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A Receive/Transmit Calibration Technique based on
Mutual Coupling for Massive MIMO Base Stations

Joao Vieira, Fredrik Rusek, Fredrik Tufvesson
Dept. of Electrical and Information Technology

Lund University, Sweden
firstname.lastname@eit.lth.se

Abstract—This paper presents a calibration technique for
massive MIMO base stations, where the frequency responses of
the transmit and/or receive analog front-ends are individually
estimated and compensated for. Calibration is achieved by a
first-round of channel sounding between base station antennas,
followed by post-processing and a compensation stage. The
proposed technique is general in the sense that is does not use
external sources, nor internal dedicated circuits for calibration
purposes. The only requirement of the technique is that mutual
coupling between all pairs of sounded base station antennas exists
and is known. Our analysis suggests that mutual coupling can be
conveniently used for calibration purposes, and that multipath
propagation during calibration is the most prominent source for
calibration inaccuracies.

Index Terms—Transceiver calibration, transmit receive esti-
mation, antenna array, mutual coupling, large arrays, massive
MIMO.

I. INTRODUCTION

MASSIVE multiple-input multiple output (MIMO) systems
have attracted a lot of attention in the wireless research

community. In massive MIMO, base stations (BSs) equipped
with hundreds of antennas serve a relatively low number of
terminals in the same time/frequency resource. This approach
holds great promises in terms of energy efficiency, spectral
efficiency, etc [1]. However, BSs operating with (very large)
antenna arrays usually require some type of calibration to
compensate for non-ideal characteristics in the system. These
non-idealities are often related to hardware aspects that in
theory are assumed ideal for sake of simplicity, but need to
be compensated in real systems.

Research efforts to calibrate massive MIMO BSs in order to
enable time division duplex (TDD) operation were presented
in [2], [3]. These efforts enabled downlink precoding based
on non-reciprocal uplink channel estimates. However uplink
channel estimates can also be useful for other purposes. For
example, the estimates can be used for real time positioning of
terminals, for codebook based precoding, or other applications
where explicit transmit/receive beamforming are necessary.
Indeed, this can only be achieved if the transmit/receive radio-
frequency (RF) chains and cables of the BS, are calibrated
to yield aligned responses with respect to both phase and
magnitude.

The problem setup addressed in this work is as follows.
Consider a massive MIMO BS facing an open area, as a typical
BS in cellular systems. We envision a calibration procedure

that can conveniently be performed on-the-fly, by exchanging
signals to-and-from all pairs of BS antennas without the
need for external sources nor internal calibration circuits.
The received signals are then processed in order to estimate
and compensate for the differences between the analog front-
ends and cables associated with different antennas. Channels
between nearby BS antennas are strongly dominated by mutual
coupling effects but nearby reflections can also contribute. No
assumptions are made on the array structure nor on the prop-
agation conditions, other than knowing the complex channel
gains between all pairs of antennas due to mutual coupling. For
a fixed array structure, these quantities can be measured once
after array manufacturing and can be considered constant for
an arbitrarily long period of time. Note that no user terminals
are involved in the calibration process.

For the remainder of this paper, we address calibration as
the process of estimating the transmitters/receivers frequency
responses, since the compensation stage is straightforward.
The measurements in [4] suggest that, with high-end analog
components, these estimates are valid for time periods of at
least one hour.

A method for transceiver calibration based on signals
exchanged among antenna elements of the own array was
proposed in [5]. Array shape estimation is performed in a
first stage, followed by estimation of the transceiver responses.
However, the method proposed in [5] rely on the assumption of
spherical wave propagation between antenna elements, which
is not suitable for our case due to the strong mutual coupling
between BS antennas.

A transceiver calibration method using bi-directional mutual
coupling based measurements between adjacent antennas of a
2-dimensional array, was given in [6]. However, all circuitry
was made of passive components, e.g. phase shifters and power
dividers, yielding a reciprocal channel even including the hard-
ware circuitry. This work generated attention regarding mutual
coupling based calibration and spurred many publications, but
none fitting the problem setup of this paper. To the best of
the authors’ knowledge, no calibration work addressing our
particular setup is available in the literature.

