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Abstract

The homogenization of cubically arranged, homogeneous spherical inclusions

in a background material is addressed. This is accomplished by the solution of

a local problem in the unit cell. An exact series representation of the e�ective

relative permittivity of the heterogeneous material is derived, and the func-

tional behavior for small radii of the spheres is given. The solution is utilizing

the translation properties of the solutions to the Laplace equation in spheri-

cal coordinates. A comparison with the classical mixture formulas, e.g., the

Maxwell Garnett formula, the Bruggeman formula, and the Rayleigh formula,

shows that all classical mixture formulas are correct to the �rst (dipole) order,

and, moreover, that the Maxwell Garnett formula predicts several higher or-

der terms correctly. The solution is in agreement with the Hashin-Shtrikman

limits.

1 Introduction

The electromagnetic homogenization problem of materials is to �nd the macroscopic
electromagnetic response of a material with a microscopic structure. If the micro-
scopic structure is periodic with periodicity ε, the homogenization is to �nd the
e�ective material parameters as the periodicity ε → 0, see Figure 1. The unit cell
of the problem with periodicity ε is denoted the Y ε-cell, see Figure 1.

This homogenization problem is well studied in the mathematical literature, see
e.g., [1, 2, 4, 7, 15, 18] for excellent reviews on the subject. Recent advances in the
�eld of two-scaled convergence [12] have proven valuable in this context. The generic
problem is an electrostatic problem (local problem) in the reference unit cell Y with
sides of unit length. The unit cell Y ε-cell is the Y -cell scaled by ε. Usually the
problem is formulated in the weak sense and a solution of the problem is sought by
the means of the �nite element method (FEM).

In this paper, we are concerned with the homogenization problem of a material
consisting of two di�erent isotropic materials (two-phase material). More precisely,
our problem is to �nd the e�ective relative permittivity for a material consisting of
homogeneous, isotropic spherical inclusions in a homogeneous, isotropic background
material. We limit ourselves to a cubic lattice, but the method developed in this pa-
per has potential also in other lattice con�gurations. The series solution is obtained
by the use of the translation properties of the solutions to the Laplace equation in
spherical coordinates. These translation matrices provide an excellent tool in �nding
the solution of the local problem, and they are reviewed in an appendix.

The solution of the local problem seems not to be have solved with the technique
presented in this paper before, but the problem has been addressed in the literature,
see e.g., [7, p. 45]. Also, the early results by Lord Rayleigh [13] are relevant.
However, Lord Rayleigh does not solve the local problem in the form of the present
paper, but uses a more physical point of attack.

Although simple in its geometry, the type of material addressed in this paper
is important in many applications, e.g., glass micro balloon material in radome
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Figure 1: A material with a microstructure with periodicity ε and the Y ε-cell. The
size of the periodicity ε is decreasing from left to right.

constructions. An excellent expose of other important applications with many illus-
trations is given by Sihvola [16].

2 The local problem

In this section, we give a short review of the homogenization of a material with
microstructure. For simplicity, we only treat the case of isotropic permittivity.
The more general problem of homogenizing an anisotropic material is presented
in e.g., [4, 19] or in the references cited in the Section 1.

The relative permittivity ε(y) is Y -periodic and belongs to L∞(Y ), where Y =
(0, 1)3, i.e., ε(y) is measurable and bounded a.e. on Y , and ε(y + êi) = ε(y) for
every y ∈ R3, i = 1, 2, 3, where êi, i = 1, 2, 3, are the Cartesian basis vectors in R3.
This assumption assumes that the inhomogeneities are arranged in a cubic lattice1.
Moreover, the material is assumed non-magnetic, i.e., the relative permeability µ =
1, in this paper.

The homogenized permittivity of a periodic structure with a periodicity that
approaches zero relies on the solution of a local boundary value problem in the unit
cell Y . This local problem is to �nd weak solutions χj(y) ∈ H1

#(Y ) (Sobolev space
with one weak derivative and Y -periodic2) for j = 1, 2, 3, satisfying [4, 19]∫∫∫

Y

∇w(y) · (ε(y)êj − ε(y)∇χj(y)) dv = 0, ∀w ∈ H1
#(Y ) (2.1)

The volume measure of R3 is denoted dv. The homogenized relative permittivity, εhij,
is then found as an appropriate average of the solution of (2.1) and the permittivity

1The more general case Y = (0, a1)× (0, a2)× (0, a3), where ai > 0, and ε(y + aiêi) = ε(y) for
every y ∈ R3, i = 1, 2, 3, can be solved with a similar technique.

2More precisely, H1
#(Y ) is the closure of C∞# (Y ) in the H1-norm, where C∞# (Y ) is the subset

of C∞(R3) of Y -periodic functions [4].
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ε(y). The result is [4, 19]

εhij = 〈ε(y)〉 δij −
〈
ε(y)

∂

∂yi
χj(y)

〉
(2.2)

where the average over the Y -cell is de�ned as (the volume of the unit cell, |Y |, is
in our case chosen so that |Y | = 1)

〈f〉 =
1

|Y |

∫∫∫
Y

f(y) dv

This homogenization procedure applies to the homogenization of a general rel-
ative permittivity ε(y) in the unit cell. Notice that, in general, the homogenized
material is anisotropic. Below, in Section 4, we specialize to a permittivity that
takes two constant values in the unit cell Y .

