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Everything flows!

- Heraclitus






Abstract

In this thesis I conducted numerical simulations to study the flow behavior of dense
particle flows composed of hard particles under planar shear using the discrete ele-
ment method. The simulations were carried out in two dimensional systems, where
the particles are modelled as circular discs. The discs are non-Brownian and neutrally
buoyant. The granular flows can be either dry or immersed in a Newtonian fluid, where
the fluid is treated in a mean field manner and represented by a velocity profile. The
works that are included in this thesis can be divided into two parts.

The first (Paper 1 +11) focus on the rheology of discontinuous shear thickening (DST)
granular flows under steady planar shear (i.e. with a constant shear-rate 4). The DST
behavior is reproduced using the critical load model (CLM), where a threshold force
is introduced for determining whether there is friction between the discs at contact. A
contact is frictional if the normal force between the discs is larger than the threshold.
It is found that a key parameter that controls the rheology of such flow is the fraction
of frictional contacts x4 defined as the ratio of the number of frictional contacts to the
total number of contacts. By performing simulations under controlled imposed pres-
sure, we are able to investigate behaviors of suspensions close to shear jamming points
as well as suspensions with intermediate s The constitutive laws are then presented,
which are used to predict rheology of discontinuous shear thickening particle flows un-
der various shear protocols. The types of particle flows range from viscous suspensions
where the particles are strictly overdamped so that the particle inertia are negligible to
dry granular flows where the particle inertia are dominant, as well as suspensions where
both particle inertia and viscous drag is important.

The second part (Paper 11 and 1v) focuses on the behaviors of dense viscous suspen-
sions under oscillatory planar shear. The simulations were conducted both with con-
stant packing fraction and constant imposed pressure. The oscillatory shear is either a
pure oscillation (i.e. ¥(#) = o cos(wt)) or with an extra oscillatory shear parallel to a
primary shear (i.e. ¥(¢) = 4o + 1 cos(wt)). It is found that by having an oscillatory
shear parallel to the primary shear, the viscosity of the suspensions decreased. Further-
more, the shear jamming packing fractions for the suspensions composed of frictional
particles are found to be increased under oscillation conditions, possibly due to the
microstructure of the suspensions.
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Popular scientific summary in English

In this thesis, I study the rheology of dense particle flows. The term “rheology” refers to
the study of the flow of materials. For example, when we say that blood is thicker than
water we are actually talking about that blood has a higher viscosity than water. Viscos-
ity is one of the most commonly characterised properties in rheology. It measures the
resistance of a fluid in response to a deformation at a certain rate. The term “particle
flow” can be interpreted as flow of granular materials. A granular material is a bunch of
solid particles which are usually macroscopic in size. Although the name “granular ma-
terials” might not sound familiar, examples of granular materials are found everywhere
in daily life.

Flour is actually a granular material. When pouring flour into a jar, a
granular flow is created. During this process, the flour forms a cone
shape in the jar. This is because the interactions between flour grains
(e.g. friction, cohesion) manage to balance the gravity force. The
largest internal angle between the cone surface and the horizontal
plane is commonly measured to characterise a granular material, re-
flecting the surface properties of the grains. After the jar is filled up,
one can calculate packing fraction to measure how dense the flour is
in the jar, which is defined as the ratio between the volume of the
flour and the total volume of the jar. Usually, if you tap the jar there
will be more space created on the top. In other words, the flour be-

comes compacted (7.e. reached a higher packing fraction). This is in
fact a commonly used technique in engineering to generate granular
materials with higher packing fractions.

While the above example given above is a dry granular material (i.e the material con-
sist of only particles and no fluid), granular materials can also refer to systems where
the particles are immersed in a fluid. Granular materials can display a wide range of
behaviors.

If you are a fan of adventure fictions, you are perhaps familiar
with the term “quick-sand”: those deadly traps that appear in
the wild, awaiting careless travellers stepping on them by ac-
cident causing the travellers to sink and drown. Quick-sand
is a typical example of a shear thinning granular material, al-
though in reality it is usually not that dangerous since a person
will not sink entirely. As indicated by the name, the viscosity of
a shear thinning material decreases in response to external de-

e
|

formation or stress. In the case of quick-sand, the stress comes
from the person who steps on it. The viscosity of the quick-sand
decreases causing the person to sink faster.

viii



% Oobleck (suspensions of corn starch in water with a high pack-
ing fraction of the starch) is an example which displays an op-
posite behavior compared to quick-sand, i.e. the viscosity of
the material increases when it is subjected to external deform-
ations/stresses. This is usually illustrated by the experiment
where you see a person run or jump on a pool of Oobleck
@ without sinking; however the person sinks if he/she stands still.
NO% This is because the material thickens when the person runs or
jumps, enabling it to support the weight of the person.

With the large variety of the granular materials and their properties, the mechanisms
of these properties as well as how to control them remains unclear. My work aims to
promote understanding of the behaviors of granular materials and find possible ways
to predict or control them. I study how the granular materials behave under planar
shear i.e. when granular materials are confined between two walls and deformations
are applied by moving the planes. The studies are done using computer simulations.
To simplify the problem, I assume that all the particles are discs (two dimensional
spheres) and that they do not deform. I further assume that the gravity force acting on
the particles can be ignored. I focus on the key factors that affect the shear thickening
behaviors of the granular flows and propose equations to predict how these flows will
behave at various conditions. Another focus of my work is trying to explain why the
viscosities of the granular flows decrease when oscillations are applied.

ix



Populirvetenskaplig sammanfattning pa svenska

Min avhandling fokusera pa reologi av granulira material. Reologi ir vetenskapen om
materialflédesegenskap. Till exempel, nir man siger att blod ir tjockare 4n vatten sa
menar man egentligen att blod har ett hégre viskositet 4n vatten. Viskositet beskriver
hur pass bra ett material kan floda. Ett granuldrt material ér (i stora drag) en samling
av fasta partiklar vanligtvis storre 4n en mikrometer (ungefir som tjockleken pa ett
harstréeller diametern pa en rod blodkropp). Vanligtvis sd studeras dessa granuldra ma-
terial som de ir, dvs. i torre tillstdnd, eller sa blandar man dem i en vitska. Det senare
kallas for en suspension.

Du kanske kidnner inte till namnet “granulidrt material”, men faktum ir att granuli-
ra material 4r vildigt vanliga i det daglig livet. Tdnk t.ex. pa nir du hiller mjol i en
burk. Det dr ett flode av ett granuldrt material. Granulidra material visar olika fysikalis-
ka egenskaper. Kvicksand, som oftast beskrivs som en dodlig fara i aventyrsfilmer och
bocker, dr ett typexemple pa ett skjuvtunnande (en reologisk egenskap) material. Ma-
terialet, vars viskositet minskar pa grund av deformationener eller spinningar. I detta
fallet kommer spinningen (dvs. trycket) frin minniskan som trampar pa kvicksanden.
Kvicksandens viskositet minska och en minniska sjunker snabbt ned i kvicksanden..

Oobleck som bestdr av vatten och majsstirkelse 4r ett annat exempel pé ett granulirt
material och som beter sig i mostats till kvicksand si 6kar oobleck sin viskositet pa
grund av deformationer eller spinningar. T.ex. kan en minniska springa eller hoppa pa
oobleck utan att hen hinner sjunka ned. Om du stér stilla sd sjunker du diremot ned i
ooblecken.

Mekanismerna som styr de olika egenskaperna hos granulira material 4r dock forfa-
rande inte helt klarlagda. Min forskning syftar till f6r en bittre forstéelse for granulira
materialens beteende och dess underliggande mekanismer. Med hjilp av datorsimule-
ringar sa har jag bland annat studerat skjuvtjockande suspensioner (som t.ex. oobleck)
under stadig skjuvning och hur suspensioners reologin skiljer sig mellan stadig skuvning
och oscillerande.



CHAPTER |

BACKGROUND

Granular materials are piles of discrete particles, where the particle size is typically lar-
ger than 100z and are in general polydisperse in both size and shape. The particles
can either be dry or immersed in a fluid, with the latter case being called suspensions.
Granular materials are widely seen in various industries and natural processes, from
daily products such as paint and tooth paste to construction materials such as cement
and concrete or geological processes such as land-sliding[1—3]; even the asteroid belt can
be viewed as a granular material[4]. Understanding the behaviour of granular mater-
ials is therefore of great importance for designing new materials, prohibiting geologic
hazard, etc.

At first glance, a granular material might seem to be a simple system. After all, the
motion of a single particle is well described by Newton’s second law. As for the forces
between two particles or between a particle and fluid in the case of suspensions, there are
various theories at hand for describing them. For example, Hertz law[s] and Coulomb
friction[6] are popular ways of describing the forces between two repulsive particles
at contact for normal forces and tangential forces respectively, as they are simple yet
able to reproduce most of the physics. In cases of particles in a fluid, forces exerted
on the particles from the fluid are also well studied and many equations have been
proposed for different conditions(7, 8], for example Stokes drag[9] is one of the widely
used equations which nicely reproduces the behaviors of spherical particles in laminar
flows. Yet granular materials display a wide range of unique behaviours. For example,
the pressure at the bottom of a pile of sand saturates quickly and does not further
increase as the height of the pile gets larger known as Janssen’s effect[10], while pressure
for a normal fluid will increase indefinitely with height. Another example is that a pile



of sand requires a critical incline angle to start flowing which is valid also for granular
materials composed of frictionless particles while an ordinary flow does not require
such a critical angle. In addition, granular materials also dilate at flow. The behavior
of granular flows also varies with concentration, in the dilute regime the granular flows
can be seen as a dissipative analogue of classic gas; in the dense regime granular flows
are shear-rate dependent and have complex rheology([1, 2, 11]. Most of these properties
are not well understood and require further investigation.

