issue in different applications such as microphone array calibration, radio antenna
array calibration, mapping and positioning using UWB and mapping and positioning using round­
trip­time measurements between mobile phones and Wi­Fi­units. Thanks to recent research in this
area we have an increased understanding of the geometry of this problem. In this paper, we study the
problem of missing information and the presence of outliers in the given data. We propose a novel
hypothesis and test framework that efficiently finds initial estimates of the unknown parameters
and combine such methods with optimization techniques to obtain accurate and robust systems.
The proposed systems are evaluated using Wi­Fi round­trip time measurements to give a realistic
example of indoor localization. The resulting map of the anchor points is validated against ground
truth measurements with promising results.
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1 Introduction

In this paper we present new research on robust methods for time­of­arrival (TOA) self­
calibration problem with missing data and outliers. This is then applied to Wi­Fi round­trip
time (RTT) indoor localization measurements to provide a realistic example. These meas­
urements are based on the recent IEEE standard 802.11mc (Fine Time Measurement) to
measure round­trip time. The TOA self­calibration problem is the problem of determining
the positions of a number of receivers and transmitters given receiver­transmitter distances.
In this problem, there is no assumption that there exists a subset of sensors (anchors) whose
locations are known. Hence it is closely related to the anchor­free sensor network localiz­
ation problem [1] but differs, since the transmitters or receivers are independent of each
other. Our problem is bipartite, unlike [1], where the network structure is a general graph.
The TOA problem also has certain similarities with the problem of determining a set of
points given all inter­point distances, which is usually solved using multi­dimensional scal­
ing [2]. Such problems are of general interest in visualization and analysis of large datasets
(e.g. DNA data), in machine learning and for many geometric problems. The TOA self­
calibration problem is important for node calibration problems for a variety of different
media, e.g. (i) microphone arrays (given recordings of sounds emitted at unknown loca­
tions, to microphones at unknown positions, determine both sound emission positions and
microphone locations), similarly (ii) ultra­sound, (iii) radio (Ultra Wide Band), (iv) Wi­Fi
(Using signal strength) and (v) Wi­Fi (Using RTT distance measurments), which will be
used in this paper.

Anchor­free sensor network calibration with time­of­arrival measurements has been invest­
igated in a number of studies. Graph rigidity was explored in [1] to find a fold­free graph
embedding. The solution was then refined using mass­spring based optimization. In [3],
a semi­definite programming formulation and solution was proposed for TOA measure­
ments, with or without anchors. Both of these methods are general for any solvable¹ net­
work structure, but do not solve the minimal rigid graphs. Such minimal rigid graphs were
analyzed and solved in [5]. Another line of work has focused on sensor networks with bi­
partite structure, that appear in various applications mentioned in the previous paragraph.
For this special type of bipartite network structure, one also aims to identify and solve
the minimal problem, i.e. minimal number of receivers and transmitters required for the
problem to be well­defined (or solvable).These minimal problems can serve as initial solu­
tions in the robust estimation framework. Note that for this problem, the roles of receivers
and transmitters are equivalent. Therefore, when discussing minimal cases, the number of
sensors required for receivers and transmitters are interchangeable. The minimal cases were
studied in [6], where solutions to the minimal case of 3 transmitters and 3 receivers in the
plane are given. The minimal problems for the 3D case are given in [7]. The minimal num­

¹when the graph is globally rigid cf. [4]
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ber of receivers and senders are (4, 6), (5, 5) and (6, 4) respectively. There are in general
38, 42 and 38 solutions respectively for the three types of problems. In the paper, there are
also practical algorithms for the solution to the problem. Previous to this the state of the
art in terms of practical algorithms were that of [8], where a non­minimal linear solution
to 3D TOA self­calibration problem is derived for the combination of (4, 10) receivers and
senders. Other relevant results on determining the positions from distances are [9], where
synchronization between the receivers and senders are not assumed, [10] where pose for
dual receiver rigs are considered, [11, 12], where the TOA self­calibration problem when say
the receivers span a linear space of lower dimension than that of the senders, and [13], where
minimal TOA self­calibration problems are studied and solved for the case of additional
distance measurements among e.g. the receivers.

In [14, 15] a solution is given to the TOA self­calibration problem, if one may additionally
assume that one of the receivers coincides with the position of one of the transmitters.
The minimal cases for far field approximation was first studied in [16] and later refined in
[17]. In far field approximation, the distances between the transmitters and receivers are
assumed to be considerably larger than those between receivers. The solutions based on the
far field approximation can be utilized to initialize the original TOA problem. Studying
these minimal cases is of both theoretical importance and essential to develop fast and
stable algorithms suitable for robust estimation methods like RANSAC [18] in the presence
of outliers in the measurements.

As will be shown in the following sections, one part of our system exploits that the so­
called compaction matrix should have a certain rank. Low rank matrix factorization has a
long standing history. Truncating the singular value decomposition of the measurement
matrix has been shown to give the optimal solution under the l2­norm when for complete
data, see [19]. The work in [20] was the first to consider missing data. Robustness to
outliers has been considered in [21, 22, 23, 24]. Most methods mentioned above are based
on alternating optimization and are prone to get trapped in local minima. Recently, several
works [25, 26, 27] re­formulate the problem to minimize the convex surrogate of the rank
function, that is, the nuclear norm. For applications with a given fixed rank, the nuclear
norm based methods usually perform inferior to the bilinear formulation­based methods
[28]. A few recent works [29, 30] also explore the idea to divide the whole matrix into
overlapping sub­blocks and combine the sub­block solutions. Minimal cases for low rank
matrix factorization, for missing data, were investigated in [31].

The novel concept of this paper, is that we can use the hypothesis and test framework to
find a robust initial estimates. By using the proposed technique, it has the advantage of
avoiding using missing data and robustly identifying outlier data. It is also a very fast
algorithm, which takes 0.588375 seconds for the 2D planar case on a single core of a Intel
Core 2 Duo E7500 2.93 GHz processor and can easily be made faster by parallel computing.
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2 Basic Geometry

We will now describe the basic underlying geometry of our problem. Let ri, i = 1, . . . ,m
and sj, j = 1, . . . , n be the spatial coordinates of m receivers (e.g. microphones) and n
transmitters (e.g. sound events), respectively. For measured time of arrival tij from trans­
mitter ri and receiver sj, we have vtij = ∥ri − sj∥2 where v is the speed of measured signals
and ∥.∥2 is the l2­norm. The speed v is assumed to be known and constant. We further
assume that we, at each receiver can distinguish which transmitter j each event is origin­
ating from. This can be done e.g. if the signals are temporally separated or using different
frequencies. We will in the following work with the distance measurements dij = vtij. It is
quite common that such data contains both missing data (not every sound event is detected
at every microphone) and outliers (e.g. due to errors in the matching process). The TOA
calibration problem can then be defined as follows,

Problem 1. (Time­of­Arrival Self­Calibration) Given absolute distance measurements

dij = ∥ri − sj∥2 + ϵij, (2.1)

for a subset W ⊂ I of all the receiver­transmitter index pairs I = {(i, j)|i = 1, . . .m, j =
1, . . . , n} determine receiver positions ri, i = 1, . . . ,m and transmitter positions sj, j =
1, . . . , n. Here the errors ϵij are assumed to be either inliers, in which case the errors are small
(ϵij ∈ N(0, σ)) or outliers, in which case the measurements are way off.

Here we will use the set Wi for the indices (i, j) corresponding to the inlier measurements
and Wo for the indices corresponding to the outlier set.

We will now show how the TOA calibration problem is solved generally. From many types
of media, a transmitter­receiver distance will be acquired, dij. Since this can be assumed to
be real and positive, it can be squared as follows,

d2
ij = (ri − sj)

T(ri − sj) = rTi ri + sTj sj − 2rTi sj. (2.2)

The problem is then reformed according to the following invertible linear combinations of
d2
ij:

B =


d2

11 d2
12 − d2

11 . . . d2
1n − d2

11
d2

21 − d2
11

. . . B̂
d2
m2 − d2

11

 , (2.3)

where the compaction matrix B̂ is an (m − 1) × (n − 1) matrix with entries as B̂ij =

d2
ij − d2

i1 − d2
1j + d2

11

−2
, with i = 2, . . .m and j = 2, . . . , n. The other elements in B are

used as constraints for the solution.
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The factorization can then be interpreted as follows. Let Ri =
[
(ri − r1)

]
and Sj =[

(sj − s1)
]
. Here B̂ = RTS with Ri as columns of R and Sj as columns of S . Since we

assume that R and S are in a 3D affine space, the matrix B̂ has rank 3 at most. This also
implies that in order to solve the problem, it is required that m ≥ 4 and n ≥ 4 .

By factorizing B̂, we can compute the vectors to all receivers and transmitters from un­
known initial/reference positions (r1 and s1).

By fixing r1 at the origin and s1 as a vector from the origin, in terms of an affine trans­
formation matrix L and vector b, the problem is reformulated as follows,

r1 = 0, s1 = Lb, ri = L−TR̃i, i = 2 . . .m,

sj = L(S̃j + b), j = 2 . . . n,
(2.4)

where R̃ = LTR, S̃ = L−1S, and hence B̂ = R̃TL−1LS̃ = RTS.

Using this parametrization, the equations from matrix B, (2.46) become

d2
11 = (r1 − s1)

T(r1 − s1) = sT1 s1 = bTLTLb

= bTH−1b, (2.5)
d2

1j − d2
11 = sTj sj − sT1 s1 = S̃T

j L
TLS̃j + 2bTLTLS̃j

= S̃T
j H

−1S̃j + 2bTH−1S̃j, (2.6)

d2
i1 − d2

11 = rTi ri − 2rTi s1 = R̃T
i (L

TL)−1R̃i − 2bTR̃i

= R̃T
i HR̃i − 2bTR̃i, (2.7)

where the symmetric matrix H = (LTL)−1. With this parameterization, there are in total
9 unknowns (6 and 3 unknowns for H and b, respectively), and hence a solution can be
found. Since this solution has its own coordinate system, with prior knowledge this can be
transformed back to the original coordinate system. For a 2D problem, there are a total of
5 unknowns (3 and 2 unknowns for H and b, respectively).

3 Non­Linear Optimization Approaches

In the development of the different systems for robust estimation, we use several different
local optimization techniques. In particular we use methods for local optimization of the
type

min
r,s

∑
(i,j)∈W̃

f(dij − ||ri − sj||2), (2.8)
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where f(r) is chosen to be (i) f(r) = r2 (l2­norm), (ii) f(r) = |r| (l1­norm) or (iii) f(r) =
min(r2,T) (truncated l2­norm) and W̃ is a subset of the data measurements. If the subset
W̃ contains no outliers and if the starting point is good, then the l2­norm can give good
estimates. Optimizing using the l1­norm is less sensitive to the subset W̃ containing outliers,
but still require a reasonably good starting point to converge to a good solution. Local
optimization of the truncated l2­norm is even more sensitive to having a good starting
point. Nevertheless, these local optimization techniques are important components for
designing robust systems.

4 Obtaining Initial Estimates

Finding the optimal solution to problem 5, in the presence of outliers and missing data
is a highly non­convex problem. We are thus dependent on finding good initial starting
solutions, for the optimization methods from the previous section to work. We will, in this
section, describe the different initialization methods that we have explored. In the next
section we will describe our main contribution to the initialization problem.

Arguably, the most straight­forward way to initialize a solution, is to simply randomly place
all receivers and senders within some space. This usually gives poor initial estimates, and
the local optimization will be prone to get stuck in local minima. A slight improvement to
this idea, is to use multiple restarts and optimize from each initial position, and then in the
end choose the best solution.

Another way of initializing, that we have explored, is using the rank constraint on the com­
paction matrix. Here one can use many existing methods for doing the low rank matrix
factorization. One important draw­back of these methods, is that we need to have at least
one row and one column of the data matrix completely known, and without outliers. The
last criteria is of course hard to to check. If all data is known, the optimal low rank factor­
ization is given by singular value decomposition (SVD) of the data matrix. A heuristic for
handling missing data, is simply to fill in the missing data with some random values that
follow the statistics of the other known measurements. One can then use SVD to obtain
an initial estimate. This can be used directly to find the solution to the original problem as
described in section 2. Alternatively, the initial low rank matrix factorization can be refined
using the Wiberg algorithm, [20].

5 Random Sampling Paradigm

The RANSAC or hypothesize and test paradigm, has proven to be useful in situations where
there are outliers in the data, [18]. In this paradigm, a subset of the data is used to estimate
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the unknown parameters. The remainder of the data is then used to verify or falsify the
parameters. This is typically repeated a fixed number of iterations. The parameters that give
the largest number of inliers are then usually used as an initial estimate for the subsequent
non­linear optimization of the parameters.

For Problem 5, there are several ways one could implement the hypothesis and test paradigm.
One idea would be to use efficient algorithms for determining receiver and sender positions
from minimal data, [7]. The minimal number of receivers and senders are (4, 6), (5, 5) and
(6, 4) respectively. There are in general 38, 42 and 38 solutions respectively for the three
types of 3D problems. For the 2D problem in this experiment, the minimal number of
receivers and senders are (3, 3). One way of using the (4, 6) solver would be to randomly
select 4 receivers, then randomly select 6 senders such that there are no missing data for
this particular receiver­sender configuration. From each of the solutions to the minimal
problems one obtains a hypothesis of the positions of the 4 receivers. The test step would
then consist of checking for how many of the remaining senders it is possible to find a
position that fits all of the 4 distance measurements.

Although the (4, 6)­solver and the test is relatively fast, we propose an alternative to this
approach. The main idea is to find a fast way to hypothesize and test. We will use the rank
constraints of the compaction matrix to do this. Our method is described in Algorithm 2.

Algorithm 1 Our RANSAC initialization scheme
1: Select 5 receivers randomly
2: Find all senders, for which there are no missing data to the 5 receivers
3: If there are at least five such senders, select 4 of these senders randomly
4: Hypothesize: Use the 5 × 4 matrix F, with elements Fij = d2

ij. Calculate the compaction
matrix B̂ for F as shown in equation (2.46), which is a 4 × 3 matrix. Calculate a unit vector
v which lies in the left null space of B̂.

5: Test: Assuming that a column f , whose elements are fi = d2
ijtest contain no outliers, then the

vector b̂ is the compaction matrix of [F1, f ]whereF1 is the first column ofF. This then should
have v · b̂ = 0. Assuming low noise it is reasonable to declare it an inlier if |v · b̂| < T, where
T is a threshold that depends on the noise level σ and the data d. Repeat this test for all the
other columns.

6: Repeat steps 1­5, K times and keep track of the hypothesis that gave the largest number of inlier
columns.

6 Experimental Setup

Indoor localization is a currently a key issue, from needing to know the location of objects
using Ultra­Wide Band beacons to finding the location of mobile phones when a GPS
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signal cannot be acquired, this is prevalent indoors and in built up areas such as New York,
which is known as the “urban canyon” problem.

To test our system we decided to use 5 Nexus 6 mobile phones, 4 as Wi­Fi anchors and 1
as a moving source to give a realistic scenario of a wireless network. These phones come
with a IEEE 802.11.mc Wi­Fi standard, which also produces round­trip time measurements
in metres. This Wi­Fi standard is set to be used widely next year. When conducting the
experiment we used a Wi­Fi frequency of 5 GHz on channel number 44 with a 80 MHz
bandwidth.

The experimental environment that was chosen was a large open space in an office block
(Ideon Alfahuset, Lund, Sweden) with dimensions ∼ 12 × 18 m. This gave the advantage
of having a small amount of reflecting surfaces, the only notable obstruction was a stair­
case obscuring the direct line of sight between the anchors and the source, please see the
schematic of the experiment Figure 2.1.

Figure 2.1: A diagram of the experimental setup with the staircase illustrated on the right side of the image.
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For the experiment, a ground truth was measured for all the anchor points and the path of
the moving source every 0.5 ± 0.005m with a tape measure. The anchors and the moving
source were risen from the floor using stands and kept at the same height in order for the
experiment to be conducted on a single plane.

The experiment was conducted by walking the predefined path with the moving source on
a stand and trying to ensure that the body of the person walking the path was not in the
way of the line of sight to any of the anchors. Currently, when the moving source is taking
a distance measurements, this can only be done recursively to each of the anchors, one
at a time. For this reason, when conducting the experiment, small pauses of ∼ 2 seconds
were taken at each of the ground truth points to ensure that there was an opportunity for
distance measurements to be taken to each of the anchors.

In our experiment, our proposed framework does not require prior knowledge about the
positions for any of the anchors, positions of any of the source locations and no prior
knowledge of the number of anchors and source locations. The only requirement is that
the number of anchors and source locations satisfy the requirement of the minimal solver
(i.e. (3,3)).

7 Experimental Evaluation

Once the measurements were taken, the data was filtered using a status variable from the
802.11.mc standard in which a good RTT measurement is 0. The other values were replaced
with a not a number (NaN) value. This can then be used in our RANSAC initialization
scheme, Algorithm 2. For this experiment we used the (3,3) receivers and senders minimal
solver. A fixed number of iterations was used; 20 iterations for the initial selection of 3
receivers and senders, then a further 70 iterations to extend the number of columns and
another 70 to extend the number of rows. The tolerance was set to T = 3 for the initial
selection and extension of columns then reduced to T = 2 for the extensions of the rows.

Now that the initial values have been estimated, it undergoes l2 optimization on the inlier
set. We also add a smoothness prior in the optimization. This prior is based on minimizing
acceleration, according to

resa =
1
σ2
a

n−1∑
j=2

∥sj−1 − 2sj + sj+1∥2
2, (2.9)

where σa is a parameter controlling the strength of the smoothness prior. The results of
the estimated anchor positions and source positions after the optimization are shown in
Figure 2.5.
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Figure 2.2: This figure illustrates the estimated anchor positions and the source positions. This is overlaid on the ground truth
anchor positions and predefined path.

The ground truth anchor positions were ((0, 0), (5.932, 0), (3.0163, 10.3079),
(−0.6018, 11.3658)). The estimated anchors were calculated to be ((0.4044, 0.0429),
(5.6435,−0.3461), (3.0475, 10.5527), (−0.7488, 11.4242)). This gives a total Euclidean
distance error (i.e. the 2­norm of the difference in positions) of 0.5923. For graphical pur­
poses, a Procrustes fitting was used on the anchor positions to spread the total error over all
4 anchors in stead of just 3 anchors. In the Procrustes fitting only rotation and translation
were allowed.

To calculate the errors in the estimated source positions, the Euclidean distance from the
estimated source to the nearest location in ground truth set was calculated. The ground
truth data was linearly interpolated in order for the Euclidean distance to be as close as
possible to the predefined path. The residuals are shown in Figure 2.3.

For just the section of the predefined path that obscured by the staircase. The measurements
had 6.52% missing data and 9.7826% of the data was considered to be outliers, according
to our algorithm. In comparison to the whole data set we had 1.23% missing data and
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Figure 2.3: The residual error from the estimated source positions and ground truth predefined path.

3.3451% of the data was considered to be outliers.

8 Conclusion

In this paper we have constructed a novel random sampling paradigm system for estimating
receiver­sender node positions from measured distance with outliers and missing data. This
was verified using Wi­Fi RTT data. Looking at Figure 2.5, we can see that a reasonable
estimation was calculated. The general predefined path shape was preserved and the anchor
positions are reasonable with a total error of 0.5923 m. From a previous experiment we
conducted with 1 anchor and a single source position with direct line of sight, we found
that the distance measurement would be a normal distribution with a standard deviation
of 1.08 m. If we then compare this value to the total error in the anchor positions and
the calculated source positions in Figure 2.3, it can be concluded that our estimations are
accurate.