3 Classical mixture formulas � spherical inclusions

Before we proceed with the solution of the local problem for a two-phased material,
it is instructive to review some of the results on classical mixture formulae, which
are obtained by the use of physical arguments and approximations. Some of these
classical mixture formulae are derived for a random distribution of spheres, but they
are nevertheless often applied to a regular lattice problem. The formulae apply only
to the case of inclusions of simple shapes, e.g., spheres or, more generally, ellipsoids,
see [16].

The classical mixture formulae apply to spherical inclusions in a background
material. Therefore, let the material consist of two phases; a background material
with relative permittivity εb, and periodically arranged spherical inclusions (cubic
lattice) with relative permittivity εi. We denote the radius of the sphere by a, and
without loss of generality we let the periodicity be 1. The volume fraction of the
inclusions is then f = 4πa3/3, a < 1/2.

Several of the e�ective relative permittivity expressions of a mixture of homoge-
neous spherical inclusions are represented in the formula [16]

εh − εb
εh + 2εb + ν(εh − εb)

= f
εi − εb

εi + 2εb + ν(εh − εb)

where εh is the e�ective relative permittivity of the mixture. The integer ν represents
di�erent mixture formulas, e.g., ν = 0 the Maxwell Garnett formula, ν = 2 the
Böttcher mixture rule or Bruggeman formula, and ν = 3 the coherent potential
(CP) formula. The Maxwell Garnett formula is explicitly

εh = εb + 3fεb
εi − εb

εi + 2εb − f(εi − εb)
(3.1)

Another mixture formula was derived by Lord Rayleigh and is given by [5,8�11,
13,14,16]

εh = εb +
3fεb

(εi + 2εb)/(εi − εb)− f − 1.305f 10/3(εi − εb)/(εi + 4εb/3)
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ν β

0 α2/(3εb)
2 α2εi/(εb(εi + 2εb))
3 α2(4εi − εb)/(3εb(εi + 2εb))

Table 1: The di�erent coe�cients in an expansion of εh = εb + αf + βf 2 for
small volume fractions f and di�erent mixture formulae. The constant ν = 0 for
the Maxwell Garnett formula, ν = 2 for the Böttcher mixture rule or Bruggeman
formula, and ν = 3 for the coherent potential (CP) formula. The coe�cient α =
3εb(εi − εb)/(εi + 2εb).

This formulae is identical to the Maxwell Garnett formula for small values of the
radius a. In fact, we have

εh =εb + 3fεb
εi − εb

εi + 2εb − f(εi − εb)− 1.305f 10/3(εi − εb)2/(εi + 4εb/3)

=εb + 3fεb
εi − εb

εi + 2εb − f(εi − εb)

{
1 +

1.305f 10/3(εi − εb)2/(εi + 4εb/3)

εi + 2εb − f(εi − εb)

}
+ . . .

≈εb + 3fεb
εi − εb

εi + 2εb − f(εi − εb)
+ 9fεb

155a10(εi − εb)3

(3εi + 4εb) [εi + 2εb − f(εi − εb)]2
+ . . .

All classical mixture formulae have their domain of validity for small volume
fractions f . The di�erences between the di�erent formulae are best seen from the
power series expansion in f , i.e.,

εh = εb + αf + βf 2 +O(f 3)

The coe�cient α = 3εb(εi− εb)/(εi + 2εb) is the same in all these formulae, and this
contribution represents the dipole contribution. The β coe�cient for the di�erent
formulae is given in Table 1 [16, p. 164]. Note that all mixture formulae agree
up to �rst order in f ; then the formulae corresponding to di�erent ν-values di�er
(the Maxwell Garnett and the Rayleigh formulae agree). Below, we show that the
homogenization procedure veri�es the correctness of the �rst term α and also that
the Maxwell Garnett formula is correct in a power series expansion in a up to a12. In
fact, no other mixture formula (Rayleigh formula is similar to the Maxwell Garnett
formula) gives the correct result beyond the dipole term (power a3). Moreover, the
Rayleigh formula is correct up to order 13 when compared to the result obtained
by the solution of the local problem treated in this paper. Lord Rayleigh's result is
veri�ed with the technique used in this paper in Section 6.

4 Spherical inclusions�solution of local problem

The local problem, (2.1), for a permittivity that takes two constant values in the
unit cell Y is now addressed. To this end, let V be an open subset of the Y -cell with
a Lipschitz continuous3 boundary S. The relative permittivity assumes the value εi

3This assumption makes the traces on the surface S below well-de�ned.
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Figure 2: The geometry of the problem with a spherical inclusion of radius a in
the unit cell Y .

inside V and εb elsewhere in Y , i.e., the permittivity is of the form

ε(y) = εb + (εi − εb)χV (4.1)

where χV is the characteristic function of the inclusion V . Below, we apply only to
the case of a single spherical inclusion, i.e.,

χ(y) = H(a− y), y ∈ Y (4.2)

where y = |y| and a < 1/2 is the radius of the sphere, and H is the Heaviside step
function. This geometry is depicted in Figure 2.

It is appropriate to reformulate the local problem as a partial di�erential equation
problem. We start by �nding the equivalent di�erential problem. The volume
integral is split in two parts�one containing the integral over V , and one over
Y \ V .