Several difficulties hinder an accurate description of granular materials. Particles in
granular materials are usually macroscopic in size and thermal fluctuations are there-
fore negligible. The lack of thermal fluctuations inhibits granular materials to explore
phase space which can otherwise be well described by statistical thermodynamics. An-
other difficulty is that the interactions between particles in granular materials are highly
dissipative which also distinguish them from the systems described through classic stat-
istical physics. In addition, granular materials lack a clear scale separation between the
scales of single granular particle and the whole granular materials which makes the
continuum description of granular materials non-trivial[z, 2].

Different techniques have been employed to study granular materials. Photoelastic
particles are used to visualise force distribution in granular materials[r2]. Various tomo-
graphy techniques such as electrical tomography(13] and X-ray tomography[14] are used
to measure packing fractions of granular materials. Rheology of granular flows can be
studied using rheometers with different set-ups such as planar shear, Couette cell[15],
inclined plane[16], and rotating drum[r7]. Apart from these experimental techniques,
numerical simulations are also powerful tools to study granular materials and give access
to properties such as the number of contacts which are difficult to measure experiment-
ally.

In my research, I study the rheology of dense granular flows subjected to shear both with
and without interstitial fluid using discrete element method (DEM) simulations where
particles are described discretely and the fluid is treated as a continuum. I specifically
focus on two aspects; one is shear thickening behavior where I try to investigate the role
of microscopic friction, ze. at particle contact level, and construct constitutive laws for
such flows; the other is oscillatory flows where I study the viscosity reduction as well as
shift in shear jamming packing fraction that result from oscillations. The particles in
the granular flows I study are hard discs (i.e. two dimensional spherical particles) which
are repulsive (i.e. without any cohesion/attraction) and non-Brownian (i.e. all thermal
fluctuations are neglected). The particles are considered to be neutrally buoyant and
the fluid they are immersed in is Newtonian (i.e stresses respond linearly to shear-rate).
A more detailed description of models and methods we use will be explained in later
sections.



CHAPTER 2

THEORY

1 Granular packing

One of the most important properties of granular packings is packing fractions,

Visarticl
¢ _ particle ’ (2‘1)
Vtotal

where Varticle is the volume occupied by the particles and Va1 the volume occupied
by the whole granular material[1]. Depending on how the packing is created, granular
packings can remain stable over a wide range of packing fractions, from a loosest frac-
tion to a densest fraction. For monodisperse hard spheres, one of the simplest types
of packings, the densest packing corresponds to a crystalline structure (as illustrated in
Fig. 2.1) and the packing fraction can be calculated analytically as ¢ = 0.7404 ... in
three dimensions and 0.9069 . .. in two dimensions[18]. The crystalline structures are
highly ordered, and therefore it is usually difficult for granular materials to obtain crys-
talline structures. In more common situations, the granular materials are randomly
packed. For randomly packed granular materials, the maximum packing fraction is
below the crystalline packing fraction and usually referred to as random close packing
(RCP). In three dimensions ¢prcp =~ 0.64[19]; in two dimensions various values of
¢rcp between 0.82 and 0.89 have been reported[20, 21]. In the opposite limit, the
loosest packing is referred to as random loose packing (RLP) which is the minimum
packing fraction where the packings are still able to sustain stresses. In three dimensions
orLp =~ 0.55 and in two dimensions ¢rpp ~ 0.60[22].



Figure 2.1: A sketch of monodisperse hard spheres in two dimensions showing a hexagonal packing, as indicated by the
black lines.

In reality, particles in granular materials are usually of different sizes. An analysis of
packings of bidisperse spheres (Fig. 2.2) shows that packings of particles of different sizes
can reach a higher ¢rcp than that for monodisperse packings[1] It should be noted that
Fig. 2.2 is an analytical prediction calculated by assuming the size difference between the
large and small particles are sufficiently large. The maximum packing fraction becomes
smaller if the sizes of the two types of particles get closer to each other. A randomly
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Figure 2.2: Analytical predictions of packing fraction ¢ of packings of bidisperse spheres as function of fraction of large
particles C, reproduced from [1]. The grey dashed lines indicate values of crystalline packing fraction ¢ = 0.74
and random close packing ¢ = 0.64 for a monodisperse packing.

packed granular material has a packing fraction between ¢rrp and ¢grcp. In many
industrial applications higher packing fractions are preferred, in order to save space
(e.g. in transportation of granular materials) or to increase the strength (e.g. in cement).
There are two main strategies to increase the packing fraction of a randomly packed
granular material: through uniaxial compression or through vibration[1]. The former
is done by imposing a normal stress on top of granular materials using a piston. As the
normal stress increases, particles in the material first undergoes small rearrangements,



then start to deform and eventually break[23]. Vibration is done by attaching a shaker
to the material, which allows particles to rearrange without deforming. Vibrations are
usually carried out as taps, which allows the material to relax between each period of
vibration, to eliminate the influence of the frequency of vibration. Packing fractions
increase with the number of taps at the beginning and saturate after certain number
of taps. This could be due to that the free space reduces in the process of compaction,
which makes it more difficult for the particles to rearrange[1].

1.1 Jamming and number of contacts

A topic that is closely related to close packing is jamming transitions, 7.e. the transition
between jammed and unjammed states. In a jammed state, the packing is able to res-
ist certain stress without having irreversible deformation while in unjammed states the
packing is free to flow. Jamming of spherical particles can be divided into three categor-
ies(18]; the first is local jamming where a particle is locally confined by its neighbors yet
they are still able to move together as a cluster (i.e. the particles always move with their
neighbors); the second is collective jamming where particles are not able to displace in
groups but may still move in response to external straining (e.g. via shearing); the third
is strict jamming where particles are not allowed to move at all. It should be noted that
which jamming category a given packing belongs to is dependent on boundary con-
ditions (e.g. hard wall boundary condition or periodic boundary condition), and that
in the infinite volume limit collective jamming is the same as strict jamming. While
jamming transition can usually be achieved by compaction, it has been shown that
jamming can also happen under shear. The shear jamming can be characterised by a
strong force network that percolate throughout the packing[24]. The concept of force
network will be introduced in the next section.

Now we consider a packing of /V frictionless hard particles with diameter & where the
total number of contacts in the packing is /V,. The number of degrees of freedom for
such a system is VD, where D is the dimension of the system. For hard particles, the dis-
tance between coordinates of each pair of particles at contact should equal the particle
diameter |r; — rj| = d, where r; and r; are coordinates of two contacting particles 7
and j. For N, contacts we have N, such equations. To be able to find a solution of the
N, equations (i.e. to obtain the coordinates of the particles in the packing), the num-
ber of equations needs to be less than the degrees of freedom, which gives V. < ND.
Otherwise, the system is overdetermined (7.e. more equations than unknown variable).
A overdetermined system does not have a unique solution. We will refer to N, < ND
as a coordinates argument later on.

At jamming the packing is isostatic which implies that there is force balance for each
particle. If the packing is composed of frictionless particles then we only need to con-



sider normal forces, which leads to D equations for each particle and hence VD equa-
tions in total. Since there is only one normal force between each pair of contacting
particles, the balance of angular momentum is always fulfilled. The unknown variables
are the normal forces between all pairs of particles at contact, which equals V.. In order
to find the solutions for the unknown variables, the number of equations should be less
than the number of variables, ND < N,. At jamming, both the coordinates argument
and force balance are fulfilled, leading to N, = ND. Define Z = 2N,/N, which we
refer to as the (average) number of contacts (or alternatively coordination number). At
jamming, Z = 2ND/N = 2D, which equals 4 in two dimensions and 6 in three di-
mensions. If the packing is composed of frictional particles we need to consider both
force and angular momentum. For each pair of particles at contact, there are two vari-
ables, one for the force and one for the torque, which gives 2V, unknown variables in
total. Besides D equations for each particles, there is now an extra equation from the
torque, resulting in N(D + 1) equations in total. The force balance for the frictional
packings then gives N(D + 1) < 2N,. To fulfil both coordinates argument and force
balance, we obtain N(D + 1) < 2N, < 2ND or equivalently D+ 1 < Z < 2D for
packings of frictional particles at jamming][1, 25].