Further to this, the predefined path goes past the set of stairs, this would cause the anchor
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to be obscured so the measurements would become either outliers or a missed data point.
Despite this, the proposed method robustly and accurately estimated source positions. The
experimental results demonstrates the robustness of the proposed method in this Wi­Fi
field and how it can be effective in other areas as the errors in the estimations depend
predominately on the accuracy of the distance measurements.
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Robust Time­of­Arrival Self
Calibration with Missing Data and
Outliers

KENNETH BATSTONE, MAgNuS OSkARSSON AND KALLE ÅSTRöM
Centre of Mathematical Sciences, Lund University, Lund, Sweden

Abstract: The problem of estimating receiver­sender node positions from measured receiver­sender
distances is a key issue in different applications such as microphone array calibration, radio antenna
array calibration, mapping and positioning using ultra­wideband and mapping and positioning
using round­trip­time measurements between mobile phones and Wi­Fi­units. Thanks to recent
research in this area we have an increased understanding of the geometry of this problem. In this
paper, we study the problem of missing information and the presence of outliers in the data. We
propose a novel hypothesis and test framework that efficiently finds initial estimates of the unknown
parameters and combine such methods with optimization techniques to obtain accurate and robust
systems. The proposed systems are evaluated against current state­of­the­art methods on a large
set of benchmark tests. This is evaluated further on Wi­Fi round­trip time and ultra­wideband
measurements to give a realistic example of self calibration for indoor localization.
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1 Introduction

In this paper we present new research on robust methods for time­of­arrival (TOA) self­
calibration problem with missing data and outliers. This is then applied to Wi­Fi round­
trip time (RTT) and ultra­wideband indoor localization measurements to provide realistic
examples. The TOA self­calibration problem is the problem of determining the positions of
a number of receivers and transmitters given receiver­transmitter distances. In this problem,
there is no assumption that there exists a subset of sensors (anchors) whose locations are
known. Hence it is closely related to the anchor­free sensor network localization problem [1]
but differs, since the transmitters or receivers are independent of each other. Our problem
structure corresponds to a bipartite graph, unlike [1] where the network structure is a general
graph. The TOA problem also has certain similarities with the problem of determining a set
of points given all inter­point distances, which is usually solved using multi­dimensional
scaling [2]. Such problems are of general interest in visualization and analysis of large
datasets (e.g. DNA data), in machine learning and for many geometric problems. The
TOA self­calibration problem is important for node calibration problems for a variety of
different media, e.g. (i) microphone arrays (given recordings of sounds emitted at unknown
locations, to microphones at unknown positions, determine both sound emission positions
and microphone locations), similarly (ii) ultra­sound, (iii) radio (Ultra Wide Band), (iv)
Wi­Fi (Using signal strength) and (v) Wi­Fi round­trip time measurements (RTT).

Anchor­free sensor network calibration with time­of­arrival measurements has been in­
vestigated in a number of studies. Graph rigidity was explored in [1] to find a fold­free
graph embedding. The solution was then refined using mass­spring based optimization. In
[3], a semi­definite programming formulation and solution was proposed for TOA meas­
urements, with or without anchors. Both of these methods are general for any solvable
network structure. Another line of work has focused on sensor networks with bipartite
structure, that appear in various applications mentioned in the previous paragraph. For
this special type of bipartite network structure, one also aims to identify and solve the min­
imal problem, i.e. minimal number of receivers and transmitters required for the problem
to be well­defined (or solvable). Note that for this problem, the roles of receivers and trans­
mitters are equivalent. Therefore, when discussing minimal cases, the number of sensors
required for receivers and transmitters are interchangeable. The minimal cases were stud­
ied in [5], where solutions to the minimal case of 3 transmitters and 3 receivers in the plane
are given. The minimal problems for the 3D case are given in [6]. The minimal number
of receivers and senders are (4, 6), (5, 5) and (6, 4) respectively. There are in general 38,
42 and 38 solutions respectively for the three types of problems. However, no practical
methods for general 3D positions are given. There are a few results on algorithms for actu­
ally determining the positions from distances, most notably [7, 8]. In [9], a non­minimal

Thanks to MAPCI and ELLIIT for funding.
when the graph is globally rigid cf. [4]
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linear solution to the 3D TOA self­calibration problem is derived for 10 (4) receivers and 4
(10) transmitters. In [10, 11] a solution is given to the TOA self­calibration problem, if one
may additionally assume that one of the receivers coincides with the position of one of the
transmitters. The minimal cases for far field approximation were first studied in [12] and
later refined in [13]. In far field approximation, the distances between the transmitters and
receivers are assumed to be considerably larger than those between receivers. The solutions
based on the far field approximation can be utilized to initialize the original TOA problem.

Studying these minimal cases is of theoretical importance and further more essential when
developing fast and stable algorithms based on robust estimation methods like RANSAC
[14], in the presence of outliers in the measurements. As will be shown in the following
sections, one important part of our system exploits that the so­called compaction matrix
should have a certain rank. Low rank matrix factorization has a long standing history.
Truncating the singular value decomposition of the measurement matrix has been shown
to give the optimal solution under the l2­norm for complete data, see [15]. The work in [16]
was the first to consider missing data. Robustness to outliers has been considered in [17,
18, 19, 20]. Most methods mentioned above are based on alternating optimization and are
prone to get trapped in local minima. Recently, several works [21, 22, 23] re­formulate the
problem to minimize the convex surrogate of the rank function, that is, the nuclear norm.
For applications with a given fixed rank, the nuclear norm based methods usually perform
inferior to the bilinear formulation­based methods [24]. A few recent works [25, 26] also
explore the idea to divide the whole matrix into overlapping sub­blocks and combine the
sub­block solutions. Minimal cases for low rank matrix factorization, for missing data,
were investigated in [27].

Indoor localization is a currently a key issue, from needing to know the location of objects
using Ultra­Wide Band beacons to finding the location of mobile phones with Wi­Fi when
a GPS signal cannot be acquired. This is prevalent indoors and in build up areas such as New
York, which is known as the “urban canyon” problem. Methods, like the one proposed,
could be useful in solving these real world problems.

2 Basic Geometry

We will now describe the basic underlying geometry of our problem. Let ri, i = 1, . . . ,m
and sj, j = 1, . . . , n be the spatial coordinates of m receivers (e.g. microphones) and n
transmitters (e.g. sound events), respectively. For measured time of arrival tij from trans­
mitter ri and receiver sj, we have vtij = ∥ri − sj∥2 where v is the speed of measured signals
and ∥.∥2 is the l2­norm. The speed v is assumed to be known and constant. We further
assume that we, at each receiver can distinguish which transmitter j each event is origin­
ating from. This can be done e.g. if the signals are temporally separated or using different
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frequencies. We will in the following work with the distance measurements dij = vtij. It is
quite common that such data contains both missing data (not every sound event is detected
at every microphone) and outliers (e.g. due to errors in the matching process). The TOA
calibration problem can then be defined as follows,

Problem 2. (Time­of­Arrival Self­Calibration) Given absolute distance measurements

dij = ∥ri − sj∥2 + ϵi,j, (2.10)

for a subset W ⊂ I of all the receiver­transmitter index pairs I = {(i, j)|i = 1, . . .m, j =
1, . . . , n} determine receiver positions ri, i = 1, . . . ,m and transmitter positions sj, j =
1, . . . , n. Here the errors ϵi,j are assumed to be either inliers, in which case the errors are small
(ϵi,j ∈ N(0, σ)) or outliers, in which case the measurements are way off.

Here we will use the set Wi for the indices (i, j) corresponding to the inlier measurements
and Wo for the indices corresponding to the outlier set.

We will now show how the TOA calibration problem is solved generally. From many types
of media, a transmitter­receiver distance will be acquired, dij. Since this can be assumed to
be real and positive, it can be squared as follows,

d2
ij = (ri − sj)

T(ri − sj) = rTi ri + sTj sj − 2rTi sj. (2.11)

The problem is then reformed according to the following invertible linear combinations of
d2
ij:

B =


d2

11 d2
12 − d2

11 . . . d2
1n − d2

11
d2

21 − d2
11

. . . B̂
d2
m2 − d2

11

 , (2.12)

where the compaction matrix B̂ is an (m − 1) × (n − 1) matrix with entries as B̂ij =

d2
i,j − d2

i1 − d2
1j + d2

11

−2
, with i = 2, . . .m and j = 2, . . . , n. The other elements in B are

used as constraints for the solution.

The factorization can then be interpreted as follows. Let Ri =
[
(ri − r1)

]
and Sj =[

(sj − s1)
]
. Here B̂ = RTS with Ri as columns of R and Sj as columns of S . Since

we assume that R and S are in a 3D affine space, the matrix B̂ has rank 3 at most. This
also implies that in order to solve the problem, it is required that m ≥ 4 and n ≥ 4 . By
factorizing B̂, we can compute the vectors to all receivers and transmitters from unknown
initial/reference positions (r1 and s1).

By fixing r1 at the origin and s1 as a vector from the origin, in terms of an affine trans­
formation matrix L and vector b, the problem is reformulated as follows,
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r1 = 0, s1 = Lb, ri = L−TR̃i, i = 2 . . .m,

sj = L(S̃j + b), j = 2 . . . n,
(2.13)

where R̃ = LTR, S̃ = L−1S, and hence B̂ = R̃TL−1LS̃ = RTS.

Using this parametrization, the equations from matrix B, (2.46) become

d2
11 = (r1 − s1)

T(r1 − s1) = sT1 s1 = bTLTLb

= bTH−1b, (2.14)
d2

1j − d2
11 = sTj sj − sT1 s1 = S̃T

j L
TLS̃j + 2bTLTLS̃j

= S̃T
j H

−1S̃j + 2bTH−1S̃j, (2.15)

d2
i1 − d2

11 = rTi ri − 2rTi s1 = R̃T
i (L

TL)−1R̃i − 2bTR̃i

= R̃T
i HR̃i − 2bTR̃i, (2.16)

where the symmetric matrix H = (LTL)−1. With this parameterization, there are in total
9 unknowns (6 and 3 unknowns for H and b, respectively), and hence a solution can be
found. Since this solution has its own coordinate system, with prior knowledge this can be
transformed back to the original coordinate system.

3 Non­linear Optimization Approaches

In the development of the different systems for robust estimation, we use several different
local optimization techniques. In particular we use methods for local optimization of the
type

min
r,s

∑
(i,j)∈W̃

f(di,j − ||ri − sj||2), (2.17)

where f(r) is chosen to be (i) f(r) = r2 (l2­norm), (ii) f(r) = |r| (l1­norm) or (iii) f(r) =
min(r2,T) (truncated l2­norm). If the subset W̃ of the measurements contains no outliers
and if the starting point is good, then the l2­norm can give good estimates. Optimizing
using the l1­norm is less sensitive to the subset W̃ containing outliers, but still requires
a reasonably good starting point to converge to a good solution. Local optimization of
the truncated l2­norm is even more sensitive to having a good starting point. Neverthe­
less, these local optimization techniques are important components for designing robust
systems.
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4 Obtaining Initial Estimates

Finding the optimal solution to problem 5, in the presence of outliers and missing data
is a highly non­convex problem. We are thus dependent on finding good initial starting
solutions, for the optimization methods from the previous section to work. We will in this
section describe the different initialization methods that we have used in our experiment.
In the next section we will describe our main contribution to the initialization problem.

Arguably, the most straight­forward way to initialize a solution, is to simply randomly place
all receivers and senders within some space. This usually gives poor initial estimates, and
the local optimization will be prone to get stuck in local minima. A slight improvement to
this idea, is to use multiple restarts and optimize from each initial position, and then in the
end choose the best solution.

Another way of initializing, that we have explored, is using the rank constraint on the
compaction matrix. Here one can use many existing methods for doing the low rank matrix
factorization. One important draw­back of these methods, is that we need to have at least
one row and one column of the data matrix completely known, and without outliers. The
last criteria is of course hard to check. If all data is known, the optimal low rank factorization
is given by singular value decomposition (SVD) of the data matrix. A heuristic for handling
missing data, is simply to fill in the missing data with some random values that follow the
statistics of the other known measurements. One can then use SVD to obtain an initial
estimate. This can be used directly to find the solution to the original problem as described
in section 2. Alternatively, the initial low rank matrix factorization can be refined using the
Wiberg algorithm, [16].
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Figure 2.4: Comparison of success ratios for a number of tested systems, as functions of (from top left to bottom right) missing
data ratio, outlier ratio and inlier noise level respectively.
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5 Random Sampling Paradigm

The RANSAC or hypothesize and test paradigm, has proven to be useful in situations where
there are outliers in the data, [14]. In this paradigm, a subset of the data is used to estimate
the unknown parameters. The remainder of the data is then used to verify or falsify the
parameters. This is typically repeated a fixed number of iterations. The parameters that give
the largest number of inliers are then usually used as an initial estimate for the subsequent
non­linear optimization of the parameters.

For Problem 5, there are several ways one could implement the hypothesis and test paradigm.
One idea would be to use efficient algorithms for determining receiver and sender positions
from minimal data, [6]. Although this solver and the test is relatively fast, we propose an
alternative to this approach. The main idea is to find a fast way to hypothesize and test. We
will use the rank constraints of the compaction matrix to do this. Our method is described
in Algorithm 2.

Algorithm 2 Our RANSAC initialization scheme
1: Select 5 receivers randomly
2: Find all senders, for which there are no missing data to the 5 receivers
3: If there are at least five such senders, select 4 of these senders randomly
4: Hypothesize: Use the 5 × 4 matrix F, with elements Fi,j = d2

i,j. Calculate the compaction
matrix B̂ for F as shown in equation (2.46), which is a 4 × 3 matrix. Calculate a unit vector
v which lies in the left null space of B̂.

5: Test: Assuming that a column f , whose elements are fi = d2
i,jtest contain no outliers, then the

vector b̂ is the compaction matrix of [F1, f ]whereF1 is the first column ofF. This then should
have v · b̂ = 0. Assuming low noise it is reasonable to declare it an inlier if |v · b̂| < T, where
T is a threshold that depends on the noise level σ and the data d. Repeat this test for all the
other columns.

6: Repeat steps 1­5, K times and keep track of the hypothesis that gave the largest number of inlier
columns.

6 Experimental Evaluation

For the experimental evaluation, we generated a series of scenarios with different missing
data ratio, outlier data ratio and different levels of inlier noise. For simplicity we have
kept the number of receivers (m) and senders (n) fixed at m = 30 and n = 30. We also
fixed the room size to be 10× 10× 3 meters and placed the ground truth positions of the
receivers and senders randomly in this box using a uniform distribution. Finally the errors
ϵi,j for outliers were randomly drawn uniformly in the intervals [−1.2,−0.4] and [0.4, 1.2]
meters. This means that for low levels of noise there is a relatively clear difference between
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inlier and outlier distributions. For higher levels of noise the inlier and outlier distributions
will start to overlap considerably. Notice, however, that it is difficult to determine which
measurements are inliers by simply studying the distance measurements.

For each setting we generate a number of synthetic scenarios where the ground truth posi­
tion of the receivers and senders are placed randomly as described above. A random subset
W out of the mn measurements in I are chosen so that |W|/|I| ≈ 1 − σo. Then a ran­
dom subset Wi ⊂ W of inlier measurements are chosen so that |Wi|/|W| ≈ 1 − σi. The
measurements di,j are generated according to (2.91) with added noise according to the inlier
model for (i, j) ∈ Wi and according to the outlier model for (i, j) ∈ Wo = W \Wi.

Each synthetic dataset d is then tested against each method. Here we tested the following
systems

• Ransac + l2 opt: Our proposed framework with initial estimate using RANSAC as
described in Section 5, followed by l2 optimization on detected inlier set.

• SVD Init + l1 opt: Initial estimate using SVD as described in Section 4, followed by
l1 optimization.

• Rand Init + l1 opt: Initial estimate using random placement as described in Section
4, followed by l1 optimization

• l2 opt using Wiberg alg: Initial estimate using SVD as described in Section 4, fol­
lowed by rank 3 factorization using Wiberg algorithm followed by l2 optimization.

• SVD Init + l2 opt: Initial estimate using SVD as described in Section 4, followed by
l2 optimization

As can be seen in Figure 2.4, the proposed method outperforms the other methods in
terms of robustness against outliers and missing data. For increased levels of noise the l1

optimization methods degrades more gracefully.

For further experimental evaluation, our method was tested on real data measurements. In
Figure 2.5, we conducted a round­trip time Wi­Fi experiment in 2D using 4 Nexus 6 phones
as anchors and one phone as a transmitter. These phones come with a IEEE 802.11.mc Wi­
Fi standard, which produces round­trip time measurements in metres. The experimental
environment that was chosen was a large open space in an office block (Ideon Alfahuset,
Lund, Sweden) with dimensions ∼ 12 × 18 m.

For the experiment, a ground truth was measured for all the anchor points and the path of
the moving source every 0.5±0.005mwith a tape measure. The experiment was conducted
by walking the predefined path with the transmitter. In our experiment, our proposed
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Figure 2.5: This figure illustrates the estimated anchor positions and the source positions. This is overlaid on the ground truth
anchor positions and predefined path.

framework does not require prior knowledge about the positions for any of the anchors or
source locations nor the number of anchors and source locations. The only requirement
is that the number of anchors and source locations satisfy the requirement of the minimal
solver, for this 2D case (3,3).

A fixed number of iterations was used; 20 iterations for the initial selection of 3 receivers
and senders, then a further 140 iterations to extend the number of columns and rows. The
tolerance was set to T = 3 for the initial selection and extension of columns then reduced
to T = 2 for the extensions of the rows.

Once the initial values have been estimated, it undergoes l2 optimization on the inlier set.
We also added a smoothness prior in the optimization. This prior is based on minimizing
acceleration, according to

resa =
1
σ2
a

n−1∑
j=2

∥sj−1 − 2sj + sj+1∥2
2, (2.18)

where σa is a parameter controlling the strength of the smoothness prior.
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The ground truth anchor positions were ((0, 0), (5.932, 0), (3.0163, 10.3079),
(−0.6018, 11.3658)). The estimated anchors were calculated to be ((0.4044, 0.0429),
(5.6435,−0.3461), (3.0475, 10.5527), (−0.7488, 11.4242)). This gives a total Euclidean
distance error of 0.5923 m.

One section of the predefined path was obscured by a staircase. There the measurements had
6.52%missing data and 9.7826% of the data was considered to be outliers, according to our
algorithm. In comparison to the whole data set we had 1.23% missing data and 3.3451%
of the data was considered to be outliers. To further test our method, we conducted an
experiment using ultra­wideband measurements in 3D with 6 anchors. Here we used the
same number of iterations as before but using a tolerance of T = 0.2 and the 5 receivers
and 5 senders 3D minimal solver, the result is shown in Figure 2.6.

Figure 2.6: This figure illustrates the estimated anchor and source positions.

7 Conclusions

In this paper we have constructed several systems for estimating receiver­sender node posi­
tions from measured receiver­sender distances in the presence of outliers and missing data.
We propose several new methods for solving these problem. In particular we propose a
novel hypothesis and test framework that efficiently finds initial estimates of the unknown
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parameters and combine such methods with efficient optimization techniques to obtain
efficient, precise and robust systems. The proposed systems are evaluated against current
state­of­the­art methods on a large set of benchmark tests. Our proposed hypothesis and
test framework is then further tested on real Wi­Fi and ultra­wideband measurements to
solve time­of­arrival self­calibration and localization.

Looking at Figure 2.5, we can see that a reasonable estimation was calculated. The general
predefined path shape was preserved and the anchor positions are reasonable with a total er­
ror of 0.5923 m. Despite the path being obscured by stairs, the proposed method robustly
and accurately estimated source positions. The experimental results demonstrates the ro­
bustness of the proposed method and how it can be effective in other areas as the errors in
the estimations depend predominately on the accuracy of the distance measurements.
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Abstract: In this paper we study the problem of estimating receiver and sender positions from
time­difference­of­arrival measurements, assuming an unknown constant time­difference­of­arrival
offset. This problem is relevant for example for repetitive sound events. In this paper it is shown that
there are three minimal cases to the problem. One of these (the five receiver, five sender problem) is
of particular importance. A fast solver (with run­time under 4 μs) is given. We show how this solver
can be used in robust estimation algorithms, based on RANSAC, for obtaining an initial estimate
followed by local optimization using a robust error norm. The system is verified on both real and
synthetic data.
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1 Introduction

The problem of estimating receiver­sender node positions from measured arrival times of
radio or sound signals is a key issue in different applications such as microphone array
calibration, radio antenna array calibration, mapping and positioning. This field is well
researched but in this paper we will focus on the anchor­free sensor network calibration
both in terms of time­of­arrival measurements (TOA) and time­difference­of­arrival meas­
urements (TDOA). For time­of­arrival the planar case of three receivers and three senders
(3R/3S) was solved in [1]. For the full 3D case the over­determined problem (10R/4S) was
studied in [2], where a solver for this non­minimal case was provided. There are actually
three minimal cases for the 3D case, namely (4R/6S), (5R/5S) and (6R/5S). A practical solver
was presented in [3]. There are in general 38, 42 and 38 solutions respectively for the three
different set ups. Faster solvers for these minimal cases were provided in [4].

