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Abstract: Modeling is fundamental to both feed-forward and feedback control.
Within automated anesthesia the two paradigms are usually referred to as target-
controlled infusion (TCI) and closed-loop drug delivery, respectively. In both cases,
the objective is to control a system with anesthetic drug infusion rate as input, and
(measured) clinical effect as output. The input is related to the output through the
pharmacokinetics (PK) and pharmacodynamics (PD) of the patient. This chapter
gives an introduction to PKPD modeling in automated anesthesia management, in-
tended to be accessible to both anesthesiology and (control) engineering researchers.
The following topics are discussed: the role of modeling; the classic PKPD struc-
ture used in clinical pharmacology; anesthesia modeling and identification for closed-
loop control; inter-patient variability and model uncertainty; disturbance, noise and
equipment models. The chapter emphasizes electroencephalogram-guided control of
propofol.

1. Introduction

This section introduces the scope of this chapter in Section 1.1, whereupon the disposition of the
material follows in Section 1.2.

1.1 Scope
This chapter introduces model structures commonly used to describe patient dynamics in anesthesia.
While early research on closed-loop controlled anesthesia, such as [Soltero et al., 1951], considered
volatile anesthetics, the introduction and increased popularity of total intravenous anesthesia (TIVA)
[Absalom and Kiera, 2017] has heavily shifted focus of the anesthesia control research community
toward modeling and control of intravenously induced and maintained anesthesia [Le Guien et al.,
2016]. Relatedly, most automatic drug delivery research in anesthesia has focused on controlling
the hypnotic component of anesthesia through closed-loop controlled titration of propofol, based on
measurements from an electroencephalogram (EEG) monitor. A partial overview of works on EEG-
controlled propofol infusion can be found in [Le Guien et al., 2016; Neckebroeak et al., 2013].

Several attempts have also been made to control the analgesic component of anesthesia, foremost
using fast opioids such as remifentanil. Analgesia control is complicated by the absence of reliable
nociception monitors with wide clinical acceptance [Gruenewald and Ilies, 2013]. Monitors utilizing
individual measurements have been reported to suffer from low specificity, as exemplified in [Choo
et al., 2010]. Consequently, associated control research has focused on developing new measurement
techniques [Jeanne et al., 2009; Chevalier et al., 2014] and in estimating the level of analgesia us-
ing (sometimes model-based) sensor fusion approaches utilizing already monitored variables, as in
for example [Merigo et al., 2019; van Heusden et al., 2018b; Guignard, 2006; Huiku et al., 2007;
Hemmerling et al., 2009].

There exist several works, such as [Zhanybai et al., 2015; Mendonça et al., 2004], on modeling
and control of neuromuscular blockage using rocoronium or other muscle relaxants. Most commonly,
the train-of-four (ToF) [Lee, 1975] measurement is used as feedback variable in this context. Control

1 Parts of the material in this chapter has previously been published in [Soltesz, 2013] ©Kristian Soltesz.
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2. Models from clinical pharmacology

of neuromuscular blockage is particularly tractable as there are generally no exogenous disturbances
from for example drug interaction or surgical stimulation.

As a consequence of the above, the content of this chapter focuses on modeling for EEG-
controlled propofol infusion. The introduced model structures, principles and discussions are, how-
ever, applicable to all three components of anesthesia, and to a large extent also apply in the context
of volatile anesthetics. With this in mind, the chapter should be viewed as an introduction to aspects
of modeling relevant to control, rather than an exhaustive review of the field.

1.2 Disposition
The chapter is divided into two main sections. Section 2 introduces the model structures traditionally
used within clinical physiology to describe pharmacokinetics (Section 2.2) and pharmacodynamics
(Section 2.3). The chapter is opened with a discussion on the purpose for which these models were
introduced, mostly prior to the advent of closed-loop anesthesia systems. Models of the pharmaco-
dynamic interaction between hypnosis (propofol) and analgesia (remifentanil or other opioids) are
reviewed in Section 2.5. The section is concluded with a discussion in Section 3.2, on how individual
and population parameters for the above model structures have been obtained from clinical data.

In Section 3, focus is shifted to models for closed-loop control. Desired model properties are
presented in Section 3.1. Section 3.2 discusses problems of identifiability associated with clinical
data. It is followed by Section 3.3, dedicated to modeling for control. Variability in dynamics, partic-
ularly between individual patients of a population, is the topic of Section 3.4. Approaches to arrive at
linear model representations, despite the presence of a nonlinear component (the Hill function intro-
duced in Section 2.3) are presented in Section 3.5. Finally, the dynamics of monitoring and actuation
equipment, and of exogenous disturbances, are discussed in Section 3.6.

2. Models from clinical pharmacology

This section presents modeling concepts originating from clinical pharmacology. The purpose, which
the resulting models were intended to fill is described in Section 2.1. Subsequently, pharmacokinet-
ics are introduced in Section 2.2, followed by pharmacodynamics in Section 2.3. Their combination,
the PKPD model, is summarized in Section 2.4. Section 2.5 introduces structures to model pharma-
codynamic interaction between drugs. Finally, a few remarks on how parameter values are typically
identified for (population) PKPD models, are provided in Section 2.6.

2.1 The purpose of modeling
In clinical anesthesia, models are used on a daily basis in operating rooms around the world, directly
or indirectly. They are the basis of drug dosing recommendations, dosing schemes and computer
controlled (feed-forward) infusion systems, referred to as target controlled infusion (TCI) systems
[Absalom and Kiera, 2017]. Derived concepts such as context-sensitive half-time (explained further
below) are important in the clinicians’ mental model, allowing them to provide accurately titrated
intravenous anesthesia.

Intravenous drugs used for general anesthesia include hypnotic agents, analgesic agents and mus-
cle relaxants. The goal of anesthesia during surgery (and largely applicable also to anesthesia for
investigation and long-term intensive care scenarios) is to rapidly induce unconsciousness and avoid
awareness during the operation, to titrate analgesia to avoid responses to nociceptive stimulation
while maintaining hemodynamic stability, and to facilitate rapid recovery. This cannot be achieved
with constant infusion rates; bolus or loading doses are given to rapidly induce anesthesia, and the
anesthesiologist continues to adjust drug dosing during the case and can administer bolus doses in
anticipation or response to stimulation. In anticipation of the end of surgery, drug dosing adjustments
can be made to ensure rapid recovery. To achieve this, understanding of the time course of the drug
effect is essential [Minto and Schnider, 2008].

Pharmacokinetics and pharmacodynamics study this time course of the drug effect: pharmacoki-
netics (PK, further explained in Section 2.2) describe what the body does to the drug, i.e., how it is
distributed and eliminated; pharmacodynamics (PD, further explained in Section 2.3) describe what
the drug does to the body, i.e., how the clinical effect is related to the drug concentration. Their com-
bination, the PKPD modeling of anesthetic agents, has therefore attracted a lot of attention. Figure 1
shows the simulated time evolution of the blood plasma drug concentration (left) and clinical effect
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Figure 1 Effect-site concentration (top) and effect (bottom), following a propofol bolus of 1 mg given
over 10 s (black), 20 s (dark gray) and 30 s (light gray), and starting at 𝑡 = 0. Context-sensitive half-time
is marked in the top plot; (time to) peak effect in the bottom. The concentration responses were obtained
by simulating the Schnider PK model and associated effect-site PD [Schnider et al., 1998] for a female
patient, weighing 60 kg, being 30 years old and 165 cm tall. The PD parameters, with definitions below
in Section 2.3, were 𝐶𝑒,50 = 4 𝜇g/ml and 𝛾 = 2. Effect is reported using the BIS scale, with 𝐸0 = 100;
𝐸max = 0.

(right), following a propofol bolus of 1 mg at 𝑡 = 0. The figure illustrates time-to-peak effect and
context-sensitive half-time, being two parameters frequently used by clinicians.

Rational selection of anesthetic agents and dosing has thus been made possible by PKPD mod-
eling and the development of derived concepts [Lemmens and Stanski, 2012].

Understanding of the onset of drug effect is important in clinical anesthesia. To accommodate
observed time delays between intravenous drug delivery and drug effect (not visible in the simulation
outcome of Figure 1), the effect-site concept was introduced [Sheiner et al., 1979]. It allowed for
modeling of dynamics relating the plasma concentration and the observed effect, without affecting
the drug mass in the PK model, as further discussed in Section 2.3. The effect-site model has been
used to optimize bolus doses and to determine equipotent bolus doses for different drugs [Minto and
Schnider, 2008]. The time-to-peak effect, illustrated in Figure 1, combines PK and PD characteristics
and directly compares onset times [Gambús and Trocóniz, 2015]. Recovery following drug delivery
is strongly influenced by the duration of drug administration, and has led to the introduction of the
term “context-sensitive half-time” (where the context is defined by the drug infusion profile). The
context-sensitive half-time cannot be explained by drug elimination rates alone, and simulation of
decreasing plasma concentrations using PKPD models offered more realistic predictions of recovery
[Shafer and Varvel, 1991].

PK models have been used to derive manual infusion schemes for adults (for example [Roberts et
al., 1988]). Subsequently, computer controlled TCI systems were developed that explicitly use the PK
and PD models and calculate an optimal (feed-forward) drug infusion trajectory to achieve a desired
target plasma or effect-site concentration [Absalom and Kiera, 2017]. Two commercially available
clinical decision support systems explicitly use PKPD models to visualize real-time concentrations
as calculated by the models, and incorporate predictions of future values (Navigator Applications
Suite, GE Healthcare, USA; SmartPilot View, Dräger, Germany).

To conclude, the development of dynamic models in anesthesia have been driven by pharma-
cological needs associated with manual drug administration. The main use of models has been to
capture slow phenomena, such as time-to-peak effect following a bolus, (contextual) half-time of
drugs and the steady-state clinical effect associated with a given constant drug infusion rate for a par-
ticular patient. While the resulting models have proven useful for drug dose recommendations, their
properties are not necessarily the ones required for the synthesis of feedback controllers, as further
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Figure 2 A mammillary compartment model with three compartments. Drug flow between compart-
ments is governed by rate constants 𝑘𝑖𝑗. Elimination to the environment (compartment) is governed by
𝑘10 and drug is introduced to the central compartment with infusion rate 𝑢.

discussed in Section 3.

2.2 Pharmacokinetics
The traditional model structure used to describe the PK of a particular drug is the mammillary com-
partment model, schematically illustrated in Figure 2. The number of compartments required to cap-
ture response dynamics vary between drugs. For instance, clinical models for propofol typically have
three compartments, as in [Sahinovic et al., 2018]. The two most widely utilized PK models for
remifentanil have respectively two and three compartments [Minto et al., 1997; Rigby-Jones et al.,
2007].