1.2 Force distributions

As seen in the previous section, forces play a crucial role in granular packing. How-
ever, describing forces in granular materials is not a trivial task due to the large number
of contacts, indeterminacy (i.e. more unknown variables than equations), etc. Due to
the large number of contacts, it is not practical to study every single force between
each contact (yet we need to compute each single force in our simulations). The dis-
tribution of forces might be of great interest, both experimentally[26] and computa-
tionally[27]. Fig. 2.3 illustrates a typical distribution of force magnitudes in granular
packings under uniaxial compression where we can see that forces in granular packings
are highly heterogeneous. For strong forces, i.e. the forces that are larger than the av-
erage force > (f), the probability shows an exponential decay with force magnitude,
P(f) o exp(—pBf/{f)), where € [1,2] is a constant. For weak forces, the dis-
tribution is almost flat and approximately P(f) oc (f/(f))" with  close to zero. It
should be noted that Fig. 2.3 is just an approximated illustration and the “measured
distribution” might vary with measuring methods. For example, the force distribu-
tion measured by the carbon-paper technique displays a peak close to f = (f')[28].
On the other hand, strong forces (f > (f)) always have exponential decay regardless
of measuring methods. Besides the force magnitude, the direction of forces is also of
interest. This is usually characterised by the angular distribution. The angular distri-
bution is used to study both contacts and forces, with the former also referred to as
the geometrical fabric and the latter as the mechanical fabric[1]. In two dimensions,
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Figure 2.3: A schematic plot illustrating distribution of force magnitude under uniaxial compression; force is normalised
by mean force (f). The dashed line indicates the place where f= (f).

the geometrical fabric is given by a probability density function £(#) which describes
the probability of having contacts at angle 6, where 6 is the angle between the vector
that connect the centres of two discs at contact and an axis depending on the system
(for planar shear, it is the direction of the shear flow), as illustrated in Fig. 2.4(a). In
three dimensions, contact between two particles is characterised by two angles 6 and
1 so that the probability density function is £(6, 1)), see Fig. 2.4(b) for illustrations of
6 and 1. Integration of £ over all angles gives the number of contacts Z. We will now
focus on two dimensional situations. Usually, first order Fourier expansion is enough
to describe the geometrical fabric[29],

ﬂ@ziﬁ+&mﬂ@—@L (2.2)

where A, gives the amplitude of anisotropy of contact and 6, is its principal direction.
One can alternatively define a fabric tensor[24],

}j” g (23

R =
’rl]’ ]I‘l]|

where N is the number of particles that are in contact, r;; is contact vector between
particle i and j. We denote eigenvalues of R as Ry and R,. Ry + R, = Zis the number
of contacts while (R, — Ry)/Z = A,/2 gives the anisotropy[24, 29]. Similarly, the
mechanical fabric can also be described by Fourier expansion[29],

F,(0) ~ <2}2[ 14 A, cos 2(0 — 0y)], (2.4)



Figure 2.4: Two particles in contact in (a) two dimensions with angle 6, (b) three dimensions characterised by angle 6, 1.

F(0) ~ <2f>At sin2(0 — 6;), (2.5)

where F, is the angular distribution of normal forces, F; the angular distribution of
tangential forces, (f) the mean force, and 4, and 4, give the magnitude of mechanical
anisotropy for normal and tangential force respectively. One can distinguish between
strong and weak force networks by plotting the angular distribution function of forces
above and below (f) separately[1].

2 Granular flow

Granular materials will start to flow when subjected to external stimuli, e.g. shaking,
planar shearing or inclining. In the dilute regime, particles interact mostly via binary
collisions. Granular materials in this regime can be seen as a dissipative analogue of
a classic gas and are dominated by kinetic energy. In denser regimes, multi-particle
contacts start to play a role and behaviours of granular flows become more closely
related to a fluid. Force and contact networks are long-lasting and evolve in flows.
Here I will focus on granular flows in the dense regime.

2.1 Planar shear and y(/) rheology

Planar shear is one of the most fundamental configurations to study rheology of gran-
ular flows. Fig. 2.5 gives a brief illustration of granular flows under planar shear in two
dimensions. The axis that is parallel to the velocity gradient is called the extensional



Figure 2.5: A sketch of two dimensional granular materials under planar shear with an imposed pressure P. The arrows
indicate velocity profiles in the flow. The extensional and compressive axises are indicated by a solid and a
dashed line respectively.

axis while the axis orthogonal is called the compressive axis. The material is confined
between two rough walls by an imposed pressure P and are subjected to a constant
shear with shear-rate 4. The macroscopic shear-rate is defined as the ratio of the ve-
locity difference between the two walls to the distance between the walls, ¥ = «*/H
where #" is the velocity difference and A is the distance between the walls. Now we
consider the case in a large system (i.e the distance between two walls is significantly
larger than the size of the particles) and that the particles are hard and neutrally buoyant
(i.e. no gravity) with density p, and diameter 4 (or average diameter  for polydisperse
particles). At steady state, the shear stress Ty and normal stress o, are homogeneous
across the system with o, = P. If the imposed pressure P is kept constant, the system
is characterised by four parameters: particle diameter 4, particle density p,, shear-rate
% and imposed pressure P. Dimensional analysis suggest that a dimensionless num-
ber can be constructed from these four parameters which is referred to as the inertial

[= M (2.6)

VP / Pp
This parameter can be interpreted as the ratio between a microscopic time scale, fpicro =
df\/P/p, i.e. the time for a particle to move by & due to imposed pressure P, and a
macroscopic time scale, tmacro = 1 / 7 i.e. the time it takes for a particle to pass another
one due to the advected flow[1]. The vertical distance between the two particles is at
least d, i.e. they do not collide. The packing fraction and the shear stress of the granular

number(11, 30],

material are then functions of 7,

ij’ = ﬂ(l)Pa (27)
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Figure 2.6: Schematic illustrations of (a) #(Z) and (b) ¢ () in lin-log scale.

o= ¢([)7 (2.8)

where 4 = 0,,/P is a macroscopic friction coefficient. Fig. 2.6 show typical shapes
of (1) and ¢(/) curves. Both y and ¢ reach plateaus at vanishing 7, as labelled as z,
and ¢, in Fig. 2.6. ¢, is the jamming packing fraction and z, can be experimentally
measured by the avalanching angle (i.e. the minimum angle for a granular packing
starting to flow).

Using a local rheology assumption, Eq. 2.7 and 2.8 can be generalised to describe in-
homogeneous granular flows with 7 = |§(y)|d/\/P(y)/ py>» where §(y) and P(y) are the
local shear-rate and local pressure, respectively. The equations can further be general-
ised to tensorial form to describe three dimensional flows sheared in different directions.
The components of the total stress tensor ¥;; are written as([31]

where P is the isotropic pressure, d;; = 1 when 7 = j and 0 otherwise, and
Tij = Neft Vijs (2.10)

where negr = u(1)P/|7| is an effective viscosity, I = |y|d/\/P/ p,and | Y| = /i Yii/2.
#(I) rheology can be applied to other configurations of granular flows such as flowing
on an inclined plane. This formulation has been extensively used both in experimental
and computational works[31]. Despite the success of (/) rheology in describing dif-
ferent granular flow behaviours, there are still some limitations. For example, it lacks
the links to microscopic properties of granular materials. Furthermore, the quasi-static
limit (e.g. shear banding) as well as the transition to the dilute regime are not well

described[11].
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2.2 Bagnold’s law

We now consider a granular flow at constant packing fraction ¢ instead of imposed
pressure P, i.e. the walls in Fig. 2.5 are fixed. The pressure P is now a variable and the
system is instead characterised by its packing fraction ¢, shear-rate ¥, particle diameter
d and particle density p,. Dimensional analysis suggests that

O = pﬁd2g110(¢)727 (2.1)
P= ppdzgl,P(Cb)’.Yza (2.12)

where g7,(¢) and g7 p(¢) are two ¢p—dependent empirical functions. These two ex-
pressions are called Bagnold’s law which was first found by Bagnold experimentally
when studying sand[32]. Bagnold’s law shows that the shear stress o, and the pressure
P in granular flows have quadratic dependence on the shear-rate 4. Dividing Eq. 2.11
by ¥ we obtain,

N = ppd’g1o(9)7, (2.13)
where ) = 0.,/ is the viscosity. At constant ¢, 1 scales linearly with shear-rate 4,
i.e. granular flows are shear thickening.

3 Suspensions: granular materials immersed in a fluid

We have up to now only considered dry granular flows. On the other hand, many
applications involves granular particles immersed in a fluid (tooth paste, mud, etc).
Such “wet” granular materials are also referred to as suspensions. The fluid introduces
a continuum phase, and adds extra contributions to stresses from the fluid, and also
affects the equations of motion (due to effects from fluid velocity and extra stress com-
ponents). The particles we discuss here are still Non-Brownian.

3.1 Navier-Stokes equations

The motion of fluids can be described by the Navier-Stokes equations. The momentum
equation can be written as [8],

ou —
pE—F(u-V)u]—f—i—V'a', (2.14)

where u is the fluid velocity, f is the external body force, & is the stress tensor

. Oxx Oxy Oxz
T = |0 0y 04, (2.15)
Oz Ozy Oz
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and p is the fluid density. The fluid velocity and stress tensor vary in space and time
while the fluid density is constant for the models considered here. Under the assump-
tion that fluids are incompressible, in other words that p is constant in space and time,
the divergence of the fluid velocity vanishes,

V-u=0. (2.16)

The significance of inertial effects from particles compared to viscous drag can be meas-
ured by the dimensionless Reynolds number(33, 34],

L
Re = pi, (2.17)

"
where 7)¢denotes the dynamic viscosity of the fluid and Z is a characteristic length scale
and # = |u|. If Re < 1, the inertial terms on left hand side in Eq. 2.14 can be neglected

and we get,

—f=V.0. (2.18)

Eq. 2.18 together with Eq. 2.16 are called the Stokes equations. Flows that can be
described by Stokes equations are called Stokes flows. From Eq. 2.18, we see that Stokes
flows present several unique properties, including linearity (7.e. fluid velocity changes
linearly with the external force), reversibility (i.e. motions are reversible in response to
an external force) and instantaneity (i.e. motions are not dependent on the history of
the system)[8]. A Newtonian fluid is the simplest type of fluid where the shear stress
0y responds linearly to the shear-rate 7. The stress tensor & can then be written as [8]

=PI+ nse, (2.19)

where P denotes pressure, I is the identity tensor and € is the strain-rate tensor,

Oy 1( Ouy % 1 ( Ouy Oug
Ox 2<By+3x) 2 Bz+8x
o= |1(2% 4 Ou i 1(0m | ou
e=|2\la T % ) 2\ T )| (2.20)
1( Oug Quy 1( Oug + % Oug
2\ Ox 0z 2\ Oy Oz Oz

where u,, u, and u, are the x, y and z component of velocity u. For planar shear,
Eq. 2.20 reduces to

0 4/2 0
e=|[y/2 0 o0}, (2.21)
0 0 0

where 7 denotes shear-rate. From Eq. 2.19, the divergence of the stress tensor V - o
can be written as

V.o =-VP+nVu (2.22)
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Figure 2.7: Sketch showing decomposition of the motions of a particle in a shear flow into rotation and strain, as indicated
by arrows.