In this paper we study the constant offset TDOA self­calibration problem. It is a problem
that naturally arises e.g. when signals are emitted with a known period. As an estimation
problem it lies between TOA and full TDOA. In the paper we study the minimal (5R/5S)
problem and provide a fast (few μs) solver. Robust parameter estimation often use the
hypothesize and test paradigm, e.g. using random sampling consensus, [5] or one of its
many variants [6, 7, 8]. In these frameworks minimal solvers are important building blocks
for generating model hypotheses, and we show in the paper how a minimal solver can be
used for robust parameter estimation of sender positions, receiver positions and unknown
offset. The system is capable of handling missing data, outliers and noise. The algorithms
are tested on synthetic data as well as real data, in an office environment and in a cave.
The methods are straightforward to generalize for degenerate configurations which arise if
senders or receivers are restricted to a plane or to a line.

2 Time­Difference­of­Arrival Self Calibration

The problem we are considering involvesm receiver positions ri ∈ R3, i = 1, . . . ,m, and n
sender positions sj ∈ R3, j = 1, . . . , n. This could for example represent the microphone
positions and locations of sound emissions, respectively. Assume that the arrival time of a
sound j to receiver i is tij and that the time that sound j is emitted is Tj. Multiplying the
travel time tij − Tj with the speed v of the signal we obtain the distance between senders
and receiver,

v(tij − Tj) = ∥ri − sj∥2, (2.19)

where ∥.∥2 is the l2­norm. The speed v is throughout the paper assumed to be known and
constant.
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In many settings the times of emissions Tj are unknown, but regular, e.g.

Tj = k1j+ k0, (2.20)

where the interval k1 is known. Inserting (2.20) into (2.19) we obtain

v(tij − k1j− k0) = ∥ri − sj∥2. (2.21)

Assuming an erroneous (but regular) emission time T̃j = k1j + k̃0 and introducing (the
measured) zij = v(tij − T̃j) and (the unknown) o = v(k0 − k̃0) yields the following
expression

zij = ∥ri − sj∥2 + o. (2.22)

Note that this is a simplified variant of the general time­difference­of­arrival problem (see
e.g. [9]), which allows for a different offset o for every j,

zij = ∥ri − sj∥2 + oj. (2.23)

Problem 3. (Constant Offset Time­Difference­of­Arrival Self­Calibration) Givenmeasurements
z̃ij

z̃ij = ∥ri − sj∥2 + o+ ϵij, (2.24)

for a subset W ⊂ I of all the receiver­sender index pairs I = {(i, j)|i = 1, . . .m, j = 1, . . . , n}
determine receiver positions ri, i = 1, . . . ,m and sender positions sj, j = 1, . . . , n and offset
o. Here the errors ϵij are assumed to be either inliers, in which case the errors are small (ϵij ∈
N(0, σ)) or outliers, in which case the measurements are way off.

Here we will use the set Win for the indices (i, j) corresponding to the inlier measurements
and Wout for the indices corresponding to the outlier set.

3 Local Optimization and the Low Rank Relaxation

If an initial estimate of the parameters θ1 = {R, S, o} is given and if the set of inliers
is known, then refinement of the estimate can be found by optimization methods, e.g.
Levenberg­Marquardt (LM) [10, 11],

min
θ1

f(θ1) =
∑

(i,j)∈Win

(zij − (∥ri − sj∥2 + o))2. (2.25)

There is an interesting relaxation to the problem, that exploits the fact that the matrix with
elements (zij−o)2 is rank 5, [2]. Further simplifications use the double compaction method
[9]. The double compaction matrix M is defined as the matrix with elements

Mij = (zij − o)2 − ai − bj, (2.26)
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and it can be shown to have rank 3, i.e. M = UTV, where U is of size 3 × m and V is of
size 3× n. The relaxed problem involves a set of parameters θ2 = {U,V, b, a, o}. Here the
constraints can be written as

zij =
√

uTi vj + ai + bj + o, (2.27)

where ui denotes column i of U and vj denotes column j of V. Refinement of parameters
can be done by performing local optimization on

min
θ2

f(θ2) =
∑

(i,j)∈Win

(
zij − (

√
uTi vj + ai + bj + o)

)2

. (2.28)

4 Minimal Problems and Solvers

By counting equations and unknowns, one finds that there are three minimal problems.
The first two are the symmetric case when m = 4, n = 7 or m = 7, n = 4. This case
is not addressed in this paper, but we believe it to be difficult to solve. The other case is
m = n = 5. Here, we first present a solver for the constant offset and then discuss how to
solve for sender and receiver positions.

Given a 5× 5 matrix, Z, with time­difference­of­arrival measurements zij, the rank 3 con­
straint on the double compaction matrix in (2.26) can be written as

f(o) = det(CT(Z− o)◦2C) = 0, (2.29)

where

C =


−1 −1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.30)

and ◦2 denotes element­wise squaring (Hadamard power). Although the elements of (Z−
o)◦2 are of degree 2 in o, the quadratic terms cancel out after multiplication with CT and
C. Thus the elements of CT(Z − o)◦2C are linear in o. Since the determinant is linear in
each column, the determinant f(o) is a polynomial of degree four in the offset o. This can
be summarized as

Theorem 1. Given time­difference­of­arrival measurements from five receivers to five senders,
there are four possible offsets o, given as the roots to the fourth degree polynomial f(o), counting
complex roots and multiplicity of roots.
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Table 2.1: Execution times for 5 × 5 minimal solvers steps. Notice that the steps of calculating o and the relaxed solution is
significantly faster than upgrading to the full solution

Implementation Matlab C++

Calculation of o 38 μs 3.7 μs
Calculation of θ2 = {U,V, a, b, o} 100 μs N/A

Calculation of θ1 = {R, S, o} 600ms 22ms

For each solution o it is possible to generate a solution θ2 to the relaxed problem, according
to

b=
(
(z11−o)2 (z12 − o)2 (z13 − o)2 (z14 − o)2 (z15 − o)2

)
,

a =


0

(z21 − o)2 − (z11 − o)2

(z31 − o)2 − (z11 − o)2

(z41 − o)2 − (z11 − o)2

(z51 − o)2 − (z11 − o)2

 , (2.31)

U =
(
0 u2 u3 u4 u5

)
, (2.32)

V =
(
0 v2 v3 v4 v5

)
, (2.33)

where
(
u2 u3 u4 u5

)T (v2 v3 v4 v5
)
is any rank 3 factorization of the matrixCT(Z−

o)◦2C.

From a solution θ2 to the relaxed problem it is possible to upgrade to a solution θ1 to the
original problem. This involves solving a system of polynomial equations. The procedure
was first described in [3], where an algorithm for solving this was presented. Recently, a
faster algorithm was presented in [4].

An efficient implementation for calculating the four solutions of the offset o given the
measurements z takes 4 μs for a C++­implementation. Generating the solution θ2 to the
relaxed problem adds a few μs. However, calculating a solution θ1 to the original problem
takes another 22 ms. Thus, it is advantageous to estimate the parameters of the relaxed
problem and postpone the upgrade from θ2 to θ1 as a final step, see Table 2.1.

5 Using RANSAC for Five Rows

We propose the use of the fast minimal solver in an hypothesize and test framework to
obtain (i) a initial estimate on the offset o and (ii) an initial inlier set. The steps are described
in Algorithm 3
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Algorithm 3 Offset RANSAC
1: Randomly select 5 rows and columns. Find the four solutions on o given the time­

difference­of­arrival measurements.
2: For each solution o, calculate the relaxed solution θ2 = {U,V, a, b, o}.
3: For selected rows and for each remaining column, check for inliers according to the

residuals in (2.28).

6 Robust Estimation of Parameters

We use these minimal solvers with RANSAC as described in the previous section to find one
or several initial estimates of the parameters θ2 for a subset of five receivers and k senders.
The solution is extended to additional rows and/or columns using robust techniques as
described in [12]. During this process it is useful to keep the errors down by occasionally
refining the solutions using local optimization. This has shown to reduce failures, see e.g.
[13, 14]. In the proposed estimation algorithm we postpone the upgrade from θ2 to θ1
until we have found a good solution involving a large portion of the receiver and sender
positions.

7 Experimental Validation

7.1 Minimal Solver

To test the numerical accuracy and robustness of our minimal solver we conducted an
experiment using simulated data without noise. We generated a large number of instance
problems (10,000) with known offsets. We then ran our solvers and compared the returned
solutions with the ground truth solution. For each instance problem we recorded the dis­
tance to the closest solution. In Figure 2.7 the resulting histogram of the logarithm of the
absolute errors are shown. As can be seen, both implementations get close to machine
precision.

7.2 Experimental Setup for Real Data

We have tested our system on (i) experiments made in an office environment and (ii) ex­
periments made at the Orlova Chuka cave, Bulgaria.

For the office experiments, 12 microphones (8x t.bone MM­1, 4x Shure SV100) were po­
sitioned around a room (∼ 3 × 5 m2) and measured using a laser to obtain ground truth
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Figure 2.7: Left shows the histogram of the logarithm of the absolute errors, for the Matlab implementation of our minimal
solver. To the right the corresponding histogram for the C++ implementation.

positions of the microphones with an error of ±2 mm. The space was cleared of most
the furniture to create an open space to conduct the experiment in. The sound recordings
were captured using a Roland UA­1610 Sound Capture audio interface and automatically
amplified. The recordings were made using the open source software Audacity 2.3.0 with a
sampling frequency of 96 kHz on a laptop. A synthetically generated chirp was then played
using a simple loudspeaker every half second for 30 s while moving the speaker around in
the room.

For the cave experiments, 12 microphones (4x Sanken CO­100K, 8x Knowles SPU0410)
were positioned in a section of the cave, four microphones were placed on an inverted T ar­
ray near one wall, while the other eight microphones were placed on the adjacent wall. The
sound recordings were captured using pre­amplifiers (Quadmic, RME) and two synchron­
ised Fireface 800 (RME) audio interfaces running at a sampling frequency of 192 kHz.
Recording and playback were controlled via a custom written script based on the sound
device library [15] in Python 2.7.12 [16]. Ultrasonic chirps (8 ms, 16 − 96 kHz upward
hyperbolic sweep) were played every second via one of the audio interfaces, amplified (Ba­
setech AP­2100) and presented through a Peerless XT25SC90­04 loudspeaker. The speaker
was attached to a 3­m­long pole and slowly waved in the approximately 5 × 9 × 3 m3 re­
cording volume. Playbacks were done past 6:00 am to prevent disturbing the resident bat
population.
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7.3 Experimental Evaluation for Real Data

Once the office recordings were taken, an algorithm was used to find the chirps in the
captured sound recordings and the algorithm then outputs the zij matrix. This can then
be used in our RANSAC scheme, Algorithm 3. For this experiment we used the (5R/5S)
minimal solver. A fixed number of iterations was used; 100 iterations for the initial selection
of 5 receivers and senders, then the extension to more columns and rows was allowed until
there was no better solution. The tolerance was set to T = 0.01 for the initial selection and
extension of rows and column.

Once the initial values have been estimated, it underwent l2 optimization on the inlier
set. The results of the estimated microphone positions after the optimization are shown in
Figure 2.8.

This produced an Euclidean distance error between each of the microphones calculated po­
sition and its ground truth position as (0.2016, 0.0587, 0.1444, 0.1153, 0.2017, 0.1326,
0.1407, 0.1198, 0.2041, 0.2010, 0.1908, 0.2110) m.

For graphical purposes, a Procrustes fitting was used on the microphone positions to spread
the total error over all 12 microphones. In the Procrustes fitting only rotation and transla­
tion were allowed.

For the cave experiment a similar scheme was devised and the results are shown in Figure 2.9.

8 Conclusions

In this paper, a novel method has been constructed to efficiently solve a TDOA problem
with a constant offset. This has been verified using simulated data to test the solver and real
experimental data to test our algorithms in realistic scenarios.

Looking at Figure 2.7 and Table 2.1, it can be seen that the calculation of the offsets and the
calculation of the relaxed form θ2 are very fast solvers without loss in numerical accuracy.
The advantage of this is that when using a RANSAC approach, the iterations are performed
quickly, giving a good initial estimate in which to optimize over, which is important in
highly non­linear systems such as this.

Looking at the results from the office experiment, Figure 2.8, we can see that the calculated
microphone positions are accurate and the residuals are small, mostly in the range±0.04m.
Further to this our inlier set appears to be accurate. The first and last few columns (corres­
ponding to sound emissions) are not used in our initialisation. This is correct because the
recording started before the chirps were sounded and ended after, so the chirp detection

80



0 10 20 30 40 50 60
nz = 614

0

5

10

-0.1 -0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

30

35

40

0

2

0.5

1

1 2

1.5

0

2

0
-1

-2 -2

GT
Estimated

Figure 2.8: For the office experiment the figure shows detected inliers Win (top), inlier residual histogram (bottom left), and
estimated and ground truth microphone positions (bottom right).

algorithm falsely determined that they were also chirps but our method decided that the
data in those regions do not fit the model. A comparison of the calculated microphone
positions were made to a solution from a Full TDOA system, [9], which produced similar
results and very similar residuals. This provided a sanity check that the chirp detection was
working correctly and that from this dataset a better solution could not be found.

For the cave experiment, similar conclusions can be made, since the residuals are very low,
we can conclude that we have an accurate model. This gives a real life example of how
algorithms such as the one proposed can be used.

For future work, the study of the number of inliers could be of use. At the moment our
algorithm may not extend to more rows and columns if the initial solution is poor, perturb­
ing our final solution. Perhaps a method which could adapt the initial selection in order to
give a required amount of inliers could be more advantageous.
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Paper IV





Trust No One: Low Rank Matrix
Factorization Using Hierarchical
RANSAC

MAgNuS OSkARSSON, KENNETH BATSTONE AND KALLE ÅSTRöM
Centre of Mathematical Sciences, Lund University, Lund, Sweden

Abstract: In this paper we present a system for performing low rank matrix factorization.
Low­rank matrix factorization is an essential problem in many areas, including computer
vision with applications in affine structure­from­motion, photometric stereo, and non­
rigid structure from motion. We specifically target structured data patterns, with outliers
and large amounts of missing data. Using recently developed characterizations of minimal
solutions to matrix factorization problems with missing data, we show how these can be
used as building blocks in a hierarchical system that performs bootstrapping on all levels.
This gives a robust and fast system, with state­of­the­art performance.
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1 Introduction

We will in this paper address the problem of robust estimation of low rank factorizations
of matrices with missing data and outliers. Many problems in geometric computer vision
can be formulated as such. Two examples are

• Affine structure­from­motion (SfM), where the observation matrix containing fea­
ture tracks can be factorized into the camera motions and the 3D structure.

• Photometric stereo, where the directions of light sources and the surface normals are
separated by factorizing the measurement matrix composed of pixel intensities under
a Lambertian model.

Other applications can be found in [1, 2, 3, 4]. These problems often lead to measurement
matrices with highly structured data, in terms of which measurements that are available.
In this paper we specifically target problems that exhibit such structured data patterns.
Without missing data, the optimal solution to low rank matrix factorization, under the l2­
norm, is given by truncating the singular value decomposition of the measurement matrix,
see [5]. When there are measurements missing in the data, there is no closed form solution
to the l2­norm minimization problem. The Wiberg algorithm [6] was the first method to
handle missing data. A modified version of the Wiberg algorithm was presented in [7].
In [8], a damped Newton method is proposed to handle the missing data. If there are
gross outliers in the data, optimizing the l2­norm can give poor results. In [9], Aanaes
et al. proposed an iteratively re­weighted least squares approach to optimize the objective
function for robustness to outliers. Using more robust norms to outliers was considered in
[10], where algorithms based on alternating optimization under the Huber­norm and the
l1­norm were introduced. Eriksson and Hengel generalized the Wiberg algorithm in [11], to
using the l1­norm. Sometimes, extra constraints can be posed on the factorization matrices.
In [12, 13] constraints that the solution should lie on a certain manifold are considered and
incorporated in the formulation. Due to the non­convexity of the matrix factorization,
most methods mentioned above are based on alternating optimization, and are prone to
get trapped in local minima. To address this issue, several works, such as [14, 15, 16, 3, 17] re­
formulate the problem to minimize the convex surrogate of the rank function – the nuclear
norm. This makes it possible to use convex optimization to find the global optimum of
the approximated objective function. These approaches can handle the problems when the
rank is not known a priori. However, for applications with a given rank, the nuclear norm
based methods usually perform inferior to the bilinear formulation­based methods [18].
The convex formulations often have problems with very high amounts of missing data and
outliers. A way of handling highly structured data matrices is to divide the whole matrix
into overlapping sub­blocks and combine the sub­block solutions, see [19, 20, 21, 22, 23].
Most of these methods do not consider both outliers and missing data at the same time.
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There are a number of works that target specific computer vision applications for incomplete
data. Examples are relative orientation problems, [24, 25], batch structure from motion
estimation, [26], multi­dimensional scaling, [27], and shape estimation, [28]. It has also
been shown that the specific problem of structure from motion with missing data is NP­
hard, [29].

In this paper we largely build upon the work in [23] where minimal solvers for low rank
factorizations of matrices with missing data were introduced. The emphasis was on how
to analyze, describe and solve minimal problems. In this paper we address a number of
algorithmic challenges (speed, accuracy, avoidance of local minima, robustness to outliers).
Our contribution is a system that estimates a low rank factorization of a measurement
matrix with, large amounts of missing data, in highly structured data patterns. It is based
on bootstrapping minimal solvers, which gives speed and robustness to outliers. Running
the solvers in a hierarchical manner gives tractable behaviour for larger input matrices,
and easy parallelization. The system makes it possible to add additional constraints on the
solution, throughout the pipeline.

2 Problem Formulation

We will look at the problem of finding a low rank matrix approximation to a given matrix
X. Any rank K matrix X of size M × N can be written as UV = X, where U is a rank K
matrix of size M×K and V is a rank K matrix of size K×N. If X represents measurements
of something, that in theory should have rank K, we can not expect this equation to hold
exactly due to noise. We could then instead look at the norm of the residual between the
measurement matrix X and the model UV, i.e.

e = ∥X− UV∥F. (2.34)

In many cases one does not have access to all measurements, i.e. not all entries of X are
known. We can then represent which measurements are known by the index matrix W of
sizeM×N, where the entries are either zero, if the corresponding measurement is unknown,
or one if the corresponding measurement is known. We can then write the corresponding
residual norm as,

e = ∥(X− UV)⊙W∥F, (2.35)

where ⊙ represents element­wise multiplication. In addition to measurement noise, one
can also have gross outliers in the data, in some applications. In this case minimizing
an error norm based on an l2­distance often gives bad results. In order to decrease the
influence of the outliers, robust norms are used, such as the l1­norm or the Huber norm.
In [30] a more refined loss function is proposed. If we assume that the inlier residuals
approximately follow a Gaussian distribution, whereas outlier residuals have approximately
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uniformly distributed errors, then this leads to the loss function

l(r) = − log(c+ exp(−r2)), (2.36)

where r is the residual error. Truncating the squared error

l(r) =

{
r2 if |r| ≤ ϵ

ϵ2 otherwise
(2.37)

gives a good approximation. If we denote the residual matrix R = (X − UV) ⊙ W, with
entries rij, we can formulate our problem as

minimize
U,V

∑
i,j

l(rij). (2.38)

The final error depends on ϵ which we set as a parameter in our algorithm. This is the
bound that differentiates an inlier from an outlier measurement.

3 Matrix Factorization with Missing Data

We will use the characterization of low rank matrix factorization problems that was de­
scribed in [23]. For completeness and readability, we will in short describe some of the
results from that paper.