Drug mass in compartment 𝑖 is denoted 𝑚𝑖 ≥ 0 and the per time proportion of drug migrating
from compartment 𝑖 to 𝑗 is described by the rate constant 𝑘𝑖𝑗 ≥ 0:

𝑚̇𝑖 =
𝑛

∑
𝑗=1

𝑘𝑗𝑖𝑚𝑗 −
𝑛

∑
𝑗=0

𝑘𝑖𝑗𝑚𝑖 + 𝑢𝑖, (1)

where 𝑛 is the number of compartments in the model. The compartment corresponding to 𝑖 = 0 is
the environment and 𝑘𝑗0 models elimination of drug from compartment 𝑗. The per time mass of drug
introduced into compartment 𝑖 from the environment is described by 𝑢𝑖 ≥ 0. The system of equations
defined through (1) constitutes a delay-free linear and time-invariant (LTI) system [Rugh and Kailath,
1995].

In the context of intravenous anesthesia, the central compartment represents the blood, being
the site where drug is introduced. Consequently 𝑢𝑖 = 0 ∀𝑖 ≠ 1 and it is natural to introduce 𝑢 =
𝑢1. The peripheral compartments only exchange drug with each other indirectly through the central
compartment, as shown in Figure 2. Furthermore, drug is assumed only to be eliminated from the
central compartment. In the intravenous context, such elimination is typically through metabolism
in the liver, combined with renal excretion [Bryson et al., 1995]. In the volatile context, some of the
elimination is also attributed to pulmonary gas exchange.

The compartment model illustrated in Figure 2, and governed by (1), has the following state space
representation:

𝑚̇ = ⎡⎢⎢
⎣

−(𝑘10 + 𝑘12 + 𝑘13) 𝑘21 𝑘31
𝑘12 −𝑘21 0
𝑘13 0 −𝑘31

⎤⎥⎥
⎦

𝑚 + ⎡⎢⎢
⎣

1
0
0

⎤⎥⎥
⎦

𝑢, (2)

where 𝑚 = [𝑚1 𝑚2 𝑚3]𝑇 is the state vector. It is straightforward to derive state space equations for
a compartment system of arbitrary order and topology. However, increasing the parameters also in-
creases demands on clinical identification data, in order to avoid over-fitting. For practical purposes,
the three-compartment system is generally sufficient to model pharmacokinetics of anesthetic drugs.
For some anesthetic drugs, particularly opioids, two compartments are sufficient to model pharma-
cokinetics. The two-compartment model constitutes a special case of (2), and is consequently not
explicitly presented here.

In order for (2) to be a realistic model, it is necessary that there is no net flow between compart-
ments 𝑖 and 𝑗, whenever they hold the same drug concentrations, i.e., 𝑥𝑖 = 𝑥𝑗, where

𝑥𝑖 = 𝑚𝑖
𝑣𝑖

. (3)

In (3), 𝑥𝑖 is the drug concentration in compartment 𝑖, which has volume 𝑣𝑖. Note that the compart-
ment volumes, also referred to as volumes of distribution, are a theoretical construct and should not
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2.2 Pharmacokinetics

be thought of in terms actual physiological volumes. (For instance, many drug PK models involve
compartments of volumes exceeding that of the human body.) The mentioned net flow constraint can
now be states, assuming equal concentrations 𝑥𝑖 = 𝑥𝑗:

𝑘𝑗𝑖𝑚𝑗 = 𝑘𝑖𝑗𝑚𝑖 ⇔ 𝑘𝑗𝑖𝑣𝑗𝑥𝑖 = 𝑘𝑖𝑗𝑣𝑖𝑥𝑗 ⇔ 𝑘𝑗𝑖𝑣𝑗 = 𝑘𝑖𝑗𝑣𝑖. (4)

Combining (1) and (4) yields

1
𝑣𝑖

𝑚̇𝑖 =
𝑛

∑
𝑗=1

𝑣𝑗
𝑣𝑖

𝑘𝑗𝑖
𝑚𝑗
𝑣𝑗

−
𝑛

∑
𝑗=0

𝑘𝑖𝑗
𝑚𝑖
𝑣𝑖

+ 1
𝑣𝑖

𝑢𝑢

⇔ ̇𝑥𝑖 =
𝑛

∑
𝑗=1

𝑣𝑗
𝑣𝑖

𝑘𝑗𝑖𝑥𝑗 −
𝑛

∑
𝑗=0

𝑘𝑖𝑗𝑥𝑖 + 1
𝑣𝑖

𝑢𝑖

⇔ ̇𝑥𝑖 =
𝑛

∑
𝑗=1

𝑘𝑖𝑗(𝑥𝑗 − 𝑥𝑖) − 𝑘𝑖0𝑥𝑖 + 1
𝑣𝑖

𝑢𝑖. (5)

Note that the compartment volumes only enter (5) as an input scaling. Consequently, the model (5) is
fully parameterized by 𝑘10, 𝑘12, 𝑘13, 𝑘21, 𝑘31 and 𝑣1 (6 parameters) in the three compartment case and
by 𝑘10, 𝑘12, 𝑘21, and 𝑣1 (4 parameters) in the two compartment case. The state space representation
corresponding to (2) becomes

̇𝑥 = ⎡⎢⎢
⎣

−(𝑘10 + 𝑘12 + 𝑘13) 𝑘12 𝑘13
𝑘21 −𝑘21 0
𝑘31 0 −𝑘31

⎤⎥⎥
⎦

𝑥 +
⎡
⎢⎢⎢
⎣

1
𝑣1
0
0

⎤
⎥⎥⎥
⎦

𝑢. (6)

It could be noted here that both (2) and (6) are positive systems, since their system matrices are
of Metzler type. However, only (6) is guaranteed to describe a compartmental system [Luenberger,
1979].

Assuming the plasma concentration 𝐶𝑝 = 𝑥1 is the output of (6), the system has the following
transfer function representation

𝐺𝐶𝑝,𝑢(𝑠) = 1
𝑣1

(𝑠 + 𝑘21)(𝑠 + 𝑘31)
(𝑠 + 𝑝1)(𝑠 + 𝑝2)(𝑠 + 𝑝3) . (7)

In (7) the Laplace variable 𝑠 constitutes the Laplace transform of the differential operator 𝜕/𝜕𝑡. The
curious reader without a control system background is referred to a standard text on linear systems,
such as [Rugh and Kailath, 1995] for a further explanation. The poles −𝑝𝑖 in (7) solve the characteristic
equation

⎧{{
⎨{{⎩

𝑝1 + 𝑝2 + 𝑝3 = 𝑘120𝑘13 + 𝑘21 + 𝑘31

𝑝1𝑝2 + 𝑝1𝑝3 + 𝑝2𝑝3 = 𝑘10(𝑘21 + 𝑘31) + 𝑘31(𝑘12 + 𝑘21) + 𝑘13𝑘21

𝑝1𝑝2𝑝3 = 𝑘10𝑘21𝑘31.
In some literature, the PK model is parametrized in terms of the clearance 𝑐𝑖, describing the drug

volume per time, migrating from a specific compartment. The clearances for the system (6) are:

⎧{{
⎨{{⎩

𝑐1 = 𝑣1𝑘10

𝑐2 = 𝑣2𝑘21 = 𝑣1𝑘12

𝑐3 = 𝑣3𝑘31 = 𝑣1𝑘13,

where the rightmost equalities follow from (4).
The system model (6) or (7) uniquely determines the time evolution of drug concentration in

each compartment given a known initial condition (for example 𝑥 = 0 at 𝑡 = 0, where 𝑡 = 0 marks
the beginning of infusion), and an infusion profile 𝑢(𝑡), where 𝑡 ≥ 0. Consequently, it can be used
to compute clinically relevant properties such as time-to-peak concentration, peak concentration re-
sulting from a particular infusion profile and (context-sensitive) half-time. This is achieved using
well-established methods for linear systems, presented in for example [Rugh and Kailath, 1995].

A related approach to the compartment model formulation stated above, is the use of fractional
order models. Such models typically arise as the solution to diffusion problems, and their use in
the pharmacokinetic modeling context can be motivated by this, i.e., by diffusion of drug between
compartments. The reader is referred to [Ionescu et al., 2017] for a thorough introduction.
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2. Models from clinical pharmacology

2.3 Pharmacodynamics
This section introduces the model structures classically used to describe pharmacodynamics. They
comprise an input component, described in Section 2.3, in series with an output component, described
in Section 2.3.

Effect dynamics The classical PD relates the clinical effect, 𝐸, to the plasma drug concentration,
𝐶𝑝. In controlling the the hypnotic component of anesthesia, the depth of hypnosis (DoH) is the
considered clinical effect, 𝐸. The two will be used interchangeably henceforth, unless some other
endpoint, such as nociception, is explicitly considered. It is possible to track 𝐶𝑝 in (7) by drawing time
stamped blood samples, which are subsequently analyzed. (The practically achievable bandwidth of
this methodology is not sufficient for closed-loop control purposes, but useful for identification of the
PK model parameters.) When comparing the measured blood plasma concentration from such blood
samples to monitored clinical effect, some drugs, including the hypnotic agent propofol, yield a lag,
which is not accounted for by the dynamics of the monitor. A contributing reason to this is that the
dynamics between the blood plasma and the effect site, which for propofol is the cerebellar cortex,
are not modeled. It was suggested in [Sheiner et al., 1979], and confirmed in [Absalom and Kiera,
2017], that the PD model (7) should be augmented by a series connected lag link

𝐺𝐶𝑝,𝐶𝑒
= 𝑘𝑒0

𝑠 + 𝑘𝑒0
, (8)

at its input, where 𝐶𝑒 is referred to as the effect-site concentration of the drug. Introducing the notation
𝑥𝑒 = 𝐶𝑒 for the effect-site concentration, the state space representation of (8) becomes

̇𝑥𝑒 = −𝑘𝑒0𝑥𝑒 + 𝑘𝑒0𝑥1, (9)

where 𝑥1 is the primary compartment drug concentration. From the notation of (9) it appears as if 𝑥𝑒
is the drug concentration in a compartment, which is fed by the central compartment, and from which
drug is eliminated to the environment by a rate constant 𝑘𝑒0. Assuming this “effect-site compartment”
holds drug mass 𝑚𝑒 and has volume 𝑣𝑒, its dynamics are described by

𝑚̇𝑒 = −𝑘𝑒0𝑚𝑒 + 𝑘1𝑒𝑚1

⇔ 1
𝑣𝑒

𝑚̇𝑒 = −𝑘𝑒0
𝑚𝑒
𝑣𝑒

+ 𝑣1
𝑣𝑒

𝑘1𝑒
𝑚1
𝑣1

⇔ ̇𝑥𝑒 = −𝑘𝑒0𝑥𝑒 + 𝑘𝑒1𝑥1,

(10)

where the last equivalence follows from (4). Equating (9) with (10) yields 𝑘𝑒0 = 𝑘𝑒1. However,
to fit into the compartment framework, a term −𝑘1𝑒𝑥1, describing the drug flow from the central
compartment to the effect-site compartment, would have to be added to the dynamics of ̇𝑥1 in (6).
Since 𝑘1𝑒 = 𝑣𝑒/𝑣1 ⋅ 𝑘𝑒1, it follows that 𝑘1𝑒 ≈ 0 when 𝑣𝑒 ≪ 𝑣1. Consequently, the effect-site model (8)
fits into the compartment framework under the realistic assumption that the effect-site compartment
has negligible volume compared to the central compartment. Under this assumption it also becomes
irrelevant whether the term −𝑘𝑒0𝑥𝑒 in (8) corresponds to elimination of drug to the environment or
reflux to the central compartment. The latter would add the influx term 𝑘1𝑒𝑥𝑒 to the dynamics of ̇𝑥1
in (6), which is negligible if 𝑘𝑒1 ≈ 0.

