This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

A Review of the Principles of Designing Smart
Cyber-Physical Systems for Run-Time Adaptation:
Learned Lessons and Open Issues

Joze Tavcar

Abstract—Smart cyber-physical systems (S-CPSs) are complex
engineered systems empowered by cyber-physical computing and
equipped with the capability of reasoning, learning, adapting, and
evolving. As an outcome of data-driven dynamic computing, rea-
soning capabilities, and the run-time obtained own knowledge,
nonlinear and emergent behavior of S-CPSs whilst in operation is
an open issue, not experienced in the case of conventional techni-
cal systems. This paper analyzes the technical issues of run-time
operation and emergent behavior of S-CPSs, reviews the current
understanding and state of advancement in designing S-CPSs for
run-time, explores the paradox, and issues of designing for run-
time adaptation, and synthesizes some general principles that
can be taken into consideration when addressing the challenges,
first of all, in the context of advanced manufacturing systems.
This paper introduces four levels of CPSs according to reasoning
capabilities and adaptation freedom of systems, and recognizes
the paradox that a system with a higher level of freedom requires
a higher level of self-control and resource management accord-
ing to the overall objective of operation. Specific and common
design principles are presented and critically assessed for each
advancement level of CPSs. The principles synthesized by the
authors provide only a partial fulfillment of the generic need.
The planned future research addresses these issues and proposes
(largely implementation and application independent) genuine
principles for system developers.

Index Terms—Design principles, industry 4.0, run-time adap-
tation, self-adaptation, self-awareness, smart cyber-physical
systems (S-CPSs).

I. INTRODUCTION
A. Background of This Paper

HIS paper deals with smart cyber-physical systems
(S-CPSs), which can be sorted into the category of com-
plex nonlinear systems. They have a unique set of paradigmatic
features such as self-awareness, self-adaptation, self-evolution,
and self-reproduction (Fig. 1). They implement a higher

Manuscript received October 31, 2017; revised February 15, 2018 and
February 24, 2018; accepted March 1, 2018. This work was supported
by the Slovenian Research Agency under Contract P2-0265. This paper
was recommended by Associate Editor A. Trappey. (Corresponding author:
JoZe Tavcar.)

J. Tavcar is with the Faculty of Mechanical Engineering, University of
Ljubljana, Ljubljana SI-1000, Slovenia (e-mail: joze.tavcar @lecad.fs.uni-lj.si).

I. Horvith is with the Department of Design Engineering, Cyber-Physical
Systems Design, Technical University of Delft, Delft, The Netherlands
(e-mail: i.horvath@tudelft.nl).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2018.2814539

and Imre Horvath

¥ I 2 2 L3 +

biological] [mental social_ [engineered]

socio-technical systems

cognitive systems_]
L]

[biotechnical systems]

complex (non-linear)]

[phy;cal][

[

[cyber-physical systems]
I

regular (linear)

I — J—t 5 +
software software self-regulating self-aware

integrated integrated ’ and and ‘

ordinary complicated self-tuning self-adapting

+]
self-cognizing self-conscious
and and
self-evolving self-reproducing
cybermatics systems]

Fig. 1. Placement of S-CPSs on the landscape of systems. They are complex
and nonlinear, and have specific intelligence and organizational features.

level of integration of hardware, software, and cyberware
technologies than any other type of systems ever before [1].
S-CPSs are typically deeply embedded-in, and having numer-
ous internal/external relationships with, natural or engineered
environments, and are operational status and context-aware
systems which cognitively interact with humans and influ-
ence their social life. They are complex, partially autonomous
systems, showing emergence, dynamics, nonlinearity, and
other behaviors not present in the elements. Though S-CPSs
are open systems from both architectural and operational view-
points, they implement a high-level of synergy with regard
to all dynamically changing functionalities and components.
Their control is partially model-based and partially driven
by run-time acquired data. The on-line feedback provided
by S-CPSs strongly depends on the purpose of their applica-
tion (informing, actuating, or both). Though many S-CPSs are
distributed and decentralized networked systems, their opera-
tion is supposed to be real-time, and often show elements of
autonomy [2].

2168-2216 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9046-0913

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2
functional and operation augmentation run-time
structural | €= strategy < of system acquired
adaptation generation operation data
. model
adapted behavior awareness
parameters deviations and learning
= = - performance
intervention | ¢ performance specifications
planner evaluator
parameter l I measured
values system output
control i operation
control model
parameters N
System control input
st ains
point * g hysical
physical
system 3 effector S sensor
controllers networks ’ application networks >
sub-system
Horvath, 1.01.2018
Fig. 2. Control regime of S-CPSs. It combines the loops of feedback con-

trol with those of data-driven reasoning, operational strategy generation, and
structural adaptation.

The primary enabling asset of CPSs is cyber-physical
computing (CPC). It pursues dynamic computing based on
run-time obtained information [3]. From a computational per-
spective, it overwrites the von Neumann theory-based com-
puting (i.e., making calculations in a predefined way). Owing
to this, CPC makes both nonlinear operation and emergent
behavior of hardware, software, and cyberware constituents
possible in run-time. S-CPSs implement two recurrent and
intertwined cycles of computing.

1) The basic control cycle, which comprises “sensing —

monitoring — adjusting — actuating” activities

2) The (self-)enhancement cycle, which comprises ‘“rea-

soning — learning — adapting — evolving” activities
(Fig. 2).

Consequently, multiactor S-CPSs are not fully determinis-
tic systems. They have some level of freedom in setting the
objectives of system operations, as well as the capability of
adapting themselves to varying tasks, situations, and contexts.
This paper concentrates on what is known as the second gen-
eration of CPSs, which are able to implement self-awareness
and self-adaptation whilst in operation (Fig. 3). Underpinning
theories, computational methodologies, and enabling technolo-
gies for the fourth generation of CPSs are still in a premature
stage nowadays. However, it is important to understand the
trend of development and touches upon the essential charac-
teristics and issues related to the third generation of CPSs.
The classification of CPSs into four groups according to the
adaptability capability level is an important paper contribution.
This help to create the whole picture of CPSs run-time adap-
tation and in the next phase improve understanding of design
principles for S-CPS.

3

1) Level I: First generation of CPSs with no changes in
life span. The system structure and way of default operation
is defined in the design phase, and it does not change through-
out the system life span. The system has conventional control
mechanisms and can regulate parameters to a known degree.
In the case of a fault or changed circumstances in the environ-
ment, human intervention is expected. An example is a CNC
machine where cutting speed and feed rates are in the first
control loop. The production rate and machining cost can be
additionally improved on the base real-time measurements of

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

level of self- level of self-
intelligence organization

AN <

[[

self- self- fourth
consciousness reproduction generation

P P

self- self- third
cognizance evolution generation

T T

1l Hl]

self- self- second
awareness adaptation generation

T T

[[

self- self- first
regulation tuning generation

HIH HIl

[I

d i /] zeroth

—— generation

physical system
and processes
| —

|
==

Fig. 3. Different generations of CPSs according to level of self-intelligence
and self-organization [4] (2G-CPSs are referred to as smart CPSs).

(actuation) <
o,

process variables, and the setting of optimal parameters dur-
ing machining. The end-user can adjust the predefined adaptive
control algorithms with some preselected parameters.

2) Level 2: Second generation of CPSs with known modes
of changes. The system is designed for alternative modes of
control and selection of the optimal mode of control during
run-time. Resources, modes of control, and a reasoning algo-
rithm for selecting different modes are predefined in the design
phase and do not change during the system life span (Table I).
Data from system and environment awareness is used for con-
trol mechanisms in each mode of operation. An example is an
air-fly control system that operates under several modes. There
is at least a simple validated mode and the advanced mode
with better performance [5]. The control system can select the
optimal mode of operation in real-time according to measured
data and reasoning logic. Some modes of operation are pre-
pared for specific faults, such as if one aircraft engine does
not work.

3) Level 3: Third generation of CPSs with quasi-
known/unknown changes. Self-learning CPS has the ability
to adapt predefined control algorithms during the exploitation
period. The adaptation can be conducted only inside predefined
limits or an envelope, and with constraint resources that are
because of safety or any other reasons defined in the design
phase (Table I). An example is a self-learning robot. The
limits of the basic technical characteristics and resources are
defined in the design phase: maximal arm acceleration and
speed, weight of grippers, way of moving, and working area.
Inside those predefined limits the robot is allowed to adapt its
control algorithms for optimal control of movement [6]. The
robot records the operating parameters and compares them
with target function. On the basis of reinforcement-learning
in the second loop, the robot can adapt its control algorithm
throughout its lifetime.

4) Level 4: Fourth generation of CPSs with largely
unknown changes. The system has the ability of control
generation and in this way of constraining the application

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAVCAR AND HORVATH: REVIEW OF PRINCIPLES OF DESIGNING S-CPSs FOR RUN-TIME ADAPTATION 3

TABLE I
LEVEL OF FREEDOM AND CONTROL MECHANISMS
OF SECOND GENERATION OF CPSs

Level 2: Level 3:
Known modes of changes Quasi known/unknown modes
of changes
control loo)
mode 1 p self-learning loop [
12
o £
25 v [1]
control loop | o 5<c
1 mode?2 < 2 b control loop
o 3 mode 1
€ »
control loop ¢ I @ 5,
mode 3 control loop | ==
<€]
A mode 2 25
(SN
v £
V; system / > control loop
process mode 3
A
Selection of preprogrammed NE
alternative control mechanisms for >| system/ process >
run time.

Adaptation of predefined control
according to learned conditions.

Level of freedom and self-control mechanisms

Selection of alternatives with
regards to known degrees.
Regulation inside of each mode.
System control keeps the system
within preset limits.

Safety loop.

Self-learning of how to adapt.
Control of adaptation in each mode.
System control software
configuration within preset limits.
Negotiation on the possible
trajectory of evolution run-time.
Run-time validation .

Role of humans

Predefinition of all resources and
operational alternatives.

