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Abstract—Recent advances in autonomous vehicles present
new opportunities in Intelligent transportation systems (ITS)
to address urban transport challenges. Therefore, urban traffic
scenarios, and in particular intersections as a bottleneck of
transportation network, has received significant attention. In
this paper we investigate intelligent traffic control mechanisms
for autonomous vehicles at intersections as a replacement of
traditional intersection control. An edge cloud controller is used
to deliver services that provide traffic safety and efficiency to
vehicles. Two well-cited optimization algorithms for cooperative
vehicles are compared with realistic simulations in SUMO. We
investigated the safety and possibility of implementing the pro-
posed algorithms in the real world. This side by side comparison
helps to gain insight into the strengths and limitations of these
types of algorithms.

I. INTRODUCTION

Intelligent Transportation Systems and in particular au-
tonomous vehicles (AVs) will likely have significant effect
on future traffic management systems. As automated vehicles
become more common, the traffic control strategies, for ex-
ample intersection management (IM), have to be improved
in order to increase the driving safety. Road intersections are
currently managed by using traffic lights, which often result
in many vehicles unnecessarily braking and can significantly
increase travel times. By leveraging the capacities of AVs, it is
possible to remove traditional intersection managers and rely
on coordination among the involved vehicles at an intersection.

In cooperative intersection control, there is usually an
intersection control unit that can exchange information with
the vehicles. In this paper, we assume that all vehicles
crossing the intersection can be manipulated by the control
unit through two-way communication. Cooperative intersec-
tion control could, besides providing safe crossings for the
vehicles, optimize overall costs such as travel times, traffic
throughput and fuel consumption.
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the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. Also, the authors
are part of the Nordic University Hub on Industrial IoT (HI2OT) funded
by NordForsk.

The idea of Autonomous Intersection Management (AIM)
was first proposed by Drenser and Stone [1]. They designed
a central decision maker, which manages time-space reser-
vations in the intersection to avoid collisions. After that, a
number of papers has been published on methods to design
the best intersection management system as well as several
metrics to evaluate such systems. For example, a vehicle
scheduling problem was proposed in [2]. In their algorithm,
vehicle agents are allowed to determine control actions among
a set of controlled inputs. Another example is [3], where
the authors proposed a decomposition scheme that gives an
approximation solution to an optimal control problem. Fur-
ther, a convex modelling for optimal control of autonomous
vehicles at intersections was provided in [4]. Their proposed
method includes problem transformation from time to space
domain. Also, in [5], a communication strategy was proposed
that minimized the use of communication resources for the
intersection management.

In Kamal et al. [6] a Model Predictive Control (MPC)
problem is formulated that generates feasible trajectories for
autonomous vehicles. Their control algorithm optimises the
control inputs of the vehicles in a given time horizon to
minimise the risk of cross-collisions. They assume a constant
number of vehicles approaching to the intersection and input
traffic into all the sections is set at equal rate.

In Zohdy et al. [7], a system for intersection control is devel-
oped that optimizes vehicle trajectories within an intersection
zone. In their strategy, vehicles pass the critical area with a
time difference to avoid collision. They assume that vehicles
approach the intersection zone with their maximum possible
velocity and the proposed mechanism reduce this speed if it
is required.

The overall aim of our research work is to develop a
robust centralised controller in a scenario where vehicles are
cooperative and connected to an edge cloud based on a 5G
infrastructure. The controller should generate optimal route
decisions for all vehicles based on the intersection state, and
then communicate these decisions to the vehicles that follows
the decisions when crossing the intersection. Obviously, an
autonomous intersection control algorithm must guarantee
total safety for passengers, that is, no collision can occur,
which means that the collision probability must be zero for all



possible scenarios. Further, the execution time of an algorithm
must be limited, in order for it to be feasible to run in real-
time.