Later, it has been suggested that the effect-site model should be augmented by a series connected
time delay [Bibian, 2006], as further discussed in Section 3.3.

The Hill sigmoid The common definition is that the PD relates the clinical effect, 𝐸, to the blood
plasma drug concentration, 𝐶𝑝. If the effect-site compartment of Section 2.3 is employed, as will be
the case herein, it instead relates 𝐸 to the effect-site concentration, 𝐶𝑒. The role of the PD (other than
the effect dynamics) is to account for the nonlinear static relation between 𝐶𝑒 and 𝐸.

The clinical effect, 𝐸, is typically reported on a scale between 100 and 0, where 𝐸0 ≈ 100 repre-
sents the effect in absence of drug (when 𝐶𝑒 = 0) and 𝐸max ≈ 0 represents the maximally achievable
effect (for large 𝐶𝑒). The concentrations yielding 𝐸 = 50 is denoted 𝐶𝑒,50. In contexts where 𝐸0 ≠ 100
or 𝐸max ≠ 0, 𝐶𝑒,50 can alternatively be defined as the concentration yielding 𝐸 = 1

2 |𝐸max − 𝐸0|. It
should be noted that values of 𝐸0, 𝐶𝑒,50 and 𝐸max are patient-specific.

While the 100-0 scale can be confusing to the control engineer (any linearization of the process
dynamics will have negative steady state gain), it is what clinicians are used to, and what is reported
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2.4 The PKPD model structure

0 1 2 3 4
𝐸max ⪆ 0
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𝐸0 ⪅ 100

𝑣 [-]

𝐸
[-

]

Figure 3 The Hill function, parameterized in 𝛾, defines the clinical effect 𝐸 in terms of normalized
effect-site concentration 𝑣 = 𝐶𝑒/𝐶𝑒,50. Here curves for 𝛾 = 3 (black), 𝛾 = 2 (dark gray) and 𝛾 = 1
(light gray) are shown. Effect is reported using the BIS scale, with 𝐸0 = 100; 𝐸max = 0.

by clinical monitors. The scale is often referred to as the “BIS” scale, after the BIS monitor (Aspect
Medical Systems, USA), and has been used by other DoH indices such as the WAVCNS reported
by the NeuroSense monitor (Neurowave Systems, USA). For control system analysis and synthesis
purposes, it can be convenient to instead work with the normalized effect

̄𝐸 = 𝐸 − 𝐸0
𝐸max − 𝐸0

−

In this chapter DoH and 𝐸 will be used interchangeably, and reported on the BIS or WAVCNS
scales. For control synthesis purposes it is straightforward to map the range 𝐸0 − 𝐸max to 0 − 1 by
means of an affine transformation:

̄𝐸 = 𝐸 − 𝐸0
𝐸max − 𝐸0

. (11)

The default choice for the structure of 𝐸(𝐶𝑒) in the literature is the Hill function (also known as
the sigmoidal Emax function):

𝐸(𝑡) = 𝐸0 − (𝐸0 − 𝐸max) 𝐶𝑒(𝑡)𝛾

𝐶𝑒(𝑡)𝛾 + 𝐶𝛾
𝑒,50

, 𝛾 ≥ 1. (12)

The definition of 𝐸0 and 𝐸max varies between publications, which needs to be kept in mind when
working with published parameter values. For instance [Ionescu et al., 2008] uses a slightly different
definition. The one in (12), used also in for instance [Minto et al., 2000], is motivated by the intuitive
the steady state relations 𝐶𝑒 = 0 ⇒ 𝐸 = 𝐸0 and 𝐶𝑒 → ∞ ⇒ 𝐸 = 𝐸max.

The Hill equation (12) can also be expressed in the normalized effect-site concentration, 𝑣,

𝐸(𝑡) = 𝐸0 + (𝐸max − 𝐸0) 𝑣𝛾

1 + 𝑣𝛾 , 𝑣 = 𝐶𝑒
𝐶𝑒,50

, 𝛾 ≥ 1. (13)

The parameter 𝛾 is referred to as the Hill parameter or Hill degree. The Hill function, for three values
of 𝛾, is shown in Figure 3.

From clinical data it is hard to argue that there is no model structure better for the task than (12).
However, the Hill function (closely related to the logistics function) is structurally simple and features
characteristics which are observed in clinical practice: it has a linear region around 𝐶𝑒 = 𝐶𝑒,50 and
saturation effects as 𝐶𝑒 → 0 and 𝐶𝑒 → ∞, respectively. For some drugs, the use of the Hill function
can be motivated by ligand binding models from receptor theory [Derendorf and Meibohm, 1999].

2.4 The PKPD model structure
Combining the PK of Section 2.2 with the PD of Section 2.3 yields the combined PKPD model
structure, schematically illustrated by the block digram of Figure 4. The PKPD model of Figure 4 is
an LTI system with a static output nonlinearity. As such, it constitutes a Wiener model [Ljung, 1999]
comprising the LTI input model of (7),

𝐺𝐶𝑝,𝑢(𝑠) = 1
𝑣1

(𝑠 + 𝑘21)(𝑠 + 𝑘31)
(𝑠 + 𝑝1)(𝑠 + 𝑝2)(𝑠 + 𝑝3) ,
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compartment
model

effect
dynamics

Hill sigmoid
(nonlinearity)

𝑢 𝐶𝑝 𝐶𝑒 𝐸

PK PD

Figure 4 Block diagram illustrating the PKPD structure used in clinical pharmacology. It is divided
into a pharmacokinetics (PK) model, in series connection with a pharmacodynamics (PD) model. The
PK is modeled using a mammillary compartment model, being a special case of a linear and time-
invariant (LTI) system. It relates blood plasma drug concentration, 𝐶𝑝 to drug infusion rate, 𝑢. The PD
has en LTI input part, relating effect-site concentration, 𝐶𝑒, to 𝐶𝑝 through a first-order lag (with delay).
It is followed by a static sigmoidal nonlinearity, relating to clinical effect, 𝐸, to 𝐶𝑒.

in series with the Hill sigmoid

𝐸(𝑡) = 𝐸0 + (𝐸max − 𝐸0) 𝐶𝑒(𝑡)𝛾

𝐶𝑒(𝑡)𝛾 + 𝐶𝛾
𝑒,50

, 𝛾 ≥ 1

of (12).
When PKPD modeling is mentioned in the context of drug delivery in anesthesia, it typically

refers to this structure (unless otherwise stated).

2.5 Pharmacodynamic interaction
While there is no significant PKPD interaction between commonly utilized neuromuscular block-
ing agents and other anesthetic agents, it is well-known that several hypnotic and analgesic agents
interact synergistically both toward loss of awareness and nociception. Notably, the hypnotic agent
propofol exhibits a synergistic interaction with analgesics from the opioid family, such as fentanyl
and remifentanil.

In clinical practice the synergy results in a propofol sparing effect when remifentanil (or another
opioid) is co-administered. A dose-dependent effect of this kind was for instance observed in a study
where propofol administration was controlled in closed-loop, based on auditory evoked potentials
[Milne et al., 2003]. Remifentanil was shown to decrease the propofol 𝐶𝑒,50 for response to stimu-
lation [Drover et al., 2004]. This occurred at relatively low doses and higher doses did not increase
interaction.

The PK of propofol is not affected by remifentanil co-administration, and the effect of propofol on
the remifentanil PK is only relevant when propofol is administered as bolus [Bouillon et al., 2002].
Consequently, the synergy is attributed to the PD. In the control engineering community, studies
of interaction effect have mostly focussed on the effect toward hypnosis. However, effects toward
analgesia are also of clinical importance. For example, probability of sedation measured according to
the “observer assessment of alertness/sedation score”, probability of response to laryngoscopy, level
of tolerated tetanic stimulus and level of tolerated algometry pressure, as quantified in [Kern et al.,
2004]. Results from such drug interaction studies allow clinicians to optimize drug combinations and
dosing, to achieve the desired effect while minimizing side effects. An interaction model is explicitly
used in the SmartPilot View clinical monitor (Dräger, Germany); a two-dimensional visualization of
drug concentrations which includes isoboles reflecting the probability of response to painful stimuli.

Synergy is commonly modeled using a generalization of the Hill curve to a surface. I.e., the
hypnotic effect, 𝐸ℎ, becomes a function of the normalized propofol (subscript 𝑝) and remifentanil
(subscript 𝑟) effect-site concentrations:

𝐸ℎ = 𝐸ℎ(𝑣𝑝, 𝑣𝑟), (14)

where 𝑣𝑟 is defined in the same way as 𝑣 = 𝑣𝑝 was in (13). Different parametric structures have been
suggested for (14). The most common one found in the literature is the one presented in [Minto et al.,
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2000]:

𝐸ℎ(𝑣𝑝, 𝑣𝑟) = 𝐸0 + (𝐸max(𝜃) − 𝐸0)
(

𝑣𝑝 + 𝑣𝑟
𝑣50(𝜃) )

𝛾(𝜃)

1 + (
𝑣𝑝 + 𝑣𝑟
𝑣50(𝜃) )

𝛾(𝜃)

= 𝐸0 + (𝐸max(𝜃) − 𝐸0) 1

1 + (
𝑣𝑝 + 𝑣𝑟
𝑣50(𝜃) )

−𝛾(𝜃)

(15)

where 𝜃 is the relative concentration:
𝜃 = 𝑣𝑟

𝑣𝑝 + 𝑣𝑟
.

An interpretation of this parametrization is that 𝑣𝑝 + 𝑣𝑟 is the concentration of a virtual drug with
𝐶𝑒/𝐶𝑒,50 = 𝑣50(𝜃). This virtual drug has a Hill-like PD, where the Hill coefficient 𝛾 (and the maxi-
mal effect, 𝐸max) also potentially depend on the relative concentration, 𝜃. It was suggested in [Minto
et al., 2000] that a fourth-order polynomial be used to model 𝑣50(⋅) and a second-order one for 𝛾(⋅).
The interaction surface is defined through the coefficients of these polynomials, which need to be
identified from clinical data. An interaction plane, being a local linearization of the interaction sur-
face (15) was proposed in [Ionescu et al., 2011a].

