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Abstract: In this work, the possibility of using planar droplet sizing (PDS) based on laser-induced
fluorescence (LIF) and Mie scattering was investigated within the framework of measuring the
droplet Sauter mean diameter (SMD) of direct-injection spark-ignition (DISI) spray systems. For
this purpose, LIF and Mie signals of monodisperse fuel droplets produced by a droplet generator
were studied at engine relevant diameters (20–50 µm). The surrogate gasoline fuel Toliso (consisting
of 65 vol. % isooctane, 35 vol. % toluene) and the biofuel blend E20 (consisting of 80 vol. % Toliso,
20 vol. % ethanol) were used and which were doped with the fluorescence dye “nile red”. The effects
of ethanol admixture, dye concentration, laser power, and temperature variation on the LIF/Mie ratio
were studied simultaneously at both macroscopic and microscopic scale. The deduced calibration
curves of the LIF and Mie signals of both fuels showed volumetric and surface dependent behaviors,
respectively, in accordance with the assumptions in the literature. The existence of glare points and
morphology-dependent resonances (MDRs) lead to slightly higher LIF and Mie exponents of E20 in
comparison to Toliso. In principle, these calibration curves enable the determination of the SMD from
LIF/Mie ratio images of transient fuel sprays.

Keywords: laser-induced fluorescence; nile red; Mie scattering; gasoline; model fuel; ethanol

1. Introduction

The addition of renewable biofuels, such as ethanol in fossil gasoline fuels, can contribute
to the reduction of CO2 emissions. Nowadays, direct-injection spark-ignition (DISI) engines are
commonly used in the automotive sector. These engines show a higher efficiency than engines based
on conventional port fuel injection. However, direct fuel injection requires a faster atomization and
mixture formation, leading to a very complex combustion process. The liquid fuel atomization and the
evaporation behavior govern the ensuing process steps including mixture formation, ignition, heat
release, and pollutant formation as well as the IC (internal combustion) engine efficiency. These process
steps of combustion are very intricate and not fully understood, and the utilization of alternative fuel
blends leads to an even higher degree of complexity. An admixture of 20 vol. % ethanol (E20) to gasoline
is common in the US and in Brazil, while E10 is internationally the most common blend. Ethanol
admixture, however, may promote soot formation under certain conditions in DISI engines [1–4],
especially E20 which showed an increased soot formation in comparison to the base fuel, particularly
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for late injection timings in cold start conditions. The atomization and mixture formations are mainly
governed by the thermo-physical properties of the fuel which essentially affect the soot formation [2–5].
To meet the emission limits and efficiency requirements, the fuel-dependent spray-formation processes
of DISI engines must be controlled, and their investigation with optical techniques may significantly
contribute to better understanding of the spray structure which is necessary for a fuel-specific
optimization of the injection.

A suitable tool to characterize the spray formation is planar droplet sizing (PDS), as it allows for
the determination of the droplet size (d) in terms of the Sauter mean diameter (SMD) over a plane
defined by an illuminating laser sheet. The LIF/Mie ratio technique is based on the assumptions of
a d3 dependence of the LIF signal and a d2 dependence of the Mie signal of droplets illuminated
with a laser light source [6–14]. The qualitative LIF/Mie ratio can be calibrated using phase-Doppler
anemometry (PDA) measurements [5,6] or a droplet generator [9,15,16]. In principle, a LIF signal
can be created by the excited aromatic fuel components (e.g., toluene, benzene, naphthalene) of a
multi-component commercial gasoline fuel [17]. However, aromatic hydrocarbons show a distinct
temperature and oxygen sensitivity to the fluorescence at the same time [18,19]. Thus, the addition of a
well-characterized fluorescence dye [5,6,20] can be favorably applied for PDS. For this purpose, a large
number of fluorophores, mainly dissolved in water, were characterized in the past including dissolved
sodium salicylate [21], rhodamine 6G in water [9], and pyranine (“solvent green 7”) [20]. Several
studies dealing with droplet sizing in alcohol sprays already exist in the literature [5,15,16,20,22,23].
The tracer Eosin Y, which has been used in previous studies [22–25], cannot be dissolved in alkanes or
gasoline fuels. Only a small number of tracers are soluble in alkanes, oils, diesel, and gasoline, e.g.,
pyrromethene and its derivatives (e.g., 597-8C9, 597-C8) [26,27].

