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Modeling and Control of a Piezo-Actuated High-Dynamic

Compensation Mechanism for Industrial Robots

Björn Olofsson, Olof Sörnmo, Ulrich Schneider, Anders Robertsson, Arnold Puzik and Rolf Johansson

Abstract—This paper presents a method for modeling and
control of a piezo-actuated high-dynamic compensation mech-
anism for usage together with an industrial robot during a
machining operation, such as milling in aluminium. The ma-
chining spindle was attached to the compensation mechanism
and the robot held the workpiece. Due to the inherent resonant
character of mechanical constructions of this type, and the
nonlinear phenomena appearing in piezo actuators, control
of the compensation mechanism is a challenging problem.
This paper presents models of the construction, experimentally
identified using subspace-based identification methods. A subse-

quent control scheme, based on the identified models, utilizing
state feedback for controlling the position of the spindle is
outlined. Results from experiments performed on a prototype
of the compensation mechanism are also provided.

I. INTRODUCTION

Due to the limited positioning accuracy and stiffness of

industrial robots, machining has traditionally been performed

using dedicated CNC machines, when accuracy higher than

0.1 mm is required. However, since industrial robots may

offer more flexible and cost-efficient machining solutions

than CNC machines, it is desirable to use industrial robots

for machining tasks, such as, e.g., milling in aluminium.

Within the EU/FP7-project COMET [1], the aim is to

develop solutions for machining with industrial robots with

accuracy greater than 50 µm. For high-precision machining,

a high-dynamic mechanism for real-time compensation of

the remaining position errors of the robot is developed. This

unit is called a High-Dynamic Compensation Mechanism

(HDCM).

This paper presents modeling and control of a prototype of

the HDCM-unit. The design of the unit has been discussed

in several earlier papers, see, e.g., [2], [3], and therefore,

the mechanical design is only briefly described below. The

focus of this paper will be on the dynamic properties and

how the subsequent control design should be optimized for

satisfactory milling results. It will be shown how nonlinear

effects in the HDCM can be handled and how the mechanical

vibrations in the construction can be reduced by using

appropriate control design methods.

This paper is organized as follows. Section II describes the

experimental setup of the industrial robot and the HDCM-

unit, as well as the corresponding environment for simulation
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Fig. 1. The experimental setup for real-time compensation of positioning
errors during machining operations, where the robot holds the workpiece
and the spindle with the milling tool is mounted on the HDCM-unit. A
detail of the HDCM and the Cartesian axes, along which compensation is
possible, are also displayed.

and testing of the control design. Section III describes initial

experiments performed on the HDCM for dynamic charac-

terization. Based on the dynamic characterization, modeling

of the construction is discussed in Section IV and the subse-

quent model-based control design is described in Section V.

Experimental results are presented in Section VI and finally

conclusions and future work are given in Section VII.

II. EXPERIMENTAL SETUP

A prototype of the HDCM has earlier been developed

and reported in several publications, see, e.g., [2]. In the

experiments in this paper, the HDCM is to be used together

with a REIS RV40 industrial robot. The robot holds the

workpiece and the spindle is consequently attached to the

HDCM, see Fig. 1.

A. Design & construction

The design of the HDCM is such that motion of the spindle

is possible in the three Cartesian directions, hereafter called

x, y and z, respectively, see Fig. 1. The motion in each direc-

tion is achieved by the forces generated by three individual

piezo actuators, and the axes are designed to be decoupled.

The extensions of the piezo actuators are translated to a

corresponding translational movement of the spindle via a

flexure mechanism. The flexure mechanism is designed such

that the gear ratio of the displacement of the spindle and

the extension of the piezo actuator is approximately five

in each direction. This realizes a compensation range for

the machining spindle of approximately 0.5 mm in each

Cartesian direction.
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B. Actuation and sensors

The extensions of the piezo actuators are changed by ap-

plying voltages, and the extensions are measured using strain

gauges, attached to the actuators. The Cartesian displacement

of the spindle is measured with capacitive sensors, one in

each direction.