Another parametrization for the interaction surface was proposed in [Kern et al., 2004]. It con-
stitutes an extension of (12), where 𝑣 denotes relative concentration of the virtual drug

𝑣 = max(𝑣𝑝 + 𝑣𝑟 + 𝛼𝑣𝑝𝑣𝑟, 0). (16)

The structure (16) has only one parameter, 𝛼. Another appealing feature is that the interaction model
exactly corresponds to the propofol PD in the absence of remifentanil (𝑣𝑟 = 0 ⇒ 𝑣 = 𝑣𝑝). Values of
𝛼 toward different effects have been published in [Kern et al., 2004].

A third example of interaction model, proposed to model the response to propofol and remifentanil
co-administration is presented further below in (20) of Section 3.3.

2.6 Parameter identification
Individual responses to drug infusion are highly variable. The population approach in PKPD model-
ing quantifies the population mean dynamics, as well as inter-patient variability [Sheiner and Beal,
1980]. Nonlinear mixed-effect modeling (NONMEM) [Sheiner et al., 1977] is the gold standard in
pharmacology for identifying such models from data. NONMEM simultaneously optimizes over pop-
ulation average models, inter-patient variability and intra-patient variability. It can be used for sparse
data, i.e. modeling can be done from data sets with few samples per individual. It incorporates fixed
effects from user-defined covariates in the inter-patient variability [Heeremans et al., 2010]. Identi-
fication of covariates such as age, weight etc. allows for personalization of anesthetic drug dosing,
i.e. drug dosing that takes patient demographics known to affect pharmacokinetics or dynamics into
account.

Clinical data used to develop models for clinical pharmacology are often collected in volunteer
studies, for example [Schnider et al., 1999], or using modeling-specific protocols during a surgical
procedure, for example [Cortinez et al., 2010]. In these studies, drug dosing may be varied with
limited clinical constraints, while of course maintaining patient safety. Step-wise changes in drug
dosing are used to characterize the response to different drug levels and to characterize nonlinear
behavior. Different levels may be targeted in different volunteer subjects. These experiments can be
designed specifically for the modeling purpose, and blood samples can be taken for modeling the PK
characteristics. Blood samples drawn after drug infusion is stopped provide valuable information for
elimination and for parameter identification of a third compartment (see Figure 2).

The two PKPD models most widely used in TCI for propofol are the Schnider and the (modified)
Marsh model [Absalom et al., 2009]. The Schnider model was identified from data from a volunteer
study [Schnider et al., 1998; Schnider et al., 1999]. Volunteers received a rapid bolus of propofol, no
drug infusion for 60 minutes, followed by a constant 60 minute infusion. Infusion rates were randomly
assigned to 25, 50, 100 or 200 𝜇g/kg/min, with two patients per group. Arterial blood samples were
drawn at the following times after the start of the propofol bolus: 0, 1, 2, 4, 8, 16, 30, 60, 62, 64, 68,
76, 90, 120, 122, 124, 128, 136, 150, 180, 240, 300 and 600 minutes.
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The PD model was derived from an EEG-based measure of DoH. PK model validation indicated
a reasonable model fit during constant infusion and during recovery. However, the model fit following
the bolus and infusion rate changes was limited and indicates bias [Schnider et al., 1998]. Note that
this data set includes only 3 samples during the expected duration of induction of anesthesia (1, 2,
and 4 minutes following the bolus). This sparsity of data also limits model reliability when used in
a closed-loop context, with a reasonably fast closed-loop bandwidth. A fixed 𝑘𝑒0 = 0.459 min−1

was identified in combination with this PK model [Schnider et al., 1998]. The observed time-to-peak
effect ranged from 1 to 2.4 minutes.

The Marsh model [Marsh et al., 1991] was adjusted from the Gepts model [Gepts et al., 1987].
Eighteen patients received constant propofol infusion of 3, 6, or 9 mg/kg/hr during surgery requiring
regional anesthesia. Blood samples were drawn at 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 75, 90, 105 and
120 minutes after the start of propofol infusion, as well as 2, 4, 6, 8, 10, 20, 40, 60, 90, 120, 180, 240,
300, 360, 420, and 480 minutes after propofol infusion was stopped. As with the Schnider model,
sparsity of data is expected to limit model reliability in the dynamic range of primary interest for
closed-loop control. Complete details for the Marsh model adjustments [Marsh et al., 1991] have not
been published [Absalom et al., 2009]. A pharmacodynamic time constant of 𝑘𝑒0 = 0.26 min−1 has
been used in combination with this model, while 𝑘𝑒0 = 1.2 min−1 was proposed to better reflect a
time-to-peak effect of 1.6 minutes [Struys et al., 2000], also referred to as the modified Marsh model
[Absalom et al., 2009].

The drug distribution following a bolus dose is not well characterized by compartmental mod-
els [Cortinez, 2014], which is reflected in the poor model fit following the bolus and rate changes
[Schnider et al., 1998], as discussed above. There are discrepancies between published models
[Cortinez, 2014]. The two models commonly used, the Schnider and Marsh model, are also known to
differ, particularly during bolus or TCI induction of anesthesia. In manual and feed-forward control,
this needs to be taken into account [Absalom and Struys, 2007].

When using the Marsh model during TCI induction of anesthesia, a target concentration of
3 mg/ml may provide an adequate induction bolus, while an initial target of 5 mg/ml is more com-
monly used for the Schnider model, reduced to 3 mg/ml after ≈ 10 minutes [Absalom and Struys,
2007]. The low-frequency and steady-state characteristics are similar, resulting in similar TCI infu-
sion rates during maintenance of anesthesia.

Inter-patient variability to propofol infusion remains a limiting factor for feed-forward (TCI) drug
administration. PKPD modeling studies aiming at improving models for specific target populations
are ongoing, for example [Diepstraten et al., 2012], as well as studies evaluating the accuracy of pub-
lished models in target populations, for example [Cortı́nez et al., 2014; Hara et al., 2017]. Aggregated
data from clinical studies in several target populations have been used to identify a population PK
model for a range of patient groups and conditions [Eleveld et al., 2014]. Cumulative optimal doses
calculated based on this new model are similar to models currently used in TCI, and inter-patient
variability that was not explained by the covariates remained high, particularly in patients with high
body mass index [Eleveld et al., 2014]. A review of propofol and remifentanil models obtained using
classical pharmacological techniques is available in Appendix B of [Bibian, 2006].

3. Models for control

The purpose of this section is to discuss models, which have been developed particularly for feedback
control. Section 3.1 outlines the purpose of such models, and some of the challenges associated
with obtaining them. Representative properties of clinical data available for online modeling are
discussed in Section 3.2. Section 3.3 provides snapshots of published strategies for obtaining models
specifically for the purpose of feedback control. Patient variability and its modeling is the topic of
Section 3.4. Section 3.5 is dedicated to techniques for linearizing the Hill function introduced in
Section 2.3, in order to enable controller synthesis techniques relying on LTI process representations
(as most are). Finally, aspects of modeling of everything in the control loop except the actual patient,
is considered in Section 3.6.

3.1 The purpose of modeling
In the development of an automated system for intravenous anesthesia delivery, the goal of deriving
patient models is to design a closed-loop controller. Design specifications include the target popu-
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lation and clinical objectives that may depend on the procedure as well as the characteristics of the
patient. For example, during endoscopic investigations spontaneous breathing needs to be maintained,
while in many other procedures rapid induction of anesthesia is required to ensure timely airway in-
strumentation to avoid hypoxia. In elderly patients, rapid induction of anesthesia may compromise
hemodynamic stability and slower induction may be preferred.

Any automated system will have to meet performance and safety criteria for all patients in the
target population. No information about the specific patient other than demographics (age, weight
etc.) and medical history is typically known prior to the use of the system, and while experiments for
individual model development may be performed in the context of a clinical study, such experiments
cannot be performed in clinical practice prior to surgery. Any online modeling or model individualiza-
tion is therefore restricted to data collected during surgery, i.e. data from induction and maintenance
of anesthesia.

The above-mentioned conditions are routinely dealt with when performing manual or TCI anes-
thesia in the operating room. However, in closed-loop anesthesia, the automated system will update
the drug infusion at a much higher rate than associated with manual dosing. Population PKPD models
were developed for manual or TCI drug dosing, and population average characteristics such as time-
to-peak effect, low-frequency gains, and context-sensitive half-times are important to developing a
mental model for manual control, and TCI strategies targeting constant effect concentrations, respec-
tively. However, for closed-loop control, low-frequency characteristics do not have to be described
accurately as the controller will achieve disturbance rejection within the closed-loop bandwidth (for
instance through integral action) [Åström and Murray, 2008]. Instead, the closed-loop characteristics
and performance achieved by the to-be-designed controller are what really matters, not the model or
its characteristics [Gevers, 2005].

It is now well-known that models for control need to be accurate around the closed-loop band-
width. Optimal models for control therefore depend on the controller to be designed, which is un-
known at the time of modeling [Gevers, 2005]. Iterative modeling and control methods have been
proposed [Lee et al., 1993] as well as approximations that do not require iterations [Hjalmarsson,
2005]. When identifying a model for control from data, a well-designed experiment can improve
controller performance [Gevers, 2005]. Modeling to accurately predict closed-loop characteristics
has been studied extensively [Gevers, 2005].

When model-based controller design methods were developed in the 1960s, models derived from
data were used, and it was assumed that they adequately represented the true system. However, when
applied to complex systems, this led to failures as robustness considerations were not taken into
account [Safonov, 2012]. The consequent shift to robust control required modeling tools that pro-
vide both a model and an uncertainty description [Gevers, 2005]. Methods to derive control-oriented
nominal models and associated uncertainty sets were consequently developed [Gevers, 2005].

Most results in the mentioned field of modeling and identification for control focus on linear
systems or applications where linear approximations can be used. To this end, several methods to
linearize the Hill function (12) introduced in Section 2.3 have been considered, as further explained
in Section 3.5.

In the context of anesthesia, uncertainty as a result of modeling from data may be relatively small
compared to the uncertainty introduced by the use and purpose of the modeling: controlling anesthe-
sia for all patients within a target population. Inter-patient variability in the response to anesthetic drug
infusion is large and demographics cannot explain this variability (see Section 2.6). Intra-operative
cardiovascular changes, co-morbidities, drug interactions and genetics also contribute to this variabil-
ity. Since these are unknown prior to use of a closed-loop system, the controller cannot be designed for
the individual characteristics prior to the start of anesthesia. Consequently, uncertainty descriptions
suitable for controller synthesis are required. Such descriptions are the topics of Section 3.4.

Limited excitation in admissible identification data constitutes another confounding factor. Ma-
nipulating drug infusion to evoke a physiological response merely for the sake of modeling is associ-
ated with safety and ethical concerns. This limits clinical experimental conditions to those associated
with providing adequate therapy. During both manual and closed-loop induction of clinical anesthe-
sia, excitation is similar to a step reference change. Representative infusion profiles for both cases are
shown in Figure 5.