Direct adjustment of resources and
operational limits.
Interventions in the case of faults.

and system structure. However, the field of adaptation is not
restricted to rigid limits. Typically, human is involved in the
control loop as supervisory controller. The manner in which
the system adapts and limits itself depends on the applied
self-learning algorithms. In the design phase it is not known
in which way the system will adapt and what will be the
final result. Two practical examples may be useful to clarify
this. The first example is an S-CPS resembling implementa-
tion of a CNC machine and its work process. By accumulating
data about the experiences with material removal by the dif-
ferent cutting tools and the achieved workpiece quality over
the entire life cycle work of the CNC machine, deficiencies
can be identified and adaptations can be introduced. This
knowledge can be a rich source of further development of
the cutting technology and optimal design of tool materials
and morphologies. In addition, the various parameters of spe-
cific machining processes may be optimized, predicted, and
adjusted dynamically [7]. The second example is a swarm of
robots that are smartly coordinated in order to achieve an
optimal task performance in a future production factory. In
this context, de Lope et al. [8] proposed a distributed approach
with autonomous techniques, where the robots or agents them-
selves are responsible for choosing a task. In an experimental
scenario, a reinforcement learning algorithm was used that was
based on ant colony optimization.

The CPSs of Level 1, and partially those of Level 2, operate
exactly as their operation was specified in the design phase.
The systems of Levels 1 and 2 can be context-aware in a grow-
ing extent, and they can tune or adapt themselves to new
circumstances in the same way throughout the whole life cycle.
Currently, for a safety-critical system like air-fly control, it is
requested that they operate in the deterministic way they were
validated. According to the proposed classification, only CPSs
of Level 2 and above are treated as smart. CPSs belonging to
level higher than 2 have the capability of self-evolving, change
their behavior and performance throughout their life cycle
toward some novel (but supervised) objectives, and have capa-
bility to adapt to new circumstances that were not known in the
design phase. However, S-CPSs also need a self-control mech-
anism. As mentioned earlier, in this paper, we only address
issues that are associated with the second generation CPSs
since this generation of systems are becoming a daily reality
in manufacturing environments already in our days.

Considering the above examples, the following principle
can be extracted. If the system has a higher level of adap-
tation freedom, then it requires a higher level of self-control
to the resource exploitation and setting the operation modes.
A derived conclusion is that complex and self-adaptable
systems need to be autonomous, system- and environment-
aware, and self-controlled. The summary of control mecha-
nisms is given in Table I. The design principles for designing
the second generation of S-CPS need to be defined. In the next
chapter a concise literature review of designing for run-time
adaptation is given. Currently, there is information about a lim-
ited number of adaptive CPSs (reaching to or beyond Level 2),
which are in daily operation. This explains why only, CPSs
with known modes of changes were included in our research.

At the same time, our analysis covered some representative
examples of Level 1 for the sake of comparison with design-
ing a conventional technical system. The recognized design
principles used at Level 2 were critically assessed if they can
be applied for designing S-CPS with quasi-known changes
through the life span (Level 3). The rest of this paper is orga-
nized as follows. Section II will provide a concise overview of
the literature of designing for run-time adaptation. Section III
will summarize technical and open issues of run-time adap-
tation. Finally, Section IV discusses emergent behavior of
S-CPSs, practical implications of the design principles, and
Section V presents the final conclusions.

B. Smart CPSs and Industry 4.0

In the manufacturing environment, businesses will estab-
lish global networks that incorporate production facilities,
machinery, and warehousing systems in the shape of cyber-
physical systems (CPSs) [9]. Self-organizing manufacturing,
context-/situation-aware control, and symbiotic human-robot
collaboration will have paramount importance. The unique
features of CPS in networking, communication, and inte-
grated device control point to the smartness and intelligence
of manufacturing in the horizon. The CPS technology must
find transitional technologies through which the truly novel
ideas may be gradually introduced on the shop-floor level,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

without incurring major investments [10]. There are several
initiatives that accommodate CPS development, including the
“Advanced Manufacturing Partnership 2.0 (AMP, 2014)” and
“Industrial Internet (IIC, 2014)” in the USA, “Industry 4.0” [9]
in Germany, ‘“Factories of the Future” in the EU, the “Made in
China 2025” strategy alongside “Internet Plus” in China, and
several others [11]. Industry 4.0 is focused on creating smart
products, procedures, and processes [12], [13]. By connecting
people, things, and data, new ways of organizing and con-
ducting industrial processes emerge. Smart factories are able
to manufacture goods more efficiently, are less prone to dis-
ruption, and capable of managing complexity. Within a smart
factory, self-organizing value chains can be optimized in real-
time. This will require an appropriate regulatory framework,
as well as standardized interfaces and harmonized business
processes [9]. The building blocks for the development of
S-CPSs originate in several disciplines, such as: software
engineering, control engineering, IT, Al, embedded systems,
Internet of Things (IoT), advanced robotics, and sensor and
actuator technology. The development toward a network of
smart autonomous objects is already happening in the case of
IoT [14]-[16].

Wang et al. [17] are focused on a vertical integration that
enables a highly flexible and reconfigurable smart factory. The
physical artifacts form a self-organized and autonomous man-
ufacturing system based on big data, an industrial network,
and an intelligent negotiation mechanism. The smart fac-
tory is a specific implementation of CPS [17]. Nowadays,
decisions on process adaptions are, in most cases, made
by humans. In the future the decision process will be sup-
ported by knowledgeable and self-optimizing manufacturing
systems [18], [19]. In the context of intelligent manufac-
turing there is a promising predictive diagnosis based on
industrial big data [20], [21]. Nowadays 95.1% of publica-
tions related to Industry 4.0 present a kind of laboratory
experiment, while only 4.9% of them present an industrial
application [11]. However, the number of contributions is
steadily rising [10], [13], [22] such as smart welding [23],
self-organizing techniques for multirobot system [8], or intel-
ligent diagnosis on the basis of big data mining [24].

The first publications concerning the paradigm and real-
ization of Industry 4.0 appeared in 2011. Two years later
Lu found 11 related articles, and in 2014 there were already
29 [13]. This is also in connection with a gradual increase
in the number of conferences related to Industry 4.0 from
2013 (5 conferences) to 2015 (63 conferences) [11]. Cyber-
physical production systems partly break with the traditional
pyramid, because a more decentralized way of functioning is
characteristic for higher levels of the hierarchy [25]. One of
the distinguishing features of S-CPSs is their smart reasoning
capability. CPSs equipped with this capability are believed and
expected to offer new opportunities for business innovation in
the service-orientated manufacturing industry [26].

II. REVIEWING THE LITERATURE ON DESIGNING
FOR RUN-TIME ADAPTATION

Our ambition was to conduct a systematic exploration of
design principles that could be used in designing S-CPS

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE II
STRUCTURE OF ANALYZED PUBLICATIONS

Number of analyzed Included
Type of publications publications in the review
Total IEEE total IEEE
Journal papers 259 49 68 15
Conference papers 223 91 30 11
Book chapters, reports 56 n.a. 27 n.a.
Dissertations 9 n.a. 1 n.a.

for run-time adaptation. It is a specific focus that does not
cover all aspects of intelligence and organization of CPSs.
A systematic literature research was done concerning jour-
nals, conference papers, books, and other Internet sources of
information. The key words applied at searching in Web of
Science, Science Direct, Scopus, and Google Scholar were:
CPS, smart CPS, self-control, run-time control, context-aware,
self-awareness, self-evolving, self-healing, self-organization,
self-adaptive, self-learning, Industry 4.0, robust, resilient, com-
plex system, fault tolerance, knowledge management, system
modeling, and simulation. Additionally, some of the refer-
ences found in selected publications have also been checked
(also for avoiding cross-referencing). Altogether, more than
500 publications have been analyzed, from which 259 were
journal papers. A detailed overview of the statistical compo-
sition is presented in Table II. The analysis was conducted
manually and the relevance and adequacy of the contents of
the publication for S-CPS was the main selection criterion.

One of the methodological conclusions of the research was
that only a very limited number of publications reported on
really smart CPS according to our strict definition. The major-
ity of publications were related to first generation CPSs, which
are not characterized by any form of self-evolving capability.
With some exceptions, the publications dealing with issues of
this generation of CPSs have not been included in the review.
A large number of the analyzed publications were related to
pure software systems. Nonstop operation, fault-tolerance, arti-
ficial intelligence, and run-time control of software has been
a research focus for two decades already. However, software is
a key component of any CPS, therefore some of design prin-
ciples from the software solutions can also be the inspiration
for the S-CPSs. There were several obstacles reported that hin-
der the proliferation of second and third generation S-CPSs in
safety critical applications. For instance, there are complexity-
and dependability-implied safety issues and the validation pro-
tocols were laid down in the time of deterministic technical
systems.

Eventually, the search results have proved that there was
a place and need for reviewing the knowledge and advance-
ment concerning the principles of designing S-CPSs. In
particular, the design challenges and principles related to
anticipating human design and run-time self-design of sec-
ond generation CPSs did not receive sufficient attention yet.
In overall, there were many more issues discussed concerning
CPSs with known modes of changes, that concerning CPSs
with quasi-known changes. This explains why the intention
of the authors was to contribute to the awareness of design

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAVCAR AND HORVATH: REVIEW OF PRINCIPLES OF DESIGNING S-CPSs FOR RUN-TIME ADAPTATION 5

principles of second generation CPSs. The demarcating cate-
gorization and systematic analysis applied in this paper serve
two purposes: 1) showing the whole picture and the local
details related to CPSs and 2) enabling a better understanding
of the requirements, possibilities, and limitations of S-CPSs.
This paper also shows the way toward the third generation of
CPSs in several details.

The problems of designing a complex system for run-
time adaptation are broadly addressed in the contemporary
literature. Adaptive systems represent a special class of non-
linear systems that intellectualize, organize and measure their
own performance, operating environment, and the operat-
ing condition of their components [27]. Ding et al. [28]
introduced an adaptive Petri net model for a self-adaptive
software system. Brun et al. [29] proposed a hierarchy of
self-* properties. They differentiated: a primitive level (which
includes self-awareness and context awareness), a major
level (which includes self-configuring, self-healing, self-
optimizing, and self-protecting), and a general level (which
includes self-adaptiveness). In their road-mapping paper,
Cheng et al. [30] summarized the state-of-the-art and iden-
tified critical challenges for systematic software engineering
of self-adaptive systems and addressed supporting factors of
self-adaptation.