C. Interface to the HDCM

In order to develop the control structure for the HDCM-

unit, all sensors and actuators are integrated using a dSPACE

system of model DS1103 [4]. Using the software Control-

Desk, the user can implement control strategies in a simple

manner as well as develop graphical user interfaces. The

control design described in this paper has been implemented

in MATLAB Simulink, then generated to C–code using the

Real-Time Workshop toolbox [5]. The compiled C-code is

installed in the dSPACE system and executed at a sampling

frequency of 10 kHz.

III. DYNAMIC CHARACTERIZATION OF THE HDCM

Due to the inherent resonant character of mechanical sys-

tems and the nonlinear effects that appear in piezo actuators,

accurate positioning control of the HDCM without vibrations

is a challenging control problem. A model-based solution is

here pursued in order to control the tool position.

A. Nonlinear phenomena in the piezo actuators

Experiments have been performed on the HDCM in order

to determine the effect of the nonlinear phenomena in the

piezo actuators. The experiments indicated that the main

nonlinearities that need to be handled are hysteresis and

the creep phenomenon. Results from experiments where the

voltage to the piezo actuators are alternatingly increasing

and decreasing are shown in Fig. 2. It is obvious that

the hysteresis needs to be handled actively for accurate

positioning. It is also noted that the hysteresis is both rate

and amplitude dependent. Further, experiments showed that

the nonlinear creep phenomenon in the actuator is a much

slower process, and thus easier to handle.

Although different in nature, both of these nonlinear

effects can be handled using high-gain feedback. The control

design will be described in Section V.

B. Frequency characterization of the mechanical design

In order to characterize the frequency properties of the

mechanical design, several frequency response experiments

have been performed. The frequency spectra in the different

directions, displayed in Fig. 3, were estimated using the

periodogram method. An important property of the system is

the location of the first natural eigenfrequency. It is noted that

the characteristics are quite different in the three Cartesian

directions. In particular, two natural eigenfrequencies are

visible in the x- and z-axes, whereas only one is visible

in the y-direction. The first eigenfrequency appears in the

frequency range 33–47 Hz in all of the three axes.

The locations of the eigenfrequencies are important since

they limit the achievable bandwidth, i.e., the velocity of
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Fig. 2. Extension of the piezo actuator as function of the input for a
triangular wave with varying amplitude as input.
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Fig. 3. Estimated frequency spectra in the Cartesian directions.

the control loop, in the final closed-loop control system.

Increasing the bandwidth beyond the resonance frequency

requires a lot of control actuation and the sensitivity to model

errors becomes significant.

IV. MODELING OF THE MECHANICAL CONSTRUCTION

In order to design control algorithms, it is advantageous to

perform modeling of the HDCM prior to the design. Two dif-

ferent methods for modeling can be chosen. Firstly, modeling

based on mechanical relations can be established, where

the construction specific parameters are either analytically

calculated or experimentally determined.

The other approach is to consider black-box input-output

models without investigating the internal mechanical design.

This is a common approach in model-based control, which
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results in satisfactory control performance given that the

model captures the essential dynamics of the system. This

approach is investigated in this paper for modeling of the

HDCM.

A. Identification based on black-box models

Using system identification methods [6], mathematical

models describing the HDCM can be determined. The axes

can be assumed to be decoupled, conditioned that the me-

chanical design is made such that the motions of the different

directions are independent. This assumption is made in this

paper. Consequently, each axis is considered as a system with

one input and one output. Identification of the models was

done in the System Identification Toolbox [7] in MATLAB

and the State space Model Identification (SMI) toolbox [8]

for identification of state-space models.

Accordingly, consider discrete-time state-space models of

the innovations form

xk+1 = Φxk + Γuk + vk (1)

yk = Cxk + Duk + ek (2)

where uk ∈ R
m is the input, xk ∈ R

n is the state vector,

yk ∈ R
p is the output and vk and ek are noise sequences.

The matrices {Φ, Γ, C, D} in the state-space representation

are identified using one of the available implementations of

subspace-based identification methods, such as the N4SID-

method [9] and the MOESP algorithm [10]. During the

identification of the models, a Kalman gain vector for a

minimum variance estimate of the states in the model is also

determined, based on the noise properties.