Combining Eq. 2.22 with Eq. 2.18 we get
—f = -VP+ NV u (2.23)

Here we will always consider the fluid to be Newtonian.

3.2 From dilute suspensions to dense suspensions

Now we consider particles in a fluid. We start with an extreme case where one single
particle is immersed in a fluid under shear, with shear-rate 4. Motions of such a particle
can be decomposed into rotational and strain motion, as illustrated in Fig. 2.7. The

velocity of the sheared fluid is [8]
uww=(E +Q )-x, (2.24)

=00 —
where the fluid strain-rate tensor E = (€). The superscript oo indicates the velocity
far away from the particle (z.e. no disturbance from the particle). Assuming a no-slip
boundary condition at the fluid-particle interface, the fluid rotational velocity tensor

e o}
Q  and the particle rotational velocity w? are related by

Q x=w xx, (2.25)
and the E . and the particle velocity v are related by
—_—0Q

E -x=u’, (2.26)

where x is the position vector. The effect of the particle on the streamlines of the fluid is
illustrated in Fig. 2.8. The particle furthermore experiences a hydrodynamic force from

13
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Figure 2.8: Sketch showing streamlines of fluid with presence of the particle, as indicated by grey lines; all streamlines
are symmetric and the closed streamline near the particle shows rotational dominating motion.

the fluid. From Eq. 2.23, 2.24 and 2.26, an expression for the hydrodynamic force F”
can be derived,
F/ = 3anpd(u™ —w’), (2.27)

where 4 is the particle diameter, u® is the fluid velocity. This is also called the viscous
drag force or Stokes drag. The fluid also exerts a hydrodynamic torque on the particle,
which can be derived in a similar way, from Eq. 2.23, 2.24 and 2.2,

T = 7z77fd3(w°° —wh), (2.28)
where w™ is the rotational velocity of the fluid.

Now we consider dilute suspensions, where the particles are far apart so that there are
no interactions between them. Due to the disturbance introduced by adding particles
to the flow field, the viscosity of the suspension 7 increases with increasing number of
solid particles (i.e. the solid packing fraction ¢)[35]. The viscosity 7 of the suspensions
can therefore be written as

n=nrg(P), (2.29)

where 77 is the viscosity of the fluid and g/(¢) is a function dependent on particle
packing fraction. To compute g7(¢) in the dilute regime, we start from the total stress

(8] - B -
3 = —(P)I+ 2n4e) + fp, (2.30)

where (P) is the average pressure and > is the particle contribution to the stress which
in the dilute regime is given by fluid-particle stress since there are no collisions between
particles

3 = s¢ne). (2.31)

The total stress tensor is then

s = —(pﬁ + 2771{1 + ;Z)} (e). (2.32)
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For planar shear, we get an expression for the shear stress o,

Oy = Uf[l + §¢]7~ (2.33)

Rearranging Eq. 2.33 using 7 = 0/, we have g7(¢) = 1 + (5/2)¢ and n =
nAl + (5/2)@], which is the Einstein viscosity [36]. As the packing fraction increases,
pair interactions between particles are needed, while many-body interactions are still
negligible. A higher order term then needs to be included in g(¢) [37, 381,

G(0) = 1+ 26+ 6950, (34

which indicates that the viscosity increases more rapidly than the Einstein viscosity as
the packing fraction increases.

As the packing fraction increases further, many-body interactions between particles
become significant. The shear stress can still be written in the general form of Eq. 2.33
[35]

Ty = & (D)7 (2.35)
which indicates a linear scaling of the shear stress Oy with the shear-rate 4, unlike
Eq. 2.11 for dry granular flows where the shear stress o, scales quadratically with the
shear-rate . Itis generally considered difficult to get an analytical expression of Eq. 2.35
in the dense regime (although a semi-analytical expression for frictionless suspensions
has been derived with an empirical parameter included [39]). Instead, empirical func-
tions are introduced to relate viscosity and packing fraction. One such function has
the form [35, 40, 41]

n/mp=go(@) ~ (¢ — )", (2.36)
where ¢, is the jamming packing fraction which depends on microscopic friction and
n is a positive constant. A schematic plot of such a relation is shown in Fig. 2.9. This
relation has been shown to nicely describe both experiments[42—44] and simulation
results[45—47]. At shear jamming, suspension stresses (and viscosities) are dominated
by stresses from particle-particle interactions. One can therefore use the same isostatic
argument as in dry granular flows, which gives the number of contacts Z at jamming
with Z = 2D for suspensions consisting of frictionless particles and D + 1 < Z <
2D for suspensions consisting of frictional particles, where D is the dimension of the
system. Suspensions consisting of frictionless particles have a larger Z at jamming,
leading to a higher jamming packing fraction ¢,, as illustrated in Fig. 2.9

3.3 From p(I) to u(/) rheology

While a study on rheology of dense suspensions is usually carried out under constant
packing fraction, there have been set-ups developed for constant imposed pressure P as

15
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Figure 2.9: Lin-log plots showing the relation between /7, and ¢ in the dense regime; the red line corresponds to a
frictional suspension while the black line correspond to a frictionless suspension; the dashed line indicates
divergence of n/ngas ¢ — ¢.; ¢>f denotes the jamming packing fraction for a frictional suspension (i.e. a

suspension composed of frictional particles) and qbf_‘f denotes the jamming packing fraction for a frictionless
suspension.

illustrated in Fig. 2.10. This set-up is similar as in Fig. 2.5 for dry granular flows. The
difference is that the walls are now porous and the whole set-up is immersed in a fluid
so that the fluid can freely move in and out when the walls move. For such a system, the
macroscopic time scale remains the same as in the dry granular flow case, fmacro = 1/7.
The microscopic time scale, on the other hand, can vary depending on the experimental
conditions(1, 8]. Here we consider the viscous regime, where the particles are neutrally
buoyant (i.e. no effect from gravity) and overdamped (i.e. negligible particle inertia) and
the flows are steady. The microscopic time scale is then dependent on the viscous drag
and the imposed pressure which gives finicro = 7¢/ P. We can then form a dimensionless
number for suspensions in the viscous regime which is usually referred to as the viscous
number (a counterpart of 7 and sometimes denoted as 7,)[42],

Imicro m

tmacro P

J= (2.37)

Dimensional analysis implies that the rheology of the suspensions is characterised by
the viscous number / according to,

O—x}’ = /’l(J)P7 (238)
¢ = ¢()). (2.39)

Similarly as Eq. 2.35, one can write the expression for P,

P=nrgp(¢)7. (2.40)
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Figure 2.10: A sketch of a two dimensional granular materials immersed in a fluid with an imposed pressure P. The top
and bottom walls are porous so that the fluid can freely flows in and out when the walls move. The arrows
indicate velocity profiles in the flow.

Eqs. 2.35 and 2.40 show that both shear stress o, and pressure P scale linearly with
shear-rate % in suspensions where viscous drag dominates.

3.4 Combination of %(/) and x(/) theology

So far, I have discussed dry granular flows, which are characterised by 7, and suspen-
sions in the viscous regime, which are characterised by /. These two cases can be seen
as two limits. One is dominated by particle inertia while another is dominated by
viscous drag. On the other hand many suspensions are influenced by contributions
from both particle inertia and viscous drag. This can be illustrated by Stokes number,
St = I*/] = pyyd*/np Dry granular flows correspond to St — 0o while suspen-
sions in the viscous regime correspond to St — 0. Suspensions with both particle
inertia and viscous drag contributions give finite Sz. To characterise such suspensions,
we first make an assumption that shear stress 0, and pressure P of such suspensions
are linear combinations of contributions from particle inertia and viscous drag[48—s0].
Combining Eqs. 2.11 with 2.35 and Egs. 2.12 with 2.40, we have

Oy = 070 (O) + ppd g1o (0)77, (2.47)

P =npgp(0) + ppd g p(d)7°. (2.42)

The divergence of g/(¢) is either the same as that of g/(¢) or steeper than gj(¢), ac-
cording to different studies [35, 39, 48, 51, 52]. In my work, we make the approxima-
tion that g/(¢) and g/(¢) have the same divergence, so that g7,(¢) = agj+(¢) and
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210(¢) = agjo(¢) where a is an empirical constant depending on the system. Re-
writing Egs. 2.41 and 2.42 and dividing by P, we get

go0) = o G4
1
gr(¢) = ]74_ ol (2.44)

From these two equations, one can define a new dimensionless parameter X character-
ising the suspensions for all values of 7and /[48, s1],

K=]+aP. (2.45)
The shear stress and packing fraction are then functions of K
UXJ’ = ]’l(K)Pv (246)

¢ = ¢(K). (2.47)

3.5 Shear thickening

Shear thinning and shear thickening are common behaviors observed for dense sus-
pensions. Toothpaste, paint and hand cream are all examples of shear thinning sus-
pensions and corn starch suspensions (also called “oobleck”) is the most common ex-
ample of shear thickening suspensions. As indicated by its name, shear thickening is