The remainder of this paper is organized as follows: in Sec.
II introduces the signal models. Sec. III presents our proposed
estimator and the Cramér-Rao lower bound for the transceiver
responses estimates. In Sec. IV the estimator performance is
accessed by means of numerical simulations, and finally Sec.
V concludes the paper.
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II. SYSTEM MODELS

A. Inter-radio model

Consider an M antenna array where BS transceiver cali-
bration is performed on a flat bandwidth, e.g., a particular
subcarrier in an OFDM system. Let for simplicity xp = 1
be the transmitted signal for channel sounding purposes. All
antennas are sounded 1-by-1. The vector with the measured
forward and reverse channels between radio units n and m
with 1 < n < M , 1 < m < M and m 6= n is modeled as

yn,m =

[
yn,m
ym,n

]
= hn,m

[
rn tm
rm tn

]
+

[
zn,m
zm,n

]
, (1)

where the reciprocal propagation channels between antenna
elements n and m are described by

hn,m = cn,m + h̃n,m. (2)

The term cn,m describes a deterministic and known component
due to mutual coupling, which often is stronger for closely
spaced antennas. The sum of the remaining multipath con-
tributions are modeled by a zero-mean circularly-symmetric
complex Gaussian (ZMCSCG) random variable h̃n,m with
variance σ2. The non-reciprocal receiver and transmitter fre-
quency responses, that we want to estimate, are modeled by rm
and tm, respectively, which materially map to the cascade of
antenna responses, SMA cables, and all hardware circuitry in
the analog front-end stage of the radios. Finally, independent
and identically distributed (IID) ZMCSCG noise contributions
zn,m, each with variance N0, are assumed.

A few remarks on the modeling assumptions of (1) follow:
(i) The transceiver responses are modeled linearly, although it
is well known that front-ends exhibit non-linear behavior in
general. The non-linear effects occur mostly due to amplifiers
operating close to their saturation point and can be modeled
by a sum of one linear and other non-linear terms [7]. Two
arguments can be pointed out to justify our pure linearity as-
sumption, the first being that with well behaved amplifiers op-
erating below the compression point, the linear term dominates
over the other terms. Secondly, the main goal of the paper is
to find a simple way to calibrate the transmitter and receiver
responses, and linear modeling simplifies the approach. (ii)
For a fixed antenna array structure, both magnitude and phase
of the coupling component cn,m are known. They are can
measured once after antenna array manufacturing, and can be
considered constant for an arbitrarily long period of time due
to the time-invariant properties of the dielectric materials of the
array. (iii) If h̃n,m is seen as a self-interference channel during
calibration1, then averaging over several realizations of (1)
may not necessarily improve the quality of the observations.
This is especially true in static scenarios where h̃n,m has a
time-invariant behavior, if σ2 � N0. (iv) Uncorrelated scat-
tering contributions between different antennas are assumed,
i.e., E

{
h̃n,mh̃

∗
k,p

}
= σ2δ[n − k]δ[m − p]. This is a rule-of-

thumb in wireless propagation for rich scattering environments
for antenna spacings of λ2 that we use as an approximation. (v)
For generality purposes, no probabilistic models are assumed

1This will be seen later in the paper.
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Fig. 1. Measured channel magnitudes (circles) and respective linear regression
(solid line). The horizontal axis variable D = 10 log10

(
d
λ/2

)
- with d

denoting the physical distance between measured antenna pairs - represents
the normalized antenna distance in terms of λ/2 in decibels. For example,
the two measurements at D = 0 consist of channel magnitudes between two
different pairs of adjacent λ/2 spaced antennas.

for tm and rm, i.e., they will be treated as deterministic but
unknown parameters for estimation.

