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Abstract: Planar droplet sizing (PDS) is a technique relying on the assumption that laser-
induced fluorescence (LIF) and Mie scattering optical signals from spherical droplets depend 
on their volume and surface area, respectively. In this article, we verify the validity of this 
assumption by experimentally analyzing the light intensity of the LIF and Mie optical signals 
from micrometric droplets as a function of their diameter. The size of the droplets is 
controlled using a new flow-focusing monodisperse droplet generator capable of producing 
droplets of the desired size in the range of 21 µm to 60 µm. Ethanol droplets doped with eosin 
dye and excited at 532 nm are considered in this study, and the individual droplets were 
imaged simultaneously at microscopic and macroscopic scale. The effects of laser power, dye 
concentration, and temperature variation are systematically studied as a function of LIF/Mie 
ratio in the whole range of droplet sizes. Finally, a calibration curve at tracer concentration of 
0.5 vol% is deduced and used to extract the droplet Sauter mean diameter (SMD) from 
instantaneous images of a transient ethanol spray. This droplet size mapping is done using 
structured laser illumination planar imaging (SLIPI), in order to suppress the artifacts induced 
by multiple light scattering. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Laser sheet-based LIF /Mie ratio imaging is a technique created in 1993 for two-dimensional 
mapping of droplet size [1]. Since then the method has been applied for different types of 
sprays either named as Laser Sheet Dropsizing [2] or Planar Droplet Sizing (PDS). The 
approach is based on the intensity ratio of liquid LIF intensity to the Mie intensity from the 
probed spray region. Note that some other researchers have proposed the Raman/Mie ratio for 
droplet sizing [3] or the LIEF/Mie ratio (LIEF: Laser-Induced Exciplex Fluorescence) [4], 
and droplet lasing-based sizing [5]. In PDS it is assumed that LIF and Mie intensities from the 
droplets are proportional to d3 and d2, respectively [1,2], where d is the droplet diameter. 
These dependencies have been discussed by several researchers [6–13], yet these 
investigations have been computational in the majority and their experimental validations are 
usually for droplet diameters greater than 100 µm [6–12,14]. For example, Domann et al. 
investigated the parameters influencing the accuracy of the PDS approach with a combined 
theoretical and experimental study with the monodisperse water droplet sizes ranging from 
170 to 270 µm [14]. It was found that Mie signal showed a good agreement with d2, however, 
in LIF, the d3 dependency was valid only for the lowest dye (Rhodamine 6G) concentration 
used and the d - exponent changed from 3 to 2 with an increase in dye concentration from 
0.001 to 0.1 g/L. 
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Another numerical study by Frackowiak et al. [10] confirmed this behavior as for a low 
absorbing mixture the LIF-signal obeyed the d3 law, while for highly absorbing mixtures a d2 
relation was more favorable. Charalampous et al. [12] numerically investigated the d3 and d2 
dependencies as a function of collection angle, dye concentration, and real part of the 
refractive index. It was concluded that for LIF the d3 dependency was adhered to for the 
lowest dye (Rhodamine 6G) concentration of 0.001g/L and real refractive index variation had 
a very little effect. For Mie-scattering, it was found that the d2 function depends strongly on 
the real refractive index, scattering angle, and dye concentration. The relation was best 
respected for lowest dye concentration, and scattering detection at 60° collection angle, for all 
droplet refractive indices. Therefore, the selection of LIF tracer and its concentration are 
essential to the accuracy of the LIF/Mie ratio technique. In addition, the influence of 
temperature and laser fluence on tracer LIF spectrum must be also characterized [15]. The 
effect of laser fluence on the LIF/Mie ratio is must be known for considering laser 
fluctuations (both shot-to-shot and spatial variations). Furthermore, the temperature of the 
droplets is often not known exactly. It may change during evaporation (due to heating of the 
droplets in the hot gas or due to cooling induced by the evaporation enthalpy). Thus, also the 
dye concentration will change during droplet evaporation. 

In the past, tracers such as TMPD [16], naphthalene [17], Rhodamine [18,19], fluorescein 
[20], 3-pentanone [21,22], and triethylamine [23] have been used both in liquid and in vapor 
phases. Recently, the eosin dye has been found as a suitable dye tracer for LIF imaging in 
ethanol sprays [24–26]. In this work, it was also used because of its high quantum yield of ~ 
0.68 in ethanol at 500 nm excitation [27]. Moreover, the quantum efficiency of the modern 
sCMOS image sensor is usually the highest (~ 60%) within the LIF emission spectrum of the 
eosin in ethanol solution (maximum at 550 nm). 