In this paper, we compare the previously mentioned algo-
rithms [6] [7] by implementing them in the realistic simulation
environment SUMO [8]. We have chosen these two algorithms
because they have different optimization objectives for the
same type of intersection control, and they are well cited
in the literature. Both algorithms have been shown to work
well in numerical simulations and theoretical analysis. In this
paper, we evaluate the safety and possibility of implementing
the proposed algorithms in the real world. Our investigation
shows the performance of the two algorithms compared with
traditional signalised method. Our main conclusion is that
these algorithms can only be used for low traffic densities,
since the collision probability rather quickly becomes larger
than zero when the traffic increases. Also, the execution times
of the algorithms makes them rather infeasible for realistic
traffic scenarios.

II. TARGETED SYSTEM

In urban transportation network, intersections are a bottle-
neck in generating traffic congestion. Traffic flow pattern in
an intersection depends on its geometry, location and possible
movement to and from its various lanes. Congestion wastes
a massive amount of time, fuel and creates more uncertainty
for traveller. Coordinated intersection traffic management is an
important component of the intelligent transportation system.
It enables a vehicle to communicate with roadside equipment
or other vehicles, and help to improve the road traffic safety
and efficiency.

We consider the problem of autonomous vehicle coordi-
nation at a crossroad intersection without traffic lights, as
depicted in Fig. 1, The system is composed of vehicles
equipped with On Board Units (OBUs), which may employ a
wide range of sensors types, and an Intersection Coordination
Unit (ICU) that will be deployed at the intersection and act as
a computing resource pool. The OBUs and the ICU communi-
cates via some type of high bandwidth radio communication,
for example using 5G. However, the focus in this paper is on
the control part, not the communication part, and therefore,
the communication technology is not specified, and we just
assume a wireless communication link with negligible packet
loss and delay.

We consider a typical crossroad intersection where vehicles
are allowed to make left and right in addition to through
movement. We split the intersection area into three zones:
the entrance zone, the critical zone and the exit zone. The
entrance zone represents the area where vehicles approaches
the intersection boundary. In the critical area, there is a risk
of lateral vehicle collisions. The exit zone includes vehicles
leaving the intersection.

Each vehicle periodically sends its status information to the
ICU, as part of the ITS facilities layer [9]. The ICU will
periodically orchestrate vehicles, aggregate data, and provide
control based on the system’s objectives. Also, the ICU will

determine whether there is any danger according to the driving
status of the vehicles. Collisions between two vehicles are
prevented by controlling the speed of the vehicles. All vehicles
are assumed to always follow the ICU’s decisions.

Fig. 1. Targeted system and intersection layout

III. INVESTIGATED ALGORITHMS

In this paper, we investigate the performance of two AIM
algorithms, the Model Predictive Control Algorithm [6] and
the Delay Minimization Algorithm [7], by implementing them
in the realistic simulation environment SUMO [8]. In this
section, we first describe our general system model and then
present high level descriptions of the two algorithms.

A. System Model

In this section we present the system model that is used by
the AIM algorithms for intersection control. A collection of
N = {1, 2, . . . , N} autonomous vehicles approaches a coor-
dination area of an intersection with L lanes. For each i ∈ N
a predetermined path is given and perfectly followed.

The vehicle dynamics are described as a second order
integrator, where the vehicle is modeled as a point on the
path coordinates. Given vehicle i, pi,t is defined to show the
position (distance from the beginning of the critical zone) at
time t and vi,t = ṗi,t is the speed of vehicle and ui,t = p̈i,t
the acceleration [10]. The longitudinal motion of each vehicle,
xi,t = [pi,t, vi,t]

ᵀ, can be controlled by its acceleration. We
assume the control input is updated in discrete time τ . The
discrete time state model of vehicle i is given in equation (1).