A key question is to study for which index matrices W of type M × N, the problem of
calculating the rank K matrix X = UV is minimal and well­defined. For this we introduce
the manifold Ω = RM×K × RK×N of possible solutions z = (U,V). The solution set
ΩX,W ⊂ Ω for a given data matrix X and a index matrix W is defined as

ΩX,W = {z = (U,V) ∈ Ω|W⊙ (X− UV) = 0}. (2.39)

Typically if the index matrix W has to many non­zero elements, then there are too many
constraints in W⊙(X−UV) = 0 and the solution set ΩX,W is empty for general X. If there
is a solution X = UV, then we are interested to known if the solution is unique up to the
so called Gauge freedom z = (U,V) vs z = (UH,H−1V), where H is a general invertible
K× K matrix.

Assume that input data matrix X = U0V0 of size M× N has been generated by multiply­
ing matrices U0 of size K × M and V0 of size K × N. Assume also that both of these
matrices are general in the sense that all K × K submatrices of both U0 and V0 have rank
K. Furthermore assume that M ≥ K and N ≥ K. An index matrix W is said to be rigid,
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if the solution set ΩX,W locally around the point z0 = (U0,V0) only consists of the set
z(H) = {(U0H,H−1V0)|H invertible K× K matrix}.

Since we are assuming that every sub­minor of U0 and V0 has full rank, one may actually
fix the Gauge freedom by keeping one such sub­minor fixed. For example we could study
the solutions for the points z = (U,V) such that the first K rows of U are equal to those of
U0.

For two index matrices W1 and W2 of the same size we say that W1 ≤ W2 if the inequality
holds for every element. We say that W1 < W2 if W1 ≤ W2 and W1 ̸= W2. It is trivial to
see that if W is rigid and if W ≤ W′ then W′ is also rigid. It also can be shown that if W′ is
rigid and overdetermined, then there is at least one W < W′ that is rigid and minimal. We
say that an index matrixW isminimal if it is rigid and satisfies

∑
ijW(i, j) = MK+NK−K2.

For a minimal index matrix W and for general data X the solution set ΩX,W consists of a
finite number of points nW up to the gauge freedom.

3.1 Henneberg Extensions

We will now describe how to generate the minimal problems. The inspiration comes from
rigid graph theory, where the Henneberg construction is used to generate the Laman graph,
see [31, 32]. The idea is that one starts with the smallest minimal index matrix, and by a series
of extensions generate every minimal index matrix. For the rank K problem the smallest
index matrix is a matrix of size K× K consisting of ones only.

There are both constructive extensions and non­constructive extensions. For a constructive
extension from W to W′, one can infer the number of solutions nW′ from nW and construct
the solver, denoted by fW′ from fW. For non­constructive extensions, it can be shown that
W is minimal if and only if W′ is minimal. However, we can in general neither infer
the number of solutions nW′ from nW nor derive a solver fW′ from fW. Certain of these
constructive extensions are particularly fast and efficient. The simplest one is as follows.

Given a minimal index matrixW for a rank­K problem of sizeM×N, an extended minimal
index matrix W′ of size M×(N+1) is formed by adding a column with exactly K elements
set to one. The number of solutions are identical, i.e. nW = nW′ . Extending an algorithm
from fW to fW′ is straightforward. A similar extension can be done by adding a row with K
indices.

3.2 Henneberg Reductions

There is also a simple recursive method to check if an index matrix W can be generated
using only Henneberg 1 extensions. The procedure is as follows. Start with an index matrix

91



of size M× N. If M = N = K then the index matrix is minimal if and only if the matrix
consists only of ones. If M or N is larger than K, we calculate the minimal number of ones
for a row or column. If this number is less than K, then it can be shown that the index set
in question is non­rigid. If this number is larger than K it can be shown that the index set
(if minimal) cannot be generated by Henneberg 1 extensions only. Finally if the number
is K, then we can remove the row (or column) with exactly K ones and study this index
matrix, which now is of smaller size.

The algorithm terminates after at most M + N − 2K steps. After running the algorithm
we determine if the index set is minimal and can be constructed by a series of Henneberg
1 extensions. But we also obtain the pattern of extensions. Thus we obtain an efficient
method of calculating the unique solution (U,V) from a data matrix X so that W⊙ (X−
UV) = 0.

3.3 Glues

Assume that the solutions to two sub­problem {W1,X1} and {W2,X2} are given by {U1,V1}
and {U2,V2} respectively. To construct the solution to {W,X}, the idea is to find a trans­
formation matrix H ∈ RK×K to transform the subspace U2 to the same coordinate frame­
work as the subspace U1. Using this transformation we have

U2V2 = (U2H)(H−1V2). (2.40)

Now U2H and H−1V2 are in the same coordinate framework as U1 and V1 respectively.
The remaining problem is to solve for H. We have the following constraint, that states that
U1 and U2H should coincide for the overlapping rows as

U1(I12, :) = U2(I12, :)H, (2.41)

where I1 and I2 denotes the indices of overlapping rows in U1 and U2 respectively and
U(I, :) denotes the sub­matrix of U by taking the rows given by I. Similarly we have the
overlapping constraints for V1 and H−1V2 as

HV1(:, J12) = V2(:, J12), (2.42)

where J1 and J2 denotes the indices of overlapping columns in V1 and V2 respectively.

If we have enough constraints from (2.41) and (2.42), H can be solved linearly. Two ex­
amples are if there are at least K overlapping rows or K overlapping columns. For the cases
where the overlap doesn’t give sufficiently many constraints, we need some extra constraint
outside W1 and W2 to solve for the transformation matrix H.

92



4 Building Blocks

In this section we will describe the basic components that are used in our matrix factoriza­
tion method. Our full system will be described Section 5.

4.1 Initializing Solutions

We use RANSAC to find small initial solutions. We choose a sub­problem to problem 2.38,
by choosing a sub­matrixWi ofW. We further randomly select a minimal number of meas­
urements, represented by Wm < Wi. These index­matrices have corresponding measure­
ment matrices Xi and Xm. Even though we have chosen a minimal subset of measurements,
this need not represent a well posed minimal problem. In order to check this, we perform
Henneberg reductions as described in Section 3.2. IfWm indeed represents a minimal prob­
lem, we can, if we have a solver for this case, solve the corresponding matrix factorization
of Xm. This gives a minimal solution (Um,Vm). We can now look at how well this solution
matches the other measurements in Wi by looking at the residuals (UmVm − Xi) ⊙ Wi.
Repeating this process gives a set of initial good solutions.

4.2 Extending Solutions

If we have a solution, represented by (Ui,Vi) we can minimally extend this solution row­
or columnwise using Henneberg­1 extensions, for every column (or row) that has at least K
measurements. For every such column a, we randomly select K rows that are represented
in the corresponding index sub­matrix Wi, and use the Henneberg­1 extension to find the
new column va so that V̄i =

[
Vi va

]
. To handle outliers we check how many of the

measurements that fit this new Ūi. If we have a substantial enough number of inliers we
keep this solution, otherwise we repeat the process a number of times.

4.3 Glueing Solutions

If we have two solutions, represented by (Ui,Vi) and (Uj,Vj) we can, depending on the
overlap of the two solutions, glue these solutions into one using the methods described in
Section 3. Basically this can be done if there is enough information to estimate the K× K
transformation matrix H so that UiH and H−1Vi are given in the same coordinate frame as
Uj and Vj. Using a randomly selected minimal set of measurements to estimate H gives a
new solution (Uk,Vk) where Uk is the union of UiH and Uj, and Vk is the union of H−1Vi
and Vj. To handle outliers we check how many inliers we get for this new solution. Again,

93



if we have a substantial enough number of inliers we keep this solution, otherwise we repeat
the process a number of times.

4.4 Refining Solutions

Since we use minimal solvers, and extend these solutions iteratively, we need to refine our
solutions in order to avoid error propagation. We non­linearly refine our solutions, by
minimizing (2.38) iteratively using Gauss Newton descent. We handle the truncation, at
each step, by only optimizing over the inlier set, and then updating the inlier set using the
new estimate of U and V. Since the error on the inlier set is quadratic in U and V the
derivatives with respect to U and V are easily obtained.

5 Sampling Scheme

Using the building blocks from the previous section, we can now describe our full sampling
scheme. The basic idea behind our method is that we will have several solutions competing
against each other. These solutions will expand and merge, but at all steps we will try to be
robust against outliers and inlier errors, so that we do not propagate errors. We do this by
random sampling at all instances.

We assume that we have four functions available: INIT, EXTEND, GLUE and REFINE,
that do initialization, extensions, glues and non­linear refinement respectively as described
in Sections 4.1­4.4. We start by initializing a number of seed solutions. For each solution i,
we haveUi and Vi. We then, for each of these seed solutions, attempt to extend it and refine
it. If two solutions overlap, we try to glue them together. We repeat this procedure until
we have at least one solution that covers the whole data matrix X. Sometimes the errors of
a solution will grow during this process, and we remove solutions that have a residual norm
larger than some fixed threshold. This means that we could end up with an empty solution
set. In this case we re­initialize a number of seed solutions. The steps of our procedure are
summarized in Algorithm 4. There is of course no guarantee that Algorithm 4 will converge,
but given a well posed problem and relevant parameter settings, it is our experience that it
will. We terminate after a fixed number of iterations or when we have at least one solution
that covers the whole measurement matrix. We will in the experimental section validate
this, on both synthetic and real data. There are a number of parameters that need to be set
in order for the algorithm to work properly. The most important one is the error bound,
i.e. the reprojection error that differentiates between an inlier and an outlier. In order to
increase the robustness, we have introduced an absolute threshold on the number of inliers
for the EXTEND, and GLUE functions. For each row and column the number of inliers
should exceed this threshold. We have used the rank plus a small integer as threshold. We
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Figure 2.10: Results from running Algorithm 4 on the Dinosaur experiment (See Section 6.1 for details). Measured data points
in blue, and the extent of the solutions are depicted as green boxes. The figure shows from left to right how the
solution set evolves.

also need to set the number of RANSAC iterations for each of these functions, but this
will mainly affect the total running time. If we assume structured data, it makes sense to
smooth the index matrix W with a two­dimensional Gaussian, to obtain Wsm. We then
sample initialization matrices guided by Wsm as a probability measure. Sampled positions
are removed from Wsm to avoid multiple initial points. In [23] they do a manual block
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Algorithm 4 Matrix factorization sampling scheme
1: Given an M× N data matrix X with index matrix W,
2: initialize a solution set S = INIT,
3: (S = {S1, S2, . . . , Sn}, Si = (Ui,Vi)).
4: while no Si is of size M× N do
5: for all i do
6: Si = EXTEND Si (column­wise)
7: Si = EXTEND Si (row­wise)
8: Si = REFINE Si
9: if ∥(UiVi − Xi)⊙Wi∥F > C then

10: S = S \ Si
11: end if
12: end for
13: for all overlapping Si, Sj do
14: Sk = GLUE Si, Sj
15: S = S ∪ Sk
16: end for
17: if S = ∅ then
18: Initialize n new seed solutions S = INIT.
19: end if
20: end while

subdivision (with relatively large blocks e.g. 50 × 50). This means that the model that is
fitted is very large (e.g. 50K + 50K − K2 parameters for a rank K problem) algorithm. In
our approach there is no need for any explicit block subdivision, and the initial models that
are fitted are much smaller. This gives a much more tractable and robust algorithm.

6 Experiments

We have applied our method to a number of different matrix factorization problems, in
order to show the usefulness of it in terms of robustness, accuracy and speed.

We have compared our results to a number of state­of­the­art methods for low rank matrix
factorization, namely the method of Larsson et al. , [21], the method of Jiang et al. , [23],
the Truncated Nuclear Norm Regularization (TNNR­ADMM) [33], OptSpace [34], the
damped Wiberg algorithm using the implementation of Okatani et al. [7], and the l1Wiberg
algorithm, [11], using the C++ implementation from [35]. In the results we have included
the relevant comparisons, in order to make the tables and graphs more readable. It has
been previously reported (in [23]) that the methods of [33] and [34] perform much worse
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for structured data patterns with high amounts of missing data. This is also our experience
end hence we have omitted these results. Most of the methods do not handle outliers,
and in the absence of outliers the Wiberg algorithm gives best accuracy. For this reason
we mainly focus on comparison with the l1­ and l2­versions of the Wiberg algorithm in
the synthetic experiments in Section 6.3. All tests were conducted on a desktop computer
running Ubuntu, with an Intel Core i7 3.6 GHz processor. The Matlab implementation of
our method is available at https://github.com/hamburgerlady/miss-ranko.

6.1 Affine Structure from Motion

Given a full data matrix and an affine camera model it is possible to solve the structure from
motion problem using factorization. The standard way of doing this is by first removing the
centroid of each point in the images. This leads to a rank 3 factorization problem. When
there is missing data, we can neither use SVD for factorization nor remove the centroid
since this is not known. We can still write the problem as a rank 4 matrix factorization
problem with missing data, see e.g. [36]. An affine camera is of the form

Pi =

 Ai
Bi

0 0 0 1

 . (2.43)

If we collect the N (homogeneous) 3D points in the 4×N matrix V, one usually writes the
rank 4 problem as UV = X, where U is the 2M× 4 matrix containing the stacked camera
rows Ai and Bi, and the 2M×N matrix X contains the x and y coordinates of image points.
However, solving this rank 4 matrix factorization problem ignores the fact that the last row
of the camera matrices should be equal to [0 0 0 1], and that the last coordinate of each
homogeneous point should be equal to one. In our model we include this constraint by
simply adding a row in the measurement matrix with just ones. We have found this to be a
very powerful constraint, since we know it should hold even for missing data, and we use it
throughout our pipeline. If the constraint is fulfilled, we can simply upgrade to the affine
model byUa = UH so that the last row ofUa is equal to [0 0 0 1]. We have run Algorithm 4
on the well known Dinosaur sequence. This is a sequence that contains very little outliers,
but a large amount of missing data (88%). Even though the underlying structure from
motion can be (and has been) solved using a multitude of methods, the Dinosaur sequence
works well as a benchmark problem for matrix factorization. We have compared our results
with to those of Larsson et al. , [21]. In their work they also did experiments on using the
nuclear norm and we have included these results here. In Jiang et al. , [23] it was reported
that the Truncated Nuclear Norm Regularization (TNNR­ADMM) [33] and OptSpace [34]
failed to recover the 2D tracks from the Dinosaur sequence. This is also our experience,
as we consistently failed to recover a reasonable solution using these methods. In addition
we have also run the damped Wiberg algorithm using the implementation of Okatani et
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Table 2.2: Comparison of results from the Dinosaur and Linnaeus reconstruction experiments. The table shows the Frobenius
errors using the proposed method compared to the Nuclear norm minimization, the method of Larsson et al. [21],
and the damped Wiberg algorithm [7].

Algorithm

Dataset [23] [21] [7] Proposed

Dino∼300 pts 99 73.3 28.0 17.0
Dino∼2000 pts ­ ­ 144.1 48.45
Linnaeus∼2000 pts ­ ­ 580000 380.5
Linnaeus∼4000 pts ­ ­ ­ 543.4
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Figure 2: Histogram of reprojection errors for the Dinosaur experiment.
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Figure 2.11: Left: Histogram of the final (non-truncated) residuals from the Dinosaur experiment using our proposed method.
The results are from the larger dataset, with approximately 2000 3D points. Right: Histogram of the final (non-
truncated) residuals from the Linnaeus experiment using our proposed method.

al. [7]. In Table 2.2 the Frobenius norm of the final factorizations are shown. The average
running time for the Wiberg algorithm was 144 seconds, compared to around 3 seconds for
our method. We have also run our method on a larger point set. For this set we didn’t have
access to results from [21]. We have run our method multiple times, and we always end up
in the same optimum. Here the running time for the Wiberg algorithm was 4087 seconds,
compared to 5.4 seconds for our method. A histogram of the residuals (in pixels) from our
reconstruction is shown in Figure 2.11. Using the calibration of the projective camera model,
we can upgrade our affine reconstruction to an orthographic. The resulting calibrated affine
reconstruction is shown to the right in Figure 2.12. In a second experiment, we recorded
a sequence of a statue of Carl Linnaeus. We extracted Harris corner points, and tracked
these using the Kanade­Lucas­Tomasi (KLT) tracker [37]. This resulted in a sequence with

98



Figure 2.12: Results from the Dinosaur experiment, with approximately 2000 points. Left: Measured tracks (green) and recon-
structed tracks (blue). Right: The calibrated affine reconstruction.

Figure 2.13: The figure shows three frames of the Linnaeus sequence. Also shown are the tracked Harris points (orange circles)
and the reprojected points (white dots) using the proposed method. For visibility a random subset of 250 points
are shown

86 images and a total of 3977 3D points. This sequence also contains closed loops, i.e. points
were tracked from the last frames to the first. Three frames of the sequence can be seen in
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Table 2.3: Comparison of the result on linear shape basis estimation using the Book and Hand dataset. The second experiment
contains an additional 10%missing data. The table shows the Frobenius errors using the proposed method compared
to the methods of [21], [23] and the damped Wiberg algorithm [7].

Algorithm

Dataset [21] [23] [7] Proposed

Book 0.3522 0.1740 0.1740 0.1740
Hand 0.8613 0.6891 0.2802 0.2802
Book­10% 8.0436 0.1772 0.1534 0.1534
Hand­10% 1.5495 0.7297 0.2634 0.2634

Figure 2.13. The results of running our algorithm on this sequence can be seen in Table 2.2.
The running time for the full dataset was 39.8 s. The extracted points (orange circles) and
the reprojected points (white dots) can be seen in Figure 2.13. The sequence constains
approximately 1% outliers. As for the Dinosaur sequence, the Truncated Nuclear Norm
Regularization (TNNR­ADMM) [33] and OptSpace [34] failed to recover reasonable 2D
tracks from the Linnaeus sequence. We were not able to run the damped Wiberg algorithm
on the full dataset, but the results for a subset of around half the points can be seen in
Table 2.2. The running time for our method on the smaller Linnaeus sequence was 10.4 s
compared to 1068 s for the Wiberg algorithm. We didn’t have access to results from [21].

6.2 Linear Shape Basis Estimation

If we have non­rigid structures in a scene, a linear shape basis can be used to model the
deformations. The underlying assumption is that the non­rigid deformation of the object
can be represented as a linear combination of a set of shapes. Typically the size of the
shape basis is much smaller than either the number of frames, or the tracked points, so the
measurement matrix containing the point tracks can be factorized into a coefficient matrix
and a shape basis matrix.

For our experiments we used the datasets from [21], Book and Hand. In these experiments
the image points are tracked using a standard Kanade­Lucas­Tomasi (KLT) tracker [37].
Due to occlusions, the tracker fails after a number of frames for a subset of points, which
leads to missing data. To compare with the results in [23] we use the same setup as they
do, using a subset of 42 frames with 60 tracked points from the Book and 38 frames with
203 points from the Hand dataset. We then find rank­3 and rank­5 factorizations of the
two datasets respectively. We ran our algorithm, and also the Wiberg algorithm using the
implementation in [7]. The results can be seen in Table 2.3. The Wiberg algorithm was
initialized randomly. Our method and the Wiberg minimization achieve the same optima,
which are slightly better than the other methods. The reason is probably that the Wiberg
and our method finds the same optimum– that we believe is the global one – since the
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set is practically outlier free. The other methods do not in this case find an equally good
optimum. For these smaller problems the Wiberg algorithm works well, but for larger
problems it becomes intractable in terms of running time, as described in Section 6.1.
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Figure 2: Histogram of reprojection errors for the Dinosaur experiment.
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Figure 2.14: Results from the outlier test, as described in Section 6.3. Left: The graph shows the mean l1error for the proposed
method compared to the l1Wiberg algorithm, [11, 35] and the oracle ground truth solution, as functions of the
outlier rate. Middle: The average running times, as functions of the outlier rate, for the proposedmethod compared
to the l1Wiberg algorithm, [11, 35]. Right: A magnification of the timing results for the proposed method.