εb

∫∫∫
Y \V

∇w(y) · (êj −∇χj(y)) dv + εi

∫∫∫
V

∇w(y) · (êj −∇χj(y)) dv = 0

Apply the Green's theorem and use the periodic boundary conditions of the test
function w and the solution χj. We get, assuming two times di�erential solutions
χj in V and Y \ V , respectively∫∫

S

w(y)

{
(εi − εb) êj · ν̂(y) + εb

∂

∂y
χj(y

+)− εi
∂

∂y
χj(y

−)

}
dS

+ εb

∫∫∫
Y \V

w(y)∇2χj(y) dv + εi

∫∫∫
V

w(y)∇2χj(y) dv = 0



6

where dS is the surface measure of the boundary S, and ν̂(y) its outward directed
unit normal vector. We also denote the traces of the position vector from the outside
and the inside of S by y±, respectively. Since the test function is arbitrary, the local
problem is rewritten as an equivalent boundary value problem for j = 1, 2, 3, i.e.,

∇2χj(y) = 0, y ∈ Y, y /∈ S
∂

∂y
χj(y

+)− ε ∂
∂y
χj(y

−) = êj · ν̂(y) (1− ε) , y ∈ S

χj(y
+) = χj(y

−), y ∈ S
χj(y + êi) = χj(y), y ∈ ∂Y, i = 1, 2, 3

(4.3)

where
ε = εi/εb

The solution to equation (4.3) is uniquely de�ned up to a constant [4].
In the next section, we specialize to the spherical inclusion case, (4.2), and we

make an Ansatz in spherical solutions of the Laplace equation to solve this problem.
From the solution of this problem, we calculate the e�ective relative permittivity for
a spherical inclusion, see Section 5, and in Section 6 the e�ective relative permittivity
for small values of the radius a is extracted.

4.1 Ansatz

The solution of (4.3) for the spherical inclusion, (4.2), is now sought. The unit
normal vector is in this case ν̂(y) = ŷ = y/|y|. We make an Ansatz in solutions
to the Laplace equation in spherical coordinates to determine the solution. The
solutions to the Laplace equation in spherical coordinates are denoted un (singular
at the origin) and vn (regular at the origin), see Appendix A for more details about
these de�nitions, and we adopt the notion of multi-index n = {σ,m, l}, where σ =
e (even), o (odd), m = 0, 1, 2, . . . , l − 1, l, and l = 0, 1, 2, 3, . . ..

Due to the symmetries of the problem it su�ces to solve for one value of j
in (4.3), e.g., j = 3, and below we denote this solution ψ = χj. Moreover, the
symmetries of the problem (even in y1 → −y1 and y2 → −y2, and odd in y3 → −y3)
imply that the only functions un and vn that contribute in these expansions must
have l odd integer, σ = e, and m even integer. The pertinent index set is therefore
I = {(σ,m, l) = (e,m, l) : m even , l odd}.

Outside the sphere we make an Ansatz as a linear combination in the singular
functions un periodically extended by the cubic lattice, and inside the sphere the
solution must be regular and we expand in the regular functions vn, i.e.,

ψ(y) =
∑
n∈I

an
∑
i∈Z3

(un(y + ti)− (y ·Φi + φi) δn,e01) + Cve01(y), y ∈ Y \ V

ψ(y) =
∑
n∈I

bnvn(y), y ∈ V

(4.4)
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where the translation vector ti = i1ê1 + i2ê2 + i3ê3, i = (i1, i2, i3) ∈ Z3, and where
φi =

(
1− δi,(000)

)
ue01(ti) =

(
1− δi,(000)

) a2

y2
Ye01(ŷ)

∣∣∣∣
y=ti

Φi =
(
1− δi,(000)

)
∇ue01(y)|y=ti

=
(
1− δi,(000)

)
∇
(
a2

y2
Ye01(ŷ)

)∣∣∣∣
y=ti

We observe that the translated terms in (4.4) for n ∈ I behave for large translations
as

un(y + ti)− (y ·Φi + φi) δn,e01 = O(|i|−4) as |i| → ∞

where |i| =
√
i21 + i22 + i23. The series in (4.4) is therefore absolutely convergent for

every y ∈ Y w.r.t. the summation i.
The terms in the Ansatz are by construction Y -periodic for all I 3 n 6= {e01}.

Notice that the term corresponding to n = {e01} has to be compensated with a
term Cve01 ∼ y3 so that the entire solution becomes periodic by an appropriate
adjustment of the constant C. To see this, de�ne

w(y) =
∑
i∈Z3

[ue01(y + ti)− (y ·Φi + φi)]

This sum is absolutely convergent and any rearrangement of the terms gives the
same value of the sum [17]. We get

w(y + tk)− w(y) =
∑
i∈Z3

[ue01(y + tk + ti)− ((y + tk) ·Φi + φi)]

−
∑
i∈Z3

[ue01(y + ti)− (y ·Φi + φi)]

=y ·
∑
i∈Z3

(Φi −Φi−k) +
∑
i∈Z3

(φi − φi−k − tk ·Φi−k)

where i−k = (i1−k1, i2−k2, i3−k3). The last two sums are absolutely convergent.
Instead of computing these two sums, we compensate by adding the last linear term,
Cve01, in the Ansatz, (4.4), and adjust the constant C by an integral computation
that is easier to perform. The constant term is immaterial in the computations
below, since the solution of the local problem is undetermined by a constant.