Nile red (C20H18N2O2) is another LIF-tracer which has already been employed in a previous study
in commercial gasoline and diesel fuels [24] for the investigation of the primary breakup of sprays in the
near-nozzle region. Its spectral absorption and fluorescence characteristics in gasoline–ethanol blends as
well as aviation fuels (also blended with biofuels such as farnesane and HEFA (Hydroprocessed Esters
and Fatty Acids)) was recently studied by our group [28]. To ensure that aromatic fuel components
of a realistic gasoline fuel do not become excited by the laser, a visible wavelength is preferred. This
criterion is fulfilled by the dye nile red, as it can be excited to fluoresce using a 532 nm Nd:YAG-laser.
Consequently, this dye is suitable for the investigations in the present study. In addition, the tracer nile
red is commonly used in microfluidic systems and in biology applications [29–31].

The temperature insensitivity of the LIF/Mie-ratio is essential for the technical applicability of the
sizing technique under IC engine conditions. Generally, and depending on the solvent and dye, the LIF
signal is temperature sensitive which must be considered for accurate droplet sizing. The Mie signal
shows no significant temperature sensitivity under moderate conditions involving small temperature
variations. The LIF signal usually depends on the solvent (i.e., the fuel composition) as well as on
the absorption and emission properties of the dye at the respective ambient conditions. During the
injection process, the liquid and gas phase temperature may vary tremendously. When injected into
hot compressed gas, the droplet may heat up quickly. Otherwise, under injection conditions with
moderate temperatures (or cold start conditions), the droplet temperatures in the spray can easily
drop by 10 K or even more (e.g., at 0.1 MPa, 293 K) [5] due to the evaporative cooling (depending on
the fuel evaporation enthalpy). Consequently, for application of the LIF/Mie ratio technique in DISI
engine sprays, a temperature insensitive signal ratio is advantageous in order to achieve accurate and
reliable measurements.

In this article, the microscopic and macroscopic LIF and Mie signals of micrometric monodisperse
fuel droplets are investigated using nile red, and the suitability of this technique for planar droplet
sizing is discussed. The two-component surrogate fuel Toliso (consisting of 65 vol. % isooctane,
35 vol. % toluene) was applied to model gasoline (see also References [1,28,32,33] and information in
Section 2.2.). Furthermore, the relevant ethanol–gasoline blend E20 (80 vol.% Toliso, 20 vol. % ethanol)
was studied, which showed worse atomization and evaporation leading to increased soot emissions
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under certain IC engine operating points [1,33]. The individual LIF and Mie signals of monodisperse
droplets produced by a droplet generator were investigated with both a microscopic and a macroscopic
setup. The macroscopic setup corresponded to the arrangement of the spray measurements while
the microscopic setup was necessary to resolve the size and shape of the droplets produced which
was required for signal interpretation as well as for calibration purposes. Here, the effects of ethanol
admixture, laser fluence, dye concentration, and liquid temperature on the LIF/Mie ratio were studied
for individual droplets. Finally, calibration curves of the LIF/Mie signal ratio as a function of droplet
size were deduced in a wide range of droplet sizes relevant for DISI injection conditions.

2. Experimental Setup

2.1. Microscopic and Macroscopic LIF/Mie Setup

The optical setup for the simultaneous detection of microscopic and macroscopic LIF and Mie
signals, generated from individual monodisperse droplets, is displayed in Figure 1.
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Figure 1. Optical setup for the simultaneous microscopic and macroscopic LIF/Mie detection (a). Detail
for the microscopic detection and the droplet generator (b).