It is assumed that the vehicles will follow the acceleration
decided by ICU through communication link describe in
section II. each vehicle will transmit its basic driving informa-
tion, including current position, velocity and destination once
entered into the intersection zone to initialised the problem at
the ICU.

xi,t+1 =

[
1 −τ
0 1

]
xi,t +

[
− 1

2τ
2

τ

]
ui,t (1)

We consider a limited speed and acceleration: vi,t ∈ Vi =
[vmin, vmax] and ui,t ∈ Ui = [umin, umax]. However, maxi-



mum and minimum acceleration of each vehicle depends on
its current velocity and speed limitation.

B. Model Predictive Control algorithm

In this section, we give a high-level description of the
AIM algorithm for intersection control proposed in [6]. This
algorithm will in the rest of the paper be called the Model
Predictive Control (MPC) algorithm. The algorithm defines
an optimization problem that minimize the risk of collision
between a pair of vehicles at their possible conflict point dur-
ing a finite time horizon. Therefore, the algorithm introduces a
risk function F t

i,j that is used to determine whether a vehicle
pair (i, j) poses a potential risk of collision at time t. The risk
function is given in equation (2) below:

F t
i,j = δi,jexp{−αi(pi,t + Cij)

2 − αj(pj,t + Cji)
2} (2)

Here, αi and αj are positive constants that depend on the
two vehicles’ sizes. δi,j is a binary variable that states whether
the pair vehicles (i, j) have the potential to collide or not.
Cij and Cji are the distances from the conflict point of the
pair vehicles (i, j) to the beginning of the critical zone at
intersection for vehicle i and j respectively.

In order to avoid any rear-ends collisions, a minimum sep-
aration distance between two vehicle on the same lane, dmin,
is defined. Since the vehicles are modeled as a point on their
path, In the real world dmin is the minimum distance between
the centre point of two vehicles. The following constraint in
equation (3) is defined to prevent rear-ends collisions between
vehicles i and j at time t:

|pi,t − pj,t| ≥ dmin (3)

The variable pi,t will always have a positive value in the
entrance zone. For ensuring that no collisions occur between
two vehicles form different approaching lanes inside the
critical zone, a linear inequality constraint is defined as in
equation (4) below:

pi,t + Cij + pj,t + Cji ≥ Rmin (4)

Here, Rmin is a constant that denotes the minimum sep-
aration distance between the centers of two vehicles from
different approaching path.

A Model Predictive Control (MPC) framework is used to
minimize the system’s cost over predefined time horizon. An
MPC problem with the time horizon of T steps allows the
system be optimized in current time slot, while keeping next
T − 1 time slots in account [11], [12]. For this purpose at
each time step an optimization problem is solved to drive the
optimal control input for the system by predicting the system
state over the defined time horizon.

The objective of the optimization is to achieve a smooth
and comfortable flow of vehicles where the vehicles cross
the intersection with almost constant and high speed, while
minimizing the risk of collisions and energy consumption.
Therefore, The system cost, J is defined as in (5). One of
the term in cost function attempts to minimise error between
the speed of vehicle i and its desired speed, vid, Minimizing

the acceleration, ui,t and the last term related to collision
avoidance risk function.

J =

T−1∑
t=0

N∑
i=1

wvi(vi,t+1 − vid)2

+

T−1∑
t=0

N∑
i=1

wui
(ui,t)

2 +

T−1∑
t=0

N−1∑
i=1

N∑
j=i+1

wfF t
i,j

(5)

Here, wvi ,wui
and wf are weight coefficients and J is the

problem objective to be minimised, subject to the given current
states of the vehicles as defined in (1) and constraints as
defined in (3) and (4). The speed and acceleration is bounded
as described in section III-A.

C. Delay minimization algorithm

In this section, we give a high-level description of the
AIM algorithm for intersection control proposed in [7]. The
algorithm will in the rest of the paper be called the Delay
minimization algorithm. In this algorithm, vehicles are as-
sumed arrive at entrance zone with their maximum allowed
speed. The ideal profile entails traveling the entire intersection
zone without deceleration. This means that in the absence of
obstacles, a vehicle should be able to cross the intersection at
the same maximum speed. In order to avoid collisions, The
algorithm adjusts the vehicles’ speed, so that all vehicles can
cross the intersection at their respective maximum movement
speed without colliding with other vehicles.