6.3 Performance Tests

We have conducted a number of synthetic tests to test the performance of our method. The
basic setup was done by randomly drawing two matrices UM×K and VK×N. The product
X0 = UV was then perturbed with Gaussian noise, i.e. X = X0 + ϵij with ϵij ∈ N(0, σ).
A band diagonal matrix WM×N was used to prescribe which measurements were available.
The bandwidth b for the matrix W (with entries wij) is defined using wij = 0 for j <
i − b or j > i + b. Finally, a certain percentage of the seen measurements were replaced
with entries drawn randomly from a uniform distribution, to simulate gross outliers. In a
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first experiment we tested the sensitivity to the proportion of outliers in the measurement
matrix. We used a 300 × 300 measurement matrix X, with bandwidth 20. The entries
were approximately between minus one and plus one, with Gaussian noise with standard
deviation 1e− 3. A certain percentage of the measurements were then replaced with gross
outliers. We ran Algorithm 4 and compared the results with the l1­Wiberg algorithm, [11],
using the C++ implementation from [35]. The results can be seen to the left, in Figure 2.14.
We have also constructed an oracle ground truth solution to compare the results. This
solution was attained by running the non­linear refinement, using the ground truth inlier
set, and the ground truth U and V as starting solution. This will in general give a better
optimum than U and V. One can see that both the tested algorithms perform on par. The
average running times are depicted in Figure 2.14. The middle graph shows both algorithms
in the same plot, and the right hand plot shows a magnification of the running times for
the proposed algorithm. The l1­Wiberg algorithm has very unattractive time complexity in
terms of the size of the input measurement matrix, and we failed to run it for larger sizes
than 200×200. Our method works well for moderate amounts of outliers, but as the outlier
percentage increases, the RANSAC initialization will take longer and longer time, and for
this test the break­down point for our method was around 20%. In a second experiment we
used a similar setup, but instead of varying the outlier rate, we varied the size of the input
measurement matrix X. Here we used a fixed outlier ratio of 5%. In Figure 2.15 the results
can be seen. We show two versions of our algorithm, with and without using the GLUE
step. The left of the figure shows the truncated l2­error for the two versions, compared with
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Figure 2.15: Timing results from the size test, as described in Section 6.3. The left graph shows the truncated l2-error, as
functions of the image size, for the proposed method (with and without using GLUE) compared to the oracle
ground truth optimum. The right graph shows the average running times for the proposed method, with and
without using GLUE.

the oracle ground truth solution, obtained in the same way as in the previous experiment.
The right shows the average running times, as a function of the number of rows (equal to the
number of columns) in the measurement matrix. One can see that for smaller problems,
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there is no need for the GLUE. For larger problems using the GLUE leads to (in this
case) near linear time complexity. As can be seen from the error plot, using the GLUE
method doesn’t lead to any error accumulation. We have also investigated our algorithm’s
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Figure 2.16: Timing results from the missing data test, as described in Section 6.3. The left graph shows the l2-error, as functions
of the bandwidth of the data, for the proposed method compared to the damped Wiberg algorithm and oracle
ground truth optimum. The right graph shows the average running times for the proposed method, compared to
the damped Wiberg algorithm.

dependence on the bandwidth of the measurement matrix. Using a similar setup as in
the previous experiments, we constructed measurement matrices with varying bandwidth.
We did not include any outliers in the data, and compared our results with the damped
Wiberg algorithm. The results can be seen in Figure 2.16. Both algorithms give final norms
very close to the oracle solution, but for smaller bandwidths the Wiberg algorithm has
worse convergence. For very small bandwidths our algorithm becomes unstable, and the
RANSAC loops will take excessive amounts of time. In this case, the breakdown point for
our algorithm was for a bandwidth around 5. This will depend on the rank of the solution,
which in this case was 4.

Algorithm 4 is highly parallelizable. We have conducted a simple timing experiments using
our Matlab implementation. We simply change the for­loop to Matlabs parfor­loop.
This runs the extensions and refinement of the initial solutions in parallel, but not the
initialization. The initialization could of course also be run in parallel, but for most of our
conducted experiments the initialization takes a smaller fraction of the total running time.
The average running times, using different number of parallel cores, are shown in Table 2.4.
We get slightly less than linear speed­ups.
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Table 2.4: Timings for the linear shape basis estimation using the Book and Hand dataset. The results are based on running
parfor in Matlab with different number of cores on an Intel Core i7 3.6 GHz processor.

Number of cores

Dataset 1 2 3 4

Book 0.793s 0.470s 0.382s 0.369s
Hand 28.6s 16.1s 12.2s 10.3s
Dino ∼2000 points 5.38s 3.61s 3.02s 2.19s

7 Conclusion

We have in this paper presented a method for doing robust low rank matrix factorization for
structured data patterns. It can handle very large amounts of missing data, and moderate
amounts of outliers. It gives results on par, or better than, using the l1­Wiberg algorithm or
the damped l2­Wiberg algorithm, with substantial speed­up. The presented method is also
trivially parallelizable. Future work includes investigating two interesting properties of our
method, that we have not exploited in any detail in this paper. Firstly we have the ability
to solve for multiple models in the data. For instance, if we have two rigid motions in a
structure from motion sequence, we could – at least in theory – run our algorithm and find
the two solutions corresponding to the two motions. Another property, that easily can be
incorporated in our framework, is the ability to add additional constraints on the solution
space, e.g. for the affine structure from motion setting we can constrain the pair­wise rows
of U to be orthogonal to model a scaled orthographic camera.
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Towards Real­time Time­of­Arrival
Self­Calibration using
Ultra­Wideband Anchors
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Centre of Mathematical Sciences, Lund University, Lund, Sweden

Abstract: Indoor localisation is a currently a key issue, from robotics to the Internet of Things.
With hardware advancements making Ultra­Wideband devices more accurate and low powered
(potentially even passive), this unlocks the potential of having such devices in common place around
factories and homes, enabling an alternative method of navigation. Therefore, anchor calibration
indoors becomes a key problem in order to implement these devices efficiently and effectively.

In this paper, we study the possibility for sequentially gathering Ultra­Wideband Time­of­Arrival
measurements and using previously studied robust solvers, merge solutions together in order to
calculate anchor positions in 3D in real­time. Here it is assumed that there is no prior knowledge of
the anchor positions. This is then validated using Ultra­Wideband Time­of­Arrival data gathered
by a Bitcraze Crazyflie quadcopter in 2D motion, 3D motion and full flight.

111



1 Introduction

Indoor positioning and navigation is a well known problem. In the modern world, systems
such as GPS are heavily relied on for the navigation and positioning of people, vehicles
and robots to name a few. Unfortunately, in highly urban areas, such as New York, tall
buildings interfere with the accuracy of positioning and this becomes worse once inside any
building. Once inside a building it can, at times, be impossible to acquire signals from the
GPS satellites. When this occurs navigation users must use an alternative system. There are
currently many options to overcome this problem but they all come with their own flaws.
A large focus has been using the signal strength of Wi­Fi networks to perform positioning
since the infrastructure currently exists in most buildings but due to the nature of radio
signals, they have a low accuracy and with distance, the errors increase exponentially, [1].
Other options include Bluetooth devices (that have a short range) and dead reckoning
approaches (that decrease in accuracy over time due to perturbations in errors).

Now, a new era of wireless communications, 5G is hoping to bridge the gap to enable
reliable indoor positioning. One such technology which is commercially available is Ultra­
Wideband. The devices which use Ultra­Wideband are low powered and perform 2­way
timing in order to obtain high precision in positioning, [2], between 2 devices. With fur­
ther hardware advancements, Ultra­Wideband devices aim to be more accurate and lower
powered (potentially even passive, [3]). This unlocks the potential of having such devices in
common place around factories and homes, enabling an alternative method of navigation
indoors for people and Internet­of­Things (IoT) devices.

In this paper we present new research on methods for time­of­arrival (TOA) self­calibration
problem. Here we exploit the factorisation of the receiver­transmitter distance matrix in
order to enable real­time anchor calibration. This method is then applied to measure­
ments taken using a Bitcraze, Crazyflie quadcopter with Ultra­Wideband anchors in order
to determine if the proposed method is feasible in a real world situation, shown in Fig­
ure 2.24. These devices use the Decawave DWM1000 chip. For our experiments, the
Ultra­Wideband anchors have the notation as either receiver or anchor, and the Crazyflie
quadcopter as the transmitter.

The TOA self­calibration problem, is the problem of determining the positions of a number
of receivers and transmitters given only receiver­transmitter distances. Here, there is no
prior knowledge of the anchor positions. Hence, it is closely related to the anchor­free
sensor network localisation problem [4] but differs, since our problem corresponds to a
bipartite graph network, where [4] the network structure is a general graph. In [5], the
authors explore the problem of embedded minimal rigid graphs in a larger general graph in
order to solve the larger graph in the presence of missing information, which is applicable
to the TOA problem. The TOA problem also has certain similarities with the problem of
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Figure 2.17: Image of the Ultra-Wideband anchor and Bitcraze Crazyflie quadcopter respectively from left to right.

determining a set of points given all inter­point distances, which is usually solved using
multi­dimensional scaling [6].

Anchor­free sensor network calibration with time­of­arrival measurements has been invest­
igated in a number of studies. Graph rigidity was explored in [4] to find a fold­free graph
embedding, and the solution was then refined using mass­spring based optimisation. In
[7], a semi­definite programming formulation and solution was proposed for TOA meas­
urements, with or without anchors. Both of these methods are general for any solvable
network structure, [8]. In an other line of work, there has been focused on sensor networks
with a bipartite structure. For this type of network structure, one also aims to calculate the
minimal problem, i.e. minimal number of receivers and transmitters required for the prob­
lem to be solvable. Note that for this problem, the roles of receivers and transmitters are
equivalent. The minimal cases were studied in [9], which found that the minimal case of a
2D network is three transmitters and three receivers. The minimal problems for the 3D case
are given in [10]. Here the minimal configuration of receivers and transmitters are (4, 6),
(5, 5) and (6, 4) respectively. There are in general 38, 42 and 38 solutions respectively for
the three types of problems. However, no practical methods for general 3D positions are
given. There are a few results on algorithms for actually determining the positions from
distances, most notably [11, 12]. In [13], a non­minimal linear solution to the 3D TOA
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self­calibration problem is derived for 10 (4) receivers and 4 (10) transmitters. In [14, 15] a
solution is given to the TOA self­calibration problem, if one may additionally assume that
one of the receivers coincides with the position of one of the transmitters.

Studying these minimal cases is of theoretical importance and further more essential when
developing fast and stable algorithms based on robust estimation methods like RANSAC
[16], in the presence of outliers in the measurements. As will be shown in the following
sections, one important part of our system exploits that the so­called compaction matrix
should have a certain rank. Low rank matrix factorisation has a long standing history.
Truncating the singular value decomposition of the measurement matrix has been shown
to give the optimal solution under the l2­norm for complete data, see [17]. The work in [18]
was the first to consider missing data. Robustness to outliers has been considered in [19,
20, 21, 22]. Most methods mentioned above are based on alternating optimisation and are
prone to get trapped in local minima. Recently, several works [23, 24, 25] re­formulate the
problem to minimise the convex surrogate of the rank function, that is, the nuclear norm.
For applications with a given fixed rank, the nuclear norm based methods usually perform
inferior to the bilinear formulation­based methods [26]. A few recent works [27, 28, 29, 30]
explore the idea of dividing the whole matrix into overlapping sub­blocks and combine the
sub­block solutions. Minimal cases for low rank matrix factorisation, for missing data,
were investigated in [31]. This paper is a continuation of our paper [32], where a RANSAC
paradigm was used in conjunction with minimal solvers and explored in order to obtain a
robust and fast solution of the TOA self­calibration problem.

The novel concept of this paper, is that we can use our robust method to find a solution
for a short dataset, then merge this solution sequentially to a previous solution. By doing
this we see a convergent nature of calibrating the anchor positions in 2D and 3D as more
data is collected. This has many added advantages. One such advantage is that it can be
determined when there has been enough data acquired to solve the self calibration problem.
In doing so, after the problem has been solved the user could switch to computationally
lighter positioning algorithms to increase the performance. It also has the advantage of
being implemented on large scales. As long as the solutions are connected, the solutions
from one part of a building would be in the same coordinate system as another part of
the building, but only the information from one part of the building is required to form
a positioning solution, hence reducing the complexities of data storage and optimisations.
In addition, since we are dealing with short datasets, these are quickly optimised to their
local minima, so we have found overall improvements to our anchor positions calculations.

114



2 Basic Geometry

We will now describe the basic underlying geometry of our problem. Let ri, i = 1, . . . ,m
and sj, j = 1, . . . , n be the spatial coordinates ofm receivers (e.g. Ultra­Wideband anchors)
and n transmitters (e.g. Crazyflie quadcopter), respectively. For measured time of arrival
tij from transmitter ri and receiver sj, we have vtij = ∥ri − sj∥2 where v is the speed of
measured signals and ∥.∥2 is the l2­norm. The speed v is assumed to be known and con­
stant. We further assume that we, at each receiver can distinguish which transmitter j each
event is originating from. This can be done e.g. if the signals are temporally separated or
using different frequencies. We will in the following work with the distance measurements
dij = vtij. It is quite common that such data contains both missing data from poor signal
communications and outliers due to inaccuracies of the hardware measurements. The TOA
calibration problem can then be defined as follows,

Problem 4. (Time­of­Arrival Self­Calibration) Given absolute distance measurements

dij = ∥ri − sj∥2 + ϵi,j, (2.44)

where the receiver positions are defined as ri, i = 1, . . . ,m and transmitter positions as sj,
j = 1, . . . , n. Here the errors ϵi,j are assumed to be either inliers, in which case the errors are
small (ϵi,j ∈ N(0, σ)) or outliers, in which case the measurements are way off.

Here we will use the set Wi for the indices (i, j) corresponding to the inlier measurements.

We will now show how the TOA calibration problem is solved generally. From many types
of media, a transmitter­receiver distance will be acquired, dij. Since this can be assumed to
be real and positive, it can be squared as follows,

d2
ij = (ri − sj)

T(ri − sj) = rTi ri + sTj sj − 2rTi sj. (2.45)

The problem is then reformed according to the following invertible linear combinations of
d2
ij:

B =


d2

11 d2
12 − d2

11 . . . d2
1n − d2

11
d2

21 − d2
11

. . . B̂
d2
m2 − d2

11

 , (2.46)

where the compaction matrix B̂ is an (m − 1) × (n − 1) matrix with entries as B̂ij =

d2
i,j − d2

i1 − d2
1j + d2

11

−2
, with i = 2, . . .m and j = 2, . . . , n. The other elements in B are

used as constraints for the solution.
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The factorisation can then be interpreted as follows. Let Ri =
[
(ri − r1)

]
and Sj =[

(sj − s1)
]
. Here B̂ = RTS with Ri as columns of R and Sj as columns of S . Since

we assume that R and S are in a 3D affine space, the matrix B̂ has rank 3 at most. This
also implies that in order to solve the problem, it is required that m ≥ 4 and n ≥ 4 . By
factorising B̂, we can compute the vectors to all receivers and transmitters from unknown
initial/reference positions (r1 and s1).

By fixing r1 at the origin and s1 as a vector from the origin, in terms of an affine trans­
formation matrix L and vector b, the problem is reformulated as follows,

r1 = 0, s1 = Lb,

ri = L−TR̃i, i = 2 . . .m,

sj = L(S̃j + b), j = 2 . . . n,

(2.47)

where R̃ = LTR, S̃ = L−1S, and hence B̂ = R̃TL−1LS̃ = RTS.

Using this parametrisation, the equations from matrix B, (2.46) become

d2
11 = (r1 − s1)

T(r1 − s1) = sT1 s1 = bTLTLb

= bTH−1b, (2.48)
d2

1j − d2
11 = sTj sj − sT1 s1 = S̃T

j L
TLS̃j + 2bTLTLS̃j

= S̃T
j H

−1S̃j + 2bTH−1S̃j, (2.49)

d2
i1 − d2

11 = rTi ri − 2rTi s1 = R̃T
i (L

TL)−1R̃i − 2bTR̃i

= R̃T
i HR̃i − 2bTR̃i, (2.50)

where the symmetric matrix H = (LTL)−1. With this parametrisation, there are in total
9 unknowns (6 and 3 unknowns for H and b, respectively), and hence a solution can be
found. Since this solution has its own coordinate system, with prior knowledge such as
gyroscope data, this can be transformed back to the original coordinate system.

3 Non­Linear Optimisation Approaches

In the development of the different systems for robust estimation, we use several local
optimisation techniques. In particular we use methods for local optimisation of the type

min
r,s

∑
(i,j)∈W̃

f(di,j − ||ri − sj||2), (2.51)
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where f(r) is chosen to be (i) f(r) = r2 (l2­norm), (ii) f(r) = |r| (l1­norm) or (iii) f(r) =
min(r2,T) (truncated l2­norm). If the subset W̃ of the measurements contains no outliers
and if the starting point is good, then the l2­norm can give good estimates. Optimising
using the l1­norm is less sensitive to the subset W̃ containing outliers, but still requires
a reasonably good starting point to converge to a good solution. Local optimisation of
the truncated l2­norm is even more sensitive to having a good starting point. Neverthe­
less, these local optimisation techniques are important components for designing robust
systems.

4 Obtaining Initial Estimates

Finding the optimal solution to problem 5, in the presence of outliers and missing data
is a highly non­convex problem. We are thus dependent on finding good initial starting
solutions, for the optimisation methods from the previous section to work. We will in this
section describe the different initialisation methods that we have used in our experiment.
In the next section we will describe our latest contribution to the initialisation problem.

Arguably, the most straight­forward way to initialise a solution, is to simply randomly place
all receivers and transmitters within some space. This usually gives poor initial estimates,
and the local optimisation will be prone to get stuck in local minima. A slight improvement
to this idea, is to use multiple restarts and optimise from each initial position, and then in
the end choose the best solution.

Another way of initialising, that we have explored, is using the rank constraint on the
compaction matrix. Here one can use many existing methods for doing the low rank matrix
factorisation. One important draw­back of these methods, is that we need to have at least
one row and one column of the data matrix completely known, and without outliers. The
last criteria is of course hard to check. If all data is known, the optimal low rank factorisation
is given by singular value decomposition (SVD) of the data matrix. A heuristic for handling
missing data, is simply to fill in the missing data with some random values that follow the
statistics of the other known measurements. One can then use SVD to obtain an initial
estimate. This can be used directly to find the solution to the original problem as described
in section 2. Alternatively, the initial low rank matrix factorisation can be refined using the
Wiberg algorithm, [18].

5 Random Sampling Paradigm

The RANSAC or hypothesise and test paradigm, has proven to be useful in situations where
there are outliers in the data, [16]. In this paradigm, a subset of the data is used to estimate
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the unknown parameters. The remainder of the data is then used to verify or falsify the
parameters. This is typically repeated a fixed number of iterations. The parameters that give
the largest number of inliers are then usually used as an initial estimate for the subsequent
non­linear optimisation of the parameters.

For Problem 5, there are several ways one could implement the hypothesis and test paradigm.

One idea would be to use efficient algorithms for determining receiver and transmitters
positions from minimal data, [10]. Although this solver and the test is relatively fast, we
propose an alternative to this approach. In one of our recent papers the idea is to find a fast
way to hypothesise and test. We will use the rank constraints of the compaction matrix to
do this. Our method is described in [32].

6 Merging Solutions

Assume that there are two sequential solutions B̂1 = RT
1S1 and B̂2 = RT

2S2. Within
these two solutions there exists a subset of data that overlaps denoted by a subscript, i. Since
the two solutions are in different coordinate systems, due to coordinate dis­ambiguities in
our solutions, then the idea is to find a transformation matrix Q ∈ RK×K to transform R2
into the same coordinate system as R1. Using this transformation matrix, the solution can
be transformed to another coordinated system where the solution is just as valid, i.e.