Notice that the sums (see Appendix A for an explicit expression of ue01, and also
Appendix D for similar summations)

lim
R→∞

∑
i∈Z3

|ti|≤R

φi = a2

√
3

4π
lim
R→∞

∑
Z33i 6=(000)
|ti|≤R

i3

(i21 + i22 + i23)
3/2

= 0

and

lim
R→∞

∑
i∈Z3

|ti|≤R

Φi = a2

√
3

4π
lim
R→∞

∑
Z33i 6=(000)
|ti|≤R

ê3 (i21 + i22 + i23)− 3i3 (i1ê1 + i2ê2 + i3ê3)

(i21 + i22 + i23)
5/2

= 0
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by symmetry, and therefore, all sums in (4.4) can be interpreted as
ψ(y) =

∑
n∈I

an lim
R→∞

∑
i∈Z3

|ti|≤R

un(y + ti) + Cve01(y), y ∈ Y \ V

ψ(y) =
∑
n∈I

bnvn(y), y ∈ V
(4.5)

4.2 The solution

We now determine the expansion coe�cients an and bn as well as the constant
C in (4.5) so that the boundary conditions on the sphere S are satis�ed and the
periodicity of the solution is guaranteed.

The translation properties of un, see (A.1) and Appendix C, is very useful here.

un(y + d) =
∑
n′

Pnn′(d)vn′(y), y < d

This sum is absolutely convergent for all arguments y and d such that y < d. The
de�nition of the Snn′ , see Appendix D and (D.1), readily implies that the solution
exterior to the sphere can be written as4

ψ(y) =
∑
n∈I,n′

an {δnn′un′(y) + Snn′vn′(y)}+ Cve01(y), y ∈ Y \ V

where
Snn′ = lim

R→∞

∑
Z33i 6=(000)
|ti|≤R

Pnn′(ti)

To satisfy the continuity conditions on the surface of the sphere, we must, by
orthogonality of the spherical harmonics, have

Cδn,e01 +
∑
n′∈I

an′ {δn′n + Sn′n} = bn, n ∈ I (4.6)

since un(aŷ) = vn(aŷ) = Yn(ŷ). Moreover, the discontinuity of the normal derivative
on the surface of the sphere implies, due to orthogonality of the spherical harmonics
on the unit sphere, that (n ∈ I)

∑
n′∈I

an′ {−(l + 1)δn′n + lSn′n}+ Cδn,e01 − εlbn + (ε− 1)a

√
4π

3
δn,e01 = 0 (4.7)

where we used

∂

∂y
un(aŷ) = − l + 1

a
Yn(ŷ),

∂

∂y
vn(aŷ) =

l

a
Yn(ŷ)

4The index n′ here runs over all σ,m, l-values, but is below, due to symmetry, shown to run
only over the index set I.
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and ê3 · ŷ = cos θ =
√

4π/3Ye01(ŷ), see de�nition of the spherical harmonics Yn(ŷ)
in Appendix A.

From the continuity of ψ on S and the periodicity of ψ on ∂Y , we get∫∫∫
Y

∇ψ(y) dv =

∫∫
∂Y

ν̂(y)ψ(y) dS = 0

which implies

lim
R→∞

∫∫
∂Y

ν̂(y)

{∑
n∈I

an
∑
i∈Z3

|ti|≤R

un(y + ti) + Cve01(y)

}
dS = 0

The integral can be computed exactly, see Appendix B, (B.1) and (B.2), and this
relation also restores the periodicity of the solution. The result is

a2

√
4π

3
ê3ae01 + C

√
3

4π
ê3

1

a
= 0

or (f = 4πa3/3)
C = −fae01 (4.8)

We now eliminated the coe�cients bn and C in (4.7) by the use of (4.6) and
(4.8). The result is (n ∈ I)

∑
n′∈I

an′ {−(l + 1 + lε)δn′n + l(1− ε)Sn′n}+ (ε− 1)fae01δn,e01 = −(ε− 1)a

√
4π

3
δn,e01

or ∑
n′∈I

an′Mn′n = (ε− 1)a

√
4π

3
δn,e01, n ∈ I (4.9)

where

Mn′n = [l(ε+ 1) + 1− (ε− 1)fδn,e01] δn′n + l(ε− 1)Sn′n, n, n′ ∈ I (4.10)

The solution to (4.9) is then

an = (ε− 1)a

√
4π

3

(
M−1

)
e01n

, n ∈ I

and the �nal solution of (4.4) is
ψ(y) = (ε− 1)a

√
4π

3

∑
n∈I

(
M−1

)
e01n
{un(y) + wn(y)} , y ∈ Y \ V

ψ(y) = (ε− 1)a

√
4π

3

∑
n∈I

(
M−1

)
e01n
{vn(y) + wn(y)} , y ∈ V

(4.11)
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where
wn(y) =

∑
n′∈I

Snn′vn′(y)− fδn,e01vn(y), n ∈ I

Speci�cally, the solution (4.11) evaluated on the sphere is

ψ(aŷ) = (ε− 1)a

√
4π

3

∑
nn′∈I

(
M−1

)
e01n
{δnn′(1− fδn,e01) + Snn′}Yn′(ŷ) (4.12)

This is the explicit solution of the problem on the sphere provided the sum converges.

5 The homogenized relative permittivity

In this section, we �nd a closed form expression of the e�ective relative permittivity
of the heterogeneous material with spherical inclusions.