For droplet illumination, a laser beam (Multi-Nd:YAG-Laser, Thales, Paris, France, 532 nm with
top-hat beam profile) was formed to a light sheet (height: 15 mm, thickness: approximately 0.7 mm).
The LIF- and Mie-signal intensities were recorded simultaneously with a micro and a macro imaging
system, respectively. Each imaging system was equipped with two identical sCMOS cameras (Imager,
LaVision, Goettingen, Germany, resolution 2560 pixel × 2160 pixel). The design of the systems and



Appl. Sci. 2019, 9, 4900 4 of 15

the associated adjustment possibilities simplify the alignment for obtaining the same field-of-view for
both cameras. The individual filters were mounted directly in front of the camera chips. The LIF signal
was detected using a 532 nm (17 FWHM) notch filter to exclude the excitation wavelength. The Mie
scattering signal was detected using a 532 nm (1 nm FWHM) laser line filter. To optimize the signal
detection at constant laser power, motorized filter wheels equipped with a set of ND-filters (ND 0, ND
0.3, ND 0.6, ND 1, ND 1.3) were mounted in front of the individual cameras. All optical elements of
the objective systems were characterized with a photo spectrometer (UV/VIS Spectrometer Lambda 40,
Perkin Elmer, Waltham, USA, wavelength range 300–900 nm, 3001 pixels, spectral bandwidth 0.2 nm)
to calibrate the spectral properties of the detection system. The microscopic objective system was
equipped with a high-resolution, long-range microscope (K2 DistaMax, Infinity, Centennial, USA) with
a nominal pixel resolution of 0.28 µm/pixel. The macroscopic detection system was equipped with a
conventional objective (135 mm, 2.8/135, Pentacon, Dresden, Germany) with a nominal pixel resolution
of 6.67 µm/pixel.

2.2. Droplet Generator

The droplet generator used (type 1530, MSP Corp., Shoreview, USA) produced monodisperse
droplets of sizes ranging between 20 µm and 50 µm (or larger; maximal droplet size was 93 µm
according to the manufacturer) which is relevant for gasoline direct injection. The device changes the
droplet size by adjustment of fuel and air mass flows and piezo frequency in contrast to commonly
used orifice droplet generators [34]. The flow focusing air, the droplet generator itself, and the
fuel were conditioned with two recirculating chillers (FP50, Julabo, Seelbach, Germany) to ensure
constant measurement conditions at an ambient pressure of 0.1 MPa. The temperatures of the setup
were monitored by integrated thermocouples (type K, 1.5 mm, tc-direct GmbH, Moenchengladbach,
Germany). The droplets were dragged along the carrier gas. The LIF and Mie measurement volume
(region of interest, ROI) was approximately 3 to 7 mm below the nozzle of the droplet generator,
depending on the investigated droplet size. The conditioned carrier gas and the small droplet path after
injection avoided significant temperature variations within the droplet chain. Significant temperature
gradients would affect LIF signals and would also change the scattering behavior of the droplets [35].

2.3. Fuels and Tracers Investigated

In accordance with our previous studies [1,32,33,36] and to avoid composition variations of
commercial gasoline, we used the well-defined two-component surrogate fuel Toliso (65 vol. %
isooctane, 35 vol. % toluene) instead. The sooting tendency of commercial gasoline was mainly driven
by its aromatic components, such as toluene, benzene or xylene, which were in sum up to 35% in
total volume of gasoline. Toluene is known as an octane number enhancer, and gasoline contains
up to 15 vol. % of this component [37]. Toliso has thermo-physical properties similar to those of
multi-component gasoline, and toluene mixtures with isooctane (or n-heptane) lead to a similar sooting
behavior as commercial gasoline [38]. The effect of biofuel admixture on the LIF and Mie signals was
considered by blending Toliso with 20 vol. % of ethanol (E20). The chemical and physical properties of
the investigated fuels and conventional gasoline for various ambient conditions are shown in Table 1.