Oy

shear thinning
— Newtonian
— CST
— DST

gl

Figure 2.11: A schematic plot showing how shear stress o, respond to shear-rate 4 in Newtonian, shear thinning, con-
tinuous shear thickening (CST) and discontinuous shear thickening (DST) suspensions.
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a non-Newtonian behavior where viscosities of dense suspensions increase with shear-
rate. Depending on the magnitude and sharpness of the increase in viscosity, shear
thickening is further classified into continuous shear-thickening (CST), where viscos-
ity increases continuously, and discontinuous shear-thickening (DST), where viscosity
increases drastically above a certain threshold in shear-rate [3, 52—54]. Fig. 2.11 illus-
trate schematically how shear stress o, responds to shear-rate , if the suspension
is shear-thinning, Newtonian, continuous shear-thickening and discontinuous shear-
thickening. It has been shown that suspensions which display CST behavior can transit
to DST behavior, as the packing fraction increases [45, 55]. Because of its complex phys-
ics, and potential industrial applications such as liquid body armour and brake fluid,
shear thickening has received much attention. Several mechanisms have been proposed
to explain shear thickening for different types of dense suspensions. For example, sus-
pensions of nonionic surfactants display DST because of the tilting of lamellar struc-
tures and formation of multilamellar vesicles [56]. Here we focus on suspensions con-
sisting of hard non-Brownian particles. One explanation of shear thickening behavior
is hydroclustering[s7]. When two particles approach, a short range lubrication force
results in an increased hydrodynamic pressure, which causes depletion of fluid between
the particles. As shown schematically in Fig. 2.12, the lubrication force increases as the
gap between two particles and eventually diverges. Since the fluid between the two
particles is Stokesian (i.e. flows are time reversible), the force that is required to separ-
ate the two particles will be of the same magnitude. Therefore, particles tend to stick
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Figure 2.12: A schematic lin-log plot of lubrication force (red solid line) between two particles with minimum separation

h;. The black solid line is a schematic plot of a regularised lubrication force.

together and form larger clusters. These hydroclusters have higher dissipation leading
to an increased viscosity. Although this mechanism manages to explain CST behavior,
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it lacks a specific time scale for DST (i.e. the time given by the threshold shear-rate of
the on-set of DST). It is also unable to explain the drastic viscosity increase found in

DST.

(a) (b)

»
>

increasing Y

Figure 2.13: Sketch showing two rough particles stabilized by a repulsive layer at (a) low shear-rate and (b) after this
barrier is overcome at higher shear-rate; particles are indicated by black circles and repulsive layers by grey
rings.

Another mechanism considers friction between particles 58, 59]. The mechanism is
schematically illustrated in Fig. 2.13. Particles in suspensions are usually stabilized by
repulsive forces, such as electrostatic forces and steric interactions. When two particles
approach each other, they first contact via the repulsive layer which is non-frictional. At
low shear-rate, particles are not able to get closer. However, as the shear-rate increases,
forces acting on particles become large. When the force is larger than the repulsive
barrier, the surfaces of the particles are able to touch. And since surfaces are usually
rough, such contacts introduce extra tangential forces into the system, leading to an
increased viscosity. The shear-rate where most repulsive barriers are overcome is the
threshold shear-rate. This mechanism has been verified by recent experiments[17, 60],
where negatively charged polystyrene particles are used and the repulsive electrostatic
force is controlled by salt concentration. The result shows that DST behavior becomes
less significant (i.e. the increase in viscosity becomes smaller) as salt concentration in-
creases (ie. the more the electrostatic repulsive forces are screened), indicating a close
relation between DST and repulsive interaction. According to this mechanism, un-
thickened suspensions can be seen as a non-frictional suspensions while suspensions
after thickening are viewed as frictional suspensions. Two kinds of suspensions display
different rheology. Suspensions under transition can thus be described by mixture of
two states, where some particles are in frictional contact and others are in frictionless
contact. The rheology of a DST suspension is a combination of the rheology of non-
frictional and frictional suspensions weighted by the composition of the two states, as
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proposed by the “Wyart-Cates model” [61].

In addition to the frictional contact mechanism, a recent study proposed an alternative
friction model[62]. According to this model, the DST behavior is attributed to the
lubrication force after taking the surface roughness of the particles into account. The
surface roughness is described as asperities on the surfaces. As two particles approach,
so that the separation between the particles is of the same magnitude as the size of
the asperities, the lubrication force between the asperities becomes non-negligible. As
illustrated in Fig. 2.14, the asperities introduces extra separations hﬁ-j (and hence a lub-
rication force oc 1/4};) in addition to the separation between the particles 4;. The
lubrication forces introduced by the asperities contribute the tangential forces between
the particles, hence increasing the viscosity.

\ )
\
\

I
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Figure 2.14: Sketch showing two rough particles at separation 4;;, and an extra separation /;fj introduced by the asperities
on the surfaces.
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4 Oscillatory Rheology

= elastic response
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Figure 2.15: Schematic illustrations of Lissajous curve (shear stress as functions of strain) for elastic and viscous materials.

Oscillatory rheology is an experimental tool that is widely used to study mechanical
properties of viscoelastic soft materials. A typical set-up places samples between two
plates and applies a sinusoidal strain, 7y(#) = 7o sin w# (the shear-rate is thus a cosine
function), where 7o is the maximum strain and w is the oscillation frequency. The
time-dependent stress o (#) is then measured. Assuming linear rheology, the response
of pure elastic and pure viscous materials can be expressed analytically,

o(t) = Gy sin(wr), (2.48)
for elastic materials which is in-phase with strain, and
o(t) = G"vyp cos(wr), (2.49)

for viscous materials which has a 7/2 phase shift, where G’ and G” are the storage
and loss modulus respectively. A schematic illustration of such behaviours is shown in
Fig. 2.15. 'The straight line indicates that the shear stress is always in-phase with the
strain while the circle indicates that the shear stress is always out-phase with the strain.
The response of a viscoelastic material is a linear combination of Eqs. 2.48 and 2.49,
o(t) = G'(w)yosin(wt) + G’ (w)y cos(wt), where G'(w) and G’ (w) both depend

on oscillation frequency[63].

In addition to applications of viscoelastic materials, recent studies suggest that oscillat-
ory shear can also alter behaviours of particle flows. It has been shown that by applying
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an oscillatory cross shear to a primarily sheared flow (as demonstrated in Fig. 2.16), the
viscosity of the flow drops, and hence flowability increases[64, 65]. Furthermore, the
jamming packing fraction is found to be shifted to a higher value, 7.e. a shear jammed
suspension can start to flow (i.e. unjam)[65]. These behaviours are desired in many
industrial applications. The mechanism behind this viscosity drop is not fully under-
stood. Possible explanations consider the changes in microstructure of the suspensions
caused by oscillation. It has been found that particles in the suspensions can have re-
versible trajectories in the cases of small oscillation magnitudes[66—-68], suggesting that
the particles are organised into an “absorbing state” where they are able to avoid contact
with each other. The decrease of particle contact lowers the contact stress. Another pos-
sible explanation is that the oscillatory cross shear tilt and break the force chains and
hence decrease the efficiency of stress transmission[64]. Fig. 2.17 shows a schematic
illustration of how a force chain propagates through particles at contact.

primary shear, Qscillatory cross

Figure 2.16: Demonstration of oscillatory cross shear of a primarily sheared flow.

Figure 2.17: Schematic illustration of how a force chain (indicated by the dashed line) propagate through particles at
contact under shear along the compressive axis.
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CHAPTER 3

MODELS AND SIMULATION METHODS

To simulate the behaviour of granular flows, one solves equations that describe the
dynamics of the system. As has been discussed in previous chapters, the motion of the
particles is described by Newton’s equations of motion, and the fluid is described by
the Navier-Stokes equations. At the most detailed level, one solves these equations by
imposing a no-slip condition on the boundary between the fluid and the particles as
well as between fluid and the confining wall. This approach is computationally heavy
and therefore not suitable for dense flows, where the number of particles is large.

In order to study large systems, approximations are necessary. One approach is to
average out the fluid velocity, i.e. instead of solving for the fluid velocity at each point,
the fluid is represented by a locally averaged velocity. The equations of motion for the
particles remains to be solved separately. This approach is referred to as the discrete
element method (DEM). Various versions of this method have been developed. One
of them is Stokesian dynamics[69, 70]. In Stokesian dynamics, the hydrodynamic force
(i.e. the force between the fluid and the particles) is given as

Fb = _ﬁFU . (Up — u°°) + ﬁFE : 6, (3.1)

where U, is the particle velocity, u® is the fluid velocity, R and Rz are two res-
istance matrices and € the strain-rate tensor. Stokesian dynamics gives a fairly accurate
description of hydrodynamic forces for flows with small Reynolds number. Another
approximation is to take a local average of both the fluid velocity, and the particle
velocity. The equations of motion then look as for two continuous phases (or two ima-
ginary fluids). This approach is thus referred to as the “two fluid model” and is mostly
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used in continuum modelling/theory[71].

In this work, we used a discrete element method in two dimensions, where particles
are circular discs. Hydrodynamics is described via a continuum approach. The main
difference from Stokesian dynamics is that the averaging scale of the fluid is much larger
than the particle size and the feedback of the particles on the fluid follows a mean-field
approximation. This leads to a fluid velocity W' = (7, 0) being dependent only on the
y—coordinate of the fluid, ¢ the fluid velocity is constant along the x—coordinate for
constant y. The time step 4 is chosen so that it is smaller than the fastest characteristic
time-scale in the system, e.g. among viscous relaxation, vibrations at the contacts, etc.
More detailed descriptions of forces and dynamics are given below.

1 Forces

ij
O

Figure 3.1: Sketch of two discs in contact with each other, with illustration of £/ and £ as well as the overlap &7.