From the solution ψ in (4.11), we compute the e�ective relative permittivity
of the problem. Due to the symmetry of the problem, the homogenized relative
permittivity is isotropic, and its value is, see (2.2) (εhij = εhδij)

εh = 〈ε(y)〉 −
〈
ε(y)

∂

∂y3

ψ(y)

〉
where the last term is transformed to a surface integral over the sphere S, viz.,〈

ε(y)
∂

∂y3

ψ(y)

〉
= (εi − εb) ê3 ·

∫∫
S

ψ(y)ŷ dS

since the contributions from the boundary ∂Y vanish.
The homogenized relative permittivity then is (f = 4πa3/3)

εh

εb
= 1− f + εf − (ε− 1)

√
4π

3
a2

∫∫
Ω

ψ(aŷ)Ye01(ŷ) dΩ (5.1)

Here the surface measure of the unit sphere Ω in R3 is denoted dΩ. We notice that
only the projection of the solution ψ on the spherical harmonics Ye01 is important
in the computation of the homogenized relative permittivity.

Due to the orthogonality of the spherical harmonics on the unit sphere, the
relative permittivity εh can be written in a series as, see (4.12)

εh

εb
= 1 + (ε− 1)f − (ε− 1)2f

∑
n∈I

(
M−1

)
e01n
{(1− f)δn,e01 + Sne01} (5.2)

This solution of the homogenized relative permittivity is one of the main results of
this paper. This expression gives the relative permittivity of the spherical inclusions
correct to all orders of a, provided the series converges. Below, we extract the �rst
non-vanishing contributions in powers of the radius a.

The summation in (5.2) is restricted to the index set I. All other terms do not
contribute to the sum since the symmetry of the problem (even in y1 → −y1 and
y2 → −y2, and odd in y3 → −y3) implies that Sne01 = 0, if l even integer, σ = o, or
m odd integer.
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6 Small volume fraction analysis

In this section, we extract the leading contribution in a power series expansion in
the radius a of εh.

The dependence of a in the quantities Snn′ is, see Appendix D

Snn′ = O(al+l
′+1)

Also, from the fact Se01e01 = Se01e23 = Se23e01 = 0, we get the lowest order contri-
bution only from terms Se03e01, and Se01e03 which each contribute as O(a5). The
absence of the terms Se01e01, Se01e23, and Se23e01 is an e�ect of the symmetry of the
lattice (cubic lattice) and for an other type of lattice these terms can contribute.

The symmetries of the problem simplify the evaluation of the inverse (M−1)
e01n.

To leading order in a, we have, see (4.10) (nn′ ∈ I)

Mnn′ = [l(ε+ 1) + 1− f(ε− 1)δn,e01] δnn′ + (ε− 1)Se03e01δn,e03δn′e01

+ 3(ε− 1)Se01e03δn,e01δn′,e03 +O(a7)
(6.1)

where the elements in O(a7) contain only matrix entries with at least one index
l ≥ 5. The inverse has to the same leading order in a the form5 (n ∈ I)

(
M−1

)
e01n

=
δn,e01

ε+ 2− f(ε− 1)
− 3 (ε− 1)Se01e03δn,e03

(3ε+ 4) [ε+ 2− f(ε− 1)]
+O(a7) (6.2)

For the diagonal term (M−1)
e01e01 we also need higher order terms. The identity

1 =
∑
n∈I

(
M−1

)
e01n

Mne01 =
(
M−1

)
e01e01

Me01e01 +
(
M−1

)
e01e03

Me03e01 +O(a14)

implies by the use of (6.1) and (6.2)

1 =
(
M−1

)
e01e01

(ε+ 2− f(ε− 1))− 3 (ε− 1)2 Se01e03Se03e01

(3ε+ 4) [ε+ 2− f(ε− 1)]
+O(a12)

The diagonal term (M−1)
e01e01 is therefore

(
M−1

)
e01e01

=
1

ε+ 2− f(ε− 1)
+

3 (ε− 1)2 Se01e03Se03e01

(3ε+ 4) [ε+ 2− f(ε− 1)]2
+O(a12)

5Assume M has the form
M = D+ a5A+O(a7)

where D is a diagonal matrix, D and A are independent of a. The inverse is then

M−1 = D−1 − a5D−1 ·A ·D−1 +O(a7)
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We are now ready to insert all these results and limits into (5.2). The result is
(remember Se01e01 = 0)

εh

εb
=1 + (ε− 1)f − (ε− 1)2f(1− f)

ε+ 2− f(ε− 1)

− 3f(1− f) (ε− 1)4 Se01e03Se03e01

(3ε+ 4) [ε+ 2− f(ε− 1)]2
+

3f(ε− 1)3Se01e03Se03e01

(3ε+ 4) [ε+ 2− f(ε− 1)]
+O(a15)

which simpli�es to

εh

εb
= 1 +

3f(ε− 1)

ε+ 2− f(ε− 1)
+

9f(ε− 1)3Se01e03Se03e01

(3ε+ 4) [ε+ 2− f(ε− 1)]2
+O(a15) (6.3)

We observe that the �rst term is the Maxwell Garnett term, see (3.1). This expansion
is in agreement with the result reported in e.g., [7]. The lowest order correction term
is

εcorr =
9f(ε− 1)3Se01e03Se03e01

(3ε+ 4) [ε+ 2− f(ε− 1)]2

and since, see (D.2)