The literature advises us that self-adaptation may be a use-
ful capability of complex systems to achieve the objec-
tive and the operational or behavioral requirements. As
Weyns et al. [31] recognized, there are different communi-
ties behind these notional descriptions, as well as different
vocabularies. Healthcare CPSs have already found their way
to advanced applications [32]. However, there is no clear
view on how self-adaptation actually contributes to tackling
the challenges of engineering and managing complex soft-
ware systems. Current literature claims that self-adaptive CPSs
should be capable of adjusting or changing their structure,
functionality, and behavior during run-time as a response
to emerging requirements, changing objectives, environments,
and contexts that may be unknown at design-time. Not only
the physical subsystem does need to be adaptive (respond-
ing to changing conditions), but also the software and the
cyber subsystems, which should in addition be even predictive
(anticipating changes in the physical processes).

A. System Architecture From Control Point of View

System regulation and adaptation is enabled with several
levels of control loop, as already presented in Fig. 2. Software
architecture has dominant influence on the way of imple-
mentation and the whole system structure. Therefore, several
important references come from the software domain. IBM
defined an “Autonomic Computing” program [33]. The gen-
eral concept was in the following decade developed to several
architectures that are applicable for S-CPSs. A self-managed
software architecture is one in which components automat-
ically configure their interaction and achieves the goals of
the system. A three-layer reference model with goal man-
agement, change management, and component control was
defined [34].

There are several activities related to Industry 4.0 on the
level of vision, architecture and reference models, learning fac-
tories, and the specific solution in laboratory environment. In
2011, the first self-organizing assembly system was demon-
strated at FESTO in Germany, this approach was based on
Agent-oriented Architectures [10]. Wang er al. [17] proposed
an intelligent negotiation mechanism for agents to cooperate
with each other, and to enable distributed self-decision making
with big data-based feedback assistance. Civerchia et al. [35]
reported on the capabilities and performance of an IoT system
in real industrial environments. The learning factory that inte-
grates the shop floor and top floor via suitable cloud services
supports holistic, problem-based learning, and evaluation of
research projects [36]. Wang et al. argued that the smart
factory framework consists of four layers: 1) the physical
resource; 2) industrial network; 3) cloud; and 4) supervisory
control layers. Big data is collected in the cloud from the smart
things in the physical layer and interacts with people through
supervisory control [17]. Hermann et al. [37] identified some
generic design principles for Industry 4.0: interconnection,
decentralized decisions, information transparency, and tech-
nical assistance.

In a second step, scenarios and a specification book for
implementation of the smart factory was prepared [37]. An
ambitious effort of the swarm approaches is the UC Berkeley
led TerraSwarm project. The Smart Factory initiative has real-
ized a multivendor and highly modular production system as
reference for Industry 4.0 [38]. Trappey et al. [39], [40] pro-
vided a consolidate review of CPS literature and a review of
international standards and patents related to CPS and IoT.
Lee et al. [41] presented the SC architecture for implementa-
tion of advanced CPSs as representatives of manufacturing
systems in the context of Industry 4.0. This 5C architec-
ture starts with involving smart sensors on level I, while
level II brings in self-awareness to machines, level III (cyber
level) acts as the central information hub, and while there
is a decision support system on level IV. Level V (the con-
figuration level) feedback is provided from cyber space to
the physical space. This layer provides supervisory control to
make machines self-configurable and self-adaptive [41]. The
presented 5C architecture can also be applied in the case of
S-CPSs, if the top level is supported by the capability of
self-evolution and self-control. The first generation of CPSs
presented in this paper extends at least to the first three levels
of the 5C architecture.

The monitor—analyze—plan—execute over a shared knowl-
edge (MAPE-K) feedback loop is the most influential
reference control model for autonomic and self-adaptive
systems [42]. A verification technique enables discover-
ing unwanted interferences between MAPE-K loops in the
early stages of system design [42]. A dynamic software
product line (DSPL) extends the MAPE model by learn-
ing and adaptation [43]. Intraloop coordination allows the
execution of multiple subloops within one control loop,
and allows the MAPE computations of different loops
to coordinate the various phases of adaptations [44]. The
DEECo system applies dynamic architecture abstractions
of autonomous components and component ensembles that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

provide a straightforward reflection of operational goals in the
application architecture [45]. Capodieci et al. [46] proposed
a conceptual framework for the design of systems that is based
on inspiration from the natural immune system.

The SEAMS community has recognized the control objec-
tives manager, the adaptation controller, and the context
monitoring system as the key subsystems for the design of
effective context-driven self-adaptation [31], [47].

A step forward at specifying a self-adaptive system is done
with patterns and templates. Ramirez and Cheng [48] docu-
mented a set of 12 patterns that focus on the software design
level, and they aim to facilitate the design and construction
of self-adaptive systems. Weyns et al. [49] presented a set of
five patterns for decentralized control in self-adaptive systems
that were derived from different studies. The templates pro-
vided reusable design knowledge that in turn allows rigorous
modeling and verification of the behaviors of MAPE-based
feedback loops for distributed applications in which self-
adaptation is used for managing resources [50]. The system
architecture needs an additional control loop for each addi-
tional level of freedom. On Level 2, reasoning mechanisms
for mode selection is needed, and on Level 3 a self-learning
loop is necessary [44], [51]. The key concerns are knowl-
edge needed for implementation and integration of several
self-control-loops.

B. Run-Time Control and Middleware

In the run-time self-control, a key capability of autonomous
systems and the related theories and methodologies focus on
issues such as robustness, fault-tolerance, etc. Most of the
solutions for adaptive CPSs come from software engineering.
Run-time monitoring is supported and encouraged as a funda-
mental principle for building reliable systems [52], [53]. The
four meta-models (DSPL, context, reasoning, and architecture)
mean the main data manipulated by the run-time infrastruc-
ture responsible for dynamically adapting component-based
applications at run-time [54]. A conceptual reference model
for M@RT contains three levels of adaptation mechanisms:
1) level M1 includes the run-time models; 2) M2 level deter-
mines the syntax and semantics of these models; and 3) the
top level M3 is the meta-metamodeling level [55].

It is still an open question how to take advantage of
S-CPS and fulfill safety criteria. One solution is based on
the concept of fault isolation and recovery at the service
level [56]-[58]. The Simplex architecture, which supports
using simplicity to control complexity, is a common approach
for keeping a complex system reliable. That means the exis-
tence of a simple and reliable core component that ensures
the system’s critical functions despite the failure of non-
core software components [59]. A fault-tolerant control system
is designed to mitigate the effects of system component
failures [60]. The model-based fault detection, isolation, and
reconfiguration method is divided into the fault detection and
isolation step, and the controller reconfiguration step [61].
The “Golden Rules” to design a fault-tolerant aircraft include:
hardware redundancy, monitoring of flight control elements
in real-time, reconfiguration in case of failure, dissimilarity,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

installation segregation, and robustness of software and system
equipment [62], [63].

The protection scheme, called “Run-time Enhancement of
Trusted Computing (RETC),” enhances trust in CPSs which
contain untrusted software and hardware. RETC is com-
plementary to design-time verification approaches. Interface
guards enable in-line monitoring and enforcement of critical
system computations at run-time [64].

Real-time properties of CPSs are the key characteristic in
safety critical situations [65]. Hardware architectures can sig-
nificantly contribute to the reliability of systems. Middleware
platforms provide novel approaches for faster and more reli-
able development and operation of complex CPS applications,
where distributed and heterogeneous components interact in
various ways [66].

Timely operation is a key issue in CPS because of
the inherent distributed nature. In CPSs some degree of
control over the resources is expected to assure timeli-
ness. The proposed solution is a middleware model, typ-
ically referred to by the acronym OMA-Cy, which serves
as a general reference architecture to design and imple-
ment middleware technology for CPS domains. OMA-Cy is
short name for Overarching Middleware Architecture design
model for CPSs [67]. Cucinotta et al. [68] presented service-
oriented architectures that support real-time and quality-of-
service (QoS) capabilities for industrial automation. They
define hard, real-time activity that has to be completed in
a specified time frame; like sense-compute-actuate control
loops need to be in a range below 10 ms. [68].

The strong real-time constraints of many CPSs introduce
new challenges. Run-time monitoring and self-healing has
been an open topic for decades in software engineering [69].
In the context of CPSs, requests are stricter because the
physical system cannot be simply restarted, and unstable crit-
ical operation can cause irreparable damages [70]. Faults and
unpredictable events in the environment are part of each
CPS operation. In the case of the second generation of
CPSs, smart run-time monitoring is used to assure fault-
tolerant operation [61]. An important difference is that, at
first, generation of CPS central control dominates, because
complex systems of second generation distributed control has
advantages [71].

C. Reasoning Mechanisms (Self-Learning,
Context-Awareness)

The capability for reasoning, adapting, and self-learning
are the main characteristics of the second generation of
CPS. Reasoning is the process of drawing conclusions by
utilizing human beings’ problem-solving strategies. It is rea-
soning with facts and knowledge with given steps, using sets
of inferences, or reasoning strategies. Reasoning strategies for
S-CPSs extract and combine data, information, and collect and
assess raw data acquired from a dynamic, noisy, and uncer-
tain physical environment, and may convert them into useful
cyberware (useable knowledge) in real-time.

Four main functions have been identified for the imple-
mentation of a control loop in IBM’s autonomic element

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAVCAR AND HORVATH: REVIEW OF PRINCIPLES OF DESIGNING S-CPSs FOR RUN-TIME ADAPTATION 7

management scheme [72]. Hakansson et al. [73] presented
reasoning strategies for S-CPSs that can extract and combine
data, information, and knowledge. DIANNE is an incremental
learning system that processes inputs in real-time, and the tem-
poral learning algorithm executes continuously in a life-long
manner [74]. The implementation of model-based reasoning
approach can be easily reused [75]. Reinforcement learning
is a computational approach to understanding and automat-
ing goal-directed learning and decision-making. It contains
four main subelements: 1) a policy; 2) a reward function;
3) a value function; and 4) optionally, a model of the
environment [6], [76].

D. Context-Awareness

System and environment awareness is the input information
for the reasoning and learning processes. There are three dif-
ferent approaches on how to acquire contextual information:
1) direct sensor access; 2) middleware infrastructure for eases
extensibility; and 3) context server permits multiple clients
access to remote data sources [77]. Cognitive context informa-
tion is the key information to provide context-aware computing
services. The physical context information represents the low-
level context, and the high-level context is inferred from the
low-level one [78]. Situation-awareness agents are able to
assess their own abilities and behave proactively by learning
from each other [79]. Context-awareness has already become
a service and context management has become an essential
functionality in software systems [80]. The awareness pro-
cess is cyclic with many iterations and different classes of
awareness [81].