1.1 Contact forces

As packing fractions are high in dense suspensions and granular flows, contact forces
between colliding discs are dominating. The contact force is modelled by two damped
harmonic springs, one for the normal force and one for the tangential force. For two
colliding discs 7 and j, the contact force between them can be expressed as[30]

£7 = £ 4+ €7 = (k,07 + C,00)m? + (ko7 + ¢57)t7, (.2)

where %, is the normal spring constant, , is the normal dissipation constant, 57 is
the normal overlap between 7 and j as illustrated in Fig. 3.1, k#, = £,,/2 is the tangential
spring constant and 47 is the relative tangential displacement between 7 and j as defined

26



in Eq. 3.3, (; is the normal dissipation constant, n? denotes the normal unit vector and
t7 denotes the tangential unit vector, and the dots indicates a time derivative. In our
simulations we ensure that the discs are non-deformable and rigid, i.e. £,/P > 1 (in
practice, we keep £,/P > 10°[30]). Only overlaps between pairs of discs are considered
here, and overlaps caused by multiple discs are neglected because they are very unlikely,
due to the high rigidity of discs. Fig. 3.2 illustrate the overlap caused by three discs,
which is marked black.

Figure 3.2: Sketch showing three discs in contact with each other, the overlap caused by the three discs are colored black.

The relative tangential displacement (5;7 is defined as
. t ..
o = [ il 63)
0

where #] is the tangential projection of the relative velocity between 7 and j,
/Y |
u; =t7-u?, (3.4)

where u 7 is the relative velocity. In addition, the tangential force is restricted by the

Coulomb friction, i.e. the maximum value of f/ is restricted by the corresponding £/,

£7] <, |£1], G.5)

where g is the particle friction coefficient, which reflects the surface properties of the
discs. A typical value for z, is 0.4. For example surfaces of steel, glass, chromium,
nylon-66 all have values around 0.4 [72].

The normal dissipation constant (,, is defined as,
2\ / Wll]kn Ine
V72 + (Ine)?’

where mj;; = mimj/(m; + m;) is the reduced mass. The restitution coefficient, e, de-
scribes the velocity difference before and after collision. The tangential dissipation

Cn = (3.6)
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constant is defined similarly by replacing £, in Eq. 3.6 with 4,. A dissipative collision
can be intuitively illustrated by the trajectory of a bouncing ball, as shown in Fig. 3.3. A
larger e indicates that less energy is dissipated during each collision, as seen by compar-
ing red and black curves in Fig. 3.3. In the viscous regime, the contact force is balanced

t

Figure 3.3: Schematic plot of the trajectory of a ball bouncing on hard surface with two restitution coefficient e.

by the viscous force and we have chosen to put e = 1 (i.e. no velocity loss in collisions),
due to numerical reasons so that we can use a simple overdamped dynamics which only
involves single particle velocities.

1.2 Viscous force

Apart from the contact force, the fluid also exerts forces on the discs. Hydrodynamic
forces in suspensions of neutrally buoyant discs with packing fraction ¢ can be de-
scribed by the two-phase flow Reynolds-averaged Navier-Stokes equations [48, 73],

v _
pAl—gf))&i’t:V-of— F, (37)

where pris the fluid density, ?fis the fluid stress tensor, and F is the total force between
the fluid and the discs. Recalling that the fluid is Newtonian, Eq. 3.7 can be simplified
to

V.7 - F' =o. (3.8)
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The force F? is defined as the sum of the drag force and the Archimedes force over all
discs 7 in volume V

v __ 1 drag Archi
F* = T/Z(fi + £ ), (3.9)
where fiArChi =VV. Ffl, and V), is the particle volume. Plugging Eq. 3.9 into Eq. 3.8
and using V'~ V],/(;S,
fArchi ¢ fdrag
z 1 _ QS 1 °
Combining Eq. 3.9 and 3.10, we derive

et = oo G0

(3.10)

The viscous drag fl-d " in two dimensions is given by reformulating Eq. 2.27,
flres — 37znf(uf— ), (3.12)

where W/ is the fluid velocity and u” is the disc velocity. The viscous torque can be
calculated similarly, with

78 = (W — W), (.13)

where w/ = /2 is the angular velocity of the fluid and w” is the angular velocity of
the disc. Besides viscous drag, the discs are also subjected to pair lubrication forces.
Here we use a regularised lubrication model to compute the force. A schematic plot
of this force is seen in Fig. 2.12. The equations used for computing lubrication forces
between disc 7 and j are[48, 74]

' 5 (vi—v)-my
4 = | =-= ARV P
flllb,n - [ 87T17]¢[’] hz‘j‘" A }nl]’ (3.14)
.. 1 d::
7o === A vt
flub,t - |: 27[77fln <2(hz] + A))(VZ V]) tl]] tl]u (3.15)

where fll{lb . is the normal lubrication force and fll{J.b L is the tangential lubrication force,
hij is the gap between the two discs 7 and j, v; and v; are the velocities of discs 7 and j
at the closest points, dj; = 2d,d;/(d; + d;) and A is the regularisation length, related
to the roughness of the particles. The torque exerted on disc 7 from lubrication forces

between disc 7 and j is

lub _ g7
" = flub7t X T; (3.16)

where r; the position vector of particle 7.
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2 Dynamics

2.1 Equation of motion

Particle dynamics in a fluids can be described by Newton’s equation of motion [7]

dul v ex C
m—t =+ f; gt Z]: £, (3.17)

where f? is the viscous force depending on the position and the velocity of the particle,
£~ is the external force and £, is the contact force, both depending on the current
position of the particle. The particle positions and velocities can be calculated by in-
tegrating Eq. 3.17, using the Verlet algorithm[75] (note that Verlet algorithm is not
used for the suspensions in the viscous regime, where we have overdamped Langevin
dynamics instead, as discussed in the next section),

ri(r 4+ A) = 26,(r) — it — AP) + mi (f,.v(t) FE() 4+ f,-j(t))AtZ, (3.18)

ri(t+ At) —ri(t—

ui(t—{— At) = AL

Ar) 1
= (e + £ £, )A, .
+ o (O +E70 + 30808 619
where u;(#+ At) and r;(# + At) are the new velocity and position, r;(#) is the current

position, and r;(# — At) is the old position, and At is the time step. Similar equations
are used for the angular velocity using the moment of inertia for the discs.

2.2 Overdamped Langevin dynamics

In the viscous regime, particle dynamics are strictly overdamped which gives force and
torque balance [76]

Y =0 6:20)
J

Tiext + Tiy + Z Tij =0. (3'21)
J

where £ is the external force, £ is the viscous force, the sum of which is given by
Eq. 3.11, and fj; is the contact force given by Eq. 3.2. 7/, 7/ and Z]' T, are torques
resulting from external, viscous and contact forces respectively. The external force £/

in sheared suspensions comes from walls, so for particles in bulk we have

fr=-> f (3.22)
j
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Combining with Eq. 3.12, the velocity of the particle can be calculated assuming no

1 _
() = of - ¢ 37”;’) Ej:fl-ju), (.23

external forces

and the position of the particles is calculated from
I'l'(f‘f‘ AZ’) = I','(Z') + u,'(t)At. (324)

The angular velocity is calculated similarly for the torque.

3 Models for frictional contacts

As we have discussed in section 3.5, DST can be explained by an “activation” of fric-
tional contacts. In order to reproduce DST behavior in simulations, we introduce the
Critical Load Model (CLM) in our simulations [45, 53, 58]. CLM describes the friction
coefficient between particle 7 and /, 4, as a step function,

(3.25)

g e 18> £
Toolo IR <A

where £/ is the normal force between 7and jand f% is a threshold force which represents
the repulsive layer around particles. According to CLM, contacts between two particles
are frictional only when the normal force overcomes the threshold force; otherwise,
contacts are non-frictional. While CLM is computationally fast, it neglects the length
scale of repulsive layers. Such an approximation is reasonable since the size of repulsive
layer usually is much smaller than the size of the particles. Contacts are defined as
frictional if yg = #,» and non-frictional if f‘g = 0. The fraction of frictional contacts
is defined as Xf= Zf/ Z, where Zfis the average number of frictional contacts and Z is
the average total number of contacts.

In order to closely investigate the role of the fraction of frictional contacts Xy in suspen-
sion rheology, we design an ideal suspension consisting of a binary mixture of rough
discs (i.e. ,”;) = yp) and ideally smooth discs (i.e. ,”;, = 0). The friction coefficient

between particles 7 and j is ;42 =4/ ;4; /1;, which we call the binary model. Clearly, only

contacts between two rough particles are frictional. The fraction of frictional contacts
Xy can therefore be well-controlled by adjusting the amount of rough discs in the sys-
tem. We use the binary model here as a toy model, for a better understanding of the
role of the fraction of frictional contacts, in macroscopic rheology of suspensions.

31



4 Simulation details

Figure 3.4: A snapshot from simulations; the black arrow indicates the imposed pressure and purple arrows describe fluid
the velocity profile.

Fig. 3.4 is a snapshot taken form an actual simulation. We use it here to illustrate our
simulation box. The simulation box contains roughly 1000 circular discs. The disc
diameters are described by a flat distribution with £50% polydispersity with average
diameter 4. All lengths in the simulations are in units of 4. The walls consist of the same
types of discs as in the suspension but glued together. Wall particles are marked red in
Fig. 3.4. For simulations with constant imposed pressure, the bottom wall is fixed and
the top wall is adjustable with an imposed pressure P along the y—axis, which balances
the normal stress along the y—axis at steady state. For simulations with constant pack-
ing fraction, both walls are fixed along the y—axis. For simulations with steady shear,
the top wall moves at constant velocity along the x—axis, resulting in a strain of the
suspension with constant strain rate. For simulations with oscillation, an additional
oscillatory function along the x—axis is applied to the top wall, resulting an oscillating
shear-rate ¥ = 4y + 1 cos(wz). We define F = 41 /40 as the magnitude of oscilla-
tion and G = 1 = %1 /w as the maximum strain caused by oscillation. The fluid is
simulated as a continuum velocity profile, with a no-slip boundary at the walls. The
velocity profile is illustrated by purple lines in Fig. 3.4. Periodic boundary conditions
are applied along the x-axis, and the interaction between discs is calculated following
the nearest image convention, as illustrated in Fig. 3.5.
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Figure 3.5: Sketch of a simulation box (as represented by the rectangle with solid lines) and its two neighbor images
(dashed lines). The interaction between the blue and red discs in the simulation box is considered by calculating
the interaction between the blue and red disc in the neighboring image box, as indicated by the arrow.