B. Collection of input-output data

The collection of experimental input-output data was per-

formed in such a way that the input uk is considered to be a

scaled version of the input voltage to the actuator, whereas

the output yk is defined to be the position of the spindle as

measured by the capacitive sensor.

When performing system identification, an appropriate

input signal has to be chosen, such that the system is excited

properly. In this paper a chirp-signal was chosen—i.e., a

sinusoid with constant amplitude and linearly increasing

frequency—as input, since this signal gives excitation in a

well-defined frequency range. Consequently, the start and

end frequencies in the chirp-signal have to be chosen based

on the frequency range of interest. Given the frequency

spectra displayed in Fig. 3, a suitable range of excitation

is 10–60 Hz, see Chap. 8 in [6].

C. Model-order selection and preprocessing of the data

When performing identification of the state-space models,

a model order has to be chosen. To this purpose, the

singular values calculated during the identification procedure

using the N4SID or MOESP algorithms are utilized. By

plotting these singular values, the gap between the model

and the noise level is identified. Based on this information,

a sufficient model order can be chosen.

Prior to the identification, the input-output data is pro-

cessed, such that the mean and the linear trend are removed.

Also, the data, which is acquired at 1 kHz, is decimated to

a sample rate of 1000/6 ≈ 167 Hz, which is suitable given

the location of the eigenfrequencies in the different axes.

D. Identified models

Experimentally identified discrete-time state-space models

of the form (1)–(2) in the x, y and z-directions of the

open-loop system were estimated. All models are of the

same format. However, the model-orders vary in different

directions, reflecting the number of natural eigenfrequencies,

cf. the frequency spectra in Fig. 3. The model orders are

4, 2 and 5 in the x-, y- and z-directions, respectively. The
model order selection was based on the singular values

analysis during the identification procedure. As an example,

the model obtained using the SMI toolbox in the y-direction
is

xk+1 =

[

−0.1846 1.071
−0.8762 −0.1588

]

xk +

[

−1.029
−0.06196

]

uk (3)

yk =
[

−0.4567 −0.03502
]

xk + 0.3321uk (4)

The frequency spectra of the identified models are shown in

Fig. 4. It is noted that there is good correspondence with

the estimated periodograms in Fig. 3. A measure of the fit

of the models to the data, are the variance accounted for

(VAF) values. These numbers are 92.5, 99.5 and 97.1 for the

identified models in the x-, y- and z-directions, respectively.
This indicates that the models capture the essential dynamics

of the system.

V. POSITION CONTROL OF THE HDCM

The control problem of the HDCM can be divided into

two parts. Firstly, the nonlinear effects of the piezo actuators

need to be reduced. Secondly, the oscillatory mechanical

construction needs to be accurately position controlled. The

control structure chosen in this paper is described below.

A. Inner piezo actuator control loop

Nonlinear systems can be controlled by both model-

based feedforward control and with feedback control. Several

approaches to modeling the hysteresis and subsequent model-

based control design have been presented in literature, such

as the Prandtl-Ishlinskii model and the Preisach model, e.g.,

[11], [12], [13]. However, as the extensions of the piezo

actuators in the HDCM are available for measurement with

the strain gauges, a more straightforward solution is chosen,

where an inner feedback loop is closed around the nonlinear

actuator. The prototype controller is a PID controller, with

continuous-time transfer function

GC(s) = Kp +
Ki

s
+

sKd

1 + sKd/N
(5)

where Kp, Ki and Kd are controller parameters. The deriva-

tive part in the controller is lowpass filtered, in order to

reduce the amplification of high-frequency noise contami-

nating the measured signal from the strain gauge. The cutoff

frequency in the lowpass filter is determined by the parameter
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Fig. 4. Bode magnitude of the discrete-time state-space models identified
using subspace identification, in the x-, y- and z-directions, respectively.

N . The PID controller also has to be accompanied by an

anti-windup scheme, to handle the case when the controller

saturate the actuators. Discretization of this continuous time

controller for implementation in the dSPACE system is

straightforward, see, e.g., [14].