E. Building Blocks Level (Complexity and Self-Awareness)

The investigations of system components extend to ana-
log and digital hardware, system and application software,
and active knowledge and media cyberware. An autonomic
element consists of a closed control loop that can con-
trol a system without external intervention. A quantitative
measure of the degree of autonomy of technical applica-
tion systems is presented—static and dynamic degree of
autonomy is introduced [82]. With increasing complexity and
heterogeneity of the systems-on-chip (SoCs) platform archi-
tectures, there is an extra need for self-awareness of these
SoCs and for performing in an adaptive manner. Self-aware
SoCs require a combination of ubiquitous sensing and actu-
ation, health-monitoring, and statistical model-building to
enable the adaptation of SoCs over time and space [83].
Subagdja and Tan [84] presented a framework for develop-
ing an application based on smart autonomous components
that collaborate with the developer or user to realize the
entire system. Filho et al. [12] presented importance and cri-
teria for a self-aware smart product in the context of smart
4.0 production environment.

Ye et al. [85] surveyed the field of self-organizing
multiagent systems. In many cases, the need for scalability
of complex systems arises from the fact that most of the rel-
evant processes are performed locally in self-organized and
adaptive way [71].

One key to achieving dependability at a reasonable cost is
commitment to simplicity of critical functions and simplic-
ity in system interactions. Designing for simplicity principle
means that artifacts can be analyzed by simple models at
different levels of abstraction [86]. Alexopoulos et al. [87]
presented a context-aware manufacturing information system
that is based on several advanced technologies, including:
near field communication, radio-frequency identification, Web
services, and related standards.

Context-awareness is one of fundamental necessities to drive
configuration and adaptation, that is, appropriate for actual
conditions [88]. The building blocks of the system have to be
autonomous and context-aware [14]. They can have complex
internal structure, but from the point of view of the system
designer they need to have representation at high abstract level.
That means system designer do not need to know all techni-
cal details to use them; the system can be reconfigured in
a simple way, new components can be added, old ones can
be replaced. The basic standards for interconnection and com-
munication need to be common accepted and reliable through
longer time frame [83], [86]. Modular product structure and
use of standard, replaceable components is preferred already
in conventional technical systems. At the building block level
there is no sharp boundary between requests for the second
or third generations of CPS. But with increasing system com-
plexity and unpredictability of behavior, it is a must to have
autonomous and context-aware building blocks.

F. Modeling and Simulations

A top-down system design starts with a conceptualization
of the intended high-level behavior of the planned system.
This system model is refined at multiple levels until a rep-
resentation that can be executed on the selected hardware
platform has been generated [86]. The classic reductionist
tools are no longer adequate. Complex, nonlinear systems can-
not be modeled by linking together a fragmented collection
of linear models. A new, multidisciplinary toolkit is needed
to model complex, adaptive, and unpredictable systems [2].
CPS constitutes a new engineering discipline that demands its
own models and methods. CPSs combine deterministic mod-
els in such a way that determinism is not preserved. Lee [89]
argued that deterministic CPS models with faithful physical
realizations are possible and practical.

Gilirdiir et al. [90] introduced a specific visualization
approach to make interoperability of tool chains visible for
a better understanding of needs in CPS development. There
is no guarantee that an optimal design in terms of mechan-
ics will also exhibit a good closed-loop performance. In order
to achieve the mechatronic optimum, the closed-loop nature
of the system has to be considered from the start of the
design [91]. The implementation of second generation of CPSs
requires various resources that are supposed to enable a holis-
tic system operation together. The conventional separation of
computation (software) from physicality (hardware) does not
work for CPSs. Instead, a more holistic approach that inte-
grates the mentioned parts into a composition is needed. The
physical (analogue) part of a generic CPS is complemented by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

five other computing resources: 1) netware; 2) (digital) hard-
ware; 3) software; 4) firmware; and 5) knowledgeware. The
composition platform synchronizes the various subplatforms
and facilitates an integral consideration [1].

The concept of system manifestation features has been
developed to support modeling and simulation of complex,
heterogeneous, and adaptive CPSs [92]. A reference model
for self-adaptive systems where adaptation goals and monitor-
ing requirements change dynamically, DYNAMICO enables
faster software development [47]. The method presented by
Canedo et al. [93] automatically generates industrial CPS
simulation models from functional models. In model-based
development, there is one system model that is the central arte-
fact of the whole design process. The system model is built at
the earliest possible time, and transformed and upgraded such
that parts of the model can be executed. A virtual prototype
can be derived from this initial system model, which is used to
simulate and validate the behavior of the target system, even
before it physically exists [94].

Modeling and simulation is a helpful design tool for all three
levels of CPS. However, requests for modeling are growing
with complexity and in nonlinear system behavior. An inte-
grated model with the possibility for simulation is a must for
a complex system with several interdependent components.
The system developer needs to get feedback information on
system behavior as soon as possible. An open issue is how
to model self-adapting systems? In the design phase it is not
known the system final structure and how reasoning mecha-
nisms can be adapted during system life span. Self-adapting
systems need reliable and advanced self-awareness and a self-
control mechanism. Robustness and functionality of control
mechanisms has to be precisely modeled and systematically
tested. The summary of recognized methods and principles for
designing of S-CPSs is presented in Fig. 4. The platform and
formal methods for CPSs development are recognized as back-
ground. Specific methods and approaches in the next phase
help achieve self-awareness, robustness, autonomy, and self-
adaptation of S-CPSs. In Table IV, the concepts included in
Fig. 4 are supplemented with references to the key sources.

III. TECHNICAL AND OPEN ISSUES
OF RUN-TIME ADAPTATION

A. Design Process

Self-adaptive behavior implies that certain development and
change activities are shifted from development-time to run-
time, while reassigning the responsibility for these activities
from engineers to the system itself [95]. Models need to con-
tinue to live during run-time and adapt as changes occur while
the software is running. To ensure dependability, analysis that
the updated system models continue to satisfy the goals must
be performed by continuous verification [95], [96]. The chal-
lenge is to infuse a systematic understanding of the alternatives
for adaptive control into the design process.

B. Uncertainty, Reliability, and Safety

How can the openness-based uncertainty in system adap-
tion be balanced with the need to control system adaption

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

with respect to dependability issues [97]? Robustness, reliabil-
ity, and safety, among others, are critical challenges because
of uncertainties in the environment, such as security attacks
and errors in physical devices. The design and implementa-
tion of networked control in CPS pose several challenges:
guarantee of mission-critical QoS over wireless networks,
tradeoff between control law design, and real-time compu-
tation constraints [98]. In the design and analysis of secure
control algorithms we need to introduce a trust analysis of
the CPS architecture, and realistic and rational adversary
models [70]. How to trust into the complex system that is
built from invalidated components? Shall we replace conven-
tional specify-design-validate methodologies with a provide-
smartness-and-set-objectives paradigm? Lee [99] emphasized
the importance of security, reliability, and real-time assurance
in CPS:s.

C. Resource Management, Dynamic Composition, and
Timing Requests

Time-limited operation or real-time properties are a man-
datary requirement for several advanced CPSs. Lee [65]
argued that beside the desired functionality and behavior
of CPSs, it is even more important to model and ana-
lyze timing properties as part of their semantic correctness.
Garcia-Valls ef al. [100] proposed a middleware architecture
that supports time-deterministic configuration in distributed
soft real-time environments with a software model based
on services. The middleware contributes by including time-
limited reconfiguration and service-based composition algo-
rithms that are built on top of real-time resource manage-
ment. As system complexity grows, the space of scenarios,
modes, and conditions that must be tested grows exponen-
tially. Certification is estimated to consume more than 50% of
the resources required to develop new, safety-critical systems
in the aviation industry. For the autonomous vehicle scenario
to become reality, the human monitor must be replaced with
a certified limiting algorithm that is capable of providing
absolute guarantees about the vehicle’s safety in the highly
dynamic environment, such as urban streets [101].

A system with self-awareness, self-constraint generation,
and run-time validation is a promising way forward [102].
S-CPSs have to adapt the software and behavior at run-time
caused by the evolution of the system. Garcia-Valls et al. [103]
suggested the generation of tentative configurations at run-
time. In the end, a new model is created that supports the
new adapted situation [103]. Bersani and Garcia-Valls [104]
focused on online adaptation to support dynamic changes dur-
ing run-time. They are using an autonomic manager (OLIVE)
that performs online verification for a specific application. The
verification manager is based on MAPE-K and uses reasoning
on the architectural model [104].

D. Knowledge Management

Knowledge presentation is an open issue. How to connect
abstract logic with real-world meanings in reliable and flexible

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAVCAR AND HORVATH: REVIEW OF PRINCIPLES OF DESIGNING S-CPSs FOR RUN-TIME ADAPTATION 9

Designing of smart
cyber- physical systems
(second generation of CPSs)

Autonomous and self- as:gja: :l?_ss Methods for resilient
organized units; awarness of and fal_JIt tolerant
system self-awareness, buildi operations;

If- adaptation ureing => Using simplicity
.se T blocks, 4
incremental leaming in \ to control complexity,

. Middleware . R
real- time, reasoning algorithms

: . platform B
reinforcement learning, [sec. 2.2] for fault detection
policy based [sec. 2'4] and isolation
configuration [sec. 2.3] e [sec. 2.2]

Real-time Several levels of

L Hardware
monitoring, self- control loops,

)) o . redundancy,
healing, run-time distributed control; T

- dissimilarity,

self-control and => control loop and . .

N - } . installation
run-time validation, self-learning loop in .

’ X . segregation
adaptation to new real time, localised and
circumstances in decisions and)
o . N protection
life time interactions [sec. 2.2]
[sec. 2.2] [sec. 2.1] s
[sec. 3.3] [sec. 2.3]

Formal methods for smart CPS development;
= Methods for modelling, simulation and testing;
— patterens and reference models for self-adaptive systems [sec. 2.5]

Platform for fast and reliable system development;
=> Based on self-learning and adaptive methods; feedback controlloops [sec. 2.2], [sec. 2.5]

Fig. 4. Reasoning model concerning the methods and principles for designing S-CPSs.

ways? How to encapsulate rules, constraints, and mecha-
nisms for self-adaptation and acquire and process knowl-
edge about themselves, other service components, and their
environment [81]. Despite the tremendous progress that has
been made in recent decades, the field of machine learning and
reasoning for adaptation and awareness is still in its infancy,
and its methods are neither as universally applicable, nor as
robust as would be desirable [51], [105]. Xu and Hua [20]
proposed research strategies for industrial big data analytics
including acquisition schemes, ontology modeling, deep neural
network-based diagnostic methods, and self-organized recon-
figuration mechanisms. High-level decision-making algorithms
and theories, based on information collected from different
sources, are necessary for system-wide reliability, efficiency,
security, robustness, and autonomy of CPSs.