Useful excitation being limited to essentially a step limits the number of identifiable parameters
[Ljung, 1999]. The situation is further complicated by the presence of unmeasurable disturbances
and measurement noise (see Section 3.6). Modeling and identification strategies taking the above
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Figure 5 Representative clinical induction profiles from one manually administered case (gray) and
one closed-loop controlled case (black). Top pane shows measured DoH using the NeuroSense WAVCNS
monitor; bottom pane shows propofol infusion profiles, 𝑢. The figure is based on data previously pub-
lished in [AAnonymous, 2019].

into account are the topic of Section 3.3.
The remainder of this sections is disposed as follows: methods to linearize the PD are discussed

in Section 3.5; properties of clinical data, relevant to modeling, are reviewed in Section 3.2; models
for control are introduced in Section 3.3. Patient variability is the topic of Section 3.4, and the section
is concluded with a discussion on equipment, disturbance and noise models in Section 3.6.

3.2 Clinical data
Data quality Models for clinical pharmacology, as described in Section 2, are commonly identi-
fied from data collected in volunteer studies. For PK modeling, blood samples need to be collected
and for PKPD modeling the clinical endpoint needs to be measured. These studies provide detailed
information, but usually for a small number of volunteers and for a limited target population.

In contrast, models for control only require a description of the input–output behavior. Drug
concentrations in the blood are not necessarily required. Any clinical endpoint (output) used for
closed-loop control will be easier to measure, and provide a measurement at a higher frequency. For
identification of input–output models for control, data collected during clinical practice can poten-
tially be used, offering information on a higher number of subjects and target populations including
vulnerable patients. The trade-off is the limitation on the experimental conditions.

Examples of typical time series data of propofol infusion and DoH measurements collected dur-
ing clinical anesthesia are shown in Figure 5. The presence of unmeasurable disturbances from fore-
most surgical stimulation, combined with low signal-to-noise ratio during the maintenance phase of
anesthesia (further detailed in Section 3.6), results in induction phase data being the best option for
identification from representative clinical data.

Identifiability Analysis of identifiability for linear models is well established [Ljung, 1999] and
persistence of excitation can be evaluated for individual data sets. For nonlinear systems, evaluation
of data quality is less straightforward and excitation requirements depend on the model structure and
the nonlinearity. The traditional PKPD model structure includes linear dynamics followed by a static
nonlinearity, constituting a Wiener model.

Local identifiability of a nonlinear PKPD model, with realistic (step reference) excitation has been
investigated through sensitivity analysis [da Silva et al., 2014]. A two-input one-output model was
considered, where the inputs were propofol and remifentanil infusion and the output the measured
DoH. A response surface model following the structure proposed by [Minto et al., 2000] introduces
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Figure 6 Model output error L2-norm as a function of varying the delay 𝐿 and Hill function (12)
parameter of the PD. Notice the flat valley in which the minimum lies (along the thick black line). A
version of the figure has previously been published in [Soltesz, 2013].

the nonlinearity. Not surprisingly, this analysis indicated that this two-drug model may not be identi-
fiable from clinical data [da Silva et al., 2014]. Identifiability of two compartmental PK models (one
for each drug) and linear PD dynamics may not be guaranteed from clinical data either. When multi-
ple clinical effects are measured for the same drug, with different PD characteristics, identifiability of
PKPD parameters has been shown to improve [Kim et al., 2015]. This method has not been applied to
intravenous anesthesia and identifiability results may not extend to clinical practice where excitation
is limited.

When considering a PD structure with an effect-model including a time delay 𝐿 (introduced below
in Section 3.3), distinguishing the effect of the Hill function 𝛾-parameter (12) from the delay is often
not possible. Figure 6 shows how the L2 (RMS) output error of an identified PD model changes
when varying the delay 𝐿 and the Hill parameter 𝛾. The surface was generated using representative
induction profile data from the study underlying [van Heusden et al., 2013]. The flat valley visible
in the contour plot indicates a lack of simultanous identifiability. Consequently, the approach in [van
Heusden et al., 2013] was to favor over-estimation of 𝐿, to facilitate closed-loop robustness.

In addition to limited excitation, identification from clinical data is challenging due to unmea-
sured disturbances. In volunteer studies, the clinical environment is generally well controlled. The
study protocol can include multiple drug infusion or reference changes, and nociceptive stimulation
can be controlled, for example to standardized disturbances such as airway manipulation or tetanic
stimulation. The timing of disturbances is therefore known, and the level is standardized. In con-
trast, in clinical practice, nociceptive stimulation as a result of the procedure is unpredictable and
varying in intensity. Some procedures, such as airway manipulation and incision, have inspired the
establishment of standardized disturbance profiles, presented in Section 3.6. However, in the clinical
environment stimulation is not limited to these procedures.

Figure 7 shows examples of the effect of surgical stimulation during anesthesia. The propofol
effect-site concentration 𝐶𝑒 (filtered propofol infusion profile) indicates the average drug infusion. In
example A, the DoH shows a response to airway manipulation, reflected in the increased DoH, lasting
for ≈ 1 minute. The corresponding rise in heart rate indicates this was associated with a nociceptive
response. The closed-loop propofol control system increased the propofol infusion accordingly, as
reflected in the consequent increase in propofol 𝐶𝑒. During maintenance of anesthesia in the case
shown in example B, some patient movement was reported. These responses to stimulation are re-
flected in the DoH variability and rapid DoH increases. During this period, the blood pressure was
elevated. The disturbance observed in example C is of a different nature and corresponds to sustained
stimulation. As a result of small changes in the DoH, the closed-loop controlled propofol infusion
increases, doubling the predicted 𝐶𝑒 during about 15 minutes. The blood pressure shows an increase
during this same period, indicating a nociceptive response. Both the propofol 𝐶𝑒 and blood pressure
decrease with a presumed consequent decrease of the level of stimulation.

Disturbances due to stimulation are not zero mean, and will introduce identification bias when
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Figure 7 DoH measured with NeuroSense monitor (top, solid) and associated set-point (top, dashed);
predicted propofol effect site concentration, 𝐶𝑒, (middle); mean arterial blood pressure measured with
cuff (bottom, black) and heart rate (bottom, gray). The three columns, each from individual surgeries,
represent: representative intubation disturbance during induction of anesthesia (left); distinct mainte-
nance phase disturbances due to surgical stimulation (middle); slow maintenance phase disturbance
(right). Data from closed-loop controlled study [West et al., 2018].

not taken into account. Identification of a disturbance model has consequently been proposed in
[Derighetti et al., 1997], as well as multi-input single-output (MISO) and multi-input multi-output
(MIMO) modeling that takes both drug administration and disturbances into account [Yelneedi et al.,
2009; Lin et al., 2004; van Heusden et al., 2018c; van Heusden et al., 2017].

Data collected during closed-loop anesthesia may provide valuable information for continuing
controller design, optimization and modeling for safety and verification purposes. While closed-
loop identification can improve performance of model-based designs [Hjalmarsson et al., 1996], the
closed-loop nature of the experiment needs to be taken into account in the identification stage. When
the system input is updated based on feedback from noisy measurement, the noise in the input and
output signals is correlated and standard identification methods may no longer provide unbiased es-
timates. Relatedly, it has been shown that when identifying the effect of propofol anesthesia on the
DoH with a reduced-order model with fixed PK pre-filter, the signal-to-noise ratio is small and bias
introduced by open-loop identification methods is limited [van Heusden et al., 2018c; van Heusden
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et al., 2017].

3.3 Models for closed-loop anesthesia
Closed-loop anesthesia has developed into a research field of its own, involving a variation of con-
stellations of control systems engineers and anesthesiologists. As a consequence, several models for
control have been proposed. Below, a few snapshot of such models are provided, ranging from direct
adaptation of pre-existing pharmacological PKPD models, to the introduction of new model struc-
tures, to enable online identifiability in the clinical context. The purpose here is to highlight different
paradigms of modeling and identification, rather than to present an exhaustive list of published mod-
els for control.

Models from clinical pharmacology Models used in clinical pharmacology, introduced in Sec-
tion 2, have been used for controller design and evaluation. As an example, the Schnider model for
propofol [Schnider et al., 1998] and the Minto model for remifentanil [Minto et al., 1997] have been
combined with an interaction model to evaluate a MISO predictive control system [Ionescu et al.,
2011a]. Population average models were used, while variability was introduced by considering a
population of 24 patients with randomly generated demographics. This introduces some variability
in the dynamics of the PK model. However, the PD model was fixed for all patients, largely deter-
mining the lag and gain of all patient models.

In a simulation comparing four control strategies [Yelneedi et al., 2009], a large set of models
was derived from the Marsh model [Marsh et al., 1991]. The Marsh model was combined with a PD
model consisting of a first-order lag and Hill equation. The nominal PK parameters correspond to a
34 year old patient weighing 66 kg, and nominal PD parameters were derived from [Schnider et al.,
1999] and [Sartori et al., 2006] (𝑘𝑒0 = 0.349 min−1, 𝐶𝑒,50 = 2.65 𝜇g/mL, 𝛾 = 2.561; see Section 2
for details).

A variation of 25 % was assumed on the PK parameters, and a range was defined for the PD
parameters based on published PKPD studies. In a first step, minimal, average and maximal values
were defined for all PK parameters within the 25 % variation. Closed-loop simulations with an MPC
controller over 38 = 6561 models showed little effect on closed-loop performance as a result of
varying volumes. In the next step, the three volume parameters were kept constant and simulations
for the remaining 35 = 243 models showed a small range in the achieved controller performance.
Six models were selected that spanned the observed range of controller performance. PD parameters
were varied at three levels for these 6 PK models resulting in 6 ⋅ 33 = 162 models. Closed-loop
simulations with an MPC controller were performed and 17 of the 162 models were selected to
cover the observed range of achieved controller performance. Model parameters for these 17 models
were published [Yelneedi et al., 2009] and have subsequently been used in other studies, for example
[Ionescu et al., 2011c].

Models from clinical pharmacology with identified nonlinearity Struys et al. [Struys et al., 2004]
published a set of 10 virtual patients derived from the Schnider model [Schnider et al., 1998] for
propofol anesthesia, used in a virtual patient simulation that allows for hardware-in-the-loop testing.
The simulator included a delay to mimic the BIS delay, zero mean random noise with standard de-
viation of 3 BIS units and a disturbance profile that offset the BIS. The 10 virtual patient models
consisted of the population average Schnider PK model, a fixed 𝑘𝑒0 and Hill curve parameter, 𝛾, (see
Section 2.3), identified from clinical data collected during induction of anesthesia. These parameters
were identified with a “Hill curve estimator” that was part of a closed-loop controller, evaluated for
20 female patients (18–60 years old, ASA1 I and II) [Struys et al., 2001].