Shear stress Ty and pressure P = 0,y are calculated from the particle stress tensor

= 1 xx x
EPZZZE-L-: |:0- 0')/:| N (326)

i€A T Tw

where A is the area over which stresses are sampled, f; is the total force acting on disc
i; Oxy = 0y is the shear stress, and oy, and 0, are the normal stresses along the x—
and y—axis respectively. The reported values are ensemble averages, calculated from
the values that are sampled throughout the simulations. Before sampling, a pre-shear
protocol is run to ensure that we sample from the steady state of the suspensions. In case
of constant shear-rate, shear strain 7y is always kept larger than 3, in order to guarantee
sufficient sampling. In case of oscillation, sampling is either over at least 10 oscillation
periods, or a minimum absolute shear strain over 10.
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cHAPTER 4

RESULTS

1 Paper 1: Analog of discontinuous shear thickening flows un-
der confining pressure

In Paper 1, we focus on dense suspensions in the viscous regime, under pressure-imposed
shear. The particle friction coefficient 2, = 1. We first investigate suspensions with the
binary model, where the fraction of frictional contacts xyis well-controlled, and show
that the fraction of frictional contacts aneeds to be included into the constitutive law,
to characterise such suspensions,

¢ = ¢(/7 Xf)7 (41)

n/ne= g(d, xyp)- (4.2)

Eq. 4.1 and 4.2 are used to describe suspensions with the Critical Load Model (CLM),
where Xris allowed to adapt during simulations. Therefore, an extra constitutive law is
introduced to characterise x4

xr= xAL)), (4.3)

where f = £ /(Pd) is a dimensionless threshold force. Two shear protocols are em-
ployed during the simulations; the first one decreases / by keeping the pressure 2 con-
stant and gradually decrease the shear-rate 7, the second one decreases / by keeping
the shear-rate 7 constant and gradually increasing pressure P. For shear protocols with
constant P, continuous flow curves between two branches are observed, while for the
constant ¥ shear protocol, cusped curves are observed, as illustrated in Fig. 4.1. This
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Figure 4.1: Flow curves of dense suspensions in viscous regime with constant 4 shear protocol; symbols are simulation
results and dashed lines are plots of Eq. 4.1 and 4.2.

indicates a negative dynamic compressibility. Such behaviors can be explained by the
fact that Xy increases with P, resulting in higher particle pressure, which will expand
the suspension.
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— frictional
106 | a=-20 |
a=-1.0
— a=-05
10°} ;
0 — a=00
— a=05
4
A0 — a0 ;
= — a=20
= 103 F| — frictionless E

102} :
101 3 / / 3
100 : ‘ ‘ : : ‘

0.50 055 0.60 0.65 070 0.75 080 0.85

¢

Figure 4.2: Viscosity n/nyas a function of packing fraction ¢ for various e with /o = 0.001, D = 1 (defined in Eq. 4.4);
frictional and frictionless curves are produced by setting D = 0 and oo, symbols are simulation results for a« =
-1 (circles), O (squares), and 1 (diamonds).

Furthermore, we express the difference shear protocols by a combination of fand /.
A constant P shear protocol can be expressed as keeping £/ © constant. Similarly, a
constant 7 shear protocol can be expressed as constant /7 ~!. To unify these two shear
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protocols, we construct a new dimensionless parameter,
NTAL
0

where /j is a rescaling constant giving the inflection point, as a varies. D and o encode
the magnitude of the threshold force and the different shear protocols. Fig. 4.2 shows
analytical predictions of flow curves using Eq. 4.1 and 4.3. Different transition pathways
are observed. Simulation results of three corresponding cases are plotted with good

agreement with analytical prediction.
In addition, we run a few simulations with a “softer” CLM model, i.¢. a linear function

that saturates when [f4| > f¢,

w =40 = (45
- 7 .. .
P <

Results are plotted in Fig. 4.3. Similar cusped curves can be seen with a smaller curvature,

compared with the curves in Fig. 4.1(a).
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Figure 4.3: Viscosity n/nyas a function of packing fraction ¢ with ;4‘173' described by Eq. 4.5.
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2 Paper i: Unifying viscous and inertial regimes of discontinu-
ous shear thickening suspensions

In Paper 11, we extend our findings in Paper 1, and present unified constitutive laws
for discontinuous shear thickening suspensions spanning from the viscous to inertia
regimes (i.e. I/] € [0, 00]). The particle friction coefficient y is set to 0.4 when they
are frictional in this paper. The general idea of the unification is that the shear stress
0.y and the pressure P can be expressed as linear combinations of viscous and inertial
contributions, as shown in Egs. 2.41 and 2.42 in Chapter 2. For the friction and packing
fraction laws, we employ phenomenological expressions

¢ = ¢ — apK’, (4.6)

w=pot dﬂKZ’ (47)
where K = ]+ aP, K, = J+ a,l', and o, o, n, 7, are all empirical parameters,
which are x ~dependent. In the frictional case, v, = 2 so that g/, and g, (introduced
in Eq. 2.11 and 2.35 ) share the same exponent of divergence, and one has g7, = g7,/ cv.
In the frictionless case, v, = 1, which lead to different exponents of divergence between
270 and g7, and thus g7, /g7 » becomes ¢-dependent. However, we find that as ¢ —
¢ one gets g7, —+ 0gro. As ¢ gets smaller, g7, deviates from agy . In the dense
regime, this difference is small , as shown in Fig. 4.4. Hence, we can approximate
2o = 0gyo for the frictionless case.

109 ‘ ‘
— frictional
108 — frictionless

107}

100}
10°F

9o()

104}
103}
102}

Figure 4.4: Plots of agy, » (solid lines) and g/, (dashed lines) for the frictional (pp = 0.4, red lines) and the frictionless
cases (/tp = 0, black lines).

Values of all empirical parameters and their dependence on g are extracted from

the binary model. Furthermore, it is found that X can be characterised by f Z. As
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Figure 4.5: Values of xyat different (F2)~" for suspensions with various ///: red symbols are simulation results for viscous
suspensions (//] = 0), black symbols are simulation results for inertial suspensions (/// = oo), symbols with

other colors are results with finite 7//; the solid line and the dashed line are plots of xy = 1 — tanh(k -£2)
with £ = 0.13 for the solid line and # = 0.08 for the dashed line.

seen in Fig. 4.5, X for various //] collapse to a master curve, when plotted as a func-

tion of (}2 Z)~1. The derived constitutive laws are applied to simulation data obtained
from CLM. Figs. 4.6 and 4.7 show behaviours of dense suspensions with different 7//.
Fig. 4.6 shows the cases of the fully frictional, and fully frictionless, and Fig. 4.7 shows
the cases with j? = 1. A good collapse between data with different 7// is observed in all
the cases, indicating that our unification is valid. The dashed lines are the plots of the
constitutive laws, which show a good agreement with the simulation result.

We further generalise the D parameter that we have introduced in Paper 1 to
~7 K\¢€
F=f(=)" 8
"% (4-8)

Similarly, € encode different shear protocols and Kj is a constant that gives the intersec-
tion point as € varies (i.e. the point where curves for different shear protocols intersect).
In Fig. 4.8, we present analytical predictions of g7, with different €, together with simu-
lation data for e = —1, 0 and 1, and different ///. In Fig. 4.9 we furthermore show that
our constitutive laws are able to reproduce typical shear thickening behaviours, under
constant ¢. Fig. 4.9(a) shows predictions of g7, (or equivalently the rescaled viscosity
in the viscous regime) under constant ¢. The increase in viscosity becomes more drastic
as ¢ increases. Fig. 4.9(b) and (c) show the cases where shear thickening happens at
intermediate and high Stokes number, respectively. In Fig. 4.9(b), the suspensions start
in the viscous regime where the viscosities remain constant, then undergo discontinu-
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ous shear-thickening and enter the inertial regime where the viscosities increase linearly
with the shear-rate. In Fig. 4.9(c) the suspensions are always in the inertial regime so

that the viscosities increase linearly with the shear-rate, before and after discontinuous
shear-thickening.
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Figure 4.6: Rescaled viscosity g/, as functions of ¢ and (b) ¢ as function of K for frictional (empty symbols) and frictionless
(filled symbol) suspensions with various 7// as indicated by legends. Symbols are simulation results and dashed
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3 Paper m: Transition from steady shear to oscillatory shear
rheology of dense suspensions

In Paper 111, we move from the case where we have constant shear-rate to the cases,
where we have oscillating shear, i.e. §(2) = A + 71 cos(wt). We studied the behaviour
viscous suspensions composed of either frictional (x , = 0.4) or frictionless (x , = 0)
particles, under oscillating shear with F = 41 /% € [3-1072,3-10*]and G = w/%; €
[1072,10]. At constant shear-rate, the viscosity can be obtained as 17, = (o) /{%),
which we later refer to as the “stress” viscosity. This expression, however, becomes
inaccurate as F — o0 since (o) — 0 and (%) — 0. For pure oscillatory shear flows,
and assuming only viscous response, the viscosity can be calculated from

27w d
_ e (4.9)
. 27z/w

A fy Y cos? (we)dt

;o o (t) cos(wt)

2

where G’ = P 02”/ “ 0 (#) cos(wt)dt is the loss modulus[77]. In order to deal with

shear flows, which are combinations of a steady shear and an oscillating shear, we gen-
eralise this equation and define shear-rate-averaged quantities as

S VA1) | de
S (1) e

where A(#) is a time-dependent property, such as the shear stress 0., or the number of

(A = (4.10)

contacts Z. The integer 7 is the number of oscillation periods that are averaged over.
The shear-rate-averaged viscosity is then calculated as 5 = () 5/ (7)5)-

We first check how the instantaneous viscosities varies, and compare different viscosity
definitions, as shown in Fig. 4.10. We can see in Fig. 4.10(a) that at small F, the instant-
aneous viscosities show only slight fluctuations around the average, which equals the
viscosities at constant shear-rate. The different viscosity definitions gives approximately
the same values. At large F, on the other hand, the instantaneous viscosities display
two distinct and alternating viscosity peaks in each period, which are well-correlated
with the peaks in strain as seen in Fig. 4.10(b). We can see that 75| in general per-
forms better in describing viscosities of suspensions under oscillation, and is closer to

the time-averaged viscosity 77 = w fozm/ “n(2)dt/ (27n).