E. System Modeling

Model-based design generates many different models of
various fidelity levels and tries to predict the behavior of
a CPS, while it is virtually running. In the case of CPSs,
complex interactions among the components cannot be mod-
eled exhaustively, especially not across different design views.
Another recognized issue is related to the nonlinear and non-
incremental nature of multiscale CPSs. It means that adding
new components lead to unpredicted and undesirable system
behavior [1]. In recent years, modeling has evolved toward
“meta-modeling” techniques and “meta-programmable” tools,
which allow the introduction of domain-specific modeling lan-
guages. There are still several open issues. S-CPSs are by
nature distributed on a continuum of heterogeneous platforms.
However, the heterogeneity of platforms is also a require-
ment for fulfilling the needs of the different components of
S-CPS [106]. There is still a lack of powerful languages,
tools, and frameworks that could help realize adaptation
processes and instrument sensors/effectors in a systematic
manner [107].

IV. DISCUSSION AND SUMMARY OF THE EXPLORED
PRINCIPLES OF DESIGNING FOR RUN-TIME ADAPTATION

S-CPSs with run-time adaptation capability must implement
some forms of self-learning and self-control. The overview of
the current applications of S-CPS has revealed that they actu-
ally do not operate autonomously in safety critical cases. There
is still a human in the loop, they operate in a controlled envi-
ronment, or inside constrained limits [6], [108]. An important
obstacle is legislation that requests validation of all opera-
tion modes before the product is placed on the market [109].
This is contradictory to the smart behavior of advanced CPSs.
This proves our thesis that a smart, self-adaptive CPS needs
a higher level of self-control, as presented in Table I. In the
coming decade, we can see self-adaptiveness as a key feature
of several CPSs applications. Advantages of smart and self-
controlled systems are obvious: longer life span, optimized
operation/improved efficiency, increased safety, increased reli-
ability (self-maintenance), and lower operation costs. It is
expected that the systems adaptation will happen in several
smaller steps, and not as a radical change.

Existing legacy manufacturing systems have limited aware-
ness of the CPS requirements, and revolutionary design
approaches are necessary to achieve the overall system
objectives [110]. “Industry 4.0 Working Group” [9] describes
the vision, the basic technologies the idea aims at, and selected
scenarios, but do not provide implementation details or design
principles [37]. Different initiatives for Industry 4.0 have moti-
vated research centers and companies to contribute through
laboratory experiments or industrial applications [11], [22].
Most of the technical ingredients of Industry 4.0 are already
available, and they just need to be integrated into the
system [111]. The key expectations from future production
system are smartness, self-organization, decentralized deci-
sions, real-time control, and autonomous behavior. This paper
presents a systematic overview of design principles for S-CPSs
(Fig. 4, Table IV). This is a very important attribute for future
industrial systems. However, the literature survey has found

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE III
OPEN ISSUES OF S-CPSs

Open issues Current status ‘What need to be done?

Shift of activities to run-
time from engineers to
system itself

Design process
Formal methods

Focus to development-
time of CPSs

Uncertainty and
safety

Resource
management, and

Specify — Design —
Validate Methodology

Focus to system
functionality and

Smartness and autonomy
of sub-system

Time-limited
reconfiguration, real-time

timing requests behavior resource management
Knowledge Not robust and Goal-oriented decision-
management universally applicable making

System modeling
and simulation

Linear and separated
meta models

Non-linear CPSs modeling
and simulation

that several aspects of S-CPS require additional research. The
summary of open issues is presented in Table III. The cur-
rent status of open issues is written in the second column, the
target state is presented in the third column.

Linear principles dominate in the conventional techni-
cal system. Realization of the system adaptability (smart-
ness) increases complexity of the system. A complex
system has a myriad of elements and subsystems, there-
fore the logical consequences are increased uncertainty and
reduced reliability. Development of complex technical system
on the basis of linear principles is not economical any
more. In using decentralized control loops, the overall
system behavior emerges from the localized decisions and
interactions [68].

Complex, nonhuman controlled and supervised operations
of CPSs can be realized only if these systems are capable
of building up a broadly based awareness, can reason and
learn in varying contexts, can develop context-dependent oper-
ation plans, and can adapt themselves in order to implement
that operation plan. These elements of smartness, which have
to be considered in the early phase of system design, pose
a new challenge that was not experienced in system engi-
neering a number of decades ago. This new phenomenon of
design has been referred to as the “transformation paradox
of design.” When the number of interacting components and
the overall operational complexity of hardware and software
system components increase, the opportunities and cases of
having hardware and software faults may also increase. The
system architecture and control is supposed to be resilient to
these faults, and to be able to adapt to the new operational
circumstances in real-time. We investigated the characteristic
design principles, approaches and enablers that may facilitate
the consideration of different levels of adaptation in the life
cycle of CPSs.

The identified principles and enablers are presented in
Table IV. Those place in the left column concern second gen-
eration. For the sake of comparison, we included also some
of those which are applicable to the third generation of CPSs.
Table IV provides links to specific references, which offer
additional explanations on the specific principles and enablers.
Several design principles that are normally used at a lower
level designing of CPSs are also supposed to be applicable

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE IV
DESIGN ENABLERS FOR THE SECOND GENERATION OF CPSS AND
RELEVANT REFERENCES

Second generation of CPSs -
Level 2
Known modes of changes

Third generation of CPSs
- Level 3
Quasi-known/unknown models of
changes

Run-time control (selecting the
right mode) [5] [63]

Self-learning and system adaptation
algorithm (inside preset limits);
Incremental learning in real-time
[74] [84]

Reasoning algorithm [73]
Language for formal reasoning
[112]

Genetic algorithm [113]
Neuron network [114]

Fuzzy logic [115][116]

Deep machine-learning [105]
Reinforcement-learning [6] [8]
[76][108]

Big data analysis [20] [21]

Environment and system-
awareness [77] [80] [78]

Policy-based configuration
[112][117] [118]

Modeling and simulation tools
[86][91]

Holistic system modeling [1]
DYNAMICO, reference model
[47]

Self-aware building blocks
[12][71] [78] [82] [83] [84] [14]
[16] [85] [87] [88]

Model-based development [93]
[94]1[119]
Design patterns [48] [49]

Fault-tolerant design, model-based
fault detection [24] [57] [58] [60]
[61][62] [63]

Real-time monitoring [6] [52]
[54] [55]1[118]

Run-time assurance inside preset
limits [95] [96] [102] [119] [120]
Run-time Enhancement of Trusted
Computing [64]

Control with simplicity [59]
[121]

Knowledge presentation [79] [81]

Reference model: MAPE-K +
evolution [42] [122]

Industry 4.0 [11] [17] [41]
Platform for development:
SEAMS [31], DEECo [45]

Temp. for self-adaptive design [50]
Reference model: MAPE-K +
evolution [43]

Dynamic adaptation [54] [123]
Real-time reconfiguration and
validation [100] [103] [104]
OMA-Cy- architecture for
middleware technology [67]

in an upper level. It has been observed that the set of design
principles and methods related to the second generation of
CPS are in continuous evolution. This is triggered by the
increasing sophistication of software tools, reasoning mecha-
nisms, and computing algorithms developed for self-learning,
self-reasoning, and self-adaptation.

The literature review has also shown that several smart ele-
ments have already reached a quite mature state, and that they
are extensively used in second generation CPSs, e.g., neural
network-based reasoning, context information processing, and
situation awareness building. The fusion of the cyber world
and the physical world obviously requires design principles for
safety and timing. This was also considered in the survey of
design principles, which is deemed to be a major contribution
of this paper. In addition, we have also analyzed the avail-
able tools and methods, and recognized some open issues. The
overview of the design principles in Table IV can be used by
system developers for selecting design tools and by researchers
to identify weakly supported areas in the context of tools for
designing S-CPSs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAVCAR AND HORVATH: REVIEW OF PRINCIPLES OF DESIGNING S-CPSs FOR RUN-TIME ADAPTATION 11

Self-adaptive behavior implies that certain development and
change activities are shifted from development-time to run-
time. Everything cannot be specified in the design phase in
complex systems that are built for an operational time frame
of several decades. The system has to be able of adapta-
tion to new circumstances that appear in the life cycle. These
are all facts and define the system autonomous self-adaptive
features: system architecture enables adaptation in run-time;
building blocks are autonomous and context aware; there
is a self-learning mechanism that enables system adaptation
inside a predefined constraint; the system is resilient to internal
or external changes/faults and it is able of self-healing; and
the system is able of self-validation in run-time inside the
predefined constraint. On the basis of these conditions, devel-
opment of second generation CPSs will become interesting for
a wider range of applications. Another precondition is also
a platform that gives the basic backbone to the system and
enables smart integration. Examples of platforms like DEECo
and SeSaMe for CPSs development and testing are already
available and discussed in [124] and [125]. With the help of
these, system developers can focus on the core of the problem,
setting of proper goals, and specifying the system policy.

V. CONCLUSION

By their conceptualization, S-CPSs are the systems that have
to be design to be self-aware and self-adapting. This entails
that they change their behavior and performance to adapt to
new operational circumstances and/or opportunities through
their life cycle. Delegation a part of the design tasks to these
systems, making them capable to change themselves in a trust-
ful way, and providing them with the potential of acquiring
new resources that are needed for building awareness and func-
tional/structural adaptation are new challenges not experiences
ever before. The development above-mentioned capabilities
point into the direction of a human supervised, but essentially
largely nondeterministic operation.

On the other hand, safety-critical systems are still requested
to operate in a deterministic way. It does not mean that S-CPS
will not be applicable in this range of applications, but it
does definitely indicate the need to work out the relevant
design principles that make run-time adaptation of S-CPSs
dependable, without constraining their freedom for finding
more favoring operational objectives. A new way of valida-
tion (like run-time validation), which will prove that smart
CPSs are acceptable in spite of all run-time variation, was
already recognized as an important issue, but it is currently an
unsolved matter. This paper has assessed the state-of-the-art of
design principles for S-CPSs, and cast light on many research
areas that need additional systematic research (Table III).