B. Modeling the coupling gains between antennas

To allow reproducibility of our simulation results later on,
we now give a simple measurement based model for the
coupling magnitudes |cm,n|. The phases ∠cm,n are drawn from
an uniform distribution between −π and π. To model |cn,m| as
a function of antenna spacing, the channel magnitudes between
several pairs of antennas were measured in an anechoic cham-
ber from a 2-dimensional 25x4 dual polarized patch antenna
array with λ

2 spaced elements [4]. The frequency response
magnitude over a 20 MHz bandwidth centered at 3.7 GHz -
which the array is designed to operate at - was averaged. Fig.
1 shows the measured channel magnitudes as a function of
antenna spacing. Different channel magnitudes for equidistant
antennas occur due to the relative orientation of the respective
antenna pair with respect to the measured E-field polarization.
In general, antenna elements placed in the same orientation as
the measured E-field polarization couple stronger than others
[8]. A linear least square fit has been performed to model the
coupling magnitude as a function of antenna distance.

III. TRANSMITTER/RECEIVER CALIBRATION

A. The Generalized Method of Moments estimator

Introduced originally for statistical inference in economet-
rics, the Generalized Method of Moments (GMM) is an
estimation approach which exploits a particular structure of
the signal model, more specifically the moment conditions [9].
In our case, a vector of moment conditions g (y, r, t) that
satisfies

E {g (y, r, t)} = E {g (y,φ)} = 0 (3)

is required. In (3), r = [r1 · · · rM ]
T , t = [t1 · · · tM ]

T , φ =[
tT rT

]T
, 0 is an all zeros column vector, and

y =
[
yT1,2 . . .y

T
1,M yT2,3 . . .y

T
2,M . . .yTM−1,M

]T
. (4)

Noting that all observations in (4) can also be paired as[
ym,`
yn,`

]
=

[
rmhm,`
rnhn,`

]
t` +

[
zm,`
zn,`

]
, (5)
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with n 6= ` 6= m, inspection indicates a moment condition to
be

E {fn,m,`} = E {ym,`rncn,` − yn,`rmcm,`} = 0 ∀ m, `, n.
(6)

A similar formulation of (5), where instead r` is the
common factor, provides the moment condition

E {dn,m,`} = E {y`,mc`,ntn − y`,nc`,mtm} = 0 ∀ m, `, n.
(7)

Stacking all useful2 terms fn,m,` in f (y, r) ∈
CM(M−1)/2×1, and dn,m,` in d (y, t) ∈ CM(M−1)/2×1, and

denoting g (y,φ) =
[
f (y, r)

T
d (y, t)

T
]T
, the GMM esti-

mator is obtained by solving

φ̂ = arg min
φ

||t||2=M
||r||2=M

g (y,φ)
H
Ŵg (y,φ) , (8)

where Ŵ is a weighting matrix that generally needs to be
optimized. Note the imposed constraint ||t||2 = ||r||2 = M
which avoids the all-zero solution and normalizes the average
energy per entry of φ̂ to one. The solution to (8) can be
found by standard numerical optimization methods. Newton’s
algorithm, or any other suitable method, is guaranteed to
converge to the global optimum since the problem at hand is
quadratic with quadratic constraints. Note that neither h̃n,` nor
h̃m,` are included in any of the moment conditions, i.e. only
the coupling components are included. Multipath propagation
will thus show up as self-interference, as it will be seen later
in Sec. IV-B.

We address now the choice of Ŵ . Most of the work
within the GMM framework has been done under asymptotic
assumptions, i.e., when an infinitely large record of finite
signal-to-noise ratio (SNR) observations y, or a finite record of
infinite SNR observations is at hand. Under such conditions
the optimal weighing matrix Wopt has a known form [9].
In our case, only one finite SNR observation is at hand.
Depending on the SNR of such observation, the asymptotic
regime under which Wopt was derived may not hold. Also,
no estimators forW claiming any optimality criteria at the low
SNR regime are available in the literature (at least to the best
of the authors’ knowledge). Claiming no optimality properties
on our estimator, we set Ŵ = I for simplicity, and leave
this optimization problem as future work. With Ŵ = I , (8)
can be seen as an instance of the Rayleigh quotient problem
[10]. Also note that in a calibration setup resembling ours3, the
authors in [3] empirically defined an LS cost function based
on their model’s inherent structure, not being aware that it
corresponds to the particular case of the GMM estimator with
Ŵ = I .