Decisions of arrival times of each vehicle to critical zone
are made by the optimization module. The objective of the
algorithm is to find the optimal deceleration to minimize the
total traveling time for all vehicles inside the intersection by
considering the safety criteria. The minimum time for a vehicle
to travel between the beginning of entrance zone and the
beginning line of critical zone without deceleration is called
the optimum time, denoted OTi for vehicle i. The algorithm
tries to minimise the extra delay (Di) that is added to the
optimum time in case of necessary deceleration.

In order to avoid any rear-ends collision, a minimum sep-
aration headway time of Hmin between two vehicle on the
same lane is defined.

|(OTi +Di)− (OTj +Dj)| ≥ Hmin (6)

To ensure that no collisions occur between a pair of vehicles
form different approaching lanes inside the critical zone, the
vehicles have to pass their possible conflict point with a
minimum time separation ∆τ . Therefore, a linear inequality
constraint is defined as in equation (7) below:

|(OTi +Di + τij)− (OTj +Dj + τji)| ≥ ∆τδi,j (7)

Here, δi,j is a binary variable that states whether the pair
vehicles (i, j) have the potential to collide or not. τij and τji
are defined as the travelling times from the conflict point of
pair (i, j) to the beginning of the lane i and j respectively.



The system cost, J is defined as the sum of the required
delay for all vehicles inside the intersection zone to avoid
collision. J is given by equation (8).

J =

N1∑
i=1

Di (8)

Here N1 = {1, 2, . . . , N1} is the set of vehicles that
approaches the intersection zone in the current time step.

Also, N0 = {1, 2, . . . , N0} is the set of arriving vehicles at
the intersection during the past time steps that are still in the
entrance zone. The total number of vehicles inside the entrance
zone is N = N1+N0, since only vehicles inN1 are optimised
in the current time step, The reserved time for each conflict
point for vehicles in N0 from the previous time step is used as
a new constraint for the following time step. This assumption
will add the following constraint to the problem.

OTi+Di + τmn ≥
max[(OTj +Dj + τmn), (OTk +Dk + τmn))]

(9)

For all i ∈ N1 and j, k ∈ N0, τmn is an arbitrary conflict
point. The algorithm defines an optimization problem to min-
imize the system cost, J at each time step by considering the
current states of the vehicle as described in equation (1) and
constraints as defined in equations (6) and (7).

IV. EVALUATION

In this section, we describe our simulation environment and
experiments.

A. Evaluation Environment

To evaluate and compare control methods, a realistic simula-
tion program based on Simulation of Urban Mobility (SUMO)
[8] has been developed. SUMO is an open source, highly
portable, microscopic and continuous traffic simulation that
gives the user control over all aspects of the network, such
as vehicle type, driver behaviour, intersection control, and
statistical data collection. In our work, we have modified
SUMO by allowing each vehicle’s speed to be manipulated
by a central controller (i.e. the ICU) instead of using their
default microscopic flow algorithms in SUMO.

B. Experiment

In this work, we consider a four-way intersection with two
lanes in each way. Each lane is 3.5m wide with a maximum
speed limit of 20m/s, i.e about 70 km/h. We assume that the
intersection area can be modelled as a circle with radius 150m.
TableI summarize the simulation parameters and specifications
that we used for each algorithm.