The contribution of this paper manifest in a comprehensive
classification of CPSs according to their cognitive capabil-
ities (intellectualization) and the level of self-organization
capability. The second generation of CPSs, which are oper-
ating under quasi-known changes and with tunable objectives,
has a large potential for a wide-spread use in many indus-
trial and social domains in the near future. That was the
main reason why they have been put into the focus of our

reported research. According to the findings, self-adaptation
can be conducted only inside predefined limits, and with con-
straint resources due to the safety requirements defined in the
design phase. It means that in addition to the conventional
system engineering tasks, designers of S-CPSs should design
the window of self-adaptation, and should determine the range
of resources applicable by the system for adaptive operations.
These are seen as important issues for a follow up research.

This paper also contributed a holistic map of design prin-
ciples that are deemed to be necessary for effective S-CPSs
development (Fig. 4). From a practical perspective, the com-
plexity of the development process of S-CPSs has to be
reduced. It can be achieved by developing and applying smart
platforms (reasoning, simulating, context-handling, informing,
messaging, etc.), with may incorporate all necessary modules
needed for the functionalities mentioned in the round brackets,
and even smart objects in the form of context-aware coop-
erative agents. The smart building blocks of software and
hardware may be reused, replaced, or reconfigured in a sim-
ple and reliable way by any system integrator. Smartness
shall replace complexity: the prevailing hierarchical system
structure has to be replaced with anticipating and collab-
orating system actors, which manifest as autonomous and
self-organizing units connected through cyber space.

As argued earlier, improvements can be expected based
on the contemplation of the design paradox that a system
with higher level adaptation freedom requires a higher level
of self-control. As system complexity and unpredictability of
behavior are increasing, it is a must to have context-aware and
autonomously regulated building blocks. On the basis of the
presented literature review, it has been recognized that devel-
opment of middleware platforms for faster and more reliable
architecting and operation of S-CPSs with improved control
of resources and real-time properties are needed. Real-time
properties are intrinsic for several advanced CPSs. S-CPSs
may have numerous potential applications, and smart manu-
facturing is and will be one of them. Advantages of smart
and self-controlled systems are longer life span, improved
efficiency, increased safety, increased reliability, and lower
operation costs. It is expected that the course of system adapta-
tion will happen in several smaller steps, and not as a one-time
radical change.

REFERENCES

[1] 1. Horvath and B. H. Gerritsen, “Cyber-physical system: Concepts,
technologies and manifestation,” in Proc. TMCE, 2012, Karlsruhe,
Germany, 2012, pp. 1-16.

[2] J. Fiksel, “Designing resilient, sustainable systems,” Environ. Sci.
Technol., vol. 37, no. 23, pp. 5330-5339, 2003.

[3] U. ABmann, S. Gotz, J.-M. Jezequel, B. Morin, and M. Trapp, “A ref-
erence architecture and roadmap for models@run.time systems,” in
Models@Run.Time. Berlin, Germany: Springer, 2014, pp. 1-18.

[4] 1. Horvéth, Z. Rusak, and Y. Li, “Order beyond chaos: Introducing the
notion of generation to characterize the continuously evolving imple-
mentations of cyber-physical systems,” in Proc. ASME IDETC/CIE,
vol. 1. Cleveland, OH, USA, 2017, p. 14.

[5S] A. H. Khan, Z. H. Khan, and S. H. Khan, “Optimized reconfigurable
autopilot design for an aerospace CPS,” in Intelligence for Decision
Support in Cyber-Physical Systems. Singapore: Springer, 2014.

[6] K. Miilling, J. Kober, O. Kroemer, and J. Peters, “Learning to select
and generalize striking movements in robot table tennis,” Int. J. Robot.
Res., vol. 32, no. 3, pp. 263-279, 2013.

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

J. Chen et al., “CPS modeling of CNC machine tool work processes
using an instruction-domain based approach,” Engineering, vol. 1,
no. 2, pp. 247-260, 2015.

J. de Lope, D. Maravall, and Y. Quifionez, “Self-organizing techniques
to improve the decentralized multi-task distribution in multi-robot
systems,” Neurocomputing, vol. 163, pp. 47-55, Sep. 2015.

H. Kagermann, W. Wahlster, and J. Helbig, Eds., “Recommendations
for implementing the strategic initiative Industrie 4.0: Final report of
the Industrie 4.0,” Working Group, Forschungsunion, Acatech—Nat.
Acad. Sci. Eng., Frankfurt, Germany, 2013.

L. Wang, M. Torngren, and M. Onori, “Current status and
advancement of cyber-physical systems in manufacturing,” J.
Manuf. Syst., vol. 37, pp. 517-527, Oct. 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0278612515000400
Y. Liao, F. Deschamps, E. F. R. Loures, and L. F. P. Ramos, “Past,
present and future of industry 4.0—A systematic literature review
and research agenda proposal,” Int. J. Prod. Res., vol. 55, no. 12,
pp. 3609-3629, 2017.

M. FE Filho, Y. Liao, E. R. Loures, and O. Canciglieri,
“Self-aware smart products: Systematic literature review, con-
ceptual design and prototype implementation,” Procedia Manuf.,
vol. 11, pp. 1471-1480, 2017. [Online]. Available: https:/
www.sciencedirect.com/science/article/pii/S2351978917304869

Y. Lu, “Industry 4.0: A survey on technologies, applications and open
research issues,” J. Ind. Inf. Integr., vol. 6, pp. 1-10, Jun. 2017.

G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart
objects as building blocks for the Internet of Things,” IEEE Internet
Comput., vol. 14, no. 1, pp. 44-51, Jan./Feb. 2010.

F. Tao, Y. Wang, Y. Zuo, H. Yang, and M. Zhang, “Internet of Things
in product life-cycle energy management,” J. Ind. Inf. Integr., vol. 1,
pp. 26-39, Mar. 2016.

L. D. Xu, W. He, and S. Li, “Internet of Things in industries: A survey,”
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233-2243, Nov. 2014.
S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart
factory for industry 4.0: A self-organized multi-agent system with
big data based feedback and coordination,” Comput. Netw., vol. 101,
pp. 158-168, Jun. 2016.

H. S. Yan and C. G. Xue, “Decision-making in self-reconfiguration of
a knowledgeable manufacturing system,” Int. J. Prod. Res., vol. 45,
no. 12, pp. 2735-2758, 2007.

M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg, “How
virtualization, decentralization and network, building change the manu-
facturing landscape: An industry 4.0 perspective,” Int. J. Mech. Aerosp.
Ind. Mechtronics Manuf. Eng., vol. 8, no. 1, pp. 3744, 2014.

X. Xu and Q. Hua, “Industrial big data analysis in smart fac-
tory: Current status and research strategies,” IEEE Access, vol. 5,
pp. 17543-17551, 2016.

J. Wan er al, “A manufacturing big data solution for active
preventive maintenance,” IEEE Trans. Ind. Informat., vol. 13, no. 4,
pp. 2039-2047, Aug. 2017.

K.-D. Thoben, S. Wiesner, and T. Wuest, “‘Industrie 4.0’ and smart
manufacturing—A review of research issues and application examples,”
Int. J. Autom. Technol., vol. 11, no. 1, pp. 4-16, 2017.

V. Tuominen, “The measurement-aided welding cell—Giving sight to
the blind,” Int. J. Adv. Manuf. Technol., vol. 86, nos. 1-4, pp. 371-386,
2016.

F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, “Deep neural networks: A
promising tool for fault characteristic mining and intelligent diagnosis
of rotating machinery with massive data,” Mech. Syst. Signal Process.,
vols. 72-73, pp. 303-315, May 2016.

L. Monostori, “Cyber-physical production systems: Roots,
expectations and R&D challenges,” Procedia CIRP, vol. 17,
pp. 9-13, 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2212827114003497

M. M. Herterich, F. Uebernickel, and W. Brenner, “The impact
of cyber-physical systems on industrial services in manufacturing,”
Procedia CIRP, vol. 30, pp. 323-328, 2015.

W. S. Black, P. Haghi, and K. B. Ariyur, “Adaptive systems: History,
techniques, problems, and perspectives,” Systems, vol. 2, no. 4,
pp. 606-660, 2014.

Z. Ding, Y. Zhou, and M. Zhou, “Modeling self-adaptive software
systems with learning petri nets,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 46, no. 4, pp. 483-498, Apr. 2016.

Y. Brun et al., “A design space for self-adaptive systems,” in Software
Engineering for Self-Adaptive Systems II. Berlin, Germany: Springer,
2013, pp. 33-50.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

B. H. C. Cheng et al., Software Engineering for Self-Adaptive Systems:
A Research Roadmap (LNCS 5525). Heidelberg, Germany: Springer,
2009, pp. 1-26.

D. Weyns, S. Malek, and J. Andersson, “FORMS: A formal reference
model for self-adaptation,” in Proc. 7th IEEE Int. Conf. Auton. Comput.
(ICAC), Washington, DC, USA, 2010, pp. 205-214.

Y. Yin, Y. Zeng, X. Chen, and Y. Fan, “The Internet of Things
in healthcare: An overview,” J. Ind. Inf. Integr., vol. 1, pp. 3-13,
Mar. 2016.

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Comput., vol. 36, no. 1, pp. 41-50, Jan. 2003.

J. Kramer and J. Magee, “Self-managed systems: An architectural
challenge,” in Proc. Future Softw. Eng., 2007, pp. 259-268.

F. Civerchia et al., “Industrial Internet of Things monitoring solution
for advanced predictive maintenance applications,” J. Ind. Inf. Integr.,
vol. 7, pp. 4-12, Sep. 2017.

C. Faller and D. Feldmiiller, “Industry 4.0 learning factory for regional
SMEs,” Procedia CIRP, vol. 32, pp. 88-91, 2015.

M. Hermann, T. Pentek, and B. Otto, “Design principles for Industrie
4.0 scenarios,” in Proc. Hawaii Int. Conf. Syst. Sci. (HICSS), 2016,
pp. 3928-3937.

S. Weyer, M. Schmitt, M. Ohmer, and D. Gorecky, “Towards indus-
try 4.0—Standardization as the crucial challenge for highly modular,
multi-vendor production systems,” IFAC PapersOnLine, vol. 48, no. 3,
pp. 579-584, 2015.