2There are M(M − 1) moment conditions fn,m,`, however half of them
are negative counterparts of the other half and will not contribute for the final
cost function.

3In their work, calibration between access points of a distributed MIMO
system was performed. The estimated parameters were the ratios rm

tm
, and no

coupling between antennas was explored. Their moment conditions were also
different.

B. Cramér-Rao lower bound for the transmitters/receivers

In this section we compute the Cramér-Rao lower bound
(CRLB) [11], a lower bound on the variance of any unbiased
estimator, for φ̂ =

[
t̂T r̂T

]T
. Assuming4 r1 = t1 = 1, we

denote the vector of real parameters

θ=[Re{t2} Im{t2} Re{r2} Im{r2} Re{t3} . . . Im{rM}]T ,
(9)

where Re {} and Im {} return real and imaginary part of their
arguments, respectively. The CRLB is given by [11]

 CRLB(tm) =
[
φ0

∂θ I−1(θ)
φH

0

∂θ

]
2m−1,2m−1

CRLB(rm) =
[
φ0

∂θ I−1(θ)
φH

0

∂θ

]
2m,2m

(10)

where I(θ) ∈ C(2M−2)×(2M−2) is the Fisher Information
matrix of θ, and φ0 = [t2 r2 t3 r3 · · · tM rM ]

T . Before
computing I(θ), note that the mean of (1) is given by

µn,m = E {yn,m} = cn,m [rntm rmtn]
T
, (11)

and the covariance matrix of (1) is given by

Σn,m = Var
{
yn,my

H
n,m

}
=

[
|rn|2|tm|2σ2 +N0 rntmr

∗
mt
∗
nσ

2

rmtnr
∗
nt
∗
mσ

2 |rm|2|tn|2σ2 +N0

]
. (12)

We can observe that the likelihood function for (4) is a
multivariate Gaussian PDF, i.e., p(y|θ) ∼ CN (µ,Σ), with
mean µ =

[
µT1,2 . . .µ

T
1,Mµ

T
2,3 . . .µ

T
2,M . . .µTM−1,M

]T
and

block diagonal covariance

Σ = diag {Σ1,2, · · · ,Σ1,M ,Σ2,3, · · · ,Σ2,M , · · · ,ΣM−1,M} .
(13)

For such likelihood form, the Fisher Information matrix entry
at the ith row and jth column is given by

[I(θ)]i,j = Tr

{
Σ−1

∂Σ

∂θi
Σ−1

∂Σ

∂θj

}
+ 2 Re

{
∂µH

∂θi
Σ−1

∂µ

∂θj

}
. (14)

Note that i and j can also be expressed as i = 4(m−1)+Km

and j = 4(n− 1) +Kn, with 1 < Km < 4 and 1 < Kn < 4.
Due to the symmetric property of I(θ) and thus assuming

j ≥ i, (14) can be written as

[I(θ)]i,j =

{
A1 +A2, m 6= n

B1 +B2, m = n
(15)

4See Sec. III-C for justification.
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with

A1 = Tr

{
Σ−1m,n

∂Σm,n

∂θi
Σ−1m,n

∂Σm,n

∂θj

}
,

B1 =

M∑
`>m

Tr

{
Σ−1m,`

∂Σm,`

∂θi
Σ−1m,`

∂Σm,`

∂θj

}

+

n∑
`=1

Tr

{
Σ−1`,m

∂Σ`,m

∂θi
Σ−1`,m

∂Σ`,m

∂θj

}
,

A2 = 2 Re

{
∂µHm,n
∂θi

Σ−1m,n
∂µm,n
∂θj

}
,

B2 = 2 Re

{
M∑
`>m

∂µHm,`
∂θi

Σ−1m,`
∂µm,`
∂θj

}

+ 2 Re

{
m∑
`=1

∂µH`,m
∂θi

Σ−1`,m
∂µ`,m
∂θj

}
.