The two intersection control algorithms were evaluated for
different traffic flow rates. Traffic flow rate is defined as the
rate at which vehicles pass a given point on the roadway, and
it is normally given in terms of vehicles per hour. Based on the
collected data from drivers using a navigation service in China
[13] and , the the deployed intersections for a transportation
project Michigan [14], we can divide the flow rate range in
three different volumes. The peak hour flow rate for a typical

TABLE I
SIMULATION PARAMETERS

MPC

vd 16 m/s

umax 5 m/s2

umin -6 m/s2

vmax 23 m/s

vmin 3 m/s

T 12 s

Rmin 7 m

dmin 7 m

Delay minimization

Vmax 16 m/s

umax 0 m/s2

umin -6 m/s2

Hmin 2 s

∆τ 4 s

intersection in an urban area is between 450 vehicles/hour
and 600 vehicles/hour, and we define this as a high volume
traffic. Further, a traffic rate between 150 vehicles/hour and
450 vehicles/hour is defined as a medium volume traffic in an
urban area. Finally, a traffic rate of less than 150 vehicles/hour
is defined as a low volume traffic in an urban area.

The maximum possible rate of vehicles crossing the counter
point, that is the maximum capacity of the intersection, is
defined as the saturation flow rate. In saturated intersection
all vehicles move one after each other with minimum safe
distance. In this paper, we assume that each vehicle has an
average length of 4 meters. A safe gap distance of 2.5 meters is
required between a pair of vehicles. Therefore, the maximum
possible number of vehicles inside the intersection area is 92
vehicles that will be reached at saturation flow rate.

In this paper, we use the following performance metrics
when we evaluate the two intersection control algorithms:

• Average speed of vehicles inside the intersection zone.
• Average number of vehicles inside the intersection zone.
• Collision probability.
• Execution time.

Also, all results will be compared with a standard signalised
(traffic light) with 90 second green phase and 90 second red
phase intersection management method.

The first two performance metrics are the most used met-
rics in the literature when evaluating the performance of an
intersection control algorithm. Therefore, when considering
the average speed and the average number of vehicles in
the intersection, we expect both algorithms to improve the
performance of the system when compared with the signalised
method.

However, the objective of our work is to find intersection
control algorithms that can be implemented in real world
systems. Therefore, the third performance metric, collision
probability, will be crucial, since this is the metric that checks
the safety condition.

In addition, we expect that the number of objective function
calculations and non-linear constraints for the MPC is higher
than for the Delay minimisation algorithm, which can result in
a problem for real applications due to the required processing
times. Therefore, we decided to also show the resulting
execution times for the algorithms as a comparison metric.
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V. RESULTS AND DISCUSSION

We performed simulations to compare the two algorithms
and evaluate the feasibility to deploy them in reality.

A. Average speeds and average number of vehicles

Fig. 2 illustrates the average speed of each vehicle in one
time slot for different flow rates. In the MPC algorithm, the
acceleration can have either a positive or negative value. In
the Delay minimization approach, the acceleration is limited to
negative values, since they are always related to the maximum
speed. Therefore, as expected, the system average speed for
the MPC algorithm is much higher compared to the Delay
minimization algorithm and the traditional signalized method.

Fig. 3 shows the average number of vehicles in the intersec-
tion area for different flow rates. The signalized intersection
will be saturated at a flow rate of about 700 vehicles/hour per
lane, which sets an upper limit of the capacity. It is apparent
from Fig. 3 that for both the MPC algorithm and and the
Delay minimization algorithm, there are much less vehicles
inside the intersection compared to the signalized intersection.
This shows that both algorithms have the potential to increase
the capacity of the intersection. However, the simulations
showed that when the number of vehicles in the entrance zone
increases to more than 20 vehicles at each time step, the solver
may not find a feasible solution to control the vehicles’ speeds
in proper time. Therefore, we can not reach the maximum
claimed capacity of 1600veh/h in [6].

B. Collision probabilities

Our simulation results validated the performance of the
two employed methods with respect to traditional signalised
approach as reported in [6] [7]. The intersection capacity and
traveling times (vehicle speeds) are improved with both the
MPC algorithm and the Delay minimisation algorithm.

However, in order to deploy the two proposed methods in
the real world, the traffic safety must be evaluated as well,
since this will be crucial for operational systems.
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Fig. 3. Average number of vehicles inside the intersection zone (a circle with
radius 150m).