A. J. C. Trappey, C. V. Trappey, U. H. Govindarajan, J. J. Sun, and
A. C. Chuang, “A review of technology standards and patent portfolios
for enabling cyber-physical systems in advanced manufacturing,” IEEE
Access, vol. 4, pp. 7356-7382, 2016.

A. J. C. Trappey, C. V. Trappey, U. H. Govindarajan, A. C. Chuang,
and J. J. Sun, “A review of essential standards and patent landscapes
for the Internet of Things: A key enabler for industry 4.0,” Adv. Eng.
Informat., vol. 33, pp. 208-229, Aug. 2017.

J. Lee, B. Bagheri, and H.-A. Kao, “A Cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manuf. Lett.,
vol. 3, pp. 18-23, Jan. 2015.

P. Arcaini, E. Riccobene, and P. Scandurrav, “Modeling and analyzing
MAPE-K feedback loops for self-adaptation,” in Proc. IEEE SEAMS,
Florence, Italy, 2015, pp. 13-23.

A. M. Sharifloo, A. Metzger, C. Quinton, L. Baresi, and K. Pohl,
“Learning and evolution in dynamic software product lines,” in Proc.
IEEE SEAMS, Austin, TX, USA, 2016, pp. 158-164.

P. Vromant, D. Weyns, S. Malek, and J. Andersson, “On interacting
control loops in self-adaptive systems,” in Proc. SEAMS, 2011,
pp. 202-207.

M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, and F. Plasil,
“An architecture framework for experimentations with self-adaptive
cyber-physical systems,” in Proc. IEEE SEAMS, Florence, Italy, 2015,
pp. 93-96.

N. Capodieci, E. Hart, and G. Cabri, “Artificial immunology for collec-
tive adaptive systems design and implementation,” ACM Trans. Auton.
Adapt. Syst., vol. 11, no. 2, 2016, Art. no. 6.

N. M. Villegas, G. Tamura, H. A. Muller, L. Duchien, and R. Casallas,
DYNAMICO: A Reference Model for Governing Control Objectives and
Context Relevance in Self-Adaptive Software Systems (LNCS 7475),
R. de Lemos, H. Giese, H. A. Miiller, and M. Shaw, Eds. Heidelberg,
Germany: Springer, 2013, pp. 265-293.

A. J. Ramirez and B. H. C. Cheng, “Design patterns for developing
dynamically adaptive systems,” in Proc. SEAMS, 2010, pp. 49-58.

D. Weyns et al., “On patterns for decentralized control in self-adaptive
systems,” in Software Engineering for Self-Adaptive Systems II.
Heidelberg, Germany: Springer, 2013, pp. 76-107.

D. G. D. L. Iglesia and D. Weyns, “MAPE-K formal templates to
rigorously design behaviors for self-adaptive systems,” Trans. Auton.
Adapt. Syst., vol. 10, no. 3, 2015, Art. no. 15.

M. Holzl and T. Gabor, Reasoning and Learning for Awareness
and Adaptation (LNCS 8998). Cham, Switzerland: Springer, 2015,
pp. 249-290

P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rosu, “An overview
of the MOP runtime verification framework,” Int. J. Softw. Tools
Technol. Transf., vol. 14, no. 3, pp. 249-289, 2012.

S. Ruiz-Arenas, I. Horvith, R. Mejia-Gutiérrez, and E. Z. Opiyo,
“Towards the maintenance principles of cyber-physical systems,”
Strojniski vestnik J. Mech. Eng., vol. 60, no. 12, pp. 815-831, 2014.
B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg,
“Models @Run.time to support dynamic adaptation,” Computer, vol. 42,
no. 10, pp. 44-51, Oct. 2009.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAVCAR AND HORVATH: REVIEW OF PRINCIPLES OF DESIGNING S$-CPSs FOR RUN-TIME ADAPTATION 13

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

A. Bennaceur et al., Mechanisms for Leveraging Models at Runtime
in Self-Adaptive Software, in Models @Run.Time (LNCS 8378). Cham,
Switzerland: Springer, 2014, pp. 19-46.

P. Alho and J. Mattila, “Service-oriented approach to fault tolerance in
CPSs,” J. Syst. Softw., vol. 105, pp. 1-17, Jul. 2015.

M. Chen, P. Shi, and C.-C. Lim, “Adaptive neural fault-tolerant control
of a 3-DOF model helicopter system,” I[EEE Trans. Syst., Man, Cybern.,
Syst., vol. 46, no. 2, pp. 260-270, Feb. 2016.

H. Mo and M. Xie, “A dynamic approach to performance analysis and
reliability improvement of control systems with degraded components,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 10, pp. 1404-1414,
Oct. 2016.

L. Sha, “Using simplicity to control complexity,” IEEE Softw., vol. 18,
no. 4, pp. 20-28, Jul./Aug. 2001.

H. Noura, D. Theilliol, J.-C. Ponsart, and A. Chamseddine, Fault-
Tolerant Control Systems, Design and Practical Applications. London,
U.K.: Springer, 2009.

I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detec-
tion, isolation, and reconfiguration methods,” IEEE Trans. Control Syst.
Technol., vol. 18, no. 3, pp. 636-653, May 2010.

P. Goupil, “Industrial practices in fault tolerant control,” in Fault
Tolerant Flight Control: A Benchmark Challenge, C. Edwards,
T. Lombaerts, and H. Smaili, Eds. Heidelberg, Germany: Springer,
2010, pp. 157-166.

P. Chu, J. A. Mulder, and J. Breeman, “Real-time identification
of aircraft physical models for fault tolerant flight control,” in
Fault Tolerant Flight Control: A Benchmark Challenge, C. Edwards,
T. Lombaerts, and H. Smaili, Eds. Heidelberg, Germany: Springer,
2010, pp. 129-153.

M. M. Farag, “Architectural enhancements to increase trust in
cyber-physical systems containing untrusted software and hard-
ware,” Ph.D. dissertation, Faculty Virginia Polytechnic Inst.
State Univ., Blacksburg, VA, USA, 2012. [Online]. Available:
https://search.proquest.com/docview/1512627509?pq-origsite=gscholar
E. A. Lee, “Time for high-confidence cyber-physical systems,” in Proc.
Perform. Metrics Intell. Syst. Workshop, College Park, MD, USA, 2012,
pp. 1-30.

N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, and I. Jawhar,
“Middleware to support cyber-physical systems,” in Proc. IEEE 35th
Int. Perform. Comput. Commun. Conf., Las Vegas, NV, USA, 2016,
pp. 1-3.

M. Garcia-Valls and R. Baldoni, “Adaptive middleware design for CPS:
Considerations on the OS, resource managers, and the network run-
time,” in Proc. ARM, Vancouver, BC, Canada, 2015, Art. no. 3.

T. Cucinotta et al., “A real-time service-oriented architecture for
industrial automation,” [EEE Trans. Ind. Informat., vol. 5, no. 3,
pp. 267-277, Aug. 2009.

R. de Lemos et al., “Software engineering for self-adaptive systems: A
second research roadmap,” in Software Engineering for Self-Adaptive
Systems II (LNCS 7475), R. de Lemos, H. Giese, H. A. Miiller, and
M. Shaw, Eds. Heidelberg, Germany: Springer, 2013, pp. 1-32.

A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards
survivable cyber-physical systems,” in Proc. IEEE Int. Conf. Distrib.
Comput. Syst. (ICDCSW), Beijing, China, 2008, pp. 495-500.

A. A. Minai, D. Braha, and Y. Bar-Yam, “Complex engineered systems:
A new paradigm,” in Complex Engineered Systems. Heidelberg,
Germany: Springer, 2006, pp. 1-21.

S.-W. Cheng, V. V. Poladian, D. Garlan, and B. Schmerl, “Improving
architecture-based self-adaptation through resource prediction,” in
Software Engineering for Self-Adaptive Systems. Heidelberg, Germany:
Springer-Verlag, 2009, pp. 48-70.

A. Haékansson, R. Hartung, and E. Moradian, “Reasoning
strategies in smart cyber-physical systems,” Procedia Comput.
Sci., vol. 60, pp. 1575-1584, 2015. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1877050915023947
S. Gallacher, E. Papadopoulou, N. K. Taylor, and M. H. Williams,
“Learning user preferences for adaptive pervasive environments: An
incremental and temporal approach,” ACM Trans. Auton. Adapt. Syst.,
vol. 8, no. 1, 2013, Art. no. 5.

F. Wotawa, “Adaptive autonomous systems—From the system’s archi-
tecture to testing,” in Leveraging Applications of Formal Methods,
Verification, and Validation, vol. 336. Heidelberg, Germany: Springer,
2011, pp. 76-90.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-
aware systems,” Int. J. Ad Hoc Ubiquitous Comput., vol. 2, no. 4,
pp. 263-277, 2007.

J.-Y. Hong, E.-H. Suh, and S.-J. Kim, “Context-aware systems: A lit-
erature review and classification,” Expert Syst. Appl., vol. 36, no. 4,
pp- 8509-8522, 2009.

D. Fisch, M. Jdnicke, E. Kalkowski, and B. Sick, “Techniques for
knowledge acquisition in dynamically changing environments,” ACM
Trans. Auton. Adapt. Syst., vol. 7, no. 1, 2012, Art. no. 16.

C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the Internet of Things: A survey,” IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 414454, 1st Quart., 2014.

E. Vassev and M. Hinchey, “Knowledge representation for adap-
tive and self-aware systems,” in Software Engineering for Collective
Autonomic Systems (LNCS 8998). Cham, Switzerland: Springer, 2015,
pp. 221-247.

H. Schmeck, C. Miiller-Schloer, E. Cakar, M. Mnif, and U. Richter,
“Adaptivity and self-organization in organic computing systems,” ACM
Trans. Auton. Adapt. Syst., vol. 5, no. 3, 2010, Art. no. 10.

N. Dutt, A. Jantsch, and S. Sarma, “Toward smart embedded systems: A
self-aware system-on-chip (SoC) perspective,” ACM Trans. Embedded
Comput. Syst., vol. 15, no. 2, 2016, Art. no. 22.

B. Subagdja and A.-H. Tan, “Interactive teachable cognitive agents:
Smart building blocks for multiagent systems,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 46, no. 12, pp. 1724-1735, Dec. 2016.