An example of a derivative of (12) with respect to an entry
of θ is given in the appendix.

Note the general block diagonal structure of ∂Σ
∂θi

, e.g., for
∂Σ
∂θ7

(where m = 2 and Km = 3) we have

∂Σ

∂θ7
= diag

{
∂Σ1,2

∂θ7
,Ø, · · · ,Ø,

∂Σ2,3

∂θ7
, · · · , ∂Σ2,M

∂θ7
,Ø, · · ·

}
(16)

where Ø is an all zero matrix. If m 6= n, there is only one
matrix entry where the two block diagonal matrices ∂Σ

∂θi
and

∂Σ
∂θi

are non-zero. If m = n, then M of such matrix entries
are shared which explains the summations in A2 and B2. To
finalize, note that both N0 and σ2 were assumed to be known
in the CRLB computation.

C. A Reference Element for Calibration

The CRLB computations for t̂m and r̂m made use of
the concept of a reference antenna element for calibration
purposes, see [2]. That is, since calibration can be performed
up to a common complex factor among the transceivers, a
convenient approach is to assume r1 = t1 = 1 where such
transceiver is considered a reference5. The CRLB for the
remaining elements are calculated accordingly. This ensures
invertibility for the Fisher Information matrix. However, note
that setting r1 = t1 = 1 needs not to be strictly met to derive
an estimator, as done in Sec. III-A.

IV. PERFORMANCE ASSESSMENT

A. Simulation Setup

The main focus of our analysis contrasts the GMM estimator
mean square error (MSE) against the CRLB. We define the
following MSE metric for the GMM estimator performance:

MSE(rm) =
[

E
{
|r − r̂/r̂1|2

} ]
m

MSE(tm) =
[

E
{
|t− t̂/t̂1|2

} ]
m
. (17)

5More generally, one can assume rm = q1 and tm = q2 with 0 6=
[q1 q2]

T ∈ C2×1.

This MSE definition is coherent with the reference element
concept used in the CRLB calculations. Moreover, our nu-
merical simulations for the GMM estimator and CRLB com-
putations were all performed with rm = tm = 1 ∀ m. The
constraint in (8), namely ||t||2 = ||r||2 = M , ensures that

φ̂0
p→ φ0 as

{
N0 → 0

σ2 → 0
(18)

due to the asymptotically unbiasedness property of the GMM
estimator [9]. The notation

p→ denotes convergence in prob-
ability. The unbiasedness property in (18), and the MSE
definition in (17), allow a coherent comparison between the
estimator MSE and the CRLB. Also, having rm = tm = 1
makes MSE = 0 dB a reference point in the analysis.

Naturally, we select the reference element as one of the
most central antenna elements of the 2-dimensional array. In
average, this choice yields the strongest coupling channels to
all other antenna elements of the array.

We limit our analysis to two extreme cases, namely, cali-
bration of a transceiver which is associated to an adjacent (or
neighbor) antenna element to the reference element, and the
case of calibration of a transceiver that is associated with one
of the antennas at the four corners (edges) of the 2D array.

Note that all upcoming results, and evaluated range of
N0 and σ2, should be considered together with the derived
coupling model in Fig. 1 where the strongest coupling channel,
i.e. neighbor channel, yields a −16.5 dB gain.

B. Results and Analysis

The symmetry of the model in (1) for rm and tm together
with the simulations settings adopted, makes the statistical
performance of r̂m similar to t̂m. Thus, our analysis holds
for both cases.