The dye nile red (Sigma–Aldrich) was used for all investigations. It belongs to the group of
fluorophores and its aromatic ring structure contains polar substituents. Its properties lead to a high
sensitivity to the chemical and physical environment of surrounding solvent molecules [39]. For
the preliminary characterization of the spectral emission of the fuel–dye mixture in a dye cell, the
selected concentration of nile red was 9.38 mg/L [28]. This relatively low concentration prevents
measurement uncertainties caused by excessive extinction effects due to the long probe path in the dye
cell (in comparison to the droplet diameter). To achieve a good signal-to-noise ratio in the 2D droplet
investigations, the fuel was doped with 100 mg/L nile red concentration.
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Table 1. Physical and chemical properties of the investigated fuels and gasoline for various ambient
conditions. Data are extracted from references [40–44].

Property Unit Isooctane Toluene Ethanol Gasoline

H/C-ratio - 2.25 1.14 3 -
Boiling point @ 0.1 MPa K 372 383 351 298–483

Density @ 293 K, 0.1 MPa g/cm3 0.69 0.87 0.79 0.72–0.78
Dynamic viscosity @ 0.1 MPa, 293 K mPa s 0.501 0.587 1.145 0.6

Surface tension @ 293 K N/m 0.0188 0.0285 0.0224 0.0216
Heat of vaporization @ 293 K kJ/kg 305.4 409.3 938.2 380–500
Stoichiometric air-fuel ratio kg/kg 15.2 13.4 9.0 14.7

Lower Heating Value MJ/kg 44.6 40.6 26.8 40.1–41.6

2.4. Post-Processing Routine of the Droplet Measurements

The in-house post-processing code based on Matlab® evaluates each individual droplet in terms
of sphericity (which is the ratio of the minimum and maximum distance of the individual droplet in
the present study), location within the measurement region, and spacing among neighboring droplets.
Only droplets with a sphericity (which is the ratio of major ellipse and minor ellipse) between 1.0 and
1.2 and that were clearly separated from neighboring droplets were considered for further evaluation.
This geometric limitation was necessary, since the sphericity of the single droplets had a significant
impact on the scattering behavior [45].

The intensity ratio, as a function of the droplet diameter (d), was determined by two parameters,
which were fitted according to the power-law function, I = a·db. The fit was performed by a weighted
least squares minimization. The weighting factors were determined by the measurement noise, σI, of
the signal. The noise was approximately distributed log-normally; thus, the least-squares minimization
was performed in log-space. The chosen routine ensured that fitting errors based on the greater weight
of high intensities corresponding to large droplets were avoided.