D. Ye, M. Zhang, and A. V. Vasilakos, “A survey of self-organization
mechanisms in multiagent systems,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 47, no. 3, pp. 441-461, Mar. 2017.

H. Kopetz, “The complexity challenge in embedded system design,” in
Proc. ISORC, Orlando, FL, USA, 2008, pp. 3-12.

K. Alexopoulos, S. Makris, V. Xanthakis, K. Sipsas, and
G. Chryssolouris, “A concept for context-aware computing in
manufacturing: The white goods case,” Int. J. Comput. Integr. Manuf.,
vol. 29, no. 8, pp. 839-849, 2016.

R. J. Anthony, D. Chen, M. Pelc, M. Persson, and M. Torngren,
“Context-aware adaptation in DySCAS,” Electron. Commun. EASST,
vol. 19, pp. 1-15, 2009.[Online]. Available: https://journal.ub.tu-
berlin.de/eceasst/article/view/245/232

E. A. Lee, “The past, present and future of cyber-physical systems: A
focus on models,” Sensors, vol. 15, no. 3, pp. 4837-4869, 2015.

D. Giirdiir, J. El-Khoury, T. Seceleanu, and L. Lednicki, “Making
interoperability visible: Data visualization of cyber-physical systems
development tool chains,” J. Ind. Inf Integr, vol. 4, pp.26-34,
Dec. 2016.

J. Vanhuyse et al., “Nonlinear model predictive control design using
AMESIM models,” in Proc. TMCE, Aix-en-Provence, France, 2016,
pp. 143-152.

S. Pourtalebi and I. Horvath, “Towards a methodology of system
manifestation features-based pre-embodiment design,” J. Eng. Design,
vol. 27, nos. 4-6, 2016, pp. 232-268.

A. Canedo, E. Schwarzenbach, and M. A. A. Faruque, “Context-
sensitive synthesis of executable functional models of cyber-
physical systems,” in Proc. ICCPS, Philadelphia, PA, USA, 2013,
pp. 99-108.

B.-H. Schlingloff, “Cyber-physical systems
Engineering Trustworthy Software Systems
Liu and Z. Zhang, Eds. Cham, Switzerland: Springer,
pp- 256-289.

J. Andersson et al., Software Engineering Processes for Self-Adaptive
Systems (LNCS 7475), R. de Lemos, H. Giese, H. A. Miiller, and
M. Shaw, Eds. Heidelberg, Germany: Springer, pp. 51-75, 2013.

L. Baresi and C. Ghezzi, “The disappearing boundary between
development-time and run-time,” in Proc. FSE/SDP FoSER, Santa Fe,
NM, USA, 2010, pp. 17-22.

C. Bartelet, A. Rausch, and K. Rehfeld, “Quo vadis cyber-physical
systems: Research areas of cyber-physical ecosystems,” in Proc. CTSE,
Bergamo, Italy, 2015, pp. 22-25.

K. J. Park, R. Zheng, and X. Liu, “Cyber-physical systems: Milestones
and research challenges,” Comput. Commun., vol. 36, no. 1, pp. 1-7,
2012.

E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. IEEE
ISORC, 2008, pp. 363-369.

M. Garcia-Valls, I. R. Lépez, and L. F. Villar, “iLAND: An enhanced
middleware for real-time reconfiguration of service oriented dis-
tributed real-time systems,” IEEE Trans. Ind. Informat., vol. 9, no. 1,
pp- 228-236, Feb. 2013.

engineering,” in
(LNCS 9506), Z.
2016,

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

M. Clark et al., “A study on run time assurance for com-
plex cyber physical systems,” Air Force Res. Lab., Vanderbilt
Uni., Nashville, TN, USA, JIowa State Univ., Ames, IA,
USA, Univ. Pennsylvania, Philadelphia, PA, USA, and Galois
Inc., Portland, OR, USA, Rep., 2013. [Online]. Available:
http://www.dtic.mil/docs/citations/ ADA585474

S. Mitsch and A. Platzer, “ModelPlex: Verified runtime validation
of verified cyber-physical system models,” in Run-Time Verification
(LNCS 8734), B. Bonakdarpour and S. A. Smolka, Eds. Cham,
Switzerland: Springer, 2014, pp. 199-214.

M. Garcia-Valls, D. Perez-Palacin, and R. Mirandola, “Time-sensitive
adaptation in CPS through run-time configuration generation and
verification,” in Proc. IEEE 38th ICSAC, 2014, pp. 332-337.

M. M. Bersani and M. Garcia-Valls, “Online verification in cyber-
physical systems: Practical bounds for meaningful temporal costs,” J.
Softw. Evol. Process, vol. 30, 2018, Art. no. e1880. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/smr.v30.3/issuetoc,

doi: 10.1002/smr.1880.

T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learn-
ing in manufacturing: Advantages, challenges, and applications,” Prod.
Manuf. Res., vol. 4, no. 1, pp. 2345, 2016.

B. Morin, F. Fleurey, and O. Barais, “Taming heterogeneity and dis-
tribution in sCPS,” in Proc. IEEE/ACM SESCPS (SEsCPS), 2015,
pp. 40-43.

M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2,
pp. 1-42, 2009.

B. D. Argalla, S. Chernovab, M. Velosob, and B. Browninga,
“Reinforcement learning in robotics: A survey,” Int. J. Robot. Res.,
vol. 32, no. 11, pp. 1238-1274, 2013.

K. Alexander and P. J. Clarkson, “A validation model for the medical
devices industry,” J. Eng. Design, vol. 13, no. 3, pp. 197-204, 2002.

V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A survey on concepts,
applications, and challenges in cyber-physical systems,” KSII Trans.
Internet Inf. Syst., vol. 8, no. 12, pp. 42424268, 2014.

R. Drath, and A. Horch, “Industrie 4.0: Hit or hype? [Industry forum],”
IEEE Ind. Electron. Mag., vol. 8, no. 2, pp. 5658, Jun. 2014.

R. D. Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “A formal approach
to autonomic systems programming: The SCEL language,” ACM Trans.
Auton. Adapt. Syst., vol. 9, no. 2, 2014, Art. no. 7.

F. O. Karray and C. W. Silva, Soft Computing and Intelligent
Systems Design—Theory, Tools, and Applications. New York, NY,
USA: Addison-Wesley, 2004.

L. Wang, K. C. Tan, and C. M. Chew, Evolutionary Robotics: From
Algorithms to Implementations, vol. 28. Singapore: World Sci., 2006.
C. Chrysostomou, C. Djouvas, and L. Lambrinos, “Fuzzy logic-
based adaptive decision support in autonomous vehicular networks,”
in Computational Intelligence for Decision Support in Cyber-Physical
Systems, vol. 540, Z. H. Khan, A. Ali, and Z. Riaz, Eds. Singapore:
Springer, 2014, pp. 215-236.

M. Abid, A. Q. Khan, M. Rehan, and Haroon-ur-Rasheed, “TS
fuzzy approach for fault detection in nonlinear cyber physical
systems,” in Computational Intelligence for Decision Support in Cyber-
Physical Systems, vol. 540. Singapore: Springer, 2014, pp. 421-447.
[Online]. Available: https:/link.springer.com/chapter/10.1007%2F978-
981-4585-36-1_14

R. J. Anthony, “A policy-definition language and prototype implemen-
tation library for policy-based autonomic systems,” in Proc. ICAC,
Dublin, Ireland, 2006, pp. 265-276.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

J. Campos et al., “Robust regulation adaptation in multi-agent systems,”
ACM Trans. Auton. Adapt. Syst., vol. 8, no. 3, 2013, Art. no. 13.

R. Weissnegger et al., “Simulation-based verification of automotive
safety-critical systems based on EAST-ADL,” Procedia Comput. Sci.,
vol. 83, pp. 245-252, 2016.

D. Schneider and M. Trapp, “Conditional safety certification of open
adaptive systems,” ACM Trans. Auton. Adapt. Syst., vol. 8, no. 2, 2013,
Art. no. 8.

L. Sha and J. Meseguer, “Design of complex cyber physical
systems with formalized architectural patterns,” in Software-Intensive
Systems (LNCS 5380), M. Wirsing, J. P. Banitre, M. Holzl,
and A. Rauschmayer, Eds. Heidelberg, Germany: Springer, 2008,
pp- 92-100.

D. Gorlan et al., “Rainbow: Architecture-based self-adaptation with
reusable infrastructure,” Computer, vol. 37, no. 10, pp. 46-54,
Oct. 2004.

D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad, “A survey
of formal methods in self-adaptive systems,” in Proc. C3S2E, 2012,
pp. 67-79.

T. Bures et al., “DEECo: An ensemble-based component system,” in
Proc. ACM CBSE, 2013, pp. 81-90.

L. Baresi, S. Guinea, and A. Shahzada, “SeSaMe: Towards a semantic
self adaptive middleware for smart spaces,” in Engineering Multi-Agent
Systems (LNCS 8245). Heidelberg, Germany: Springer, 2013, pp. 1-18.

Joze Tavcar was born in 1966. He received the
Ph.D. degree from the University of Ljubljana,
Ljubljani, Slovenia, in 1999.

He has been an Associate Professor with the
Faculty of Mechanical Engineering, University of
Ljubljana since 2011. He has over a decade of
industrial experiences. He was a Quality Manager
with Iskra Mehanizmi Company, Slovenia, and as
a Product Developer and a Researcher with Domel
Electric Motor Company, Slovenia. His current
research interests include information flow analyses,

concurrent engineering, quality systems, and engineering design techniques.

Imre Horvath was born in 1954. He received the
M.Sc. degrees in mechanical engineering and engi-
neering education in 1978 and 1980, respectively,
and the Dr.Univ., Ph.D., and the C.D.Sc. degrees.
He has been a Full Professor with the Faculty of
Industrial Design Engineering, Delft University of
Technology, Delft, The Netherlands, since 1997. He
is the Head of the Cyber-Physical System Design
Research Group. He has coauthored over 380 papers
and articles. His current research interests include
cognitive engineering of CPSs, systematic design

research, and personalized/socialized system development.

Dr. Horvith initiated the TMCE Symposia. He is an Emeritus Editor-in-
Chief of the Journal of Computer-Aided Design, and an Associate Editor of
the Journal of Engineering Design. He served as the Chair for the Executive
Committee of the CIE Division. He is a Fellow of the ASME.

http://dx.doi.org/10.1002/smr.1880