A similar strategy was adopted in [Nascu et al., 2012], disclosing a set of 12 models that combine
population average PKPD dynamics with randomly generated demographics and Hill curve charac-
teristics. Variability in the Hill curve characteristics was based on clinical insight, with no further
details given. Population average PKPD dynamics were combined with Hill parameters identified
from clinical data collected during induction of anesthesia by [Torrico et al., 2007]. Details on the
patient population are not given.

In [Torrico et al., 2007], 𝐸max was estimated from data in addition to 𝐶𝑒,50, 𝐸0 and 𝛾. The parame-
terization assumes that ‘𝐸0 denotes the baseline [...] and 𝐸0−−𝐸max denotes the minimum achievable

1 ASA is a physical status classification score, ranging I-VI, and provided by the American society of anesthesiologists
through www.asahq.org (accessed May 4, 2019).
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BIS”. Below, reported values have been scaled to conform with the definitions used throughout the
chapter, and defined through (12).

Five of the identified models have 𝐸max < 0, and for three of these 𝐸max < −50. For two of the
models, 𝐶𝑒,50 exceeds 12 𝜇g/ml. The 𝐸max values are not realistic as the DoH measurement is limited
between 100–0. It was therefore noted that the validity region of these models is limited to the BIS
range 40 − 100, and that for values below 40 the models do not provide a good approximation or
physical interpretation.

No model validation was presented for these nonlinear models identified from clinical data. The
physiologically unrealistic parameters indicate that there may have been an identifiability issue due to
limited excitation or a model-plant mismatch. Evaluation of the modeling error could clarify whether
the model structure can adequately predict the measurements, or whether unrealistic values are iden-
tified to compensate for this mismatch. Such model validation has important consequences for con-
troller design. It is important to know how realistic the variability in the model set is and for which
population it can be used. Furthermore, the dynamics of these models are based on population aver-
ages and all inter-patient variability is described by the nonlinearity. Since they are identified from
induction data, accurate prediction of the response to the same induction profile as observed during
identification can be expected. However, the model response near a setpoint of ≈ 50 relies on the
population PKPD model, with all variability captured by the gain of the identified nonlinearity. Con-
troller design relying on linearizations of this model may not perform as expected in practice. This
model set is therefore not optimal for (linear) robust controller design methods. PID design using
nonlinear simulations and optimization using genetic algorithms has been proposed using this model
set [Padula et al., 2017].

Population average PK with identified PD model Pharmacokinetic studies that require collection
of multiple blood samples are challenging, particularly so in children. Consequently, it can be prac-
tically infeasible to obtain more than a limited number of samples for each individual [Rigby-Jones
and Sneyd, 2012]. Several studies of pharmacodynamics in children have therefore used predicted
plasma concentrations, for example [Rigouzzo et al., 2010; Jeleazcov et al., 2008], solving the ethical
and practical issues related to blood sampling, and reducing cost by omitting drug assays [Rigby-
Jones and Sneyd, 2012]. This approach does not provide physiologically meaningful PD parameters.
However, accurate PK predictions are not required or indicative of the PD model fit [Coppens et
al., 2011]. In clinical pharmacology, accurate predictions of plasma concentrations and parameters
with physiological interpretation may be important. However, when modeling input–output behav-
ior for controller design purposes the physiological interpretation of model parameters and even its
parametrization are irrelevant, as long as the structure accommodates for the observed behavior and
does not do so as a consequence of over-fitting to data.

The approach to drive a previously published population average PK model with the identification
data infusion profile, 𝑢 and subsequently identifying the remaining dynamics between the simulated
plasma concentration, 𝐶𝑒 and the measured clinical effect 𝐸 of the identification data, was utilized in
[Bibian et al., 2006a] to identify patient models for closed-loop controller design. It was suggested
that (8) possibly under-models the true effect-site dynamics, and argued that the effect dynamics could
possibly be of higher order. However, available 𝑢 – 𝐶𝑝 profiles were not of sufficient excitation to
permit identification of higher order models. As a consequence, the addition of a delay was proposed
to model the combined phase loss caused by higher order dynamics:

𝐺𝐶𝑝,𝐶𝑒
(𝑠) = 𝑘𝑒0

𝑠 + 𝑘𝑒0
𝑒−𝑠𝐿. (17)

The delay captures the phase-lag of the omitted higher-order dynamics. It is a common means of
implicit model-order reduction, utilized in several branches of control engineering [Skogestad, 2003],
and motivated by the fundamental limitations of performance imposed by a delay in the loop-transfer
[Åström and Murray, 2008].

Models including a population average PK model, an effect site model (17), and a nonlinear Hill
function (12) were identified in a two-step approach. In the first step the linear model was identi-
fied. In the second step the coefficients of the Hill function were identified to improve the model fit.
A comparison between identification error residuals between (8) and (17) indicated that residuals
obtained with (17) were significantly smaller and their distribution whiter.

In contrast to the use of PKPD models with identified (personalized) nonlinearity, in this ap-
proach the response observed during induction of anesthesia is largely captured by the linear model.
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Figure 8 Comparison of predicted closed-loop response for set of 28 models (black) and 71 clinical
closed-loop responses under the same controller. Top: DoH, bottom: propofol infusion. The controller
was designed using this set of 28 models (gray). The comparison indicates that the performance of the
design (overshoot, time to induction of anesthesia) adequately predicted performance during consequent
clinical trials, the variability in the model set is realistic and the model set is control-relevant. Dashed
line indicates the DoH set-point. The axis of the lower figure is cropped. The figure is generated with
data previously published in [van Heusden et al., 2014].

Extrapolation of these results to drastically different induction profiles and experimental conditions
is not guaranteed to yield meaningful results. However, as these models emphasize variability in the
linear dynamics, they are suitable for linear controller design given the experimental conditions and
closed-loop bandwidth remain similar.

When closed-loop data is available, identified linear models can improve performance of model-
based designs [Hjalmarsson et al., 1996]. Models identified using this two-step approach are therefore
suitable for many well-known methods for robust controller design and robustness analysis.

The described methodology, involving time-delayed effect dynamics (17), have been used in mul-
tiple subsequent studies aimed at modeling patient responses for controller design [van Heusden et al.,
2013; van Heusden et al., 2018b; van Heusden et al., 2018c]. The models presented in [Bibian et al.,
2006a] did not identify 𝐸0 and may underestimate the apparent time delay. 𝐸0 was identified in con-
sequent studies using this approach. Several controller designs based on models identified using this
methodology have been evaluated in clinical studies [van Heusden et al., 2014; van Heusden et al.,
2018b; van Heusden et al., 2019]. An LTI controller was designed [van Heusden et al., 2014] based
on 28 models described by [van Heusden et al., 2013], and the predicted closed-loop response in the
design phase was compared to the responses observed in new cases during clinical evaluation, with
the outcome shown in Figure 8 and further explained in [van Heusden et al., 2014]. The variability
and overshoot of the predicted response were comparable to the measured responses [van Heusden
et al., 2014], further validating the model set and modeling approach. These models also adequately
predicted closed-loop responses of optimized PID control in children aged 5-10 years [van Heusden
et al., 2019].

First-order models The use of a simple first-order model structure (without delay) combined with
the Hill (12) nonlinearity was proposed to identify individual response models in [Hahn et al., 2012].
While PKPD models are not identifiable from clinical data, only three parameters need to be identified
for this reduced-order model:

𝐼𝑒(𝑠) = 𝑘𝑒
𝑠 + 𝑘𝑒

𝑈(𝑠), 𝐸 = 𝐸0 + (𝐸max − 𝐸0) 𝐼𝛾
𝑒

𝐼𝛾
50 + 𝐼𝛾

𝑒
, (18)

where 𝑈(𝑠) represents the propofol infusion, 𝐼𝑒 is the input to the nonlinear Hill equation and the
parameters 𝑘𝑒, 𝐼50 and 𝛾 remain to be identified. (Parameters 𝐸0 and 𝐸max of (18) were not used in
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[Hahn et al., 2012], but have been added here to make scaling consistent throughout the chapter.)
The predictive accuracy of this model structure was compared to the accuracy achieved by a

PKPD structure, for propofol anesthesia in children. Data collected during induction of anesthesia
of 34 children age 6-15 years included propofol infusion rates and state entropy as measured by
the M-entropy monitor (GE Healthcare, Finland). The parameters of the reduced-order model were
identified using mixed-effects modeling (see Section 2.6). In the PKPD models, the PK was fixed
(Paedfusor [Absalom and Kenny, 2005]) and the PD parameters were identified using mixed effects
modeling. The reduced-order model achieved a lower mean square error than the PKPD structure.

While the reduced-order model structure achieved a better fit with the data, it was noted that
physiologic relevance of the reduced-order models may be limited [Hahn et al., 2012]. Particularly,
there is a large steady-state gain discrepancy between the structures. The infusion rates associated
with stationarity at 50 % of the maximally achievable clinical effect were 110 𝜇g/kg/min for the
traditional PK model, compared to 421 𝜇g/kg/min for the first-order model.

A first-order plus time delay (FOTD) model was considered specifically for closed-loop con-
troller design in [van Heusden et al., 2013]. Data was available from both open-loop and closed-loop
controlled induction of anesthesia in children. The clinical effect was measured by the NeuroSense
monitor. For each patient, two models were identified using the two-step approach described in Sec-
tion 3.3, utilizing a PK model with fixed population average parameters combined with an identified
FOTD model and Hill nonlinearity, capturing the combination of PD dynamics and PK mismatch.
The linear dynamics were identified in the first step. In the second step, parameters of the nonlinear
Hill function were identified to improve the fit. In this study, the FOTD models also achieved a better
fit than the models with PKPD structure. In addition to model validation based on residuals, the mod-
els were validated for the purpose of controller design [van Heusden et al., 2013]; the closed-loop
response of each model was compared to measured closed-loop responses under the same controller.
Both the published FOTD and PKPD model sets capture the observed inter-patient variability and
realistically predict the response to induction of anesthesia. Bode diagrams of both model sets, shown
in Figure 9, indicate that the response around the closed-loop bandwidth is similar in both model sets.
As expected due to the order of the models, the high-frequency roll-off of the PKPD models is larger.
The steady-state gain of the FOTD models is lower than that of the PKPD models, a property shared
with the low-order models identified in [Hahn et al., 2012]. Such low-order models are therefore not
appropriate for feed-forward control (TCI). However, as shown in [van Heusden et al., 2013], both
the FOTD and PKPD model sets are appropriate for closed-loop controller design, where an accurate
estimate of low-frequency gain is not required.

The PKPD models presented in [van Heusden et al., 2013] were subsequently used for controller
design [van Heusden et al., 2014]. While both the FOTD and PKPD model sets were validated for
controller design, the PKPD model set was used for two reasons: 1) due to the more realistic steady-
state gain, simulated infusion rates will be more realistic; 2) in the PKPD model predicted plasma
concentrations are available, providing information that can easily be interpreted by clinicians.