Se01e03Se03e01 = 196a10 (4S1 + 2S2 − S3)2 ≈ 155a10

where the sums are

S1 =
∞∑

ijk=1

3i2j2 − i4

(i2 + j2 + k2)9/2
, S2 =

∞∑
ij=1

3i2j2 − 2i4

(i2 + j2)9/2
, S3 =

∞∑
i=1

1

i5

we have the �nal result for the �rst correction term to the Maxwell Garnett formula

εcorr =
1764f(ε− 1)3a10 (4S1 + 2S2 − S3)2

(3ε+ 4) [ε+ 2− f(ε− 1)]2
≈ 9f

155(ε− 1)3a10

(3ε+ 4) [ε+ 2− f(ε− 1)]2

This result is in agreement with the result obtained by Lord Rayleigh [13], who
used a di�erent technique to obtain the result. Moreover, it is consistent with the
Hashin-Shtrikman's bounds in (6.4) since εcorr is positive for ε > 1.

6.1 Hashin-Shtrikman's bounds

The Hashin-Shtrikman's bounds constitute the limit values of the e�ective permit-
tivity εh. For the case ε > 1, the homogenized value εh for spherical inclusions is
bounded by [4,16]

1 +
3f(ε− 1)

ε+ 2− f(ε− 1)
≤ εh

εb
≤ ε+

3(1− f)ε(1− ε)
1 + 2ε− (1− f)(1− ε)

(6.4)

If ε < 1 the inequalities are reversed.
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²h

a

0.1 0.2 0.3 0.4

0.5

1

1.5

2

2.5

3

Figure 3: The homogenized relative permittivity εh of a spherical inclusion as a
function of the radius a. In this �gure εb = 1 and εi = 16. The solid line depicts
the Hashin-Shtrikman limits, see (6.4). The small radius approximation of the
homogenized relative permittivity εh, see (6.3), is shown in the dotted line, and
the broken line shows the result of the numerical computations , see (7.3). Notice
that the lower Hashin-Shtrikman's limit is identical to the Maxwell Garnett formula
(3.1).

7 Numerical treatment

The original problem given in (4.3)

∇2ψ(y) = 0, y ∈ Y, y /∈ S
∂

∂y
ψ(y+)− ε ∂

∂y
ψ(y−) = ê3 · ŷ (1− ε) , y ∈ S

ψ(y+) = ψ(y−), y ∈ S
ψ(y + êi) = ψ(y), y ∈ ∂Y, i = 1, 2, 3

for the permittivity pro�le in (4.2) is easily transformed to a homogeneous boundary
value problem.

Let ψ0 denote the function

ψ0(y) =
ε− 1

ε+ 2
a

√
4π

3

{
ve01(y)

ue01(y)

}
=
ε− 1

ε+ 2
a cos θ

{
y/a

(a/y)2

} {
y < a

y > a
(7.1)
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The function Ψ = ψ − ψ0 then satis�es

∇2Ψ(y) = 0, y ∈ Y, y /∈ S
∂

∂y
Ψ(y+)− ε ∂

∂y
Ψ(y−) = 0, y ∈ S

Ψ(y+) = Ψ(y−), y ∈ S
Ψ(y + êi) = Ψ(y)− ψ0(y + êi) + ψ0(y), y ∈ ∂Y, i = 1, 2, 3

or formally{
∇ · [ε(y)∇Ψ(y)] = 0, y ∈ Y
Ψ(y + êi) = Ψ(y)− ψ0(y + êi) + ψ0(y), y ∈ ∂Y, i = 1, 2, 3

which is a problem without source term. However, the problem is now no longer
periodic at the boundary, since ψ0 is on odd function in y3. Due to the symmetry
and the periodicity of the original problem (even in y1 → −y1 and y2 → −y2, and
odd in y3 → −y3), we have

∂ψ(±ê1/2)

∂y1

= 0,
∂ψ(±ê2/2)

∂y2

= 0, ψ(±ê3/2) = 0

Thus, we obtain the following mixed boundary value problem:

∇ · [ε(y)∇Ψ(y)] = 0, y ∈ Y
∂Ψ(±ê1/2)

∂y1

=
∂Ψ(±ê2/2)

∂y2

= 0

Ψ(±ê3/2) = ∓ε− 1

ε+ 2

1

2

(
a√

y2
1 + y2

2 + 1/4

)3
(7.2)

Finally, from (5.1) and (7.1), we get

εh

εb
= 1 + 3f

ε− 1

ε+ 2
− (ε− 1) a2

∫∫
Ω

Ψ(aŷ) cos θ dΩ (7.3)

which we easily evaluate numerically from the numerical solution of (7.2). The
last integral term is the correction term to the dipole contribution. A numerical
illustration of these calculations is depicted in Figure 3.

8 Conclusions and discussions

An exact expression of the homogenized relative permittivity for homogeneous, iso-
tropic spherical inclusions in a homogeneous, isotropic background material is com-
puted by means of the translation matrices of the solutions to the Laplace equation
in spherical coordinates. This result is compared with the classical mixture formulae
in physics. It is found that the �rst (dipole) term, which all formulae predict, is
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retrieved. The correct higher order terms are only predicted by the Maxwell Garnett
(and the Rayleigh) formula. In fact, the Maxwell Garnett formula is correct up to
order a12. The correction term is small, of the order a13, which could explain the
success of this classical mixture formula.