To calibrate the LIF/Mie ratio, Phase Doppler Anemometry (PDA) was largely used in the 
past [6,28–34]. However, PDA instruments measure temporally varying spray drop sizes at a 
single point, which is convenient for time-averaged measurements. Using a monodispersed 
droplet generator instead allows extracting the single-shot LIF/Mie ratio [35]. This second 
approach is more adequate for the calibration of instantaneous images. However, despite 
many reported investigations on LIF/Mie ratio calibration using monodisperse droplet 
generators, a thorough experimental study on d3 dependence of LIF, and d2 dependence of 
Mie is still missing for d ≤ 50 µm (which is relevant for engine sprays) along with varying 
influencing parameters such as droplet diameter, dye concentration, laser power, and droplet 
temperature etc. For example, Park et al. performed microscopic calibration of LIF/Mie ratio 
with 20 images averaged for each droplet of fluorescing unleaded gasoline produced in 50-
300 µm size range [36]. Le Gal et al. reported macroscopic calibration of LIF/Mie ratio from 
the individual droplets of self-fluorescent ‘mineral spirit’ produced in the sizes range of 50-
180 µm [2]. These droplet size ranges are not satisfactory for most cases of atomizing sprays, 
especially those used in for combustion applications. 

In this article, we report simultaneous microscopic and macroscopic LIF/Mie 
measurements from a novel flow-focusing monodisperse droplet generator, for accurate 
calibration of instantaneous droplet sizing measurement. The experimental investigation is 
performed as follows: (i) Using the microscopic/macroscopic setup, the LIF and Mie signals 
are recorded simultaneously from each individual droplet of dye-doped ethanol to 
respectively evaluate their d3 and d2 dependence for 21 µm ≤ d ≤ 60 µm. (ii) The dependence 
of the LIF/Mie ratio on laser energy, dye concentration and the temperature is thoroughly 
investigated, in particular also to assess possible errors in the results due to variations or 
uncertainties in the process parameters. (iii) The derived calibration curve is used for sizing 
droplets in an ethanol DISI spray on a single-shot basis. This needs single droplet calibration 
data as PDA only provides averaged information in a limited SMD-range. To face 
measurement errors introduced by multiple light scattering while generating instantaneous 
spray images, the two-phase SLIPI (2p-SLIPI) approach [24,26] is employed here when 
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allowing for the best possible signal to noise ratios at constant laser power. All optical 
components such as optical filters, ND filters, and beam splitters are characterized by a 
spectrometer (Perkin Elmer, UV/VIS Spectrometer, type Lambda 40). 

The macroscopic objective system is equipped with a 135 mm objective (Pentagon 
2.8/135). The pixel resolution achieved in this case is 0.15 pixels/µm. This setup is fixed just 
opposite to the microscopic imaging system to perform simultaneous macroscopic evaluations 
synchronized with the microscopic detection. It is also equipped with the identical optical 
filters, beam splitter used in the microscopic objective system. 

2.3 Monodisperse droplet generator 

The monodisperse droplet generator is made by MSP Corp (Type 1530) and is reported to 
generate droplet of size ranging between 15 and 150 µm for methanol and water using the 
flow focusing concept [37]. This enables a rough adjustment of the average droplet size 
without any modification of the droplet generator. In this device, the droplet size is changed 
by fuel mass flow and piezo frequency in contrast to the orifice droplet generators. The flow 
focusing air and the fuel are kept at 298 K to enable constant conditions during the 
measurements at an ambient pressure of 0.1 MPa. The temperatures of the whole setup are 
monitored by integrated thermocouples (type K). The downstream distance between the 
droplet generator orifice and droplet measurement plane is between 3 and 7 mm depending on 
the droplet size. 