Application-specific reduced-order model structures To reduce the number of parameters to be
identified compared to traditional PKPD models, a model structure developed specifically for mod-
eling of anesthetic drugs was proposed in [da Silva et al., 2012]. With the notation introduced in
Section 2, it is represented by

𝐶𝑒(𝑠) = 𝑘1𝑘2𝑘3𝛼3

(𝑠 + 𝑘1𝛼)(𝑠 + 𝑘3𝛼)(𝑠 + 𝑘3𝛼)𝑈(𝑠), 𝐸 = 𝐸0 + (𝐸max − 𝐸0) 𝑣(𝑡)𝛾

1 + 𝑣(𝑡)𝛾 , (19)

where 𝑣(𝑡) = 𝐶𝑒(𝑡)/𝐶𝑒,50 is the normalized effect-cite concentration. The notation 𝐶𝑒 has been used
in (19) above, although no claim is made in [da Silva et al., 2012] that this entity accurately described
the effect-site concentration. Rather it is referred to simply as the output of the linear portion of a
Wiener model. (Parameters 𝐸0 and 𝐸max of (19) were not used in [da Silva et al., 2012], but have
been added here to make scaling consistent throughout the chapter.)

The parameters 𝑘1, 𝑘2 and 𝑘3, determining the ratio between the poles (located in −𝑘𝑖𝛼) are pre-
defined, based on prior knowledge from pharmacology of the drug at hand. The remaining parameters
𝛼, 𝛾 and 𝐶𝑒,50 need to be identified. The structure (19) represents higher order dynamics, while
limiting the number of parameters to be identified to the same low number as for the first-order
model proposed in [Hahn et al., 2012].
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Figure 9 Bode plots of identified full PKPKD (gray) and low-order FOTD (black) models. The shaded
area indicates a realistic angular frequency range for closed-loop bandwidth, based on [van Heusden et
al., 2018a]. While the model sets are similar within this range, their steady-state gain differ. The models,
and underlying identification procedures have been disclosed in [van Heusden et al., 2013].

In a previous simulation study, it was concluded that the parameter 𝐶𝑒,50 had limited effect on
the identification result and 𝐶𝑒,50 was consequently assumed constant in [da Silva et al., 2012]. The
two remaining parameters were identified using recursive identification of the nonlinear model with
an extended Kalman filter, following a linearization step. In an example with clinical data, both 𝛼
and 𝛾 achieved a relatively stable value after induction of anesthesia. Model validation was limited
to evaluation of the residuals.

A similar MISO model structure was proposed to describe the effect of propofol and remifentanil
on the depth of hypnosis in [da Silva et al., 2010]. It comprised two linear components with structure
(19), respectively generating the inputs 𝐶𝑝

𝑒 (𝑝 for propofol) and 𝐶𝑟
𝑒 (𝑟 for remifentanil) to the nonlinear

function
𝐸 = 𝐸0 + (𝐸max − 𝐸0) 1

1 + (𝐶𝑟
𝑒(𝑡) + 𝑚𝐶𝑝

𝑒 (𝑡))𝛾 , (20)

Both 𝐶𝑝
𝑒,50 and 𝐶𝑟

𝑒,50 were fixed. Two linear components of the structure (19) were used; one
for each drug. Their parameters, 𝛼𝑝 and 𝛼𝑟, were estimated alongside 𝑚 and 𝛾, using an extended
Kalman filter.

Online identification of these parameters during induction and maintenance of anesthesia did not
show convergence of the parameters [da Silva et al., 2010]. For example, 𝛼 changed by over 50 % dur-
ing the example case. This may have been due to unmeasured disturbances, which online algorithms
are generally vulnerable toward, as described in Section 3.2. The achieved model fit was adequate,
but the large change in parameters over the course of induction suggest the need of additional safety
measures prior to possible clinical introduction of the method.

Online identification and adaptive methods The modeling strategy discussed in Section 3.3 has
been implemented online as part of a closed-loop controlled system [Struys et al., 2001]. In this sys-
tem, drug infusion was updated using TCI. Induction of anesthesia was performed using a predefined
infusion profile. During maintenance of anesthesia, the setpoint of the TCI was adjusted based on the
measured DoH, resulting in a cascaded controller structure. The desired setpoint was calculated using
the inverse of the Hill curve (see Figure 10), and an online Hill-curve estimator updated this relation
in real time. Derivative action was included in the controller to reduce overshoot. Disturbances due
to surgical stimulation were not taken into account and no model validation step was included.
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Online identification of a propofol effect model has been proposed using Kalman filtering for use
in an advisory system (prediction) [Sartori et al., 2006]. The goal of online identification was to im-
prove the predictions. The PK model was fixed, and in addition to the states of the PK and PD model,
the individual 𝐶𝑒,50 and 𝑘𝑒0 were estimated. For 40 cases used for testing, the estimation converged.
Prediction performance was significantly increased compared to predictions of a population average
model.

Model-predictive control based on a PKPD model with individualized PD parameter estimates
has been evaluated in a clinical trial including 80 closed-loop controlled cases [Sawaguchi et al.,
2008]. A time delay 𝐿 was included in the PD model, and 𝐸0, 𝐿, 𝐶𝑒,50 and 𝛾 were identified using
data from induction of anesthesia, with 𝐸max = 𝐸0. The estimation was based on simplified relations
derived using trial and error in a preliminary data set. After the online parameter estimation the
controller parameters were updated and closed-loop control was initiated. Default values, as well as
upper and lower bounds, for the estimates were defined for safety purposes. It was noted that the
parameter estimation generally performs well, but needs to be robust to device failure and abnormal
measurements. In cases where a response to stimulation following the initial propofol bolus resulted
in a measured DoH > 𝐸0 − 30, default values were used for control.

Identification of the dynamic PD parameters according to the model structure described in Sec-
tion 3.3 following the completion of closed-loop induction of anesthesia was proposed in [Soltesz
et al., 2013]. The nonlinearity parameter 𝛾 of (12) was identified in a first step; the time delay 𝐿, lag
𝑘𝑒0 and gain 𝐶𝑒,50 were identified in a second step. The controller was then individualized for main-
tenance of anesthesia using constrained optimization. Compared to a population-based controller,
this approach improved the mean integral absolute error by 25 % during simulated maintenance of
anesthesia for 44 patient models. This study did not take measurement noise, artifacts or stimulation
into account [Soltesz et al., 2013]. All these aspect would need to be thoroughly considered, and the
method would need to be extended with a means of online model validation, in order to consider
clinical use.

The use of online model falsification was proposed to reduce conservatism of safety-preserving
control of anesthesia [Yousefi et al., 2018]. Model falsification was originally developed for model
validation for robust control [Poolla et al., 1994]. Given an a priori uncertain model description, the
validation problem was reformulated as a falsification problem; a model is invalidated if it is incon-
sistent with the data. It therefore inherently deals with missing data and limited excitation. If the data
contains insufficient information to distinguish between models, they cannot be invalidated. Falsifica-
tion of models describing the effect of propofol on blood pressure in the safety system was shown to
reduce the conservatism introduced by robust safety-preserving control. While this method inherently
deals with limited excitation, further developments are required to account for disturbances.

3.4 Patient variability
The population approach used in (clinical) PKPD modeling aims to identify the best population
average dynamics and covariates to reduce the prediction error due to inter-patient variability, see
Section 2.6. Identification for control on the other hand focuses on the design of robust controllers,
which requires quantification of the complete uncertainty [Gevers, 2005], including outlier behavior.
Methods that estimate an uncertainty set rather than a nominal model usually consider one (time-
invariant) plant, where the uncertainty is a results of under-modeling (a mismatch between the model
structure and the plant characteristics), limited excitation as a result of the experimental conditions,
noise effects and unmodeled nonlinearities [Gevers, 2005]. In control of anesthesia, this model-plant
mismatch may be relatively small compared to the variability introduced by inter-patient variability.
Modeling for control of anesthesia has therefore largely focused on quantification of this inter-patient
variability, and describe a set of virtual patients.

Published sets of virtual patients describing the DoH response to propofol infusion, as described
in Section 3.3, are summarized in Table 1.

These sets of virtual patients provide a multi-model uncertainty description. For certain robust
LTI design procedures, a nominal model and unstructured uncertainty description is required instead.
This nominal model and uncertainty description are not unique. The optimal nominal frequency
response at each frequency can be determined graphically [Bibian et al., 2006b]. This leads to a non-
parametric (or very high-order) model. This non-parametric model can be used for controller design
directly [Soltesz et al., 2016]. If a low-order description is required, optimization can be used to find
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Table 1 Summary of published sets of PKPD patient model sets, together with underlying identifiction
contexts, population characteristics, model set size and key model characteristics.

Context Population # Model characteristics

PKPD, clinical
[Yelneedi et al., 2009]

Adults 17 Population PKPD, nominal model (34 years,
66 kg), 25 % variability in PK parameters, range
of PD parameters

PKPD, identified
nonlinearity [Struys
et al., 2004]

Adults
(Female)

10 Population average nominal model with identified
Hill parameters

PKPD, identified
nonlinearity [Nascu
et al., 2012]

Adults 12 Population average nominal model with identified
Hill parameters (reported limited range of
validity)

PKPD, identified PD
[Bibian et al., 2006a]

Adults 44 Population average PK model with identified PD
model including time delay. For use in LTI
controller design

PKPD, identified PD
[van Heusden et al.,
2018c]

At risk
adult
patients

9 Population average PK, identified PD model with
time delay. This set describes the effect of
propofol on DoH and blood pressure.

FOTD and PKPD,
identified PD [van
Heusden et al., 2013]

Children
age 6-16

47 FOTD and PKPD set for the same population. For
use in LTI controller design.

a low-order nominal model with the desired structure [Dumont et al., 2009]. Since the optimal non-
parametric nominal model cannot completely be described by a low-order transfer function, this step
introduces conservatism. A two-step approach, using the optimal non-parametric model to identify a
low-order nominal model, allows for quantification of this conservatism [van Heusden et al., 2018a].

Limitations due to uncertainty The described inter-patient variability is the main motivation for
closed-loop anesthesia; reducing the variability in clinical effect through the use of feedback con-
trol. A well-designed feedback controller can eliminate variability at low frequencies and drastically
reduce variability within the closed-loop bandwidth.

While feedback control can reduce the effect of variability, uncertainty limits the achievable per-
formance [Goodwin et al., 2001]. If performance requirements are low, an accurate model is not
required. However, to achieve high performance, an accurate system description is required.

Performance requirements for closed-loop anesthesia are relatively low; current clinical practice
corresponds to manual control. Simple PID control can therefore achieve adequate performance,
despite the inter-patient uncertainty. In a comparison of PID control with higher-order model-based
control for a set of pediatric virtual patients, the performance improvement achieved by the additional
degrees of freedom was limited [van Heusden et al., 2018a], indicating that inter-patient variability
contributes more than controller structure to the limitation of achievable closed-loop performance.
To improve performance, strategies that reduce the uncertainty need to be implemented.