The method presented in this paper can be generalized in various ways, and it
has potential for materials with anisotropies and more complex lattice con�gurations
than the cubic one analyzed here. Also, higher order correction terms in the power
series expansion in the radius a can be extracted.
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Appendix A The spherical coordinate solutions

The appropriate solutions to the Laplace equation in spherical coordinates are6
vn(y) =

(y
a

)l
Yσml(ŷ)

un(y) =

(
a

y

)l+1

Yσml(ŷ)

where the spherical harmonics, Yσml(ŷ), are orthogonal over the unit sphere Ω. The
multi-index, n = σml, takes the values σ = e (even), o (odd), m = 0, 1, 2, . . . , l−1, l,
and l = 0, 1, 2, 3, . . .. The length of the vector y is denoted y = |y| and ŷ = y/|y|.
The explicit expression of Yσml(ŷ) is [3]

Yσml(θ, φ) =

√
2− δm,0

2π

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)

{
cosmφ
sinmφ

}
and Pm

l (cos θ) denotes the Associated Legendre functions. The spherical angles of
ŷ are denoted θ and φ, respectively.

Of special importance in this paper is the solutions corresponding to n = e01.
The are 

ve01(y) =

√
3

4π

y3

a

ue01(y) =

√
3

4π

y3

a

(
a

y

)3

6We adopt the notion of multi-index n = σml.
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since ê3 · ŷ = cos θ =
√

4π/3Ye01(ŷ).
Translation of the argument in the singular spherical solutions, un, see Figure 4,

can be expressed in the regular solutions, vn, as [3]

un(y + d) =
∑
n′

Pnn′(d)vn′(y), y < d (A.1)

where the matrix Pnn′ is explicitly given in [3] and in Appendix C. This translation
relation is of paramount importance for the analysis presented in this paper.

Appendix B Evaluation of some integrals

In this section, we evaluate two integrals of importance in the analysis of this paper.
The �rst integral is

In = lim
R→∞

∑
i∈Z3

|ti|≤R

∫∫
∂Y

ν̂(y)un(y + ti) dS

where dS is the surface measure of the boundary surface ∂Y . This integral is readily
transformed into an integral over a �ragged sphere� of radius R, which we denote
by SR, since all contributions at all surfaces cancel except at the end points of the
summation in i. We get

In = lim
R→∞

∫∫
SR

ν̂(y)un(y) dS

This surface integral is in the limit R→∞ identical to an integral over the sphere
y = R + 1, i.e.,

In = lim
R→∞

∫∫
y=R+1

ŷun(y) dS

since the di�erence between the surface integral is∫∫∫
VR

∇un(y) dv

where VR is the volume between SR and y = R + 1. This integral approaches zero
in the limit R → ∞, since the volume VR is of the order O(R2) as R → ∞ and
|∇un(y)| = O(R−l−2) as R → ∞. The integral over the sphere y = R is easy to
calculate. We have

In = δn,e01 lim
R→∞

∫∫
y=R

ŷue01(y) dS = δn,e01a
2

√
4π

3
ê3 (B.1)
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Origin y + d

d
y

Figure 4: Translation of the origin.

The second integral of interest is∫∫
∂Y

ν̂(y)ve01(y) dS =

√
3

4π

∫∫
∂Y

ν̂(y)
y3

a
dS

=

√
3

4π
ê3

∫∫∫
Y

1

a
dv =

√
3

4π
ê3

1

a

(B.2)

Appendix C The translation matrices Pnn′

In this section, we review the entries of the translation matrix, Pnn′ , in (A.1). More
details are found in [3].

If (d, η, α) are the spherical coordinates of d, the matrix entries of Pnn′(d) are [3,6]

Pσmlσ′m′l′(d) =(−1)m
′
Bmlm′l′(d, η)

{
cos(m−m′)α

(−1)σ
′
sin(m−m′)α

}
+ (−1)σBml−m′l′(d, η)

{
cos(m+m′)α

(−1)σ sin(m+m′)α

} {
σ = σ′

σ 6= σ′

where (−1)σ = 1 if σ = e and (−1)σ = −1 if σ = o and where

Bmlm′l′(d) = lim
k→0
Bmlm′l′(d)

jl′(ka)

h
(1)
l (ka)

= lim
k→0
Bmlm′l′(d)

i(ka)l+l
′+1

(2l′ + 1)!!(2l − 1)!!

The matrix Bmlm′l′(d, η) is de�ned as [3]

Bmlm′l′(d, η) =(−1)m+m′

√
(2− δm0)(2− δm′0)

4

l+l′∑
λ=|l−l′|

(−1)(l′−l+λ)/2(2λ+ 1)

×

√
(2l + 1)(2l′ + 1)(λ− (m−m′))!

(λ+m−m′)!

×
(
l l′ λ
0 0 0

)(
l l′ λ
m −m′ m′ −m

)
Pm−m′

λ (cos η)h
(1)
λ (kd)
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where

(
· · ·
· · ·

)
is the Wigner 3-j symbol [6]. The limit process k → 0 gives the

�nal result.

Bmlm′l′(d, η) =(−1)m+m′+l′

√
(2− δm0)(2− δm′0)

4

(2l + 2l′ + 1)!!

(2l − 1)!!(2l′ + 1)!!√
(2l + 1)(2l′ + 1)(l + l′ − (m−m′))!