In order to reduce the nonlinear effects in the piezo actua-

tors, the proportional gain Kp and the integral gain Ki should

be increased as much as possible, without causing instability.

It will be shown by experimental results in Section VI, that

this approach—i.e., using a linear controller for reducing the

nonlinear effects in the piezo actuator—results in satisfactory

performance of the control of the piezo actuators.

B. Model-based feedback control of the HDCM

By utilizing the identified state-space models, a state

feedback control loop can be designed for each of the three

Cartesian directions of the HDCM. However, new models

need to be identified after closing the inner feedback loop

around the piezo actuators, where the reference signal to the

inner PID control loop is considered as the input instead.

Since the difference compared to the open loop models

presented in the previous section is small, the models with

the closed inner loop are not presented here.

State feedback is an appropriate structure, since damping

can be introduced in the construction by suitable control

design. The control law for state feedback control of the

system (1)–(2) can be stated as follows

uk = −Lxk + uff (6)

where the parameter vector L is to be chosen and uff

is the feedforward control signal. The design procedure is

to determine the L-vector by linear-quadratic (LQ) optimal

control [14], i.e., such that the cost function

J(u) =
∞
∑

k=1

xT
k Qxk + uT

k Ruk (7)

where the matrices Q and R are user defined weights in the

optimization, is minimized.

Since all states in the state-space model of the HDCM

are not available for measurement, a Kalman filter is intro-

duced for estimation of the states, based on the measured

position signal and the identified model. The Kalman filter

is organized as [14]

x̂k+1 = Φx̂k + Γuk + K(yk − Cx̂k − Duk) (8)

ŷk = Cx̂k + Duk (9)

where the estimated states x̂k and the estimated output ŷk

have been introduced. Since the identified model is based on

experimental data, where the mean are subtracted from the

real data, a disturbance state is added to the observer, i.e., a

new, constant state

x̂e
k+1 = x̂e

k (10)

is introduced. By adding this state, the correct static gain

for the estimation is achieved [14]. The Kalman gain K is

determined by pole placement, i.e., such that the eigenval-

ues of the matrix (Φ − KC) are appropriate. The model

identification procedure provides the Kalman gain vector for

estimation of the states in the model. The corresponding

pole placement is used also in the Kalman filter with the

disturbance state, but with one additional pole corresponding

to the extra disturbance state.

The control law for the state feedback control is then based

on the estimated states, i.e., uk = −Lx̂k + uff . In order to

remove stationary errors in the position control loop, integral

action is introduced in the state feedback. This is done by

extending the state vector with the integral state

xi(t) =

∫ T

0

(r(t) − y(t)) dt (11)

where the reference signal r(t) has been introduced. With

this extra state, it is also required that the state feedback

vector L is augmented with one element, i.e., Le =
[

L li
]

,

where li is the integral gain. Also, note that the integral state
needs to be discretized prior to design and implementation

in the dSPACE system.

Different approaches can be chosen to handle the feedfor-

ward control signal. In the scheme presented in this paper, the

feedforward control uff is chosen as a direct term from the

reference signal, uff = lrr. The parameter lr determines the

gain of the closed-loop system and is experimentally tuned

by the user. The final control structure is summarized in the

block scheme in Fig. 5.
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Fig. 5. Control structure for model-based control of the HDCM, where each Cartesian axis is considered separately.

VI. EXPERIMENTAL RESULTS

Several experiments were performed in order to evaluate

the performance of the control design. Firstly, the PID con-

trollers for the nonlinear piezo actuators are tuned, in order

to achieve as high performance as possible. In experiments it

was observed that the control is working satisfactory, despite

the nonlinearities in the piezo actuators. When applying a

triangular wave with a frequency of 3 Hz as input, the

control error is within approximately ±1 µm. This provides

experimental evidence that the PID controller is sufficient for

controlling the positions of the piezo actuators.