3. Results

3.1. Spectral Fluorescence Characterization of the Dye

In this section, the fluorescence spectra of the dye dissolved in Toliso and E20 are presented at
various temperatures. This preliminary study was necessary for filter selection and signal interpretation
in the imaging study using the droplet generator. The fuel–dye mixture was studied in a dye cell
which was heated by a recirculating chiller (type: Julabo FP50). The micro cell was equipped with
four windows (sapphire, diameter: 0.5 inch) with an optical access diameter of 9 mm each. A
homogeneous temperature distribution within the micro cell was ensured by a built-in magnetic
stirrer (8 mm × 3 mm stir bar) and monitored by two thermocouples (type K, 1.5 mm, tc-direct GmbH,
Moenchengladbach, Germany). The laser beam was generated by a 532 nm Nd:YAG laser (model
150-10, Spectra Physics, Santa Clara, USA). The LIF spectra were recorded under a detection angle
of 90◦ using a photo spectrometer (model USB 4000, Ocean Optics, Largo, USA, wavelength range
495.9–831.8 nm, 3648 pixels, slit size 10 µm, integration time 100 ms, average over 50 subsequent
spectra for each measurement). Further details of the setup can be found in Reference [28]. The
temperature-dependent fluorescence signals for the investigated fuel–dye mixtures are shown in
Figure 2. The signals were normalized to the maximum intensity of E20. The chamber was cooled
down to 263 K or heated up to 323 K, respectively. The fluorescence spectra were presented in the
visible wavelength region 400–750 nm. In the UV region, there were also some absorption bands of
toluene (240–270 nm) [46], but this range is not relevant for an excitation at 532 nm. The fluorescence of
nile red in Toliso was characterized by continuous spectra with two individual peaks. The integrated
fluorescence signal showed a temperature dependence of less than 10% in the temperature range
of 263 K–323 K. The temperature dependence can partly be explained by the absorption behavior
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which showed a decrease with selevated temperatures (22% from 313 K–343 K) [28]. However, the
fluorescence yield depends on temperature as well. The fluorescence spectra were slightly shifted
to lower wavelengths with the increasing temperature. At higher temperature, the first peak of the
emission spectrum (~555 nm) decreased more quickly in comparison to the second peak (~580 nm).
The dependence of the fluorescence signal of nile red on the solvent becomes visible when Toliso is
blended with ethanol. The peaks of the fluorescence spectra of E20 were shifted by approximately
50 nm towards larger wavelengths in comparison to Toliso. This behavior was already reported by
Kalathimekkad et al. [39] in the case of nile red mixed with various solvents including ethanol and
toluene. The emission spectra of E20 consist of one only peak, instead of two peaks for Toliso. Again,
all emission spectra were slightly shifted towards lower wavelengths with increasing temperature. The
E20 showed an increase of the (peak) intensity with higher temperature in contrast to Toliso, where a
reduction with the increasing temperature was observed. The low temperature sensitivity at moderate
temperatures qualified the investigated fuel–dye mixtures as systems suitable for LIF/Mie-droplet
sizing without temperature correction. This is valid, especially at moderate ambient temperatures
where the fuel evaporation rate is low and variation of droplet temperature due to the increasing heat
or evaporation cooling is less significant. The individual fluorescence signals of Toliso and E20 as well
as the transmission curve of the respective laser filter are shown in Figure 2. The LIF detection was only
affected by the filter used in the case of Toliso (where a small part of the signal around 532 nm was cut
off). The signal of E20 was not affected by the filter due to the red-shift of the fluorescence spectrum.
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Figure 2. Fluorescence spectra for nile red (9.38 mg/L) in Toliso (a), E20 (b) at various temperatures
normalized to 293 K, and a comparison of the two fuel mixtures plotted with the respective filter
transmission curve (c). Fluorescence spectra were extracted from Reference [28].

3.2. Microscopic and Macroscopic Droplet Measurements

3.2.1. LIF and Mie Signals of Toliso

Figure 3 shows the simultaneous single-shot images of the LIF and the Mie signals of the Toliso
droplet chain of the microscopic and macroscopic detection systems at reference conditions (293 K,
0.1 MPa). Due to the larger ROI, the macroscopic resolution was around 24 times lower than the
microscopic resolution. The laser light enters the droplets from the left side. The images are shown
zoomed for clarity. Bright spots and glare points become visible inside the droplets in the LIF and
Mie images. Morphology-dependent resonance (MDR) effects are also visible, mainly in the form of
a ring-shaped outer layer (see also Figure 7 below). The MDRs are commonly present at high laser
fluence. The Mie images of the microscopic image (bottom row) mainly consist of two glare points.
The intensity of the entrance glare point (reflection) is higher in comparison to the exiting glare point,
as refraction and extinction effects take place within the droplet. The macroscopic image consists only
of one very large and bright spot, which is also true for the macroscopic LIF image. In the microscopic
LIF image, the signal exists throughout the whole droplet with a larger intensity in the center and
bright spots at the surface.
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Figure 3. Simultaneous microscopic and macroscopic LIF and Mie images of single micrometric Toliso
droplets (50 µm) at the reference conditions (293 K, nile red 100 mg/L).

The fitting curves for all evaluated individual LIF and Mie signals of Toliso are shown in Figure 4.
as a function of the droplet diameter with the corresponding standard deviations of the curve fitting.
In total, 31,019 single droplets were processed. The Mie curve shows a roughly quadratic dependency
on the SMD and a relatively large standard deviation. In principle, the Mie scattering intensity was
characterized by strong intensity oscillations with droplet size [14], which distinctly contribute to the
large standard deviation. Nevertheless, the selected detection angle area smoothens these oscillations
and enables a potential fitting procedure (further details can be found in previous work [15]).
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The microscopic LIF and the Mie signals at 293 K can be described by the following equations:

ILIF_Toliso_293K(micro)
= f
(
ddroplet

)
= 367.1·d3.03

droplet (1)

IMie_Toliso_293K(micro)
= f
(
ddroplet

)
= 53, 777·d1.87

droplet (2)
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The LIF signal closely followed a d3 dependence and the Mie signal showed an approximate d2

dependence which is in accordance with the LIF/Mie theory [7–14].
The comparison between the microscopic and macroscopic detection on the LIF/Mie ratio of Toliso

with the corresponding standard deviations of the curve fitting is shown in Figure 5.
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The microscopic and macroscopic LIF/Mie ratios at 293 K can be described by the following
equations:

ILIF/Mie_Toliso_293K(micro)
= f
(
ddroplet

)
= 0.0092·d1.14

droplet (3)

ILIF/Mie_Toliso_293K(macro)
= f
(
ddroplet

)
= 0.0123·d1.02

droplet (4)

Both fitting curves showed the approximate d dependence according to the LIF/Mie ratio
approach [6,7].

The macroscopic fitting curve of Toliso lies below the microscopic function and showed a larger
deviation from the microscopic fitting curve at increased droplet sizes. Due to the higher resolution
and the lower standard deviation of the microscopic signal in comparison with the macroscopic signal,
microscopic detection was used for further investigations.

3.2.2. Effects of Ethanol Admixture

The effects of ethanol admixture were studied at a constant dye concentration (100 mg/L nile red)
at reference conditions (293 K, 0.1 MPa) in terms of the LIF/Mie ratio. The fitting curves for the LIF
signals as a function of the droplet diameter are displayed in Figure 6.

The microscopic LIF, Mie, and LIF/Mie ratio of E20 at 293 K can be described by the following
equations:

ILIF_E20_293K(micro) = f
(
ddroplet

)
= 54.97·d3.34

droplet (5)

IMie_E20_293K(micro)
= f
(
ddroplet

)
= 9355·d2.02

droplet (6)

ILIF/Mie_E20_293K(micro)
= f
(
ddroplet

)
= 0.0087·d1.14

droplet (7)

The microscopic fitting curves showed a similar trend for both investigated fuels. The ethanol
admixture led to an increase in the microscopic LIF signal exponent from ~3.03 to ~3.34 and the
Mie exponent from ~1.87 to ~2.02 in comparison to the base fuel Toliso. The resulting microscopic
LIF/Mie-ratio exponents were not dependent on the ethanol admixture and had the same value of 1.14.
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According to Le Gal [6], an exponent greater than three for the LIF signal and an exponent greater
than two for the Mie signal are mainly attributed to MDR emissions (i.e., “cavity mode effects”) in the
droplets. This can be confirmed by Figure 7a showing the bin-wise (ddroplet ± 0.25 µm) averaged LIF
droplet signals for a droplet size ranging from 25 µm to 50 µm. There, E20 exhibited stronger MDR
effects which were characterized by ring-shaped structures at the outer part of the droplet.
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Figure 7. (a) Bin-wise averaged LIF signals (ddroplet ± 0.25 µm) of micro droplets in diameter in a range
of 25 µm to 50 µm at reference conditions (293 K, nile red 100 mg/L). The intensity was normalized to
the respective maximum signal. (b) Single -hot fluorescence images for 30 µm and 45 µm droplets (E20)
exhibiting MDR.
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These structures are more visible in the single-shot images in Figure 7b where two droplet size
classes (30 µm, 45 µm) are displayed. These MDRs can occur in the form of complete rings or fractions
of it, sometimes only a few bright spots are apparent inside the droplets.