(l + l′ +m−m′)!(
l l′ l + l′

0 0 0

)(
l l′ l + l′

m −m′ m′ −m

)
Pm−m′

l+l′ (cos η)
(a
d

)l+l′+1

where the Wigner 3-j symbol has the explicit expression [6](
l l′ l + l′

m −m′ m′ −m

)
= (−1)l−l

′+m−m′

×

√
(2l)!(2l′)!(l + l′ − (m−m′))!(l + l′ +m−m′)!

(2l + 2l′ + 1)!(l +m)!(l −m)!(l′ +m′)!(l′ −m′)!

The �rst explicit values for the lowest order terms used in this paper are

Pe01e01(d) = −2P2(cos η)
(a
d

)3

= (1− 3 cos2 η)
(a
d

)3

and 

Pe01e03(d) = −4

√
3

7
P4(cos η)

(a
d

)5

Pe01e23(d) = −
√

1

35
P 2

4 (cos η) cos 2α
(a
d

)5

Pe03e01(d) = −4

√
7

3
P4(cos η)

(a
d

)5

Pe23e01(d) = −1

3

√
7

5
P 2

4 (cos η) cos 2α
(a
d

)5

Appendix D The sum Snn′

An important matrix of frequent use in this paper is

Snn′ = lim
R→∞

∑
Z33i 6=(000)
|ti|≤R

Pnn′(ti) = lim
R→∞

∑
0<|(ijk)|≤R

Pnn′(t(ijk)) (D.1)

where the translation t(ijk) = iê1 + jê2 + kê3, and |(ijk)| = (i2 + j2 + k2)1/2.
The symmetry of the lattice (even in y1 → −y1 and y2 → −y2, and odd in

y3 → −y3) implies that the only non-vanishing entries of Snn′ occur when l + l′ is
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an even integer, σ = σ′, and m+m′ is an even integer. The dependence of a is, see
Appendix C

Snn′ = O(al+l
′+1)

We denote the spherical polar and azimuth angles of the translation t(ijk) by ηijk
and αij, respectively. In a cubic lattice we have

cos ηijk =
k√

i2 + j2 + k2
cosαij =

i√
i2 + j2

We proceed by computing the �rst few elements of the matrix Snn′ . Several sums
of are of interest in this context. We get

a−3Se01e01 = lim
R→∞

∑
0<|(ijk)|≤R

i2 + j2 − 2k2

(i2 + j2 + k2)5/2

= lim
R→∞

{
8
∑
i,j,k=1

i2+j2+k2≤R2

i2 + j2 − 2k2

(i2 + j2 + k2)5/2
+ 4

∑
i,j=1

i2+j2≤R2

1

(i2 + j2)3/2
+ 8

∑
i,k=1

i2+k2≤R2

i2 − 2k2

(i2 + k2)5/2

− 4
R∑
k=1

1

k3
+ 4

R∑
i=1

1

i3

}
= lim

R→∞
4
∑
i,j=1

i2+j2≤R2

i2 + j2 + 2i2 − 4j2

(i2 + j2)5/2
= 0

Therefore, Se01e01 = 0. Similarly, we have
Se01e23 =

√
45

28
a5 lim

R→∞

∑
0<|(ijk)|≤R

(i2 − j2)(i2 + j2 − 6k2)

(i2 + j2 + k2)9/2
= 0

Se23e01 =

√
35

2
a5 lim

R→∞

∑
0<|(ijk)|≤R

(i2 − j2)(i2 + j2 − 6k2)

(i2 + j2 + k2)9/2
= 0

The �rst non-vanishing terms in powers of a are

a−5Se01e03 =−
√

3

28
lim
R→∞

∑
0<|(ijk)|≤R

3i4 + 6i2j2 + 3j4 − 24i2k2 − 24j2k2 + 8k4

(i2 + j2 + k2)9/2

=−
√

3

28

{
8
∞∑

i,j,k=1

3i4 + 6i2j2 + 3j4 − 24i2k2 − 24j2k2 + 8k4

(i2 + j2 + k2)9/2

+ 4
∞∑

i,j=1

3i4 + 6i2j2 + 3j4

(i2 + j2)9/2
+ 8

∞∑
i,k=1

3i4 − 24i2k2 + 8k4

(i2 + k2)9/2

+ 4
∞∑
i=1

3

i5
+ 2

∞∑
k=1

8

k5

}
which we can rearrange by symmetry to

a−5Se01e03 =−
√

3

28

{
112

∞∑
i,j,k=1

i4 − 3i2j2

(i2 + j2 + k2)9/2
+ 56

∞∑
i,j=1

2i4 − 3i2j2

(i2 + j2)9/2
+ 28

∞∑
i=1

1

i5

}
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The other term of the same magnitude is

a−5Se03e01 =−
√

7

12
lim
R→∞

∑
0<|(ijk)|≤R

3i4 + 6i2j2 + 3j4 − 24i2k2 − 24j2k2 + 8k4

(i2 + j2 + k2)9/2

From this result we have

Se01e03Se03e01 = 196a10 (4S1 + 2S2 − S3)2 (D.2)

The pertinent sums are

S1 =
∞∑

i,j,k=1

3i2j2 − i4

(i2 + j2 + k2)9/2
, S2 =

∞∑
i,j=1

3i2j2 − 2i4

(i2 + j2)9/2
, S3 =

∞∑
i=1

1

i5

The sums are positive and have approximate values as

S1 ≈ 0.021, S2 ≈ 0.033, S3 ≈ 1.037

and we get
Se01e03Se03e01 ≈ 155a10
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