A. Tuning of controller parameters

In order to determine the state feedback vector L, the

weight matrices Q and R in the LQ design need to be

determined. Based on the identified model for the HDCM in

the y-direction, the characteristics of the closed loop system

was investigated for different weight matrices. Especially, the

choice of the R-matrix determines the aggressiveness of the

controller. Bode plots of the closed loop system for different

choices of R, where the Q-matrix has been chosen as the

identity matrix, can be seen in Fig. 6. The direct term lr in

the control law has been chosen such that the static gain for

the closed loop control system is one in all cases. It is noted

that a lower weight results in a more aggressive controller,

where the resonance in the system is well damped, at the

cost of reduced bandwidth. Hence, the controller needs to

be tuned as a trade-off between the attenuation of the poorly

damped resonance in the system and the aggressiveness of

the controller. A too aggressive controller may result in

unsatisfactory control performance or even instability when

applied to the experimental setup, depending on the model

accuracy.

B. Evaluation of the control design

In order to evaluate the control design on the experimental

setup, a reference signal was recorded as the deflection of the

robot during a milling operation in one dimension, measured

with a laser sensor. The recorded signal corresponds to the

deflection of the robot in the milling direction, which in this

case equals the y-direction of the HDCM.

Experiments were performed on the real setup with vary-

ing weight matrices. Also, the integral state was added to

the state feedback, whose influence is determined by the

parameter li. The weights Q = I and R = 2.5, where I is
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Fig. 6. Bode diagram for the closed-loop system for Q = I and different
choices of the R-matrix in the LQ-design. The choices of R are 1.0, 2.0,
3.0 and 4.0 for the blue, red, green and black line, respectively.

the identity matrix, turned out to result in satisfactory control

performance.

The reference signal is filtered using a notch filter, where

the notch is located at the eigenfrequency of the HDCM in

the y-direction, as observed in the frequency spectrum in

Fig. 3. This is done in order not to excite the mechanical

resonance in the construction. Another option is to lowpass-

filter the reference signal. However, since the construction

itself is of lowpass-character, frequencies above the natural

eigenfrequency in the reference signal will be attenuated.

The recorded signal was applied as reference signal in the

y-direction of the HDCM. Figure 7 shows the control perfor-

mance of the inner PID controller loop. It is noted that the

control error with this reference signal, which contains high

frequencies, is within approximately ±3 µm. This shows

that the PID controller is a satisfactory control structure, as

the precision required in the inner control loop is achieved.

Figure 8 shows the spindle position, as measured by the

capacitive sensor. Also this figure indicates good control

performance, with a control error of within approximately

±15 µm.

It is observed in Fig. 8 that the control error signal exhibits

periodic behavior of different frequencies. The frequency

spectrum of this signal is displayed in Fig. 9. Three peaks

at 9, 140 and 250 Hz are clearly visible. The first peak

corresponds to the eigenfrequency of the robot and the

higher frequencies are related to eigenfrequencies of the

piezo actuator, the rotation of the spindle and the impact
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Fig. 7. Control performance in the inner PID control loop in the y-direction.
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Fig. 8. Performance of the model-based spindle positioning control in the
y-direction.

of the milling tool on the workpiece. Further, it is noted that

the first significant eigenfrequency of the HDCM in the y-
direction at 47 Hz is well damped as a result of the control

design.

VII. CONCLUSIONS AND FUTURE WORK

This paper has investigated modeling and control of a

piezo-actuated high-dynamic compensation mechanism. The

developed control structure was realized in a discrete-time

implementation and experimentally verified on the prototype

of the HDCM. By tuning the state feedback controller

appropriately, damping was introduced in the mechanical

construction by control design. The resulting control error

for the reference signal recorded during a milling operation

was within approximately ±15 µm, which by far achieves

the desired accuracy of 50 µm for the complete milling task.

Based on the experimental results presented in this paper,

the model-based approach for control of the HDCM is

promising. However, the control scheme needs to be tested
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Fig. 9. Spectrum of the control error signal.

further during milling operations in order to take the process-

specific disturbances into account in the control scheme.

Disturbances are for example the spindle rotation and the

process-forces. To this purpose, the HDCM-unit and the

robot will be equipped with 3D-accelerometers.
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