2.4 CVC-chamber 

The constant volume combustion (CVC) chamber is used to investigate DISI-sprays under 
engine-like conditions. It is operated with dry air at 0.2 MPa pressure and 298 K temperature, 
which represents a high load engine operating point. The ambient temperature in the CVC 
and the fuel temperature are set to 298K. The injector is heated by an integrated fluid-based 
heating circulator. The temperature of the nozzle tip is monitored with a highly sensitive 
micro sheathed thermocouple (0.25 mm diameter, type K). It is assumed that the fuel adopts 
the injector temperature due to the long residence time of the fuel in the injector (the injection 
duration is relatively short (1800 μs) for an injection repetition rate of 0.5 Hz. The chosen 
temperature range is also relevant for cold and warm start conditions of the engine sprays. 
The injection pressure is set to 16 MPa. A 5-hole DISI-injector (Bosch GmbH, Germany) is 
utilized, where one jet is centrally separated from others allowing unrestricted optical access. 
The physical parameters of the fuel ethanol are listed in Table 1. It should be noted that the 
dye concentration within the droplet could change due to evaporation. However, the studied 
conditions at moderate ambient temperatures lead to low evaporation rates. Thus, a strong 
variation of the dye concentration can be excluded. The temperature dependence of the LIF-
signal is negligible at the investigated conditions. A detailed uncertainty analysis in the 
measurement due to changes in the dye concentration and temperature dependence of LIF can 
be found in [34]. For a wide temperature range, the LIF/Mie-ratio dependency will be 
addressed in the subsequent sections. 

Table 1. Physical and chemical properties of ethanol [37–41] 

Fuel ethanol 

H/C - ratio / O/C – ratio 3.0 / 0.5 
Normal boiling point (K) 351.5 
Density (g/cm3) @ 298 K, 0.2 MPa 0.801 
Surface tension @ 293 K (N/m) 0.0223 
Heat of vaporization @ 293 K (kJ/kg) 929.6 
Kin. viscosity @ 298 K, 0.2 MPa (m2/s) 1.30 x 10−6 
Refractive index at 293 K (-) 1.36 
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Figure 3 shows the fitting curves of the individual LIF and Mie signals and the LIF/Mie 
ratio deduced as a function of droplet diameter with their corresponding standard deviations. 

 

Fig. 3. The fitting curve of the experimental data plotted for LIF, Mie and LIF/Mie ratio as a 
function of droplet diameter for the reference conditions (1 MPa, 293 K, eosin concentration in 
ethanol: 0.5 vol %) with their corresponding standard deviations. 

The LIF signal shows a volumetric trend and in our experiments, it is not very sensitive to 
the variation of the detection angle. The fitting curve roughly follows the d3 dependence 
predicted by the literature [6–12,14]. It can be described by the following equation (power 
law) at standard conditions: 

 3.33( ) 43.94LIF droplet dropletI f d d= = ⋅  (1) 

An exponent greater than three is mainly attributed to the glare points and MDRs emission in 
droplets. Le Gal et al. have reported MDRs as super-radiant effects in LIF/Mie ratio laser 
sheet drop sizing [2]. However, the effects of MDRs in macroscopic LIF/Mie ratio is found to 
have negligible influence on the droplet sizing because intensity peaks of the MDRs in both 
LIF and Mie signals should cancel out each other. The fitting curve of the Mie signal can be 
described with the following equation: 

 2.12( ) 7062.5Mie droplet dropletI f d d= = ⋅  (2) 

The Mie-signal fitting curve shows a good agreement with the d2 dependence according to the 
literature. Nevertheless, an exponent greater than two is also reported by Le Gal et al. [2] due 
to MDRs. The corresponding LIF/Mie ratio follows the function: 

 1.25( ) 0.0054LIF droplet droplet

Mie

I f d d= = ⋅  (3) 

The fitting curve in this study roughly exhibits the d-dependence according to the hypothesis 
of LIF/Mie droplet sizing approach [2,6]. In Table 2, the respective average pre-factors, 
exponents and standard deviations of the three fitting curves (LIF, Mie, LIF/Mie) are 
summarized for the reference conditions (293 K, 0.5 vol % eosin). Here, the uncertainty for 
the pre-factor “A” is given by the geometric standard deviation, i.e. the 1-σ interval is from 
[A*σ; A/σ]. For the exponent b, the uncertainty is the arithmetic standard deviation, i.e. the 1-
σ interval is from [b-σb; b + σb]. The average values and standard deviation were calculated 
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from five individual calibration curves. The standard errors of the exponents show a lower 
variation for the LIF signal fit in comparison to the Mie signal fit. This behavior is caused by 
the detection angle dependence of the Mie signal in contrast to the LIF signal, which results 
in a wider signal distribution (see also discussion in section 6). 