RT
2S2 = RT

2QQ
−1S2. (2.52)

Since there is an overlapping region, i, in the solutions, it can be assumed that

RT
1,iS1,i = (RT

2,iQ)(Q
−1S2,i), (2.53)

and hence,
RT

1,i = RT
2,iQ, (2.54)

S2,i = QS1,i. (2.55)

Provided there is enough data in the overlapping region (2.54) and (2.55), then the trans­
formation matrix Q can be solved linearly. The two solutions can then be merged, the
overlapping region R1,i,S1,i is updated using (2.54), (2.55) and the rest of R2,S2 are con­
catenated onto the previous solution using (2.52). Since R and S are linear combinations
of r and s, then the compaction matrix doesn’t need to be calculated in order to solve
this, instead r and s are used to calculate Q. The details of our algorithm are explained in
Algorithm 6.
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Algorithm 5 Our Solution merging scheme
1: Select Overlapping region such that it is assumed that r1 = r2
2: Calculate the transformation matrix in a RANSAC way to obtain the best Q.
3: If: when applying the best transformation matrix Q, the new solution does not fit well i.e.

||rT1,i − rT2,iQ||2 + ||sT1,i −QsT2,i||2 > ϵ, for some sufficiently small ϵ, then r1 remains the same
and s2 are trilaterated points using r1.

4: Else: Calculate the new r1,i and s2 according to (2.54) and (2.55).
5: Optimise over the range of both solutions.

7 Experimental Setup

To test our method 3 experiments were conducted using a Bitcraze Crazyflie quadcopter and
their Loco­positioning system which consists of Ultra­Wideband chips on the anchors and
quadcopter. Six anchors were positioned around the rooms and for two of the experiments,
measured using a laser distance meter to obtain ground truth positions of the anchors in
the 2D experiment and full flight experiment with an error of ±2 mm.

The other experiment was conducted in a MOCAP studio to record the ground truth flight­
path as well as the anchor positions with an error of ±1 mm.

Distance measurements from the quadcopter to all the anchors were measured at a fre­
quency of 30 Hz.

Two of the experimental environments were rooms in an office block, which reduced the
chances of large outliers or missing data, but the 2D experiment was performed in a large
open space in an office block with meeting rooms in the centre in order to provoke large
amounts of missing data.

The experiments were conducted by moving the quadcopter, by hand, around the room
except for the full flight experiment, where the quadcopter was flown. The distance meas­
urements were recorded so that they may be processed offline. Our algorithms do not
require any prior knowledge of anchor or quadcopter positions. The only requirement is
that our minimal solver (5,5) is satisfied for the 3D cases and (3,3) for the 2D case.

8 Experimental Evaluation

Once the measurements were taken, they were streamed into our algorithm to simulate real­
time acquisition. At all optimisation steps, l2 optimisation on the inlier set was performed.
We also added a smoothness prior in the optimisation. This prior is based on minimising
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acceleration, according to

resa =
1
σ2
a

n−1∑
j=2

∥sj−1 − 2sj + sj+1∥2
2, (2.56)

where σa is a parameter controlling the strength of the smoothness prior. This is reasonable
since the motion of the quadcopter is continuous.

8.1 MOCAP Experiment

When streaming the data, a number of buffer lengths were tested, in order to see if this
had an effect on the rate of convergence. The result of this can be see in Figure 2.18. To
show this result a Procrustes fitting was used to find a transformation between the ground
truth anchor positions and the final calculated anchor positions. This transform was then
applied to all calculated solutions retrospectively so that they are in equivalent coordinate
systems. In the Procrustes fitting only rotation and translation were allowed.

Figure 2.18: This figure illustrates the Root Mean Squared Error (RMSE) distance between the calculated to ground truth anchor
positions for different buffered measurement sizes.

A buffer length of 20 measurements was then chosen for the subsequent experiments.
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Using the same set­up and data from the MOCAP studio, solutions were found for each
20 measurement and merged together using 10 overlapping measurements. As before a
retrospective Procrustes fitting was applied. Here the (5,5) minimal solver was used.

To show the convergence of each of the anchor positions, the distance from the calculated
anchor position to the ground truth anchor positions are plotted for each step, as shown in
Figure 2.19.

Figure 2.19: This figure illustrates the distance between the calculated to ground truth anchor positions.

Here the final distance from the calculated anchor position to the ground truth anchor
positions are as follows, (0.1026, 0.1612, 0.1078, 0.0888, 0.1845, 0.0675)m for anchors
1 to 6 respectively.

The final solution is shown in Figure 2.20. In this figure, three instances from sequentially
calculating and merging solutions are shown with the last being the final solution. In this
dataset there was 0.61% of the data missing. For the final solution, the distance from
each quadcopter positions to the corresponding ground truth position was calculated. A
histogram of the errors can be seen in Figure 2.21.
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Figure 2.20: The figure illustrates the estimated anchor positions and quadcopter positions. These are overlaid on the ground
truth anchor positions and flightpath. Each graph represents a different, (increasing) time instance, the bottom
corresponding to the final solution.

8.2 Full Flight Experiment

During this experiment, a video recording of the experiment was made. In Figure 2.22,
three of the video frames are shown with the 3D­points projected onto the image. The
main purpose is to be able to visualise the convergence of the anchor positions during a
flight. Here the (5,5) minimal solver was used.

Here the distance from the final calculated anchor position to the ground truth anchor
positions are as follows, (0.1439, 0.1154, 0.1501, 0.1664, 0.1477, 0.1842)m, for anchors
1 to 6 respectively. In this dataset there was 0.01% of the data missing. Again, a retrospective
Procrustes fitting was applied as before.
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Figure 2.21: This figure illustrates the distance between the calculated to ground truth anchor positions.

8.3 2D Experiment

The main purpose of this experiment is to be able to visualise the convergence of the anchor
positions and to be able to test the robustness of our algorithm. Due to the short range of
the UWB devices and the obstacle of the Meeting Rooms, there was no instance of a given
quadcopter position having full distance measurements to all 6 anchors. In this dataset
there was 49.61% of the data missing. Here the (3,3) minimal solver was used.

Here the distance from the final calculated anchor position to the ground truth anchor
positions are as follows, (0.0814, 0.1717, 0.0702, 0.1392, 0.1700, 0.2017)m, for anchors
1 to 6 respectively. Again a retrospective Procrustes fitting was applied as before.

9 Conclusions

In this paper, a novel method has been constructed to take advantage of the factorisation
of the transmitter­receiver matrix in order to push for real­time Ultra­Wideband anchor
calibration. This has been verified using TOA Ultra­Wideband measurement data in a
streamed way to simulate real­time calculations.
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Figure 2.22: These figures illustrate the estimated anchor positions and the flightpath positions at various times of the flight to
show how the anchor positions are updated. The positions of the anchors are shown by the blue square and the
quadcopter can be seen in the photographs.

Looking at Figure 2.18, it can be seen that regardless of the buffer length, each solution
converges to a similar solution. Once the system acquires a sufficient amount of data,
they all converge. This then implies, by having a shorter buffer length then there would
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Figure 2.23: This figure illustrates the estimated anchor positions and the quadcopter positions. This is overlaid on the ground
truth anchor positions. The central rectangle represents the Meeting rooms which provoked missing data. Each
graph represents a different (increasing) time instance, the last being the final solution.

be more instances to test to see if a final solution has been met and therefore be able to
move over to a computationally lighter positioning algorithm. It is also worth noting,
that the there was a slight improvement in the final solution when the buffer length was
smaller. Here the buffer length of 10 measurements gave the best solution. This may be
due to higher frequency of optimisation steps, which would allow the calculated solutions
to be closer to the global optimum, hence the solution to the next iteration would have
a better initialisation, which is important in this highly non­linear system. Although a
smaller buffer length tends to improve the final result, caution must be taken. The smaller
the buffer length, the less robust our solver becomes so the errors from one section could
affect the subsequent solutions and the final solution. This effect was seen on occasions, but
UWB in line­of­sight situations produces accurate measurements so it didn’t often occur
and the buffer length was increased to 20 measurement to ensure robustness.

Looking at the results from the MOCAP studio experiments, Figures 2.19, 2.20 & 2.21,
it can be seen that this method produces accurate results. For current Ultra­Wideband
systems, the chip sets come with a recommended accuracy of ±0.2m. From our results we
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are also able to achieve this accuracy, as seen from the convergent plots Figure 2.18 & 2.19.
Further to this, each time we process the data, we reach a similar result. This would lead
use to believe that we have achieved the global optima. It is also interesting to note that
the convergence of the anchor positions to their true positions is not monotonic. It shows
potentially at points in time that not enough data has been collected to make a reasonable
solution but once it does have enough data, the convergence is rapid and the previous
solutions are then corrected. This is further demonstrated in Figure 2.22.

In the 2D experiment, our algorithms were pushed in order to test the robustness of the
system in the presence of large amounts of missing data. From Figure 2.23 it can be seen
that the anchor positions are calculated to a high accuracy despite 49.61% of missing data.
At most given quadcopter positions, it could acquire at most 4 distance measurements
to the anchors. The minimum required number of overlapping anchors for the merging
scheme to function is 2, any less and the 2 solution sets would be disjointed so it would
be impossible to merge the coordinate systems. This data set, however, does show that our
real­time scheme could be implemented on a large scale. As long as the criterion for the
merging scheme is met then the system can be extend substantially. Only the local anchors
to the quadcopter are needed for self­calibration of the anchors and relative positioning
of the quadcopter. The previous solutions are only needed to have a common coordinate
system. This then implies that if enough data is collected in a single area, then when the
quadcopter moves to another area, only the anchor positions need to be stored and the data
from that area would not be needed in further optimisation steps. This would allow for
much faster computations and hybrid self­calibration/ trilateration algorithms.

For future work, the study of this convergent nature would be interesting in order to pro­
duce a viable method for a stopping condition for calibrating the anchor positions. By
solving this problem it would allow for large scale navigation and positioning with no need
for prior knowledge of the anchor positions, it would also be less computationally intensive
which is preferable for robots and IoT devices.
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Collaborative Merging of Radio
SLAMMaps in View of
Crowd­sourced Data Acquisition and
Big Data

KENNETH BATSTONE, MAgNuS OSkARSSON AND KALLE ÅSTRöM
Centre of Mathematical Sciences, Lund University, Lund, Sweden

Abstract: Indoor localization and navigation is a much researched and difficult problem. The best
solutions, usually use expensive specialized equipment and/or prior calibration of some form. To
the average person with smart or Internet­Of­Things devices, these solutions are not feasible, partic­
ularly in large scales. With hardware advancements making Ultra­Wideband devices more accurate
and low powered, this unlocks the potential of having such devices in commonplace around factor­
ies and homes, enabling an alternative method of navigation. Therefore, indoor anchor calibration
becomes a key problem in order to implement these devices efficiently and effectively. In this paper,
we present a method to fuse radio SLAM (also known as Time­Of­ Arrival self­calibration) maps
together in a linear way. In doing so we are then able to collaboratively calibrate the anchor po­
sitions in 3D to native precision of the devices. Furthermore, we introduce an automatic scheme
to determine which of the maps are best to use to further improve the anchor calibration and its
robustness but also show which maps could be discarded. Additionally, when a map is fused in
a linear way, it is a very computationally cheap process and produces a reasonable map which is
required to push for crowd­sourced data acquisition.
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1 Introduction

Navigation has become a key part of modern civilisation, with most people using systems
such as GPS on a daily basis, in their cars or on their person, integrated into their smart
phones. The demand for positioning systems is also increasing with the era of 5G upon us.
With 5G, we expect to see an increase of positioning accuracy in addition to having more
devices, such as Internet­Of­Things (IoT), to also required positioning. For example, items
in warehouses will require positioning to enable automation in the warehouses to improve
efficiency.

Currently GPS provides good positioning for most users in an outdoor environment. Un­
fortunately, this cannot be said once inside a building. Once inside, the GPS signals are
heavily attenuated, meaning the accuracy of the positioning can decrease to encompass a
whole build or more. When this occurs users must use an alternative system to navigate
indoors.

There are currently many options to overcome this problem but they all come with their
own drawbacks. In robotics, many use optical devices to perform SLAM (Simultaneous
localization and mapping, [1]) such as cameras and LIDAR, which produce good results
but such devices can be expensive and computationally tasking. This restricts such methods
to small environments with a low amount of dynamic features. For mobile phone users,
a large focus has been using the signal strength of Wi­Fi networks to perform positioning
since the infrastructure currently exists in most buildings but due to the nature of radio
signals in complex environments, they have a low accuracy and with distance, the errors
increase exponentially, [2].

One such technology which is commercially available is Ultra­Wideband (UWB). These
devices are low powered and perform 2­way timing in order to obtain high precision in
positioning, between two devices. This unlocks the potential of having such devices in
common place around factories and homes, enabling an alternative method of navigation
indoors for people and Internet of Things (IoT) devices.

Another technology which shows promise is round­trip time (RTT) being enabled on Wi­
Fi. With RTT, it is expected to perform ranging between routers and mobile device with
as low as 1 metre accuracy. Many modern routers have the ability to perform this but
currently awaits a firmware update. This technology uses the 802.11mc IEEE standard,
which has been enabled on Android Pie devices. A strong advantage to this option is that
the infrastructure already exists.

With these developments comes further issues. Due to the large number of devices, calib­
ration of the anchors becomes problematic. Currently large datasets require vast amounts
of memory and processing power, which is impossible for most machines. In this paper we
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present new research on methods for large scale anchor self­calibration problem. Here we
present a method to merge maps together in a linear way. In doing so we build a library
of tools in order to determine the quality of each map and then to be able to fuse them
together to produce a global map. Additionally, when a map is merged in such a way, it is a
relatively computationally cheap process and produces a reasonable map which is required
to push for crowd­sourced data acquisition. The proposed method will help bridge the
memory requirement issues and the ability to select the best datasets.

The proposed method was tested on both simulated and real UWB distance measurements.
These datasets are created using 2­way timing, therefore it is a Time­Of­Arrival (TOA) self­
calibration problem.

The TOA self­calibration problem, is the problem of determining the positions of a number
of receivers and transmitters given only receiver­transmitter distances. Here, there is no
prior knowledge of the anchor positions.

2 Background

To solve such problems, one method is to solve a minimal case and extend that solution.
Minimal cases for low rank matrix factorization, for missing data, were investigated in [3].
In [4] a RANSAC paradigm was used in conjunction with minimal solvers and explored in
order to obtain a robust and fast solution of the TOA self­calibration problem, with missing
data and noise. In [5] a sequential merging scheme was created to explore the potential of
real­time anchor calibration. One pitfall of the described scheme was that as more data was
collected, memory requirements and computational complexity increased which limited
the system.

The TOA self­calibration problem and other indoor SLAM methods are rarely performed
in large scale using radio. Computer vision research has address some issues common to
both optical SLAM and TOA self­calibration problem, such as memory limits, accuracy
and computational power. In [6] and [7], the authors exploit the structure of the Jacobian
so that memory limits and computational complexity are improved to allow for SLAM in
larger environments with acceptable losses in accuracy.

In [8], a solution was given for large scale SLAM, with promising memory requirements,
computational effort and an accuracy of 0.5m in 2D, but this works differs since the authors
use foot mounted inertial measurement units (IMU) to crowd­source SLAM maps, which
is not as prevalent as radio infrastructure. In [9] map fusion was explored for a multi­robot
SLAM framework, but this method was tested on only two maps. More research has been
conducted in this area, [10, 11], but still very few robots and maps are used when merging. In
[12], the authors address the issue of large memory requirements needed for Collaborative
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Visual SLAM. Although optical SLAM and TOA self­calibration share similar solutions to
similar problems, they differ greatly in accuracy and the type of data. In optical SLAM
many other instruments on the robot assist the formation of the solution and improves the
accuracy. This provides a rich and reliable dataset. For the TOA self­calibration using radio
systems, it is common that there are fewer anchor positions than user sender positions. This
means that when merging anchor positions, the sparsity of the data is a constraint on the
solution and prone to errors due to the accuracy of the ranging.

3 Method

We will now describe the basic underlying geometry of our problem. Let Ri, i = 1, . . . ,m
and Sj, j = 1, . . . , n be the spatial coordinates of m receivers (e.g. Ultra­Wideband an­
chors) and n transmitters (e.g. Crazyflie quadcopter), respectively. For measured time of
arrival tij from transmitter Ri and receiver Sj, we have vtij = ∥Ri − Sj∥2, where v is the
speed of measured signals and ∥.∥2 is the l2­norm. The speed v is assumed to be known and
constant. We further assume that we, at each receiver can distinguish which transmitter j
each event is originating from. This can be done e.g. if the signals are temporally separated
or using different frequencies. We will in the following work with the distance measure­
ments dij = vtij. It is quite common that such data contains both missing data from poor
signal communications and outliers due to inaccuracies of the hardware measurements.
The TOA calibration problem can then be defined as follows,

Problem 5. (Time­of­Arrival Self­Calibration) Given absolute distance measurements

dij = ∥Ri − Sj∥2 + ϵi,j, (2.57)

where the receiver positions are defined as Ri, i = 1, . . . ,m and transmitter positions as Sj,
j = 1, . . . , n. Here the errors ϵi,j are assumed to be either inliers, in which case the errors are
small (ϵi,j ∈ N(0, σ)) or outliers, in which case the measurements are way off.

Here we will use the set W for the indices (i, j) corresponding to the inlier measurements.

The Time­of­Arrival Self­Calibration problem can be solved by computing the bundle ad­
justment of (2.58), shown below.

min
R,S

∑
(i,j)∈W

(di,j − ||Ri − Sj||2)2. (2.58)

For simplification, (2.58) can be represented as,

argmin
∑

|d− f(R,S)|2 (2.59)
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where f(R,S) = ||R − S||2 can be the nonlinear function for all combinations of R,S
. Therefore it can be assumed that there exists an optimal R⋆ and S⋆, such that aopt is the
minima, ie.

aopt =
∑

|d− f(R⋆,S⋆)|2. (2.60)

Then the sum of the residuals can be linearized around R⋆ and S⋆ as

a(R,S) ≈ aopt + J
[
R−R⋆

S− S⋆

]
, (2.61)

where J is the jacobian of f wrt. R and S. The problem can be reformulated as

a(R,S) ≈ aopt +
[
JR JS

] [∆R
∆S

]
. (2.62)

We can include the contribution of S into the expression by solving

min
∆S

|aopt + JR∆R+ JS∆S|2 (2.63)

which has the closed form solution ∆S = −(JTSJS)
−1JTSJR∆R where T denotes matrix

transpose. Insertion into (2.62) yields

a(R,S) ≈ aopt + (I− JS(JTSJS)
−1JTS)JR∆R, (2.64)

where I denotes the identity matrix of proper size. In order to reduce the amount of data
being saved in a database, a matrix A is introduced such that

A = (I− JS(JTSJS)
−1JTS)JR. (2.65)

Now A above can be decomposed into A = VU where U is a upper triangular matrix and
V is a unitary matrix. Hence,

|a(R,S)|2 =|VTa(R,S)|2 ≈ |VTaopt + U∆R|2

=|aopt|2 + |U∆R|2.
(2.66)

If two such solutions are available, then the sum of the norms can be formulated as

|a1(R,S)|2 + |a2(R,S)|2 ≈ |a1,opt|2 + ...

...+ |U1(R−R⋆
1)|2 + |a2,opt|2 + |U2(R−R⋆

2)|2.
(2.67)

This expression can be minimized for R as

Ropt = (UT
1U1 + UT

2U2)
−1(UT

1U1R
⋆
1 + UT

2U2R
⋆
2). (2.68)

137



Which has the general expression, for k maps as,

Ropt =(UT
1U1 + UT

2U2 + ...+ UT
kUk)

−1

(UT
1U1R

⋆
1 + UT

2U2R
⋆
2 + ...+ UT

kUkR
⋆
k).

(2.69)

Since in reality, some of the calculated maps will be erroneous due to the environment
in which the measurements are taken, a weighting term is therefore introduced, where
λk ∈ [0, 1].

Ropt(λ) = (λ2
1U

T
1U1 + λ2

2U
T
2U2 + ...+ λ2

kU
T
kUk)

−1

(λ2
1U

T
1U1R

⋆
1 + λ2

2U
T
2U2R

⋆
2 + ...+ λ2

kU
T
kUkR

⋆
k).