We then study how 75| will vary at different 7 and G for a constant ¢. We find that
the viscosities start to decrease at F > 1. The decrease is more significant for small G.
Moreover, at large F and small G, the viscosities decrease to zero, as seen in Fig. 4.11(a).
At F < 1, on the other hand, the viscosities are close to the value at constant shear-rate,
regardless of G values. Comparing Fig. 4.11(a) and (b), we can see that the decrease in
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Figure 4.10: Instantaneous rescaled viscosities at ¢ = 0.67, #,=04,G =033 and (a) F = 0.3, (b) F = 30. Lines

with different colors and styles correspond to different definition of viscosity, as indicated in the legends. Thin
black lines indicate n/n, = 0. The rectangular plots beneath the main figures show how strain evolves under
oscillatory shear; black lines show how strain would evolve with a constant shear-rate .

viscosity is in agreement with the decrease in the number of contacts, indicating that the
former is a consequence of the latter. The behaviour of the viscosity, and the number
of contacts, can be described by a phenomenological hyperbolic tangent function,

Ay /AS =1 = ¢ tanh(e, F), (4.11)

where A is either 15| or Zj5), c1 = 1 — A|];|:°°/ASS and ¢, are fitting parameters.
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Figure 4.11: (a) Rescaled viscosity 7|4 /1%, (b) Z}| /2% as function of F atvarious G, ¢ = 0.76 and u, = 0.4 7> and
75 are values at constant shear-rate. Symbols are simulation results and dashed lines are best fits of Eq. 4.11.

We further define the viscous number and macroscopic friction for suspensions under
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Figure 4.12: (a) Flow curves with extended x(/)-rheology for frictional suspensions (/4]’ = 0.4). (b) Number of contacts Z

for either frictional (empty symbols) and frictionless suspensions (filled symbols). Black symbols correspond
to values at constant shear-rate (¥ = 0) while coloured symbols correspond to different F as indicated in

the legends, with ¢ € [0.67,0.79].

oscillatory shear as /5| = nA7¥/P)}5 and Py = (0/P)3). The results are plotted in
Fig. 4.12, where we find data collapses in both (/) and Z(/). As seen in Fig. 4.12(a),
data points at F < 1 are well described by the original z(/)-rheology at constant

shear-rate. Data points for F > 1 are better described by an empirical relation Py

2
P — H(ln(lm) — ln([HLO)) , with ™% >~ 0.75, Jj510 =~ 2, and £ = 0.01,

shown as solid black lines in Fig. 4.12(a). Fig. 4.12(b) shows plots of Z(/), where we see
a slightly better collapse.
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4 Paper 1v: Oscillatory shear flows of dense suspensions at im-
posed pressure

In this work, we focus on the behaviours of dense suspensions under pure oscillatory
shear, i.e. 4 = 4 cos(wt) and v = 7y sin(wt), where 4y is the shear-rate magnitude,
Yo = ~o/w the strain magnitude and w the oscillation frequency. The particles of
the suspensions are confined between two walls by a constant pressure, and are either
frictional (pp = 0.4) or frictionless (ﬂp = 0). For suspensions that display linear
viscoelastic response, the shear stress can be expressed as

o = 1’5o cos(wt) + 1”5 sin(w?), (4.12)
where
, f()z”/w o (1) cos(wt)dt
= . 27z/w ) (4“13)
Yo fo Y cos? (we)dt

" 02”/ “o(r) sin(wt) dr

o fo sin? dt

(4.14)

and |[n*| = \/1’> + n""? is the magnitude of the complex viscosity. Following the same

generalisation approach as in Paper 111, we define

,_ o/ Pyids .
S "

y_ Jo o Py o)

T e *

where 7/ is the viscous and z” is the elastic component of the macroscopic friction p.
The magnitude of the complex macroscopic friction is |¢*| = \/#/* + #/’* and the
viscous number /' is calculated the same way as in Paper 111 In general, we find that at
large strain magnitudes vy suspensions can be well-described by the steady-shear rhe-
ology and vice versa. As "y is lowered, the rheological behaviors of the suspensions start
to deviate from its steady-shear case. For example, the complex macroscopic friction
close to the shear jamming point is found to be lowered as 7 decreases in both the
frictional and frictionless cases, as shown in Fig. 4.13. Fig. 4.13(a) and (b) show how
|| vary with /' for the frictional and frictionless cases respectively. The values of ||,
are presented in Fig. 4.13(c), where the grey dashed lines indicate the values of , under
steady shear and the colored dashed lines are plots of a phenomenological hyperbolic
function |z*|, = p,[1 — ky tanh(k,/7o)], where z_ is the critical macroscopic friction
under steady-shear and #; and 4, are two fitting parameters. y (1 — ;) gives the value
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Figure 4.13: Complex macroscopic friction |x*| as functions of the viscous number J at various ~y, as indicated in the
legends for (a) frictional and (b) frictionless suspensions. The black symbols show data for the suspensions
under steady shear and the black lines are plots of the constitutive laws for the steady-shear cases. In (c),
| | as functions of ~o; the grey dashed lines indicate values of _under steady-shear; the colored dashed
lines are best fits of the phenomenological function |#*|. = x [1 — ki tanh(k,/~0)], where x_is the values
for a suspension under steady shear, with = 0.28 for the frictional case and 0.09 for the frictionless case;
ky and &, are two fitting parameters, the values are given in the text.
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Figure 4.14: Packing fraction ¢ as functions of the viscous number / at various -, as indicated in the legends for (a) fric-
tional and (b) frictionless suspensions. The black symbols correspond to the steady-shear conditions and the
black lines are plots of the constitutive laws for the steady-shear cases; the grey dashed lines indicate the
values of ¢, for suspensions under steady shear. (c), the jamming packing fraction ¢, as functions of ~, for
both the frictional and frictionless suspensions; the grey dashed lines showof the steady-shear values of ¢,.

of |p*|; as 70 — 0. In the frictional cases, £; = 0.29 £ 0.03 and 4, = 0.04 £ 0.01,
whereas in the frictionless cases, #; = 0.88 £ 0.25 and 4, = 0.005 =& 0.003. In
Fig. 4.14, we show how the packing fraction ¢ vary with / at different ¢ values. As
J — 0, we see a clear increase in the plateau values at small ~yy for the suspensions
composed of the frictional particles (Fig. 4.14(a)). The plateau values (in lin-log rep-
resentation) at g < 0.1 are all above the ¢, of the frictional cases under steady-shear,
yet still slightly lower than the ¢, of the frictionless cases under steady shear. On the
other hand, we do not observe a similar increase in the plateau values for the suspen-
sions composed of frictionless particles. The plateau values instead fluctuate around
the ¢, of the frictionless cases under steady-shear. These observations are summarised
in Fig. 4.14(c) where we plot ¢, as function of yy. It should be note that although the
transition of ¢, in the frictional case might seem to be discontinuous from Fig. 4.14(c),
a closer investigation shows that the transition is actually continuous in a rather narrow
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Figure 4.15: Relative importance of the viscous component to the complex viscosity "> /|n*|? as functions of '/~ for
(a) frictional and (b) frictionless cases at various ~, as indicated in the legends.

7o range (€ [0.05,0.3]). In addition, we find an increasing importance in the elastic
contributions as 7y decreases. This is illustrated in Fig. 4.15, where we show the relative
importance of the viscous component to the complex viscosity 72 /|n*|*. The relative
importance of the elastic component is simply (1 — 1'?/|n*|?). At large strain mag-
nitudes (79 > 1), the suspensions are almost purely viscous in their response. As 7
decreases, the elastic component becomes increasingly important. By normalising //
with 7y we obtain a collapse between data at 79 < 0.1. In both the frictional and fric-
tionless cases, the viscous component first increases as /' decreases, and reaches a peak
and decrease as /' is further lowered. The peak value in the frictional cases is roughly
0.6, and in the frictionless cases it is around 0.8.
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In this thesis | study the rheology of dense particles flows under planar
shear. The works that are included in this thesis have two main focuses.
The first is on the behavior of discontinuous shear thickening particle
flows under steady shear. The types of the flows that are considered
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a highly viscous fluid so inertial effect can be neglected) to the inertial
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under oscillatory shear compared to steady shear and its correlation to
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