Table 2. Curve fitting parameters including average pre-factors and exponents as well as 
respective standard deviations for microscopic measurements of ethanol droplet (0.5 vol 

% eosin, 293 K). 

signal fit Pre-factor A 
geom. std. 
deviation a 

Exponent b 
std. 
deviation b 

LIF 43.939 1.0317 3.3346 0.0084 

Mie 7062.5 1.0471 2.1166 0.0123 

LIF/Mie ratio 0.0054 1.0371 1.2539 0.0096 

In Fig. 4 the LIF/Mie ratio fitting curve is illustrated for the reference conditions with the 
corresponding experimental data. The uncertainty of the calibration data based on the 
standard deviation is plotted as well. Here the 1-σ uncertainties are depicted, resulting in the 
range of 5.5% for a droplet size of 30 µm. Furthermore, histograms of the LIF/Mie ratio 
distribution at certain droplet sizes (± 1 µm) are given in Fig. 5. The histograms of certain 
experimental data showed a log-normal behavior (see section 3.1). 

 

Fig. 4. The microscopic fitting curve (red) with the corresponding experimental data of single 
droplets plotted for LIF/Mie ratio as a function of droplet diameter for the reference conditions 
(0.1 MPa, 293 K, eosin concentration in ethanol: 0.5 vol %). The curves of the standard 
deviation are presented as well. 
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Figure 7 shows the resulting LIF/Mie ratio intensity curves as a function of droplet 
diameter for both micro and macro detections. The corresponding curve fitting parameters are 
given in Table 3. In both cases, the ratio curves show an approximately linear dependence on 
droplet diameter. There are some deviations between the two detections, which could be due 
to the lower spatial resolution in case of macroscopic imaging and opposite light collection 
angle. Nevertheless, the effects of the decreased resolution of the macroscopic detection, and 
the detection angle dependence of the Mie signal are found negligible for the ratio calibration 
in the existing setup. The macroscopic measurements are more realistic for the planar droplet 
sizing in sprays, therefore, results from the macroscopic investigations are only discussed 
further in this article. The macroscopic calibration curve for ethanol with 0.5 vol% eosin at 
0.1 MPa, 293 K and 100% laser power is used as a reference in the following investigations. 

 

Fig. 7. The micro and macro (reference marked red) LIF/Mie ratio plotted as a function of 
droplet diameter. The deviations between the two detections is due to loss of resolution in 
macroscopic system and opposite collection angle. 

Table 3. Microscopic and macroscopic LIF/Mie ratio curve fitting parameters for the 
pre-factor A and exponent b including the standard deviation for 0.5 vol% eosin 0.5 

vol% at 293 K (reference marked grey). 

signal fit A std. deviation A b std. deviation b 

Micro LIF/Mie 0.0054 1.0371 1.2539 0.0096 

Macro LIF/Mie 0.0030 1.0445 1.4139 0.0115 

4. Effects of laser energy, dye concentration and liquid temperature 

4.1 Effects of laser energy/fluence 

The effects of laser energy variation are investigated at constant dye concentration (0.5 vol 
%) and temperature (293 K) for the macroscopic LIF/Mie ratio. Three output laser powers of 
75%, 100% and 125% corresponding to laser fluences of 39.8 mJ/cm2, 53.0 mJ/cm2 and 66.3 
mJ/cm2 are investigated. The laser power variations are listed in Table 4. 

Table 4. Variation of laser energy/fluence at constant dye concentration and temperature 
(reference marked grey). 

Laser output 
power (%) 

Laser pulse energy 
(mJ/pulse) 

Laser fluence 
(mJ/cm2) 

75 3.04 39.8 

100 4.05 53.0 

125 5.06 66.3 
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The simulation was performed using a Matlab-algorithm based on the one presented by 
Bohren and Huffmann [46]. For the curve fitting the same routines as for the experimental 
data are used. 

 

Fig. 12. The calculated Mie signal for the microscopic detection and the fitting curves of the 
calculated and the experimental Mie signal (0.1 MPa, 293 K, eosin concentration in ethanol: 
0.5 vol %). 