(2.70)

In order to solve for the problem in (2.70), a new variant of the objective function for
the full bundle adjustment (2.58) is used. Here, one only needs to solve for the vector
λ = [λ1, ..., λk] as shown in (2.71),

min
λ

∑
k

∑
(ik,jk)∈W̃k

(λk(dik,jk − ||Roptik
(λ)− Sjk ||2))

2. (2.71)

This, therefore, can be seen as a relaxation of (2.58), where the λ variable is similar to
the weights in a weighted optimization. Due to the non­linearity of the problem, a good
initialization is also needed for (2.71). To achieve this, a RANSAC scheme was devised to
provide a good initialization but also an indication of which dataset are best to use, see
Algorithm 6.

Algorithm 6 Our RANSAC Merging Scheme
1: Select 5 random maps
2: Calculate the optimal anchor positions using our merging algorithm.
3: If: The score of the objective function is the lowest value so far, select all maps within a 1m of

RMSE distance of the optimal anchor positions. The initial 5 maps keep their λ values from
the optimization, all other inliers are given a value of 0.5 and outliers are given a value of 0.

4: Repeat steps 1­3 200 times
5: Recalculate a new optimal anchor position using our merging algorithm with best lambda values

as an initial guess to the optimization.

In this scheme, some of the values are arbitrary and can be tuned depending on the data
type etc. These values are the 5 random maps and the selection of all maps within 1m
of RMSE distance of the optimal anchor positions. The reason 5 maps were chosen is to
maintain robustness, since the quality of maps vary, by choosing 5 maps the optimization
can quickly determine a valid optimal anchor position for the majority of the iterations.
The selection radius was chosen as generous catchment zone for the inlier set, this can be
tuned to the specific need of the datasets.
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4 Experimental Setup

4.1 Simulated Datasets

In order to test our method, three experiments were devised. The first experiment was to
create 40 anchor positions and 1000 sender positions, randomly to span a 20× 20× 20m
space. From there the distance matrix was calculated and Gaussian noise was added with
a variance of 0.18m to simulate UWB measurements. A full bundle adjustment was then
performed, in order to give a comparison to current state of the art method, [4]. The
distance matrix, d, was then divided into 50 equal parts of 40 anchor positions and 20
sender positions and a map was created for each set. Then for each of the 50 maps, our
method was tested with different optimization methods. Firstly our linear method (2.69),
secondly our linear method with a weighting factor (2.70) and lastly a bundle adjustment.
This was then repeated 400 times.

The second experiment was to perform the same experiment as above but to falsify 30%
and 60% of the 50 maps. For the specific percentage of the maps, the anchor positions
were randomly perturbed in a 40cm radius. The anchor positions were then transformed
to ensure that the first anchor is the origin of the coordinate system and the second anchor
on the x­axis and so on. This transformation was also performed on the sender positions.
This therefore, would give a realistic poor result for those maps. The RANSAC method was
then tested on these datasets to give an understanding of the robustness of the proposed
merging schemes and to show how it could be used to determine good maps. Again this
was repeated 400 times.

The third experiment was to test how the number of maps affects the time it takes to
calculate the optimal solution. Once again, 40 anchor positions and 1000 sender positions
were used like in the first experiment to simulate UWB measurements. The RANSAC
method was then used to find a solution for different number of maps, with the time
it took noted, and the time for a full bundle adjustment was also noted. This was only
iterated once.

4.2 Real Datasets

For the final experiment, our algorithms were tested on real UWB measurements from a
Bitcraze, Crazyflie quadcopter mounted with a UWB device (Decawave DWM1000 chip)
in order to determine if the proposed method is feasible in a real world situation, shown in
Figure 2.24. The experiment was conducted in a Motion Capture (MOCAP) Studio to give
ground truth positions to compare our results with. There were 9 separate datasets with 6
anchors in the same position for each. The ground truth anchor positions were calculated
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using the MOCAP cameras to a precision of ±1 mm.

Figure 2.24: Image of the Ultra-Wideband anchor and Bitcraze Crazyflie quadcopter respectively from left to right.

Distance measurements from the quadcopter to all the anchors were measured at a fre­
quency of 30 Hz.

The experiments were conducted by moving the quadcopter, by hand, around the room.
The distance measurements were recorded so that they may be processed offline. Our al­
gorithms do not require any prior knowledge of anchor or quadcopter positions. The only
requirement is that the minimal solver (5,5) is satisfied for the 3D cases.

5 Results and Analysis

5.1 Simulated Datasets

In Figures 2.25 and 2.26 the results for the first experiment are shown. For all the experi­
ments the Root Mean­Squared Errors (RMSE) are a comparison of the calculated optimal
anchor positions to the ground truth anchor positions. It can been seen that each of the
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methods perform differently, with the linear merging scheme being the least successful.
The other three methods presented show good results since all three have at least 90% of
the solutions with an error under the UWB distance measurement accuracy of 0.18m, see
Figure 2.26. The full bundle adjustment result was expected to be a good solution since
the optimization is minimizing the residual for all 40000 distance measurements. Interest­
ingly, the result for the RANSAC scheme did not achieve as good as a result for the best
full bundle adjustment solutions but for 55% of the solutions it did achieve a better result.
Furthermore, it has a steep curve at 0.03m RMSE distance Error. This indicates that the
method reliably produces a similar result.

Figure 2.25: This figure illustrates the RMSE error for the each of the merged maps plotted against its cumulative density for
400 experiments.

In Figures 2.27 and 2.28, the results for the second experiment are shown. All three solutions
show a similar result, which indicates that by using the RANSAC scheme it maintains its
robustness. This is due to the RANSAC scheme being able to select a collection of maps
which have similar and good results. This behaviour is further shown in Figure 2.28. Figure
2.28 is an example of the lambda values obtained after using the RANSAC scheme and
the merging scheme with lambda optimization. It can be seen that the RANSAC scheme
focuses the optimization of lambda in one cluster of the maps. This in turn produces better
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Figure 2.26: This figure is the same as Figure 2.25. It illustrates the RMSE error for the each of the merged maps plotted against
its cumulative density for 400 experiments but only shows the RMSE range of 0.01 to 0.22.

optimal anchor positions, the RANSAC scheme had a RMSE distance error of 0.0379m
and the merging scheme with lambda optimization 0.0498m.

In Figure 2.29, the results for the third experiment is shown. It can be see that the time it
takes to find a solution is dependent on the number of maps. Thus it also shows that the
RANSAC method proposed is computationally cheaper. In this case, the trend appears to
be parabolic which implies that there is an optimal number of maps for each experiment.
This was computed for one random experiment, the times do vary for each experiment but
the trends are similar.

5.2 Real Dataset

In Figure 2.30 are the lambda values obtained after using the RANSAC scheme and the
merging scheme with lambda optimization. For this experiment the RMSE is a compar­
ison of the calculated optimal anchor positions to the ground truth anchor positions. The
RANSAC scheme had a RMSE distance error of 0.106m and the merging scheme with
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Figure 2.27: This figure illustrates the RMSE error for the each of the merged maps with different percentages of errors plotted
against its cumulative density for 400 experiments.

lambda optimization 0.1369m. Due to the restricted number of maps in this case, it is
difficult to determine which of the schemes is better, since nearly all maps are needed to
calculate an optimal map then the lambda value are similar.

6 Conclusions

In this paper, a method has been constructed to merge maps together in a linear way.
In doing so we build a library of tools to determine the quality of each map, and once
the quality of multiple maps were determined, we can logically merge them together to
produce a global map.

Looking at the results from the MOCAP studio experiments, in Figure 2.30 it can be seen,
that this method produces accurate results. For current Ultra­Wideband systems, the chip
sets come with a recommended accuracy of ±0.2m. From our results, we are also able to
achieve this accuracy. It is also interesting to note that the lambda values for each of the
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Figure 2.28: This figure illustrates the RMSE error for each map plotted against its calculated lambda value.

maps are varied, in particular the map with the smallest error has a lambda value of ca. 0.35.
It shows potentially that there are not enough separate maps that have been collected to
make a reasonable estimate of the quality of each map. One would expect the lambda values
to decrease as the RMSE error increases, as seen in Figure 2.28, but on this occasions there
are erroneous lambda values. This may be due to the non­linearity of the self­calibration
problem, since there will be many local minimas, contributions from all maps may be used.

In the first experiment, our algorithms were pushed, to test the robustness of the system.
From Figure 2.25, it can be seen that the anchor positions are calculated to a high accur­
acy in comparison to the full bundle adjustment. It can also be noted that roughly 98%
of the merged maps had a RMSE error under 0.25m. Of course, the full bundle adjust­
ment produces a better result and is considered the gold standard but in reality it is not
a viable option. The bundle adjustment is very computationally expensive and is limited
by the size of the distance matrix. During the optimization of the bundle adjustment, it
has to estimate 120000 parameters (40 anchors, 1000 senders, 3 degrees of freedom), which
modern computers with large RAM can calculate but any larger wouldn’t be possible. By
partitioning the distance matrix, multiple solutions can be created in parallel, then merged
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Figure 2.29: This figure illustrates the computatuional time for an optimal solution to be found for different number of maps.
The time for a full Bundle Adjustment over all anchors and senders is also shown as a comparison.

together. In addition to this, once the lambda values have been calculated, one would have
an estimate of the quality of each map and the ability to logically manage each solution
with data storage and merged maps quality in mind. Another benefit, is that the num­
ber of parameters is reduced considerably when performing the merging algorithm with
weights. In this case from 120000 parameters to 50 parameters.

The main advantage with such linear fusion is that it is a relatively computationally cheap
process, that unlocks the potential for crowd­sourced data acquisition without comprom­
ising map quality. In our case, for the simulated dataset with 60 % errors, to perform a
bundle adjustment on all 50 maps and merge them took 47 minutes, whereas the full bundle
adjustment took 1.5 days on the same machine for all 400 iterations. This can be seen fur­
ther in Figure 2.29, with an appropriate number of maps. Although the computational
time reduction can be seen, it is not as large as the one mentioned for the simulated dataset
with 60 % errors. This may be due to the the RANSAC initialization, this step produces a
robust and close initialization which reduces the time needed of our method to converge to
the optimal solution. In the case for the simulated data used in experiment 3, since all the
maps are viable (no outliers) then many more maps are initialized with the value 1, hence
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Figure 2.30: This figure illustrates the RMSE error for map plotted against its calculated lambda value. The maps are created
using UWB mounted on a quadcopter.

the computational time is less affected. The proposed method bridges memory require­
ment issues and offers the ability to select the best datasets. In addition to this, the method
would also work for different media type, such as bluetooth, multiple WiFi frequencies
and optical SLAM. Provided that the positions of the anchor points are the same for each
media.

For future work, the study of a collaborative data management scheme would be highly
advantageous. In doing so, would give an autonomous way of choosing which parts of
the dataset to fuse in order to discard unnecessary data and keep only the required data to
improve a map. For instance, if an office building were to be mapped using crowd­sourced
data, there would exist areas that would be oversampled, such as the main entrance and
corridors. Whereas a storage room would be sampled infrequently, therefore an automatic
scheme that would discard the oversampled areas would be advantageous to data manage­
ment. In summary, this would be a way of determining the uniqueness of a given map.
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Abstract: This paper presents a robust phase­based positioning framework using a massive MIMO
system. The phase­based distance estimates of MPCs together with other parameters are tracked
with an EKF, the state dimension of which varies with the birth­death processes of paths. The
RIMAX and the modeling of dense multipath component in the framework further enhance the
quality of parameter tracking by providing an accurate initial state and the underlying noise cov­
ariance. The tracked MPCs are fed into a time­of­arrival self­calibration positioning algorithm for
simultaneous trajectory and environment estimation. Throughout the positioning process, no prior
knowledge of the surrounding environment and base station position is needed. The performance
is evaluated with the measurement of a 2D complex movement, which was performed in a sports
hall with an antenna array with 128 ports as base station using a standard cellular bandwidth of
40 MHz. The positioning result shows that the mean deviation of the estimated user equipment
trajectory from the ground truth is 13 cm. In summary, the proposed framework is a promising
high­resolution radio­based positioning solution for current and next generation cellular systems.
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1 Introduction

High precision positioning information is a fundamental component of autonomous sys­
tems and location­aware applications in mobile devices. To pursue better user experience,
these new services and systems keep bringing new challenges to the positioning systems
regarding the accuracy, reliability, etc. The Global Positioning System (GPS) works well
outdoors, but the accuracy and robustness degrade severely in scenarios like urban canyons
and indoor environments due to poor propagation conditions between satellites and user
equipment (UE). In contrast, cellular and wireless networks generally have good coverage
in those GPS harsh environments. As a substitute or supplement to GPS, much effort has
been put into the research of radio­based positioning techniques.

Accurate radio­based positioning commonly relies on geometrical information (distance,
delay and angle) of multipath components (MPCs) from the radio channel. The estima­
tion quality of these channel parameters in turn determines the positioning performance.
In recent years, positioning with ultra­wideband (UWB) signal has drawn special interest
because of the excellent accuracy[1]. The fine delay resolution due to the large bandwidth
used makes it possible to resolve MPCs and track the distance changes in centimeter level.
However, UWB positioning can only be applied in limited scenarios considering it is a low­
power and short­range technique. These shortcomings naturally lead us to the question:
is it possible to deliver comparable positioning accuracy by utilizing limited bandwidth in
both indoor and outdoor scenarios? We try to solve the puzzle from a channel model­
ling perspective. The wireless propagation channel is commonly characterized as a sum of
specular­like paths and non­resolvable components. Considering that cellular systems are
typically operating with a carrier frequency at a few GHz with a bandwidth of 20­40 MHz,
the delay resolution is in a scale of 7.5­15 m. However, we notice that the corresponding
wavelengths are in the order of centimeters and one wavelength corresponds to a 2π phase
shift. For each MPC, the delay and phase are two parameters which vary simultaneously
with the wave propagating. If the spatial sampling rate of the radio channel is sufficiently
high, i.e., taking a few snapshots within one wavelength movement, it is possible to track
the distance change in centimeter level by measuring the phase shift between two consecut­
ive snapshots. With limited bandwidth, the coherence in the delay domain is a challenge for
successfully detecting and tracking many MPCs simultaneously. However, the large­scale
antenna array could provide additional distinction between MPCs in the spatial domain.
The feasibility of the phase­based positioning has been preliminarily proved in [2]. In that
work, the phase and delay are assumed to be independent parameters, which are estimated
separately and only the phase is used for the movement tracking. Because phase and delay
affect each other with wave propagating, and phase estimates are usually discontinuous in
complex environments, there are risks of causing errors or losing tracks.

Motivated by the above analysis, we present a robust phase­based positioning framework
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in this paper. As a proof­of­concept study, the focus of this work is on demonstrating the
possibility of high­resolution radio­based positioning given limited bandwidth and with
no prior environment knowledge, rather than on reducing system complexity to imple­
ment real­time positioning. Based on some well­established algorithms, e.g,. the Exten­
ded Kalman Filter (EKF) [3] and the iterative maximum­likelihood estimation algorithm
(RIMAX) [4], the MPC parameters are extracted from the channel measurement data.
A time­of­arrival (TOA) self­calibration positioning algorithm, which is a structure­of­
motion approach and widely used in image processing, is finally applied for simultaneous
UE trajectory and environment estimation. The main contributions are

• The unique mapping between the phase shift and the distance change in our dy­
namic model leads to a simpler kinematic model by involving less parameters, and
the robustness of the system is also improved.

• The performance is evaluated with real measurements of a complex movement. The
results prove that the proposed framework provides outstanding MPC tracking and
positioning performance even with limited bandwidth.

The paper is structured as follows. In Section II, dynamic propagation channel modeling is
discussed. Section III introduces the estimation of path parameters with the EKF. Section
IV describes details of the measurement campaign. The MPC tracking results are presented
in Section V. Section VI introduces the TOA positioning algorithm and positioning result
is presented. Finally, Section VII concludes the paper.

2 Dynamic Propagation Channel Modeling

An observation of the propagation channel, the impulse response hk could be decomposed
into three non­overlapping components: specular components hsp, dense multipath com­
ponent (DMC) hdmc and measurement noise hn, yielding

hk = hsp + hdmc + hn. (2.72)

Positioning relies on the geometrical information from hsp, which is characterized as a
superposition of MPCs. The other two components constitute measurement impairments
for our purpose.

2.1 Channel Model

In the proposed framework, the double­directional radio channel model [5] is employed
to extract the spatial and temporal information of the MPCs from the measured channel
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transfer function H ∈ CNs×Nf×NTx×NRx , given as

H(f) =
L∑

l=1

γ le
−j2πf dlc GRx(φRx,l, θRx,l)GTx(φTx,l, θTx,l)

T, (2.73)

where Ns, Nf, NTx and NRx refer to the number of channel snapshots, frequency sample
points, transmit and receive antenna elements. GTx ∈ CNTx×NaNe and GRx ∈ CNRx×NaNe

describe the far­field antenna response of all antenna array ports at the transmit and receive
sides, with respect to the azimuth and elevation angles of departure (AODs) (φTx,l, θTx,l)
and angles of arrival (AOAs) (φRx,l, θRx,l) of the lth path. Na and Ne represent the number
of azimuth and elevation angular samples. L is the number of propagation paths. The
complex path weight is parametrized as γ l = αlejϕl where αl and ϕl represent the vectors
of magnitude and phase, respectively. Instead of using delay, we directly interpret the phase
shift as a distance measure, i.e., phase­based distance dl. The time­variant structural vectors
associated with the propagation environment geometry and the path weights are defined as

μ = [dT φT
Tx θT

Tx φT
Rx θT

Rx], (2.74)

α = [αT
HH αT

HV αT
VH αT

VV], (2.75)

ϕ = [ϕT
HH ϕT

HV ϕT
VH ϕT

VV], (2.76)

where {HH,HV,VH, VV} represent four polarimetric transmissions, e.g., HV means horizontal­
to­vertical transmission.

2.2 Dynamic Model

A discrete white noise acceleration model is used to describe the changes of propagation
parameters [6], with the assumption that the motion and underlying noise process of dif­
ferent parameters are uncorrelated. The discrete­time state transition equation is expressed
as

xk = Fxk−1 + vk, (2.77)

where vk is state noise following zero mean normal distribution with the variance matrix
Q. The state transition matrix F is formulated as

F =


I5 I5 0 0
0 I5 0 0
0 0 I4 0
0 0 0 I4

 . (2.78)

The state vector at snapshot k is

xk = [μT ∆μT αT ϕT], (2.79)
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Figure 2.31: Proposed positioning framework.

where the vector ∆μ contains the velocities of the structural parameters in μ. Here, we
intentionally decouple the phase evolution from the MPC tracking to preserve the unique
mapping between the phase shift and the distance dl. The evolution of the state vector from
one snapshot to the next is modelled as

μk = μk−1 + ∆μk−1 + vμk
∆μk = ∆μk−1 + v∆μk

αi,k = αi,k−1 + vαk

ϕi,k = ϕi,k−1 + vϕk
, (2.80)

where v[ · ] denotes the state noise vector. The selection and tuning of process noise variance
are very important especially for the narrowband case, because the orthogonality is not
tightly held between close­by MPCs. Small variance may lead to smooth but slow tracking,
and some small movements might be missed. Large variance enables quick response to non­
smooth movements like sharp turns, but with high risk of phase slip. Hence, a trade­off
is needed. Here, we follow the guideline that the value of v∆μk should be in the same
order as the maximum acceleration magnitude [6]. The complex path weight is assumed
to be slowly varying and to account for larger changes in the propagation processes, e.g.,
reflection, scattering, etc. Reinitializations of γ l are sometimes needed in the tracking
process [3].

3 Propagation Path Parameters Estimation

As shown in the proposed framework (Fig. 2.31), the MPC parameters are estimated with
an EKF. We realize that an accurate initial state estimation is a prerequisite for the fast con­
vergence and accurate tracking in the EKF. In this work, the RIMAX algorithm is applied
to the first snapshot for the initial estimates of MPC parameters and noise covariance [4].
Besides, the state dimension adjustment is performed alongside the EKF iteration.
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3.1 Initialization with RIMAX

Firstly, MPC detection is performed with a successive path cancellation framework, where
the maximum­likelihood (ML)­based 3D­grid approach is used. Each detected path is
further optimized locally. This detection framework uses oversampling to enhance delay
and angle resolution, therefore closely located MPCs could be detected.