Reducing variability Population-based PKPD modeling used in clinical pharmacology identifies
covariates to reduce uncertainty. It is therefore well known that, while patient demographics cannot
explain all of the observed variability, PK and PD characteristics do depend on patient age, gender,
weight etc. Dividing the virtual adult patient set in age groups reduced the uncertainty [Bibian et al.,
2006b]. Allometric weight-based controller scaling improved controller performance for children
aged 5-10 years [van Heusden et al., 2019].

Physiologically based PKPD modeling may better account for variability related to patient demo-
graphics. The resulting model complexity is higher than that of compartmental PKPD models, and
more parameters need to be determined from data. However, these parameters do not all need to be
identified at the same time and from the same data source. As the parameters describe physiologi-
cal processes of drug absorption, distribution, metabolism and elimination, some can be identified
independently, and aggregated data from multiple studies can be used [Abbiati et al., 2018]. More
detailed descriptions of the physiological processes and anatomical features may better reflect the
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Figure 10 Block diagram showing an exactly linearizing closed-loop controller. A version of the figure
has previously been published in [Soltesz, 2013].

effect of demographics on the PKPD response.

3.5 Addressing the PD nonlinearity
The PD model structure introduced in Section 2.3 contains a nonlinear component, the Hill function
(12), prohibiting direct application of controller synthesis methods for LTI systemsSince the Hill
function is monotone in the normalized effect-site concentration, 𝑣, it has a uniquely defined inverse

𝑣( ̄𝐸; 𝛾) = (
̄𝐸

1 − ̄𝐸
)

1/𝛾

, (21)

where the effect ̄𝐸 is normalized to the inteing arval 0 − 1. It will be used throughout this section to
facilitate readability, and it can readily be achieved by applying the simple affine scaling (11) to 𝐸.

It has been suggested in [da Silva et al., 2012] and [Ionescu et al., 2008] that (21) could be imple-
mented in the controller as illustrated by the block diagram of Figure 10. Here 𝛾 is the nonlinearity
parameter of the patient, while 𝛾̂ is the parameter assumed by the controller. The strategy is termed
exact linearization, as it completely cancels the nonlinearity (12) when 𝛾̂ = 𝛾. The exactly linearizing
controller aims to control the estimated normalized drug concentration ̂𝑣(𝑦; 𝛾̂), which is straightfor-
ward, using a linear controller. Assuming that the measured and actual clinical effect are identical,
i.e. 𝑦 = 𝐸, the error in the controlled variable ̂𝑣 becomes

̃𝑣 = 𝑣 − ̂𝑣 = 𝑣 − 𝑣𝛾/𝛾̂.

As further discussed in Section 3.2, clinical data is generally not sufficiently descriptive to uniquely
identify 𝛾. Consequently, exact linearization can be problematic close to the saturations 𝑣 = 0 and
𝑣 → ∞ of (12), where sensitivity toward the model error 𝛾̃ = 𝛾 − 𝛾̂ is high.

Another approach, utilized by a majority of proposed and evaluated closed-loop controlled anes-
thesia delivery systems, is a local linearization of (12) around point (𝑣𝑤, ̄𝐸𝑤):

̄𝐸(𝑣) ≈ ̄𝐸𝑤 + 𝜕 ̄𝐸(𝑣; 𝛾)
𝜕𝑣 ∣

𝑣 = 𝑣𝑤

Δ𝑉,

̄𝐸𝑤 = ̄𝐸(𝑣𝑤; 𝛾) = 1 − 1
1 + 𝑣𝛾

𝑤
, (22)

𝜕 ̄𝐸(𝑣; 𝛾)
𝜕𝑣 ∣

𝑣 = 𝑣𝑤

= 𝛾𝑣𝛾−1
𝑤

(1 + 𝑣𝛾
𝑤)2 ,

Δ𝑣 = 𝑣 − 𝑣𝑤.

Local linearization is performed around an equilibrium, defined by some clinical effect ̄𝐸𝑤, cho-
sen to lie close to the desired clinical effect, for example, ̄𝐸𝑤 = 1/2. The local and global linearization
approaches coincide at ̄𝐸 = ̄𝐸𝑤.

If the drug dosing control scheme implements integral action, it is feasible to locally model the
nonlinearity as the gain 𝜕 ̄𝐸/𝜕𝑣. The bias term ̄𝐸𝑤 of (22) is successfully compensated for by high low-
frequency controller gain (introduced through for example an integrator). Particularly, the equilibrium
point (𝑣𝑤 = 1, ̄𝐸𝑤 = 1/2) yields the gain

𝜕 ̄𝐸
𝜕𝑣 ∣

𝑣 = 1
= 𝛾

4 . (23)
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3.6 Equipment and disturbance models

When 𝑣 > 1 it holds that
𝛾
4 > 𝛾𝑣𝛾−1

𝑤
(1 + 𝑣𝛾

𝑤)2 , ∀𝛾 > 0.

Hence (23) under-estimates the process gain when 𝑣 > 1. In the region 0 ≤ 𝑣𝑤 ≤ 1, which is traversed
during induction of anesthesia, the gain is initially zero at 𝐸𝑤 = 0, whereupon it increases to reach
its maximal value at

𝑣𝑤 = (𝛾 − 1
𝛾 + 1)

1/𝛾
.

Assuming ̄𝐸𝑤 = 1/2, local linearization limits the sensitivity to errors in 𝛾̂ close to the saturations
̄𝐸 = 0 and ̄𝐸 = 1, as compared to its global counterpart. However, neither of the two strategies

are particularly reliable close to the saturation, which needs to be kept in mind when synthesizing
controllers for induction of anesthesia. One way to partially address the issue is to perform several
local linearizations and implement a gain scheduled controller. This has been proposed in [Lin et al.,
2004], where one model is used for the range ̄𝐸 ≤ 0.3 and another one for ̄𝐸 > 0.3.

A third approach to handle (12) has been proposed in [Pawlowski et al., 2018], where a Smith-
predictor-like [Smith, 1959] structure was introduced. This approach can be expected to have the
same benefits and drawbacks that come with Smith predictors in general [Grimholt and Skogestad,
2019].

3.6 Equipment and disturbance models
All clinical monitors which perform some form of signal processing (i.e., virtually all) introduce
phase lag. Phase lag – particularly caused by delay – is detrimental to closed-loop control perfor-
mance and robustness. Consequently, a dynamic model of the clinical monitor is needed for controller
synthesis, to guarantee properties of the resulting closed-loop system.

Measurement of neuromuscular blockage is most commonly performed through quantization of
an evoked response, referred to as the train-of-four (ToF) ratio [Lee, 1975]. Apart form a known
phase lag, ToF measurement is not associated with any response dynamics, which need attention in
the closed-loop control context.

As opposed to neuromuscular blockage, there exists no analgesia monitor, which has enjoyed wide
clinical acceptance. Due to the lack of baseline measurements (there exists no reliable gold standard),
it has not been possible to identify reliable dynamic models for the commercially available units.

For hypnosis, there exist several commercially available clinical monitors. The Bispectral index
is the most widely known and employed one. Others include the previously mentioned M-Entropy
and NeuroSense monitors.

Most clinical EEG monitors utilize proprietary filtering, yielding a time-varying delay in their
response dynamics. For instance, identified delays ranging 14–155 s have been reported for the BIS
monitor [Pilge et al., 2006]. This can have severe implications on the robustness, or even stability,
of a closed-loop system. One approach to mitigate the effect (provided that the delay is unknown
as a consequence of a proprietary filtering algorithm), is to identify the delay online [Ionescu et al.,
2011b].

Unlike the BIS and similar monitors, the NeuroSense was engineered with closed-loop control in
mind. It has linear and time-invariant (LTI) response dynamics, relating measured effect, 𝑦 to actual
effect 𝐸:

𝐺𝑦,𝐸(𝑠) = 𝑀(𝑠) = 1
(8𝑠 + 1)2 ,

where the time constant is given in seconds.
Despite the mentioned filtering, there remains noise in the measured clinical effect. It can be

modeled as an additive disturbance, 𝑛, entering the system at the same point as surgical disturbances,
as illustrated in Figure 11. For the NeuroSense monitor, spectral analysis has revealed that 𝑛 is essen-
tially a band-limited white signal, where the band limit is imposted by the 1 Hz sampling frequency
of the monitor [Soltesz, 2013]. Admissible closed-loop bandwidth is limited by the PKPD of propofol
to a an order of magnitude less than the noise bandwidth, allowing for additional low-pass filtering
in the feedback controller.

Modern infusion pumps typically have a linear dynamic response within the bandwidth of rel-
evance to closed-loop controlled anesthesia (up to 1 Hz). Quantization is generally not a concern,
and its effect can be mitigated by using a more diluted drug solution. There is typically a small delay
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infusion
pump patient + EEG

monitor
𝑢

𝑑 + 𝑛

𝐸 𝑦

Figure 11 Block diagram illustrating the path through which surgical stimulation, 𝑑, and measurement
noise, 𝑛, affects the measured clinical effect, 𝑦.
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Figure 12 Additive output disturbance profiles, modeling the effect of surgical stimulation on hypnotic
depth. Definitions of the profiles (top to bottom) were originally published in [Struys et al., 2004],
[Dumont et al., 2009] and [Soltesz, 2013].

(tens of ms) between remotely issuing an infusion command, and a pump responding. Most pumps,
which allow remote control, also have a maximal control signal update frequency (tens of Hz). Con-
sequently, it is generally sufficient to model the actuator as a series connection of a (short) delay and
a zero-order-hold circuit. The latter could alternatively be considered as part of the controller model.

Feedback controllers in anesthesia are foremost addressing the regulator (disturbance attenua-
tion) problem. The most notable disturbances are those caused by surgical and other nociceptive
stimulation, and acting on the awareness level. They enter the system at the patient input.

For example, events such as intubation or incision during the induction phase of anesthesia typi-
cally decrease the effect of hypnotic drugs. The same holds true for surgical stimulation throughout
the maintenance phase. It is typically not possible to measure (or predict) such disturbances, and
consequently not possible to counteract them pro-actively using feed-forward control. A feedback
controller for the hypnotic component of anesthesia must therefore attenuate these disturbances suffi-
ciently to avoid adverse effects, such as sudden hemodynamic changes or awareness.

A first step in ensuring sufficient disturbance attenuation, is to know the characteristics of the
expected disturbances. To this end, a few disturbance models have been proposed in the literature
[Struys et al., 2004; Dumont et al., 2009; Soltesz, 2013]. They are largely similar in that they all
assume an additive disturbance, acting on the clinical effect, as illustrated in Figure 11. Furthermore,
they all model the disturbance resulting from stimulation as steps or similar slowly changing signals,
illustrated in Figure 12. Clinical data sets with representative such disturbances are shown in Figure 7.
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