In principle, the Mie-scattering calculation still shows the above-mentioned strong 
intensity fluctuations. However, the highly angle dependent Mie-signal gets smoothened by 
the averaging over the detection angle of the camera. In general, the fitting curves of the 
calculated and the experimental data show a good agreement. For a 30 µm droplet, the 
deviation is in the range of 8%. Thus, this smoothing effect confirms the chosen post-
processing algorithm according to section 3.1 based on a fitting to a potential function. 
Furthermore, Hofeldt et al. [44] also concluded that the integration over a continuous 
distribution in wavelength or diameter space will smoothen the scattered light intensities of 
the individual particles. Similar conclusions are also reported by Charalampous et al. [12]. 
Another experimental technique to reduce intensity oscillations within the Mie-scattering is 
the usage of femtosecond lasers as reported in [47] which also relies on the above mentioned 
effects. 

7. Summary and conclusion 

Monodisperse droplets of ethanol doped with eosin as a LIF tracer were studied with a long 
range microscope system. The droplets were produced using the flow-focusing mechanism, 
which results in droplets with high sphericity and a diameter ranging between 21 and 60 µm 
(although much larger droplets can be generated), which is relevant for engine spray 
conditions. The experimental data of the individual LIF, Mie signals and LIF/Mie ratio is 
fitted according to the power-law function I = a · db. The Mie-scattering of individual 
droplets is highly sensitive to the angle of detection and the droplet size and does actually not 
follow a potential trend. A calculation of the Mie scattering intensity showed strong intensity 
oscillations of the Mie-signal with droplet size. However, the chosen detection angle 
smoothens the signal oscillations and allows the usage of a potential fitting procedure. Thus 
dye eosin with 0.5 vol % in ethanol showed a good agreement with the d3- and d2- 
dependence relation of the LIF- and Mie- signals, respectively. These microscopic 
measurements were simultaneously performed in combination with another macroscopic 

                                                                                              Vol. 26, No. 24 | 26 Nov 2018 | OPTICS EXPRESS 31763 



objective, and for the comparison between the two detection schemes a total number of 
33,510 droplets were evaluated for the reference experiment. 

The macroscopic investigations of the droplet generator can be summarized as follows: (i) 
There is very minor influence of laser power variation (at constant dye concentration and 
liquid temperature) on the LIF/Mie ratio. (ii) The variation of the dye concentration (at 
constant laser power and liquid temperature) showed a strong dependence of the LIF signal 
and a weak effect on Mie-signal on the amount of dye within the droplets leading to strong 
dependence on LIF/Mie ratio. Thus, for reliable droplet sizing with the current investigation, 
a constant dye concentration is required (i.e. evaporation and dye enrichment in the droplet 
should be reduced). (iii) The LIF/Mie ratio increases with an increase in fuel temperature. The 
larger variation in the ratio is observed at 333 K in comparison to temperatures at 253 K and 
293 K. The investigated maximum temperature of 333 K is extremely high for the utilized 
fuel. This leads to an increase of the dye concentration within the droplets due to evaporation 
of ethanol. This is because the dye used is a solid and remains in the droplet. Accordingly, the 
technique is not applicable for high temperature environments and high evaporation rates. If 
the requirement and conditions such as constant dye concentration, and almost iso-thermal 
fuel temperatures are respected, the macroscopic LIF/Mie ratio of the droplet generator can be 
directly used to calibrate SLIPI-LIF/Mie ratio in other technical and IC engine sprays. In this 
case, the 1-σ uncertainty of the calibration data was determined to be 5.5% for droplet sizes of 
30 µm. 

The results from the spray measurement are as follows: (i) Instantaneous 2D mapping of 
droplet SMD field is extracted with the investigated method. (ii) Droplet SMD for the probed 
DISI spray varies between 5 to 50 µm at 293 K liquid temperature. The droplet SMD at the 
radial positions in spray edges are in the range of 5 µm to 40 µm. The droplets at the spray 
front are in the range 25-50 and higher, which is mainly due coalescence mechanisms. It is 
important to mention that the use of different fuels might affect the LIF/Mie ratio. For 
example, previous study of using butanol and ethanol as base fuels showed strong deviations 
of the LIF/Mie ratio calibration curves based on PDA calibration [34]. Therefore, effects of 
the fuel on LIF/Mie ratio will be part of future studies using droplet generator experiments 
that will be addressed in a subsequent publication. 

Finally, the LIF/Mie ratio calibration setup in combination with SLIPI-based droplet 
sizing can measure droplet SMD in much faster and more reliable manner than in comparison 
to conventional PDS and PDA measurements. The setup can be used for layer-wise 2D and 
averaged 3D mapping of SMD in engine sprays and the other technical sprays employed for 
industrial applications. 
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