After subtracting the specular­like components, the residual is considered as the colored
noise process with a covariance matrix R, which consists of the measurement noise follow­
ing a Gaussian distribution N (0, σ2I), and the DMC. The DMC is modelled stochastic­
ally and the covariance matrix has a shifted Kronecker structure, which is computationally
efficient especially when a large antenna array is used [7]. The full noise covariance matrix
is given by

R = RR ⊗RT ⊗Rf + σ2I, (2.81)

where Rf ∈ CNf×Nf is the covariance matrix in the frequency domain with Toeplitz struc­
ture. We observed that the power delay profile of the residual shows a spatially white char­
acteristic at the base station (BS) side, therefore the covariance matrices RT ∈ CNTx×NTx

and RR ∈ CNRx×NRx , which describe the angular distributions at the transmit and receive
sides respectively, are assumed as identity matrices in this implementation.

The structural vectors of MPCs and the parameter set of DMC are optimized alternatingly
with the Levenberg­Marquardt algorithm and the ML­Gauss­Newton algorithm, respect­
ively. The details can be found in [4].

3.2 Extended Kalman Filter

The path parameters are tracked with an EKF [3]. Due to the non­linear channel model
used, we firstly linearize the data model hsp(x) by taking the first­order partial derivatives
over the state vector, which gives the Jacobian matrix as

D(x) =
∂hsp(x)

∂xT . (2.82)

The first­order and the second­order partial derivative of the log­likelihood function, i.e.,
the score function q and the Fisher information matrix J, are also needed in the iteration.
These are computed as

q(h|x,R) = 2 · ℜ
{
DH(x)R−1(h− hsp(x))

}
, (2.83)

J(x,R) = 2 · ℜ
{
DH(x)R−1D(x)

}
. (2.84)

The procedure of the EKF is summarized as

x̂(k|k−1) = Fx̂(k−1|k−1), (2.85)
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P(k|k−1) = FP(k−1|k−1)F
T +Q, (2.86)

P(k|k) = (P−1
(k|k−1) + J)−1, (2.87)

∆x̂(k) = P(k|k)q, (2.88)

x̂(k|k) = x̂(k|k−1) + ∆x̂(k), (2.89)

whereP(k|k−1) andP(k|k) are the filter error covariances denoting the prediction and update
uncertainties of the state vector, respectively.

3.3 State Dimension Adjustment

In channel sounding, the number of co­existing propagation paths varies over time. The
detection and elimination (death­birth) of paths are assumed to be statistically independent
and performed alongside the EKF iteration with two separate steps. The first step is to
remove unreliable paths by evaluating the relative variance of each path [4], defined as

varr =
Np∑
p=1

varγp
| γp |2

< εr, (2.90)

where γp is the magnitude of the estimated path weight of polarization p ∈ {HH,HV, VH,VV}
and varγp is the estimation error variance extracted from the filtering error covariance mat­
rix. Intuitively, varr should be smaller than 0 dB, which indicates that the certainty of the
magnitude estimation should be larger than its uncertainty. A reliability check is performed
every 30 snapshots and only paths with varr smaller than the threshold εr are preserved in the
state for further tracking. Hence, the MPC lifetime is here defined as the time duration that
the relative variance of a MPC is below a given threshold, which is geometry­independent
in this sense. The next step is to detect new paths. We limit the number of newly initial­
ized MPCs in each snapshot to control the model complexity and reduce the interference
between coherent paths [4].

4 Measurement Campaign

This framework is designed for the multiple­input multiple­output (MIMO) case where
angular information is available from both sides. However, UEs with single or few anten­
nas are more common in practice and the lack of AODs makes the path estimation and
tracking a harder problem. To test the performance of the proposed framework in a real
but controlled environment, a measurement campaign was performed in a large sports hall
with the RUSK LUND channel sounder. Fig. 2.32 shows an overview of the measurement
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Figure 2.32: Overview of the measurement area in the sports hall, Medicon Village, Lund, Sweden. Room dimension is around
20m × 36m × 7.5m.

area. A cylindrical antenna array with 128 ports (Fig. 2.33a) is used as BS at the Rx side, the
center of which is 1.42 m above the ground. A conical monopole omnidirectional antenna
(Fig. 2.33b) is used to represent a UE at the Tx side. The distance between UE and BS is
around 17 m and line­of­sight (LOS) conditions apply. The transfer functions were recor­
ded at a center frequency around 2.7 GHz and with a signal bandwidth of 40 MHz. To
avoid large variation of path parameters, especially the phase slip between two consecutive
snapshots, the spatial sampling rate of the wireless channel was sufficiently high. In total,
6000 channel snapshots were collected in 19.7 s. The Tx was placed on a tripod and manu­
ally moved to write the “Lund” letters in a 2 m3 space. Meanwhile, an optical coordinate
measuring machine (CMM) system (Fig. 2.33b) was used to capture the UE motion with
accuracy down to millimeter, which acts as the ground truth for performance analysis.

5 MPC Tracking Results and Analysis

This section focuses on the performance of MPC tracking results. Fig. 2.34 shows the
tracked propagation distances of MPCs from the EKF implementation. It could be ob­
served that the LOS component with the distance around 17 m is tracked steadily since the
beginning. About 2 m apart from the LOS is the ground reflection path which is tracked
shortly in the end. Besides, many other MPCs with long lifetimes could also be observed
in the range of 20­70 m propagation distance. For better evaluation of the tracking per­
formance, we zoom into the LOS component and compare the distance estimates with
the ground truth. The black dashed line denotes the distance estimates from EKF. The
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Figure 2.33: (a) The cylindrical antenna array at the Rx side; (b) The conical monopole omnidirectional antenna at the Tx side
and the optical CMM system.

red solid line in Fig. 2.35 is the true propagation distance of the LOS component which is
calculated based on the 3D coordinates from the optical system and the coordinates of the
BS. The two curves are manually time synchronized for better comparison. As shown from
the comparison, the EKF could catch all the movements of the UE, even some fine ones
and sharp turns. The estimates have a good match with the ground truth most of the time,
besides some deviations observed after 16 s. The biggest deviation from the ground truth is
about 8 cm. The MPCs located in the same delay bin as the LOS component are correlated
and they show degraded quality of tracking.

We further analyzed the angular­power distribution of the tracked MPCs. The MPCs are
plotted in a 3D coordinate system based on the estimates of distances and azimuth/elevation
AOAs without considering the interaction order. The top view (Fig. 2.36a) shows that the
tracked MPCs are distributed over the entire azimuth domain and paths are intensively
detected in the similar direction as the LOS component. From the vertical distribution
(Fig. 2.36b), a few paths are observed from the ground or at similar height as the BS, but
most of the paths are from the complex ceiling structure of the room, e.g., the metal beams
of the ceiling in Fig. 2.32. Those complex room structures would bring additional un­
certainties to the distance estimates. Moreover, the similar behaviour of the long­tracked
MPCs in the angular domain may become a challenge for 3D positioning, for which the
MPCs with sparse angles are preferred. However, it is interesting to see the performance
in the real but non­ideal case.
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Figure 2.34: The tracked absolute propagation distances of MPCs. The color indicates the power in dB scale.
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Figure 2.35: Performance evaluation of the tracked LOS component.

Ghost components around some high­power MPCs are observed during the tracking. They
usually have similar angles and propagation distances as the dominant MPCs close by and
experience very short lifetimes. These components are mainly generated due to power com­
pensation in the estimation procedure and do not have actual physical meaning, therefore
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Figure 2.36: 3D plot of the tracked MPCs. Black dashed line denotes the room geometry and the hexagram represents the
location of BS. The top-view plot (a) shows how tracked MPCs distributed in the azimuth plane. The side-view plot
(b) shows the vertical distribution.

they are not considered in the following positioning step.

6 Positioning Algorithm and Results

As seen in Fig. 2.34 and Fig. 2.35, most of the MPCs can only be observed during fractions
of the measurement duration and the estimation quality is not consistent during the whole
tracking process for an individual MPC, i.e., there are outliers in the data for which the
errors are substantial. Therefore, the question here is how to optimize the positioning
performance in the presence of missing data and outliers, which is a highly non­convex
problem.

6.1 Mathematical Formulation of Geometrical Problem

A few assumptions are firstly given for modeling the geometrical problem. The tracked
MPCs from EKF are numbered with i = 1, 2, . . . ,m, where i = 1 represents the LOS
component. These paths are assumed to originate from n UE positions Txj ∈ R3, j =
1, . . . , n. The BS is stationary at positionRx1 ∈ R3. To formulate the measured distances,
we assume that the tracked MPCs are reflected from planar surfaces and mirror the BS, i.e.,
each MPC can be considered as being received at a mirrored BS positionRxi. The distance
estimates are only given for a set I of (i, j) combinations due to missing data. As it will be
shown, the errors of outliers in the distance estimates are substantial. However, for a large
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amount of distance estimates the errors are fairly small (in the order of a few centimeters).
The measured distances are then

dij = ∥Rxi −Txj∥2 + ϵij,∀(i, j) ∈ I, (2.91)

where ϵij ∈ N(0, σ2
inl) for (i, j) ∈ Iinl and ϵij are drawn from an unknown distribution for

(i, j) ∈ Ioutl. This distribution has a significantly larger variance. One useful approach is to
minimize the negative log likelihood. To simplify the problem, we assume that the negative
log likelihood for the outliers is a constant, i.e., each outlier gives the same penalty. In this
way the problem becomes an optimization problem.

Problem 1. (Time­of­Arrival Self­Calibration) Given absolute distance estimates dij∀(i, j) ∈ I,
find the inlier set Iinl ⊂ I, the UE positionsTxj ∈ R3 and the mirrored BS positionsRxi ∈ R3

that solves the following optimization problem

min
Iinl,Rxi,Txj

∑
(i,j)∈Iinl

(dij − ∥Rxi −Txj∥2)
2 +

∑
(i,j)∈Ioutl

C, (2.92)

where Ioutl = I \ Iinl. This is a highly non­linear, non­convex optimization problem. The
problem changes character if both Txj and Rxj span 3D, or either one of them or both are
restricted to a plane or a line as shown in [8]. The problem is ill­defined if there is too little
data. For planar problems we require m ≥ 3, n ≥ 3, [9]. For 3D problems more data is
needed, typically m ≥ 4, n ≥ 6, [10]. Algorithms for solving Problem 1 using hypothesize
and test paradigm are presented in [11].

6.2 Estimation of the Distance Estimates Error Distribution and Mirrored BS
Positions

The modified version of Problem 1 where say the transmitter positions Txj are known, is
a substantially better conditioned problem. In this case, we can solve for

min
Iinl,Rxi

∑
i|(i,j)∈Iinl

(dij − ∥Rxi −Txj∥2)
2 +

∑
i|(i,j)∈Ioutl

C (2.93)

independently for each mirrored BS position Rxi. This can be done by using Random
Sample Consensus (RANSAC) [12].

The resulting residuals dij − ∥Rxi −Txj∥2 can be used to empirically assess properties
of the error distribution. We selected those paths that were longer than 500 snapshots
from the tracked m = 282 MPCs, which gave a set of 50 MPCs. For each of them, we
estimated the mirrored BS position using RANSAC (to obtain Iinl) followed by the non­
linear optimization of (2.93) (to obtain Rxi). In total these 50 tracked MPCs gave us
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MPC positions. This was followed by non-linear refinement of
the receiver positions. The corresponding estimated distance
measurements are also shown in Fig. 7. The reconstructed
receiverposition along with the MPC mirror positions are
shown in Fig. 8. One can see that the receiver position is
located quite near the true position of the receiver, and the
mirrorer receivers look plausible.

E. Estimation of Transmitter motion

Solving Eq. 22 is challenging, because of the highly non-
linear nature of the problem. In order to asses the feasability
of the problem, local optimization of Eq. 22 were performed
using the result of the trilateration as a starting point. The
resulting 3D path (in blue) is shown if Fig. 9 together
with the groundtruth 3D path as estimated by the motion
capture system (in red). Notice that the estimated 3D path
has the overall correct shape, but that there are deformations
in the z-direction. One explanation for this can be found by
studying the singular value decomposition of the jacobean to
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Fig. 9. The groundtruth 3D path measured by the optical system is shown
in red and the estimated 3D path of the transmitter is shown in blue. Notice
that the overall shape of the path is captured. However, there are uncertainty
in the scale in the z-direction.

the non-linear least squares optimization. The singular vectors
corresponding to the smallest singular value provides insight
into those deformations of the path that are hardest to estimate.

The positioning performance could be numerically inter-
preted as the average standard deviation, which is

� =

vuut 1

n

nX

i=1

|r
true,i

� r
est,i

|2 (24)

(analysis....scaling in the z-direction....).

VI. SUMMARY AND CONCLUSION

In this paper, we introduced a robust phase-based position-
ing framework using Massive MIMO. Path parameters, e.g.,
phase-based distance and angle, are estimated and tracked with
an EKF. An anchor-free TOA self-calibration positioning al-
gorithm is then used for trajectory estimation. The positioning
results of a complex 3D movement measurement shows that
the proposed positioning framework could achieve (... ...) with
standard cellular bandwidth. Besides, no prior knowledge of
the surroundings is needed, so the framework could be easily
applied in different environments. To sum up, phase-based
positioning using Massive MIMO is a promising candidate
of high-resolution positioning system in the next generation
cellular system.
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Figure 2.37: Robust estimation of BS position and mirrored BS positions using the ground truth UE positions.

103 480 distance samples, i.e., approximately 2000 each. Of these 77 490 were considered
to be inliers. This gives us an estimated inlier ratio of 75%. The standard deviation of the
inlier residuals is 4.6 cm.

Using the ground truth UE positions Txj, we robustly initialized the LOS component
receiver position, i.e., Rx1 as well as all the mirrored BS positions of MPCs. This was
followed by non­linear refinement. The reconstructed BS position Rx1 along with some
examples of the mirrored BS positions are shown in Fig. 2.37. It could be observed that the
estimated BS position is located close to the true position, and the mirrored BS positions
look plausible.

163



6.3 Estimation of UE Positions

We now target the full version of Problem 1, where the UE positions, the BS position and all
the mirrored BS positions are unknown. To make this highly complex estimation problem
tractable, two assumptions are made here. Firstly, Txj are assumed to be constrained in a
plane, because the UE was moved approximately in a plane in the measurement. Secondly,
we assume that we know which distance estimates are inliers. This problem is then pro­
ceeded by splitting the whole dataset in a number of smaller segments in time, which results
in 117 segments of length 100 snapshots with 50 snapshots overlap between adjacent seg­
ments. For each segment, we robustly initialized both Rxj and Txj using minimal solvers
and RANSAC [8] based only on the distance estimates from the EKF. This is followed by
non­linear optimization. The different solutions from the 117 segments were then registered
into a common coordinate system using the overlap between segments. The estimated UE
positions (in red) is shown in Fig. 2.38. Also shown (in dashed grey) is the ground truth.
The two trajectories have been rigidly registered to each other. It could be observed that the
estimated trajectory shows a clear “Lund”­word pattern, with all the fine movements details
caught. However, the overall shape is stretched along the diagonal direction, which results
in a larger deviation from the ground truth especially in the beginning and the end. The
largest deviation of the estimated UE position from the ground truth happens at the sharp
turn of “L”, which is 26 cm, and the overall mean deviation is 13 cm. The main reason of
the stretch problem is that many MPCs are tracked in a similar direction as the LOS com­
ponent, as shown in Fig. 2.36. The similar behaviour of MPCs in the angular domain will
cause the estimated UE positions to be scaled or projected.

7 Summary and Conclusion

In this paper, we introduced and showed a proof­of­concept for a robust phase­based po­
sitioning framework using massive MIMO. MPC parameters, e.g., phase­based distance
and angle, are estimated and tracked with an EKF. A TOA self­calibration positioning
algorithm is then used for trajectory estimation. The positioning results of a 2D com­
plex movement measurement show that the proposed positioning framework could achieve
outstanding positioning performance even with standard cellular bandwidths. Besides, no
prior knowledge of the surroundings is needed, so the framework could be easily applied
in different environments given that there are enough many scatterers present. To sum up,
phase­based positioning using massive MIMO is a promising high­resolution positioning
solution for current and next generation cellular systems.
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MPC positions. This was followed by non-linear refinement of
the receiver positions. The corresponding estimated distance
measurements are also shown in Fig. 7. The reconstructed
receiverposition along with the MPC mirror positions are
shown in Fig. 8. One can see that the receiver position is
located quite near the true position of the receiver, and the
mirrorer receivers look plausible.

E. Estimation of Transmitter motion
Solving Eq. 22 is challenging, because of the highly non-

linear nature of the problem. In order to asses the feasability
of the problem, local optimization of Eq. 22 were performed
using the result of the trilateration as a starting point. The
resulting 3D path (in blue) is shown if Fig. 9 together
with the groundtruth 3D path as estimated by the motion
capture system (in red). Notice that the estimated 3D path
has the overall correct shape, but that there are deformations
in the z-direction. One explanation for this can be found by
studying the singular value decomposition of the jacobean to
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Fig. 9. The groundtruth 3D path measured by the optical system is shown
in red and the estimated 3D path of the transmitter is shown in blue. Notice
that the overall shape of the path is captured. However, there are uncertainty
in the scale in the z-direction.

the non-linear least squares optimization. The singular vectors
corresponding to the smallest singular value provides insight
into those deformations of the path that are hardest to estimate.

The positioning performance could be numerically inter-
preted as the average standard deviation, which is

� =

���� 1

n

nX

i=1

|r
true,i

� r
est,i

|2 (24)

(analysis....scaling in the z-direction....).

VI. SUMMARY AND CONCLUSION

In this paper, we introduced a robust phase-based position-
ing framework using Massive MIMO. Path parameters, e.g.,
phase-based distance and angle, are estimated and tracked with
an EKF. An anchor-free TOA self-calibration positioning al-
gorithm is then used for trajectory estimation. The positioning
results of a complex 3D movement measurement shows that
the proposed positioning framework could achieve (... ...) with
standard cellular bandwidth. Besides, no prior knowledge of
the surroundings is needed, so the framework could be easily
applied in different environments. To sum up, phase-based
positioning using Massive MIMO is a promising candidate
of high-resolution positioning system in the next generation
cellular system.
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Fig. 7. Robust estimation of LOS receiver position and all MPC receiver
positions Rx using the ground truth sender positions.

receiver positions are unknown. We will make two assumption
that make this very difficult estimation problem tractable.
Firstly, in this experiment the sender was moved approximately
in a plane, a we will assume that all the sender positions Tx are
located in a plane. Secondly we will assume that we know
which tracked MPC that are inliers. We then proceeded by
splitting the whole dataset in a number of smaller segments
in time, (117 segments of length 100 measurements with
50 measurements overlap). For each one of these segments
we robustly initialized both Rx and Tx associated with the
measurements in that segment, using minimal solvers and
RANSAC [12] based only on the distance measurements.
This was followed by non-linear optimization. The different
solutions from the 117 segments were then registered into a
common coordinate system using the overlap of measurements
between the different segements. The resulting estimated Tx-
path (in blue) is shown in Fig. 8. Also shown (in red) is the
ground truth path as estimated by the motion capture system
(The two solutions have been rigidly registered to each-other).
The largest distance between the estimated sender position and
the ground truth position is 26 cm, with a mean deviation of
13 cm.

VI. SUMMARY AND CONCLUSION

In this paper, we introduced a robust phase-based position-
ing framework using Massive MIMO. Multipath component
parameters, e.g., phase-based distance and angle, are estimated
and tracked with an EKF. An anchor-free TOA self-calibration
positioning algorithm is then used for trajectory estimation.
The positioning results of a complex 3D movement measure-
ment shows that the proposed positioning framework could
achieve (... ...) with standard cellular bandwidths. Besides,
no prior knowledge of the surroundings is needed, so the
framework could be easily applied in different environments
given that there are many scatterers present. To sum up,
phase-based positioning using Massive MIMO is a promising
candidate of high-resolution positioning system in the next
generation cellular system.
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