Fig. 4 shows the expected collision probabilities for different
traffic flows. A signalized intersection is assumed to have zero
probability of collisions for all flows, since this is the main
reason for deploying traffic lights in intersections.

In the Delay minimization algorithm, the controller avoids
collision between two vehicles by reserving two different time
slot for crossing the intersection. However, even if this control
strategy avoids collision inside the critical zone, it can not
guarantee that no collisions occur in the entrance zone.

Fig. 4 shows that there is a probability of 0.2% of collisions
for a flow rate of 600 vehicles/hour. This means that 1.2
collisions per hour can be expected when using the Delay
minimization algorithm, which of course is not an acceptable
traffic safety condition.

On the other hand, the MPC algorithm prevents collisions
in the whole intersection area over the given time horizon
(12 sec). However, a problem occurs when the arriving flow
rate increases to more than 500 vehicles/hour. At this flow
rate, it can be expected that new vehicles will enter the
intersection zone during the problem prediction time horizon.
In the algorithm, the number of vehicles inside the entrance
zone is assumed to be constant during the horizon time, and
therefore, this dynamic may cause collision in intersection.

Fig. 4 shows that the collision probability increases expo-
nentially with the flow rate for the MPC algorithm, which of
course is not an acceptable traffic safety condition.

C. Execution times

Another requirement for operational systems will be that an
intersection control algorithm must have a low execution time
in order to fulfill the extreme real-time properties required for
these types of systems.

Fig. 5 shows the execution times for the two algorithms with
95% confidence intervals. We used a desktop equipped with an
Intel Core i7-4790K CPU @4 GHz and DDR3 RAM @1600
MT/s. The computer was configured with an Ubuntu Linux.
We set the simulation step time in SUMO to 0.5 seconds.



0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.71

0.81

0.91

1.01
·10−2

Flow (vehicles/h)

C
ol

lis
io

n
Pr

ob
ab

ili
ty

MPC
Delay Minimization

Fig. 4. Simulation results for collision probability

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Flow (vehicles/h)

A
ve

ra
ge

E
xe

cu
tio

n
Ti

m
e

(m
/s

) Period duration
MPC
Delay Minimization

Fig. 5. Execution time for proposed algorithms vs. traffic flow rate

The MPC algorithm is a nonlinear optimisation approaches
and it needs to predict the system state in the given prediction
time. We expected a higher execution time for the MPC
algorithm compared with the Delay minimization algorithm.
As can be seen in Fig. 5, this difference is definitely noticeable
and for higher flow rates the execution time for the MPC
algorithm is longer than the simulation step time, which would
mean that the calculations for one time step will not be
completed before the next time step begins. Therefore, the
controller may not be able to make a control decision during
a time step. When the number of vehicles and consequently
the size of the problem increases, the decision making process
time increases dramatically, and it will require more powerful
computers to find the solution in proper time.

VI. CONCLUSION

The objective of this paper is to evaluate two previously
proposed algorithms for an autonomous intersection manage-
ment [6] [7] in a realistic simulation environment, with the

ultimate goal to develop control algorithms for autonomous
vehicles that can be deployed in operational systems. It is
observed that using these schemes improve the performance of
the traditional signalized intersection. However, our simulation
shows that the safety conditions are not satisfied in high traffic
densities and only can be used for low traffic rate. since the
collision probability rather quickly becomes larger than zero
when the traffic increases. Also, the execution times of the
algorithms in [6] makes the algorithm infeasible for realistic
traffic scenarios.

VII. FUTURE WORK

The design of real time intersection management systems is
a complex task that involves many different steps. Full under-
standing of all different parts of the design procedure require
deep knowledge of theory. This paper has just briefly described
the principles of different traffic management methods. In the
future, the goal is to design an efficient and scalable control
method for managing vehicles at intersections.
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