3.2.3. Effects of Laser Fluence and Dye Concentration on the LIF/Mie Ratio

The effects of laser fluence and dye concentration are presented in the following section based on
E20 at reference conditions. The results are presented in Figure 8. For all investigations, representative
droplet sizes of 30 µm and 50 µm (in an interval of ±0.5 µm each) were studied, to avoid extensive
time-consuming measurements of the entire droplet range. Datasets covering the entire droplet size
spectrum were already performed in a previous study except for the fuel ethanol in combination with
the tracer eosin Y [15]. A reduced dataset was chosen to study the dependencies of the LIF/Mie ratio on
laser fluence and dye concentration. Three laser fluences of 54 mJ/cm2, 72 mJ/cm2 (reference condition,
corresponding to a pulse energy of 1.48 mJ), and 90 mJ/cm2 were chosen for these investigations. The
laser fluence showed only a small impact on the LIF/Mie ratio (see the inset at the upper-left side in
Figure 8) which is in accordance with several other studies [15,17,20]. Basically, the LIF/Mie ratio does
not vary with the laser fluence in the investigated range, as both the LIF and Mie signals showed
linear behavior unless effects such as saturation occurred. This behavior is advantageous for spray
measurements, as temporal and spatial fluctuations in laser fluence will play a minor role in such cases.
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Figure 8. Effects of the laser power and dye concentration on the LIF/Mie ratio for E20. The inserted
diagrams show the effects of the variation of the laser power (a) and the dye concentration (b) on
the LIF/Mie ratio, 293 K (nile red concentration: NR100 = 100 mg/L, NR200 = 200 mg/L; laser power:
LF75 = 54 mJ/cm2, LF100 = 72 mJ/cm2, LF125 = 90 mJ/cm2; SLF = simplified linear fit).

The influence of the dye variation was studied using nile red concentrations of 100 mg/L and
200 mg/L in E20 at a constant laser fluence (72 mJ/cm2). The linear increase of the ratio with increasing
dye concentration is shown in Figure 8 (see the insert on the upper right). For both droplet sizes, a
doubling of the dye concentration led to a doubled LIF/Mie ratio. This measurement confirms the linear
behavior of the LIF signal as a function of dye concentration, while the Mie signal should hardly be
affected as long as laser extinction effects in the droplet were negligible. Additional uncertainties due to
the saturation of the LIF signal were not observed. However, a partial evaporation of the fuel droplets
at high or moderate ambient temperatures may lead to an increase of the dye concentration within
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the shrinking droplets. This will result in an increased LIF/Mie ratio and in an overestimated droplet
size in spray experiments. Consequently, reliable droplet sizing measurements should preferably be
conducted at moderate ambient conditions in combination with low evaporation rates. For conditions
with increased evaporation rates in spray measurements, the variation of the dye concentration
must be corrected. Another aspect is the varying droplet temperature during droplet heating and
evaporation (of a spray), which will affect the LIF/Mie ratio. This source of uncertainty is discussed in
the subsequent section.

3.2.4. Effects of Liquid Temperature

In a droplet chain and in a spray, evaporation effects have to be taken into account. In a hot
ambience, the droplet will heat up first while, during evaporation, the droplet temperature may drop
again due to the evaporation enthalpy of the fuel. The effect of the liquid temperature of a monodisperse
droplet chain on the LIF/Mie ratio was investigated for E20. The corresponding microscopic fitting
curves for the investigated temperatures are shown in Figure 9.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 16 
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The equation of the microscopic LIF/Mie ratio at 293 K is shown in Equation (7), the behavior of
the microscopic LIF/Mie ratios at 263K and at 323K are shown in the subsequent equations:

ILIF/Mie_E20_263K(micro)
= f
(
ddroplet

)
= 0.0037·d1.30

droplet (8)

ILIF/Mie_E20_323K(micro)
= f
(
ddroplet

)
= 0.0105·d1.37

droplet (9)