Fig. 2 shows the CRLB for the transceiver associated with
a neighbor antenna with respect to the reference. Overall, this
lower bound of the variance decreases as M increases due
to the increasing number of signal alternatives available to
estimate the same parameter. At low enough N0, the CRLB
flattens out which happens due to the self-interference term
h̃m,n.

The CRLB for the edge antenna transceivers is shown in
Fig. 3. An increase of M also decreases the CRLB as in the
neighbor case. An interesting fact, since, although a larger
signal set is available for estimation purposes, the distance
(and hence the path loss) with respect to the reference element
also increases. Compared to the neighbor case, a performance
degradation of up to 4 dB is to be expected, as can be seen
in Fig. 6 in Appendix B.

Fig. 4 and 5 show the MSE performance of the GMM
estimator, and contrast this with the CRLB for M = 100
antenna elements. For the neighbor antenna case, performance
very close to the theoretical optimum is achieved for some
parameter regions, e.g. N0 ≈ −35 dB and σ2 = −50 dB for
M = 36 and M = 100.

Since we set tm = rm = 1 ∀m in our simulations,
increasing N0 or σ2 by the same amount is equally degrading
for the performance of our estimator. For example when
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Fig. 3. CRLB vs N0 for the edge antenna element, for different number of
base station antennas M , and parameter of the Rayleigh channel σ.

M = 400 in Fig. 4, an MSE of −27 dB is obtained
for σ2 = N0 = −50 dB, and increasing σ2 or N0 by
10 dB results in an MSE of −15 dB. It is worthwhile
mentioning that in a practical scenario, increasing the transmit
power beyond a certain level is not beneficial to improve the
quality of the observations, since h̃n,m multiplies the transmit
signal. This aspect together with a possible time-invariant
behavior of h̃n,m, which results in no quality improvements
by averaging, makes multipath propagation a prominent source
for calibration inaccuracies.

Overall, GMM calibration for neighboring antennas is more
accurate than for edge antennas, as one would expect. However
some calibration cases indicate that performance degradation
seems to always increase with M . This is particularly true for
the edge antenna element, contrarily with one would expect
simple by analyzing their CRLBs for different M . The sub-
optimality of our estimator may justify this behavior.
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Rayleigh channel σ.

−20 −30 −40 −50 −60 −70 −80
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

N
0
 [dB]

1
0

 l
o

g
1
0
M

S
E

Edge antenna

 

 

CRB M=100

GMM M=36

GMM M=100

GMM M=400

σ
2
 = −40dB

σ
2
 = −50dB

Fig. 5. MSE of the GMM estimator vs N0 for the edge antenna element, for
different number of base station antennas M , and parameter of the Rayleigh
channel σ.

V. CONCLUSIONS

In this paper, a transceiver calibration technique using mu-
tual coupling between antenna elements of a massive MIMO
base station was proposed. For a 2-dimensional antenna array
of a given size, transceivers associated with antennas at the
edge of the array are the hardest to calibrate. Moreover, the re-
sults from our proposed estimator indicate that the calibration
error associated with these transceivers grows for arrays with
increasing number of antennas. This implies that in practice,
stricter calibration requirements are needed to calibrate bigger
arrays, while still maintaining the same error criterion. This is
however contrary to what the CRLB indicates.

Overall, the proposed calibration method does not suffer
from convergence problems, and it is of practical use, given
that the mutual coupling gains between BS antennas are
known, and multipath contributions during calibration are
small compared to mutual coupling effects.
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VI. APPENDIX A

Fig. 6 shows the difference between the CRLB of a
transceiver estimate associated with edge antennas, and
transceiver estimate associated with neighbor antennas to the
reference antenna.
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Fig. 6. Difference between the CRLB of a transceiver estimate associated with
edge antennas, and transceiver estimate associated with neighbor antennas to
the reference antenna, for different number of BS antennas M , and squared
parameter of the Rayleigh channel σ2.

VII. APPENDIX B

An example of a derivative of (12) with respect to an entry
of θ, namely θ4(k−1)+Km

with Km = 2 given by
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Ø, otherwise.
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