An increase in liquid temperature from 263 K to 293 K does not show distinct variations in the
LIF/Mie ratio. For example, an increase of 9% was observed for a droplet size of 30 µm. The temperature
dependency of the LIF signal was in accordance with the spectral analysis of the LIF signals in the
micro cell (see Figure 2) which shows an increase in integrated intensity of 13% for a temperature
variation from 263 K to 293 K. Thus, it can be confirmed that the temperature dependence of the LIF
signal had a low influence on the accuracy of the LIF/Mie ratio technique at moderate temperatures.
However, the elevated droplet temperature (323 K) leads to a more distinct change in the LIF/Mie ratio
in comparison to 263 K and 293 K. For a droplet size of 30 µm, this temperature increase results in
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an increase of the LIF/Mie ratio of 56%. In general, previous investigations of monodisperse ethanol
droplets using eosin-Y as dye showed a similar temperature behavior [15]. The temperature study
within the droplet chain shows that droplet heating and cooling have to be taken into account for
planar droplet sizing. The LIF/Mie ratio technique is suitable for the investigated fuel–dye-mixtures
at moderate temperature variations without temperature and concentration correction, i.e., under
conditions with low fuel evaporation rates and reduced droplet heating or cooling.

4. Conclusions and Outlook

The microscopic and macroscopic LIF and Mie signals of micrometric monodisperse fuel
droplets doped with nile red were investigated and the suitability of this tracer for planar droplet
sizing was discussed. The surrogate fuel Toliso, used to simulate commercial gasoline, and the
ethanol–gasoline blend E20 were used as fuels. The spectral emissions of the investigated fuel–dye
mixtures were analyzed in a specially designed dye cell in a preliminary study at varying temperatures.
Excited at 532 nm, the fluorescence signal was in the visible wavelength region (400–750 nm). Both
fuel–dye-mixtures showed a low temperature sensitivity of the fluorescence at moderate temperature
variations (283–313 K), which is essential for reliable direct droplet sizing using the LIF/Mie approach.
The ethanol admixture of E20 resulted in slightly larger fluorescence signals, and the fluorescence
spectrum was shifted 50 nm towards higher wavelengths. This suggests that for each gasoline—ethanol
mixture, an individual LIF/Mie-calibration curve is necessary.

For calibration, monodisperse droplets were produced with a droplet generator and the respective
2D LIF and Mie signals were simultaneously analyzed with microscopic and macroscopic detection
systems. The fitting curves for the LIF and Mie signals were deduced after adequate post processing
according to the power law function I = a·db. The LIF and Mie signals of Toliso showed an approximate
d3- and d2-dependence, respectively, in accordance with theory. The Mie signals showed an overall
higher standard deviation in comparison to the LIF signal because of the typical Mie signal oscillations
within the chosen detection angular aperture. For the macroscopic detection, a lower LIF/Mie ratio and
higher respective standard deviations were observed in comparison to the microscopic detection. This
is caused by the lower resolution and SNR of the macroscopic detection system. A comparison of Toliso
and E20 led to similar LIF/Mie ratios for both fuels despite the spectral shift of the fluorescence. An
analysis of the single droplets showed more distinct MDR effects and glare points for E20 in comparison
to the base fuel Toliso. This was probably because of the different absorption and emission behaviors of
the dye dissolved in E20 leading to an increase of the LIF exponent from ~3.03 to ~3.34 and of the Mie
exponent from ~1.87 to ~2.02. Further investigations showed that the LIF/Mie ratio did not depend on
laser power but directly increased with the dye concentration as expected. To avoid enrichment of the
dye within the evaporating droplets of a spray, fuel evaporation had to be avoided (or corrected) so
that a reliable droplet sizing was possible under moderate ambient temperatures. An investigation of
the temperature dependence of the LIF/Mie ratio showed almost no temperature sensitivity under
moderate ambient conditions (between 263 K and 293 K), but a distinct increase of several tens of
percent for a temperature rise to 323 K. In summary, the suggested dye is suitable for planar droplet
sizing in sprays at moderate temperatures based on the LIF/Mie ratio at which evaporation and
distinct droplet heating or evaporation cooling can be neglected. Under conditions with larger droplet
heating and increased evaporation rates, additional dye concentration measurements and droplet
thermometry is required to avoid overestimation of droplet sizes. Finally, a detailed study of the MDR
effects on the LIF/Mie ratio calibration curve and its measurement uncertainty will be performed in
future. Afterwards, subsequent planar measurements in the spray will be conducted which require a
suppression of multiple scattering, for example, using the structured laser illumination planar imaging
(SLIPI) [20,23,47].
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